JP2012018883A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2012018883A
JP2012018883A JP2010156901A JP2010156901A JP2012018883A JP 2012018883 A JP2012018883 A JP 2012018883A JP 2010156901 A JP2010156901 A JP 2010156901A JP 2010156901 A JP2010156901 A JP 2010156901A JP 2012018883 A JP2012018883 A JP 2012018883A
Authority
JP
Japan
Prior art keywords
gas
diffusion layer
channel
gas diffusion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010156901A
Other languages
Japanese (ja)
Inventor
Kenji Tsubosaka
健二 壷阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010156901A priority Critical patent/JP2012018883A/en
Publication of JP2012018883A publication Critical patent/JP2012018883A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a new technique contributive to improvement in water drainage in a fuel cell having an interdigital branch channel having closed flow channel ends.SOLUTION: A fuel cell 10 has gas inflow channels 48in and gas outflow channels 48out arranged alternately. In the gas inflow channel 48in, weir portions 49a extending obliquely from the surface side of a gas diffusion layer 24 to the upstream side, and recesses 49b facing them are provided. Since the weir portions 49a dam air flowing through the gas inflow channel 48in, the water carried by the air is stored in the weir portions 49a and enters the gas outflow channel 48out contiguous to the gas inflow channel 48in by penetrating the gas diffusion layer 24.

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

燃料電池は、燃料とその酸化剤、例えば、水素と酸素の電気化学反応によって発電する。この燃料電池は、概ね、電解質膜(例えば、プロトン伝導性を有する固体高分子膜)の両膜面にアノードとカソードの電極を形成した膜電極接合体(発電体)を、ガス拡散層を介在させた上でセパレーターで挟持して構成される。   A fuel cell generates electricity by an electrochemical reaction between fuel and its oxidant, for example, hydrogen and oxygen. This fuel cell generally includes a membrane electrode assembly (power generator) in which anode and cathode electrodes are formed on both membrane surfaces of an electrolyte membrane (for example, a solid polymer membrane having proton conductivity), and a gas diffusion layer interposed. And then sandwiched between separators.

このような燃料電池において、ガスの利用率を向上させて電池性能を向上させるための種々の提案がなされてきた。その一つとして、燃料ガスあるいは酸化ガスの流路の形状を、櫛歯状に分岐して流路末端で閉塞された複数の流路を、閉塞側が互い違いになるように交互に配列する構成が提案されている(例えば、特許文献1等)。このような流路構成の燃料電池では、供給されたガスは、まず、ガス入口側が開放されて末端が閉塞された流路に流入する。この流路に流入したガスは、流路末端の閉塞により、流路間のリブが当接するガス拡散層を透過して、隣の流路に流入する。この隣の流路は、先の流路とは逆にガス入口側で閉塞されガス出口側で解放されていることから、当該隣の流路に流入したガスは、ガス拡散層の表面に沿って流しつつガス排出を行うので、ガス拡散層全体にガスが行き渡る効率が高まり、電極面全体でガス利用率が向上する。   In such a fuel cell, various proposals have been made to improve the cell performance by improving the gas utilization rate. As one of them, the configuration of the flow path of the fuel gas or the oxidizing gas is a configuration in which a plurality of flow paths that are branched in a comb shape and closed at the end of the flow path are alternately arranged so that the closed sides are staggered. It has been proposed (for example, Patent Document 1). In the fuel cell having such a flow path configuration, the supplied gas first flows into the flow path whose gas inlet side is opened and whose end is closed. The gas that has flowed into the flow path passes through the gas diffusion layer where the ribs between the flow paths abut due to the blockage of the flow path ends, and flows into the adjacent flow path. Since this adjacent flow path is closed on the gas inlet side and released on the gas outlet side contrary to the previous flow path, the gas flowing into the adjacent flow path is along the surface of the gas diffusion layer. Since the gas is discharged while flowing, the efficiency of the gas spreading throughout the gas diffusion layer is increased, and the gas utilization rate is improved over the entire electrode surface.

特開平11−16591号公報JP-A-11-16591 特開2004−296198号公報JP 2004-296198 A

上記したような流路端部を閉塞した櫛歯状の分岐流路を交互に有する燃料電池にあっては、ガス利用率の向上により電池性能の向上が期待できるものの、次のような問題点が指摘されるに到った。カソード側では、電気化学反応により水が生成され、その生成水は、流路を流れるガスに運ばれて、閉塞した流路末端に貯まることになる。こうして流路末端に貯まった生成水は、流路末端付近のガス拡散層をガスと同様に透過して隣の流路に達して電池外部に排出される。こうした生成水の移動は、隣り合う流路の静圧差によりもたらされるので、ガス拡散層での生成水移動にはある程度の時間が掛かる。このため、生成水が全て貯まって生成水移動が起きる流路末端付近では、この生成水移動の間にあっては、生成水が入り込んだ範囲のガス拡散層ではガス拡散が生成水により阻害され、有効発電面積の低減を招いてしまう。   In the fuel cell having the comb-like branching channels alternately closing the channel ends as described above, although improvement in cell performance can be expected by improving the gas utilization rate, the following problems Came to be pointed out. On the cathode side, water is generated by an electrochemical reaction, and the generated water is carried by the gas flowing through the flow path and stored at the closed flow path end. The generated water stored at the end of the flow path passes through the gas diffusion layer near the end of the flow path in the same manner as the gas, reaches the adjacent flow path, and is discharged outside the battery. Since the movement of the generated water is caused by the difference in static pressure between adjacent flow paths, the generated water movement in the gas diffusion layer takes a certain amount of time. For this reason, in the vicinity of the end of the flow path where all the generated water accumulates and the generated water moves, the gas diffusion is inhibited by the generated water in the gas diffusion layer in the range where the generated water enters, and this is effective. The power generation area will be reduced.

本発明は、上述した従来の課題の少なくとも一部を解決するためになされたものであり、流路端部を閉塞した櫛歯状の分岐流路を有する燃料電池において、水の排水性の向上に寄与する新たな手法を提供することを目的とする。   The present invention has been made in order to solve at least a part of the above-described conventional problems, and in a fuel cell having a comb-like branched flow path with the flow path end closed, the water drainage is improved. The purpose is to provide a new method that contributes to

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の構成を採用した。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the following configuration is adopted.

[適用1:燃料電池]
電解質膜の両膜面に電極を形成した膜電極接合体と、該膜電極接合体の少なくとも一方の電極面に設けられたガス拡散層と、該ガス拡散層に電気化学反応に供される反応ガスを供給するガス流路とを有する燃料電池であって、
前記ガス流路は、
前記反応ガスの供給用のガス供給マニホールドの側から延びて流路末端で閉塞され、前記ガス供給マニホールドから流入した前記反応ガスを前記ガス拡散層の表面に沿って流す複数のガス流入流路と、
ガス排出用のガス排出マニホールドの側から前記ガス流入流路の隣に並んで延びて流路端部で閉塞され、前記ガス流入流路から前記ガス拡散層を透過したガスを受け取って、該ガスを前記ガス拡散層の表面に沿って流しつつ前記ガス排出マニホールドに流出させる複数のガス流出流路とを備え、
前記ガス流入流路は、
前記ガス拡散層の表面の側に位置してガスを堰き止め、ガスの流れ方向を前記ガス拡散層の表面から離れる側に変換する堰部と、
該堰部により前記ガス拡散層の表面から離れる側の流れに変換されたガスを受け止めて、ガスを前記堰部を乗り越えた上で前記ガス拡散層の表面の側に向けて流す流路内変換部とを有する
ことを要旨とする。
[Application 1: Fuel cell]
A membrane electrode assembly in which electrodes are formed on both membrane surfaces of the electrolyte membrane, a gas diffusion layer provided on at least one electrode surface of the membrane electrode assembly, and a reaction that is subjected to an electrochemical reaction in the gas diffusion layer A fuel cell having a gas flow path for supplying gas,
The gas flow path is
A plurality of gas inflow passages extending from the side of the gas supply manifold for supplying the reaction gas, blocked at the end of the flow passage, and flowing the reaction gas flowing in from the gas supply manifold along the surface of the gas diffusion layer; ,
A gas that extends side by side from the gas discharge manifold side for gas discharge and that is blocked at the end of the flow path and that has passed through the gas diffusion layer from the gas flow path, receives the gas A plurality of gas outflow passages for flowing out to the gas discharge manifold while flowing along the surface of the gas diffusion layer,
The gas inflow channel is
A dam section located on the surface side of the gas diffusion layer to block the gas, and a dam portion for converting the gas flow direction to the side away from the surface of the gas diffusion layer;
Receiving the gas converted into the flow on the side away from the surface of the gas diffusion layer by the dam part, and converting the gas in the flow path over the dam part and flowing toward the surface side of the gas diffusion layer And having a part.

上記構成を備える燃料電池では、ガス供給マニホールドから流入した反応ガスを複数のガス流入流路に入り込ませる。当該流路は末端で閉塞されているので、ガス流入流路に入り込んだ反応ガスは、ガス拡散層を透過して隣のガス流出流路に入り込む。こうしてガス流出流路に入り込んだ反応ガスは、ガス拡散層の表面に沿って流れつつガス排出マニホールドから流出される。そして、反応ガスは、ガス流入流路を通過する際と、ガス拡散層を透過する際、および、ガス流出流路を通過する際に、ガス拡散層を経て膜電極接合体に供給される。   In the fuel cell having the above configuration, the reaction gas flowing in from the gas supply manifold is allowed to enter a plurality of gas inflow channels. Since the flow channel is closed at the end, the reaction gas that has entered the gas inflow channel passes through the gas diffusion layer and enters the adjacent gas outflow channel. The reaction gas entering the gas outflow passage in this manner flows out from the gas discharge manifold while flowing along the surface of the gas diffusion layer. The reaction gas is supplied to the membrane electrode assembly through the gas diffusion layer when passing through the gas inflow channel, through the gas diffusion layer, and when passing through the gas outflow channel.

上記構成を備える燃料電池では、ガス流入流路に入り込んだ水(例えば、生成水)を、上記したガス供給に伴って次のようにして排出する。ガス流入流路に沿って流れるガスは、ガス流入流路の堰部で堰き止められて、ガス拡散層の表面から離れる側に向きを変えて流れ、その後は、流路内変換部に受け止められて堰部を乗り越えた上でガス拡散層の表面の側に向けて流れる。こうして流れるガスによりガス流入流路に沿って運ばれる水は、堰部でのガスの堰き止めの際に堰部にぶつかり、堰部に貯まると共に、閉塞された流路末端(以下、流路閉塞末端)にも貯まる。そして、堰部と流路閉塞末端とに貯まった水は、隣り合う流路の静圧差により、ガス流入流路からガス拡散層を透過してその隣のガス流出流路に入り込み、このガス流出流路に沿って運ばれて排出される。つまり、上記構成を備える燃料電池では、水が貯まる箇所(以下、水貯留箇所)を流路閉塞末端と堰部とに分散して、流路閉塞末端と堰部の水貯留箇所での水が貯まる量を低減できる。この結果、上記構成を備える燃料電池によれば、水移動に要する時間の短縮化とこれに伴う排水性の向上を図ることができる。   In a fuel cell having the above-described configuration, water (for example, produced water) that has entered the gas inflow channel is discharged as follows along with the gas supply described above. The gas flowing along the gas inflow channel is blocked by the dam portion of the gas inflow channel, flows in a direction away from the surface of the gas diffusion layer, and thereafter is received by the in-channel conversion unit. After flowing over the weir part, it flows toward the surface of the gas diffusion layer. The water carried along the gas inflow channel by the flowing gas collides with the weir when the gas is blocked in the weir, accumulates in the weir, and closes the end of the blocked channel (hereinafter referred to as channel blockage). It also accumulates at the end. Then, the water accumulated in the weir part and the closed end of the channel passes through the gas diffusion layer from the gas inflow channel and enters the adjacent gas outflow channel due to the static pressure difference between the adjacent channels. It is transported along the flow path and discharged. That is, in the fuel cell having the above-described configuration, the water storage locations (hereinafter referred to as water storage locations) are dispersed in the flow passage closed end and the weir portion, so that The amount stored can be reduced. As a result, according to the fuel cell having the above-described configuration, it is possible to shorten the time required for water movement and improve the drainage performance associated therewith.

上記した燃料電池は、次のような態様とすることができる。例えば、ガスの流れの上流側に向いてガスが衝突する堰き止め面を、前記ガス拡散層の表面となす角が鋭角となるように前記上流側に傾斜させるようにできる。こうすれば、堰部は、その堰上流側面をガスの流れの上流側においてガス拡散層の表面に被さるようにした鋭角状のいわゆる返し領域を形成する。このため、堰部は、堰き止め面とガス拡散層の表面の間の返し領域に確実に水を貯め、その貯めた水を下流側流路に流れないようにする。よって、上記の態様によれば、水貯留箇所の分散が確実となり、水移動に要する時間の短縮化とこれに伴う排水性の向上に有益となる。   The fuel cell described above can be configured as follows. For example, the damming surface on which the gas collides toward the upstream side of the gas flow can be inclined toward the upstream side so that the angle formed with the surface of the gas diffusion layer becomes an acute angle. In this way, the dam part forms an acute-angled so-called return region that covers the surface of the gas diffusion layer on the upstream side of the dam on the upstream side of the gas flow. For this reason, the dam part reliably stores water in the return region between the damming surface and the surface of the gas diffusion layer, and prevents the stored water from flowing into the downstream flow path. Therefore, according to said aspect, dispersion | distribution of a water storage location becomes reliable and it is useful for shortening of the time which water movement requires, and the improvement of the drainage property accompanying this.

また、流路内変換部を、前記ガス拡散層の表面と向き合う流路奥壁の側に形成された流路内凹所として、前記堰部に向けて開口するようにすることもできる。こうすれば、堰部によりガス拡散層の表面から離れる側の流れに変換されたガスの受け止めと、その後の、ガスの堰部の乗り越え、およびガス拡散層の表面の側に向けたガスの流れの変換の実効性を高めることができる。しかも、堰部の上流から下流にかけての流路面積をほぼ一律とできることから、ガスの流れを安定させた上で、上記した時間短縮や排水性向上を図ることができる。   Further, the in-channel conversion portion may be opened toward the dam portion as a recess in the channel formed on the side of the back wall of the channel facing the surface of the gas diffusion layer. In this way, the gas that has been converted into the flow away from the surface of the gas diffusion layer by the weir part, and then the gas flow over the gas weir part and the gas flow toward the surface side of the gas diffusion layer The effectiveness of the conversion can be increased. And since the flow-path area from the upstream of a weir part to downstream can be made substantially uniform, after stabilizing a gas flow, the above-mentioned time reduction and drainage improvement can be aimed at.

そして、前記堰部と前記流路内変換部とを前記ガス流入流路の複数箇所に備えるようにできる。こうすれば、水を貯める堰部が増える分、水貯留箇所の分散が進み、各水貯留箇所で貯まる水の量もより少なくできるので、更なる排水性の向上を図ることができる。   And the said dam part and the said in-flow-path conversion part can be provided in the multiple places of the said gas inflow flow path. If it carries out like this, since the amount of the weir part which stores water will increase, dispersion | distribution of a water storage location will advance, and since the quantity of the water stored in each water storage location can also be reduced, the further drainage improvement can be aimed at.

また、前記ガス流入流路と前記ガス流出流路とを、前記ガス拡散層の表面面内において蛇行した蛇行経路として隣り合わせ、その上で、前記ガス流入流路を前記堰部と前記流路内変換部とを前記蛇行経路に備えるものとできる。こうすれば、蛇行経路に沿ってガスが流れる場合の蛇行箇所では、ガスの流れの変化により、ガス流入流路からガス拡散層を透過して隣のガス流出流路に入り込むガスの流れが進むので、このガスに乗ってガス流入流路からガス流出流路の側への水の移動も促進される。よって、排水性の更なる向上を図ることができる。   Further, the gas inflow channel and the gas outflow channel are adjacent to each other as a meandering path that meanders in the surface of the gas diffusion layer, and the gas inflow channel is further connected to the weir portion and the channel. A conversion unit may be provided in the meandering path. In this way, in the meandering portion where the gas flows along the meandering path, the gas flow advances from the gas inflow passage through the gas diffusion layer and enters the adjacent gas outflow passage due to the change in the gas flow. Therefore, the movement of water on the gas from the gas inflow channel to the gas outflow channel side is also promoted. Therefore, the drainage can be further improved.

本発明の一実施例としての燃料電池10を構成する単セル15の概略構成を表わす断面模式図である。It is a cross-sectional schematic diagram showing the schematic structure of the single cell 15 which comprises the fuel cell 10 as one Example of this invention. ガスセパレーター26の具体的な形状の一例を平面視して示す説明図である。It is explanatory drawing which shows an example of the specific shape of the gas separator 26 by planar view. 図2における3−3線の概略断面図である。It is a schematic sectional drawing of the 3-3 line in FIG. 図2における4−4線の概略断面図である。FIG. 4 is a schematic cross-sectional view taken along line 4-4 in FIG. 図2における5−5線の概略断面図である。It is a schematic sectional drawing of line 5-5 in FIG. 図2における6−6線の概略断面図である。FIG. 6 is a schematic cross-sectional view taken along line 6-6 in FIG. ガス流入流路48inにおける堰部49aと凹所49bの形成の様子の一例を示す説明図である。It is explanatory drawing which shows an example of the mode of formation of the dam part 49a and the recess 49b in the gas inflow channel 48in. ガス流入流路48inにおけるガスの流れを堰部49aと凹所49bに関連付けて説明するための説明図である。It is explanatory drawing for demonstrating the flow of the gas in the gas inflow channel 48in in association with the weir part 49a and the recess 49b. 凹所49bの変形例を示す説明図である。It is explanatory drawing which shows the modification of the recess 49b. 凹所49bのまた別の変形例を示す説明図である。It is explanatory drawing which shows another modification of the recess 49b. 堰部49aと凹所49bの他の変形例を示す説明図である。It is explanatory drawing which shows the other modification of the dam part 49a and the recess 49b. ガス流入流路48inおよびガス流出流路48outを蛇行軌跡とした変形例を示す説明図である。It is explanatory drawing which shows the modification which made the gas inflow flow path 48in and the gas outflow flow path 48out meander.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての燃料電池10を構成する単セル15の概略構成を表わす断面模式図である。本実施例の燃料電池10は、図1に示す構成の単セル15を複数積層したスタック構造を有している。なお、本実施例の燃料電池10は、固体高分子型燃料電池であるが、異なる種類の燃料電池、例えば固体電解質型燃料電池においても、同様に適用可能である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a single cell 15 constituting a fuel cell 10 as an embodiment of the present invention. The fuel cell 10 of the present embodiment has a stack structure in which a plurality of single cells 15 having the configuration shown in FIG. 1 are stacked. The fuel cell 10 of the present embodiment is a solid polymer fuel cell, but can be similarly applied to different types of fuel cells, for example, solid oxide fuel cells.

単セル15は、電解質膜20の両側にアノード21とカソード22の両電極を備える。このアノード21とカソード22は、電解質膜20の両膜面に形成され膜電極接合体(Membrane Electrode Assembly/MEA)を形成する。この他、単セル15は、電極形成済みの電解質膜20を両側から挟持するガス拡散層23,24とガスセパレーター25,26を備え、両ガス拡散層は、対応する電極に接合されている。ガスセパレーター25は、ガス拡散層23の側に、水素を含有する燃料ガスを流すセル内燃料ガス流路47を備える。ガスセパレーター26は、ガス拡散層24の側に、酸素を含有する酸化ガス(本実施例では、空気)を流すセル内酸化ガス流路48を備える。なお、図1には記載していないが、隣り合う単セル15間には、例えば、冷媒が流れるセル間冷媒流路を形成することができる。   The single cell 15 includes both electrodes of an anode 21 and a cathode 22 on both sides of the electrolyte membrane 20. The anode 21 and the cathode 22 are formed on both membrane surfaces of the electrolyte membrane 20 to form a membrane electrode assembly (MEA). In addition, the single cell 15 includes gas diffusion layers 23 and 24 and gas separators 25 and 26 that sandwich the electrolyte membrane 20 on which electrodes have been formed from both sides, and both gas diffusion layers are joined to corresponding electrodes. The gas separator 25 is provided with an in-cell fuel gas flow channel 47 for flowing a fuel gas containing hydrogen on the gas diffusion layer 23 side. The gas separator 26 includes an in-cell oxidizing gas flow channel 48 through which an oxidizing gas containing oxygen (air in this embodiment) flows, on the gas diffusion layer 24 side. Although not shown in FIG. 1, for example, an inter-cell refrigerant flow path through which a refrigerant flows can be formed between adjacent single cells 15.

電解質膜20は、固体高分子材料、例えばフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。アノード21およびカソード22は、触媒(例えば白金、あるいは白金合金)を備えており、これらの触媒を、導電性を有する担体(例えば、カーボン粒子)上に担持させることによって形成されている。ガス拡散層23,24は、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロスによって形成することができる。ガスセパレーター25,26は、ガス不透過な導電性部材、例えば、カーボンを圧縮してガス不透過とした緻密質カーボンや、焼成カーボン、あるいはステンレス鋼などの金属材料により形成されている。ガスセパレーター25,26は、既述したセル内燃料ガス流路47およびセル内酸化ガス流路48の壁面を成す部材であって、その表面には、ガス流路を形成するための凹凸形状が形成されている。   The electrolyte membrane 20 is a proton conductive ion exchange membrane formed of a solid polymer material, for example, a fluorine-based resin, and exhibits good electrical conductivity in a wet state. The anode 21 and the cathode 22 include a catalyst (for example, platinum or a platinum alloy), and are formed by supporting these catalysts on a conductive carrier (for example, carbon particles). The gas diffusion layers 23 and 24 can be formed of a conductive member having gas permeability, such as carbon paper or carbon cloth. The gas separators 25 and 26 are made of a gas-impermeable conductive member, for example, a dense carbon made by compressing carbon and impermeable to gas, baked carbon, or a metal material such as stainless steel. The gas separators 25 and 26 are members that form the wall surfaces of the in-cell fuel gas flow path 47 and the in-cell oxidizing gas flow path 48 described above, and the surface has an uneven shape for forming the gas flow path. Is formed.

なお、図1では図示していないが、ガスセパレーター25,26の外周近傍の所定の位置には、複数の孔部が形成されている。これらの複数の孔部は、ガスセパレーター25,26が他の部材と共に積層されて燃料電池10が組み立てられたときに互いに重なって、燃料電池10内を積層方向に貫通する流路を形成する。すなわち、上記したセル内燃料ガス流路47やセル内酸化ガス流路48、あるいはセル間冷媒流路に対して、燃料ガスや酸化ガス、あるいは冷媒を給排するためのマニホールドを形成する。   Although not shown in FIG. 1, a plurality of holes are formed at predetermined positions in the vicinity of the outer peripheries of the gas separators 25 and 26. The plurality of holes overlap each other when the gas separators 25 and 26 are laminated together with other members and the fuel cell 10 is assembled, thereby forming a flow path that penetrates the fuel cell 10 in the lamination direction. That is, a manifold for supplying and discharging fuel gas, oxidizing gas, or refrigerant is formed with respect to the in-cell fuel gas channel 47, the in-cell oxidizing gas channel 48, or the inter-cell refrigerant channel.

次に、上記したカソード22の側のガスセパレーター26におけるセル内酸化ガス流路48の詳細について説明する。図2はガスセパレーター26の具体的な形状の一例を平面視して示す説明図、図3は図2における3−3線の概略断面図、図4は図2における4−4線の概略断面図、図5は図2における5−5線の概略断面図、図6は図2における6−6線の概略断面図である。なお、以下の説明では、説明の便宜上、ガスセパレーター26がなす矩形形状の長辺方向を水平方向とし、矩形短辺方向を垂直方向と称する。   Next, the details of the in-cell oxidizing gas channel 48 in the gas separator 26 on the cathode 22 side will be described. 2 is an explanatory view showing an example of a specific shape of the gas separator 26 in plan view, FIG. 3 is a schematic sectional view taken along line 3-3 in FIG. 2, and FIG. 4 is a schematic sectional view taken along line 4-4 in FIG. 5 is a schematic sectional view taken along line 5-5 in FIG. 2, and FIG. 6 is a schematic sectional view taken along line 6-6 in FIG. In the following description, for the convenience of description, the long side direction of the rectangular shape formed by the gas separator 26 is referred to as a horizontal direction, and the rectangular short side direction is referred to as a vertical direction.

図示するように、ガスセパレーター26は、垂直方向の2辺に沿って、外周近傍に孔部40〜45を備える。孔部40は、燃料ガス供給マニホールドを形成し(図中、H2 inと示す)、孔部41は冷媒供給マニホールドを形成し(図中、CLT inと示す)、孔部42は酸化ガス供給マニホールドを形成し(図中、O2 inと示す)、孔部43は冷媒排出マニホールドを形成し(図中、CLT outと示す)、孔部44は酸化ガス排出マニホールドを形成し(図中、O2 outと示す)、孔部45は燃料ガス排出マニホールドを形成する(図中、H2 outと示す)。ガスセパレーター26は、カソード22の側のものであることから、孔部42の酸化ガス供給マニホールドからセル内に流入したエアー(酸化ガス)は、このガスセパレーター26で形成された後述のガス流路を通過して、孔部44の酸化ガス排出マニホールドから排出される。こうしたガス供給は、積層された単セル15のそれぞれでなされる。アノード21の側のガスセパレーター25では、孔部40の燃料ガス供給マニホールドからセル内に流入した水素ガス(燃料ガス)は、このガスセパレーター25で形成されたガス流路を通過して、孔部45の燃料ガス排出マニホールドから排出される。 As shown in the drawing, the gas separator 26 includes holes 40 to 45 in the vicinity of the outer periphery along two sides in the vertical direction. The hole 40 forms a fuel gas supply manifold (indicated as H 2 in in the figure), the hole 41 forms a refrigerant supply manifold (indicated as CLT in in the figure), and the hole 42 supplies oxidizing gas. A manifold is formed (indicated as O 2 in in the figure), a hole 43 forms a refrigerant discharge manifold (indicated as CLT out in the figure), and a hole 44 forms an oxidizing gas discharge manifold (in the figure, O 2 shows the out), the hole portion 45 forms a fuel gas discharge manifold (in the figure, indicated as H 2 out). Since the gas separator 26 is on the cathode 22 side, the air (oxidizing gas) flowing into the cell from the oxidizing gas supply manifold in the hole 42 is a gas flow path described later formed by the gas separator 26. And is discharged from the oxidizing gas discharge manifold of the hole 44. Such gas supply is performed in each of the stacked single cells 15. In the gas separator 25 on the anode 21 side, the hydrogen gas (fuel gas) that has flowed into the cell from the fuel gas supply manifold in the hole 40 passes through the gas flow path formed by the gas separator 25 and passes through the hole. 45 is discharged from the fuel gas discharge manifold.

図2に示すガスセパレーター26は、その中ほどに、セル内燃料ガス流路が形成されてカソード22と重なって孔部42および孔部44と連通する略四角形状の領域を、発電領域50とする。ガスセパレーター26は、この発電領域50に、水平方向に筋状のガス流路(セル内酸化ガス流路48)を交互に並べて備える。つまり、このガスセパレーター26は、発電領域50において、水平方向に流路間リブ30と溝部32とを交互に備え、それぞれの溝部32を、入口側閉塞部34と出口側閉塞部35とで交互に閉塞する。この場合、入口・出口側の両閉塞部は、流路間リブ30と異なる部材(例えば、セラミックス、カーボン、金属、あるいは、樹脂やゴムで形成の別部材)にて溝部32を閉塞するものでもよく、溝部32を、入口側閉塞部34と出口側閉塞部35とで交互に閉塞するよう、切削等するようにすることもできる。なお、ガスセパレーター26とガス拡散層24との接触抵抗を低減するためには、入口側閉塞部34および出口側閉塞部35を、導電性を有する材料により構成することが望ましい。   The gas separator 26 shown in FIG. 2 has a substantially rectangular area formed in the middle thereof, in which an in-cell fuel gas flow path is formed and overlaps the cathode 22 and communicates with the hole 42 and the hole 44, and the power generation area 50. To do. The gas separator 26 is provided with streak-like gas flow paths (in-cell oxidizing gas flow paths 48) arranged alternately in the horizontal direction in the power generation region 50. That is, the gas separator 26 is provided with the inter-flow-path ribs 30 and the groove portions 32 alternately in the horizontal direction in the power generation region 50, and the respective groove portions 32 are alternately formed by the inlet-side blocking portions 34 and the outlet-side blocking portions 35. Block. In this case, both the closing portions on the inlet / outlet side may close the groove portion 32 with a member different from the rib 30 between the channels (for example, another member formed of ceramics, carbon, metal, resin or rubber). It is also possible to perform cutting or the like so that the groove portion 32 is alternately closed by the inlet side closing portion 34 and the outlet side closing portion 35. In order to reduce the contact resistance between the gas separator 26 and the gas diffusion layer 24, it is desirable that the inlet side blocking portion 34 and the outlet side blocking portion 35 be made of a conductive material.

上記の両閉塞部は、その設置箇所、即ち流路末端或いは端部において溝部32を閉塞する。このため、ガスセパレーター26は、孔部42の側に入口側閉塞部34を備えず孔部44の側に出口側閉塞部35を有する溝部32を複数備えることになり、この複数の溝部32を、ガス供給マニホールド(孔部40)の側から櫛歯状に分岐して流路末端で閉塞され、流入したエアーをカソード22のガス拡散層24の表面に沿って流すガス流入流路48inとする。その一方、ガスセパレーター26は、孔部42の側に入口側閉塞部34を備えて孔部44の側に出口側閉塞部35を有しない溝部32にあっても、これを複数備えることになり、この複数の溝部32を、ガス排出マニホールド(孔部44)の側から櫛歯状に分岐して流路端部で閉塞され、ガス流入流路48inと交互に並んだガス流出流路48outとなる。つまり、単セル15は、櫛歯状に分岐したガス流入流路48inとガス流出流路48outとを流路間リブ30を挟んで交互に有することになる。このガス流入流路48inは、図5に示すように、図中に矢印で示すガスの流れ方向に対して傾斜した堰部49aとこれに対向する凹所49bを有するが、この堰部と凹所についての構成と、両流路におけるガス通過の様子は後述する。ガス流出流路48outにあっては、図6に示すように、こうした堰や凹所は備えず、入口側閉塞部34から始まる単純な流路とされている。   Both the above-mentioned closed portions close the groove portion 32 at the installation location, that is, at the end or end of the flow path. For this reason, the gas separator 26 includes a plurality of groove portions 32 that do not include the inlet side blocking portion 34 on the hole portion 42 side but have the outlet side blocking portion 35 on the hole portion 44 side. The gas supply manifold (hole 40) branches into a comb-like shape and is blocked at the end of the flow path, and the inflowed air flows into the gas inflow path 48in that flows along the surface of the gas diffusion layer 24 of the cathode 22. . On the other hand, the gas separator 26 includes a plurality of the gas separators 26 even in the groove portion 32 which includes the inlet side blocking portion 34 on the hole portion 42 side and does not have the outlet side blocking portion 35 on the hole portion 44 side. The plurality of grooves 32 are branched into comb teeth from the side of the gas discharge manifold (hole 44), closed at the channel ends, and gas outlet channels 48out arranged alternately with the gas inlet channels 48in. Become. That is, the single cell 15 has alternately the gas inflow channel 48in and the gas outflow channel 48out branched in a comb-teeth shape with the inter-channel rib 30 interposed therebetween. As shown in FIG. 5, the gas inflow channel 48in has a weir portion 49a inclined with respect to the gas flow direction indicated by an arrow in the figure and a recess 49b opposite to the weir portion 49a. The configuration of the location and the state of gas passage in both flow paths will be described later. In the gas outflow channel 48out, as shown in FIG. 6, such a weir and recess are not provided, and a simple channel starting from the inlet side blocking portion 34 is provided.

また、ガスセパレーター26は、発電領域50において、複数の流路間リブ30の端部と孔部40〜42との間の領域、および、複数の流路間リブ30の端部と孔部43〜45との間の領域に、互いに離間して形成された複数の凸部36を備える。これら複数の凸部36は、燃料電池10内では、ガス拡散層24に当接して、セル内ガス流路の壁面の一部を構成する。孔部42が形成するガス供給マニホールドからセル内燃料ガス流路に流入したエアーは、上流側の凸部36の間に形成される空間を導かれて、複数のガス流入流路48inに分配される。   Further, in the power generation region 50, the gas separator 26 includes a region between the end portions of the plurality of inter-channel ribs 30 and the hole portions 40 to 42, and an end portion and the hole portion 43 of the plurality of inter-channel ribs 30. In the region between ˜45, a plurality of convex portions 36 formed to be spaced apart from each other are provided. In the fuel cell 10, the plurality of convex portions 36 are in contact with the gas diffusion layer 24 and constitute part of the wall surface of the in-cell gas flow path. The air that has flowed into the in-cell fuel gas flow path from the gas supply manifold formed by the hole 42 is guided to the space formed between the convex portions 36 on the upstream side, and is distributed to the plurality of gas inflow paths 48in. The

このガス流入流路48inに流れ込んだエアーは、当該流路が出口側閉塞部35でその末端において閉塞されていることから、図3に示すように、ガス流入流路48inとガス流出流路48outを区画する流路間リブ30が当接した範囲のガス拡散層24を透過して隣のガス流出流路48outに入り込む。こうしてガス流出流路48outに入り込んだ反応ガスは、ガス流出流路48outが上記したように単純な流路であることから、ガス拡散層24の表面に沿って抵抗なく流れつつガス排出マニホールド(孔部44)から流出される。そして、エアーは、ガス流入流路48inを通過する際と、流路間リブ30が当接した範囲のガス拡散層24を透過する際(以下、この際のエアー透過をリブ当接箇所エアー透過と称する)、および、ガス流出流路48outを通過する際に、ガス拡散層24を経てMEAに供給される。このリブ当接箇所エアー透過は、隣り合うガス流入流路48inとガス流出流路48outの静圧差により起きる。アノード21の側においても、ガスセパレーター25において上記した流路構成とできる。   The air that has flowed into the gas inflow channel 48in is closed at the end thereof by the outlet side blocking portion 35. Therefore, as shown in FIG. 3, the gas inflow channel 48in and the gas outflow channel 48out Permeate through the gas diffusion layer 24 in a range where the inter-flow-path ribs 30 are in contact with each other and enter the adjacent gas outflow flow-path 48out. Since the gas outflow passage 48out is a simple passage as described above, the reaction gas that has entered the gas outflow passage 48out flows without resistance along the surface of the gas diffusion layer 24. Part 44). The air passes through the gas inflow passage 48in and passes through the gas diffusion layer 24 in the range where the inter-passage ribs 30 abut (hereinafter, the air permeation at this time is referred to as rib abutment location air permeation). And when passing through the gas outflow passage 48out, the gas is supplied to the MEA through the gas diffusion layer 24. This rib contact location air permeation occurs due to a static pressure difference between the adjacent gas inflow channel 48in and gas outflow channel 48out. Also on the anode 21 side, the above-described flow path configuration can be made in the gas separator 25.

次に、堰部49aと凹所49bについて説明する。図7はガス流入流路48inにおける堰部49aと凹所49bの形成の様子の一例を示す説明図、図8はガス流入流路48inにおけるガスの流れを堰部49aと凹所49bに関連付けて説明するための説明図である。   Next, the dam 49a and the recess 49b will be described. FIG. 7 is an explanatory view showing an example of the formation of the weir 49a and the recess 49b in the gas inflow channel 48in, and FIG. 8 relates the gas flow in the gas inflow channel 48in to the weir 49a and the recess 49b. It is explanatory drawing for demonstrating.

図7に示すように、例えば、ガスセパレーター26に溝部32を交互に形成し、ガス流出流路48outとなる溝部32については、入口側閉塞部34を装着して流路端部を閉塞する。ガス流入流路48inとなる溝部32については、溝部底面に複数の凹所49bを予め形成し、溝部開口凹所49cに堰部49aをはしご状に組み込んだ枠体60を装着する。この場合、溝部開口凹所49cの深さと枠体60の寸法は同一とされ、図における枠体60の下面と堰部49aの下面は面一に調整されている。また、溝部32における複数の凹所49bの形成ピッチと、枠体60における複数の堰部49aの形成ピッチは同じとされている。よって、枠体60の装着を経たガスセパレーター26は、図8に示すように、ガスをガス拡散層24の表面に沿って流すようガス流入流路48inを形成すると共に、その流路において、堰部49aの下面をガス拡散層24に当接させた上で、堰部49aと凹所49bを向き合わせる。   As shown in FIG. 7, for example, the groove portions 32 are alternately formed in the gas separator 26, and the inlet end blocking portion 34 is attached to the groove portion 32 that becomes the gas outflow passage 48out to close the end portion of the flow passage. For the groove portion 32 to be the gas inflow channel 48in, a plurality of recesses 49b are formed in advance on the bottom surface of the groove portion, and a frame body 60 in which the weir portions 49a are incorporated in a ladder shape is attached to the groove portion opening recess 49c. In this case, the depth of the groove opening recess 49c and the size of the frame body 60 are the same, and the lower surface of the frame body 60 and the lower surface of the dam portion 49a in the figure are adjusted to be flush with each other. Further, the formation pitch of the plurality of recesses 49 b in the groove portion 32 and the formation pitch of the plurality of dam portions 49 a in the frame body 60 are the same. Therefore, as shown in FIG. 8, the gas separator 26 that has been fitted with the frame body 60 forms a gas inflow channel 48in so that the gas flows along the surface of the gas diffusion layer 24. After the lower surface of the portion 49a is brought into contact with the gas diffusion layer 24, the weir portion 49a and the recess 49b face each other.

堰部49aは、ガス拡散層24の表面から立ち上がるようにガス流入流路48inに延びた三角波形状の凸状体であり、ガス流入流路48inを流れるガス(空気)を堰き止める。また、この堰部49aは、ガス流入流路48inを流れるガスの流れ方向を図8に示すようにガス拡散層24の表面から離れる側、即ち凹所49bの側に変換する。しかも、堰部49aは、ガス流入流路48inを流れるガス(空気)の流れの上流側に向いてガスが衝突する堰の堰き止め面を、ガス拡散層24の表面となす角が鋭角となるように上流側に向けて傾斜させている。   The weir portion 49a is a triangular wave-shaped convex body extending to the gas inflow channel 48in so as to rise from the surface of the gas diffusion layer 24, and blocks the gas (air) flowing through the gas inflow channel 48in. Further, the weir portion 49a converts the flow direction of the gas flowing through the gas inflow channel 48in to the side away from the surface of the gas diffusion layer 24, that is, the side of the recess 49b as shown in FIG. In addition, the weir portion 49a has an acute angle with the surface of the gas diffusion layer 24, which is the damming surface of the weir where the gas collides toward the upstream side of the gas (air) flow through the gas inflow channel 48in. Inclined toward the upstream side.

凹所49bは、図7および図8に示すように、ガス拡散層24の表面と向き合うガス流入流路48inの流路奥壁の側に形成され、堰部49aに向けて開口した凹所とされている。そして、この凹所49bは、図8に示すように、堰部49aによりガス拡散層24の表面から離れる側の流れに変換されたガスを受け止めると共に、その受け止めたガスを堰部49aを乗り越えた上でガス拡散層24の表面の側に向けて流す。   As shown in FIGS. 7 and 8, the recess 49b is formed on the back wall side of the gas inflow channel 48in facing the surface of the gas diffusion layer 24 and is open toward the weir portion 49a. Has been. Then, as shown in FIG. 8, the recess 49b receives the gas converted into the flow away from the surface of the gas diffusion layer 24 by the dam portion 49a, and gets over the dam portion 49a. It flows toward the surface side of the gas diffusion layer 24 above.

本実施例の燃料電池10では、既述したようにガス流入流路48inとガス流出流路48outのセル内酸化ガス流路48によるカソード22への空気の供給と、セル内燃料ガス流路47によるアノード21への水素の供給を受けて発電し、発電に伴ってカソード22において水を生成する。この生成水は、ガス流入流路48inとガス流出流路48outに入り込む。本実施例の燃料電池10では、この生成水を次のようにして排出する。   In the fuel cell 10 of this embodiment, as described above, the supply of air to the cathode 22 by the in-cell oxidizing gas channel 48 of the gas inflow channel 48in and the gas outflow channel 48out, and the in-cell fuel gas channel 47 In response to the supply of hydrogen to the anode 21, power is generated, and water is generated at the cathode 22 along with the power generation. This generated water enters the gas inflow channel 48in and the gas outflow channel 48out. In the fuel cell 10 of the present embodiment, this generated water is discharged as follows.

本実施例の燃料電池10は、図5および図7〜図8に示すように、ガス流入流路48inに堰部49aと凹所49bを向かい合わせて複数備え、ガス流入流路48inを流れるガス(空気)を堰部49aにて一旦、堰き止める。こうして堰き止められた空気は、ガス拡散層24の表面から離れる側に向きを変えて流れ、その後は、凹所49bに受け止められて堰部49aを乗り越えた上でガス拡散層24の表面の側に向けて流れる。空気の堰き止めと流れ向き変更は、堰部49aと凹所49bの設置箇所で繰り返される。このようにして流れる空気によりガス流入流路48inに沿って運ばれる生成水は、堰部49aでのガス(空気)の堰き止めの際に堰部49aにぶつかり、堰部49aに貯まる。ガス流入流路48inでは空気搬送の動圧が掛かっていることから、生成水は、この動圧を受けて堰部49aに貯まったままとなり、堰部49aを乗り越えた空気に運ばれる生成水は、ガス流入流路48inの出口側閉塞部35に貯まる。そして、それぞれの堰部49aと出口側閉塞部35とに貯まった水は、ガス流入流路48inとその両隣りのガス流出流路48outとのの静圧差により、ガス流入流路48inからガス拡散層24を透過してその両隣のガス流出流路48outに入り込む。ガス流出流路48outは、図6に示すような単純な流路であることから、ガス流出流路48outに入り込んだ生成水は、このガス流出流路48outに沿って空気に運ばれて、燃料電池10から排出される。   As shown in FIGS. 5 and 7 to 8, the fuel cell 10 according to the present embodiment includes a plurality of weir portions 49 a and recesses 49 b facing the gas inflow channel 48 in, and gas flowing through the gas inflow channel 48 in. (Air) is once blocked by the weir portion 49a. The air thus dammed flows in a direction away from the surface of the gas diffusion layer 24, and thereafter, is received by the recess 49b and gets over the dam 49a and then on the surface side of the gas diffusion layer 24. It flows toward. The air blocking and the flow direction change are repeated at the positions where the weir portions 49a and the recesses 49b are installed. The generated water carried along the gas inflow channel 48in by the flowing air collides with the dam 49a when the gas (air) is dammed in the dam 49a and is stored in the dam 49a. Since the dynamic pressure of air conveyance is applied in the gas inflow channel 48in, the generated water remains stored in the weir portion 49a under the dynamic pressure, and the generated water carried to the air over the weir portion 49a is The gas is stored in the outlet side blocking portion 35 of the gas inflow channel 48in. The water accumulated in the respective weir portions 49a and the outlet side blocking portions 35 is diffused from the gas inflow channel 48in due to the static pressure difference between the gas inflow channel 48in and the gas outflow channel 48out on both sides thereof. It passes through the layer 24 and enters the gas outflow channel 48out on both sides thereof. Since the gas outflow passage 48out is a simple passage as shown in FIG. 6, the generated water that has entered the gas outflow passage 48out is carried to the air along the gas outflow passage 48out, and the fuel is discharged. The battery 10 is discharged.

以上説明したように、本実施例の燃料電池10では、生成水を出口側閉塞部35に貯めるばかりか、ガス流入流路48inにガス拡散層24の表面の側から延びる複数の堰部49aにも分散して貯め置くので、出口側閉塞部35と各堰部49aで生成水が貯まる量を低減できる。この結果、本実施例の燃料電池10によれば、水移動に要する時間を短縮できると共に、排水性についてもその向上を図ることができる。その上、出口側閉塞部35と各堰部49aに貯まる生成水量が少ない分、水移動が短時間で済むことから、ガス拡散層24に生成水が留まることも抑制できるので、有効発電面積の確保、延いては電池性能の維持も図ることができる。   As described above, in the fuel cell 10 of the present embodiment, not only the generated water is stored in the outlet side blocking portion 35 but also the plurality of dam portions 49a extending from the surface side of the gas diffusion layer 24 to the gas inflow channel 48in. Is also distributed and stored, the amount of generated water stored in the outlet side blocking portion 35 and each weir portion 49a can be reduced. As a result, according to the fuel cell 10 of the present embodiment, the time required for water movement can be shortened and the drainage can be improved. In addition, since the amount of generated water stored in the outlet side blocking portion 35 and each dam portion 49a is small, water movement can be completed in a short time, so that the generated water stays in the gas diffusion layer 24 can be suppressed. As a result, battery performance can be maintained.

また、本実施例の燃料電池10は、堰部49aをガス拡散層24の表面から延ばすに当たり、この堰部49aを、ガスが衝突する堰の堰き止め面がガス拡散層24の表面となす角が鋭角となるようにガス流入流路48inの流れの上流側に向けて傾斜するようにした。このため、堰部49aの基部には、堰上流側面がガス拡散層24の表面に被さるようにした鋭角状のいわゆる返し領域を形成できるので(図8参照)、本実施例の燃料電池10では、この堰部49aの堰上流側面とガス拡散層の表面の間の返し領域に確実に生成水を貯め、その貯めた生成水を下流側流路に流さないようにできる。よって、本実施例の燃料電池10によれば、それぞれの堰部49aでの生成水の分散貯留が確実とできるので、水移動に要する時間の短縮化と排水性の向上の実効性を高めることができる。   Further, in the fuel cell 10 of the present embodiment, when the dam portion 49a is extended from the surface of the gas diffusion layer 24, the angle between the dam portion 49a and the damming surface of the dam that the gas collides with the surface of the gas diffusion layer 24 is used. Is inclined toward the upstream side of the flow of the gas inflow channel 48in so as to have an acute angle. For this reason, an acute angle so-called return region in which the upstream side surface of the dam covers the surface of the gas diffusion layer 24 can be formed at the base of the dam portion 49a (see FIG. 8). Therefore, in the fuel cell 10 of the present embodiment, The generated water can be reliably stored in the return region between the upstream surface of the weir portion 49a and the surface of the gas diffusion layer, and the stored generated water can be prevented from flowing into the downstream flow path. Therefore, according to the fuel cell 10 of the present embodiment, since the generated water can be dispersed and stored in the respective dam portions 49a, the effectiveness of shortening the time required for water movement and improving drainage can be improved. Can do.

また、本実施例の燃料電池10では、上記のようにガス流入流路48inに傾斜して延びた堰部49aに、ガス流入流路48inに沿った空気搬送を起こす動圧を掛ける。このため、空気搬送のための動圧をも、堰部49aで貯めた生成水をガス拡散層24を透過して隣のガス流出流路48outに移動させるよう作用させるので、水移動に要する時間の短縮化と排水性の向上の実効性をより高めることができる。   Further, in the fuel cell 10 of the present embodiment, a dynamic pressure that causes air conveyance along the gas inflow passage 48in is applied to the weir portion 49a inclined and extending to the gas inflow passage 48in as described above. For this reason, since the dynamic pressure for air conveyance is also made to act so that the generated water stored in the weir portion 49a can move through the gas diffusion layer 24 and move to the adjacent gas outflow passage 48out, the time required for water movement The effectiveness of shortening and improving drainage can be further increased.

この他、本実施例の燃料電池10は、ガス拡散層24の表面から延びた堰部49aに向かい合うよう凹所49bを設け、この凹所49bを堰部49aに向けて開口するようにした。よって、本実施例の燃料電池10によれば、堰部49aによりガス拡散層24の表面から離れる側の流れに変換されたガス(空気)の受け止めと、その後の、ガス(空気)の堰部49aの乗り越え、およびガス拡散層24の表面の側に向けたガスの流れの変換の実効性を高めることができる。しかも、堰部49aの上流から下流にかけての流路面積をほぼ一律とできることから、凹所49bを有する本実施例の燃料電池10によれば、ガス(空気)の流れを安定させた上で、上記した時間短縮や排水性向上を図ることができる。   In addition, the fuel cell 10 of the present embodiment is provided with a recess 49b facing the weir 49a extending from the surface of the gas diffusion layer 24, and the recess 49b is opened toward the weir 49a. Therefore, according to the fuel cell 10 of the present embodiment, the dam portion 49a receives the gas (air) converted into the flow away from the surface of the gas diffusion layer 24, and the dam portion of the gas (air) thereafter. The effectiveness of overcoming 49a and converting the flow of gas toward the surface side of the gas diffusion layer 24 can be enhanced. Moreover, since the flow passage area from the upstream to the downstream of the weir portion 49a can be made almost uniform, according to the fuel cell 10 of the present embodiment having the recess 49b, the flow of gas (air) is stabilized, The above-described time reduction and drainage improvement can be achieved.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、本実施例では、カソード22の側のエアー流路(セル内酸化ガス流路48)を流路端部を閉塞した櫛歯状の分岐流路を交互に有するものとした上で、ガス流入流路48inについては、これを堰部49aと凹所49bとを向かい合わせに有する流路としたが、アノード21のセル内燃料ガス流路47についても、セル内酸化ガス流路48と同様に櫛歯状の分岐流路を交互に有し、ガス流入流路(水素ガス流入流路)については堰部49aと凹所49bとを向かい合わせに有する流路とできる。アノード21に水素ガスを供給する際には、ガスを加湿する場合があるので、加湿のために加えられた水蒸気がセル内燃料ガス流路47において水滴となることが有り得る。そうすると、この水滴は、カソード22について説明した場合と同様にして流路末端の閉塞箇所とガス流入流路(水素ガス流入流路)におけるそれぞれの堰部49aに分散して貯め置かれて、排出されるので、アノード側での排水性も高めることができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in this embodiment, the air flow path (intra-cell oxidizing gas flow path 48) on the cathode 22 side has alternating comb-shaped branch flow paths with closed flow path ends, The inflow channel 48in is a channel having the weir portion 49a and the recess 49b facing each other, but the in-cell fuel gas channel 47 of the anode 21 is the same as the in-cell oxidizing gas channel 48. The gas inflow channel (hydrogen gas inflow channel) can be a channel having weir portions 49a and recesses 49b facing each other. When the hydrogen gas is supplied to the anode 21, the gas may be humidified, so that the water vapor added for humidification may become water droplets in the in-cell fuel gas flow channel 47. Then, in the same manner as described for the cathode 22, the water droplets are dispersed and stored in the closed portions at the end of the channel and the respective weir portions 49 a in the gas inflow channel (hydrogen gas inflow channel), and discharged. Therefore, drainage on the anode side can also be enhanced.

また、堰部49aおよび凹所49bについては、該当する流路における形成の様子、凹所形状等、種々の変形が可能である。図9は凹所49bの変形例を示す説明図、図10は凹所49bのまた別の変形例を示す説明図である。図9に示すように、この変形例のガスセパレーター26Aは、ガス拡散層24の表面と向かい合うガス流入流路48inの奥側壁面(図における上側壁面)そのものを凹所49bとする。また、図10の変形例のガスセパレーター26Bは、球面状に窪んだ凹所49bを堰部49aに向き合うようにして備える。このような変形例であっても、堰部49aによりガス拡散層24の表面から離れる側の流れに変換されたガス(空気)の受け止めと、その後の、ガス(空気)の堰部49aの乗り越え、およびガス拡散層24の表面の側に向けたガスの流れの変換を行うことができ、上記した効果を奏することができる。   Moreover, about the dam part 49a and the recess 49b, various deformation | transformation are possible, such as a mode of formation in a corresponding flow path, and a recess shape. FIG. 9 is an explanatory view showing a modification of the recess 49b, and FIG. 10 is an explanatory view showing another modification of the recess 49b. As shown in FIG. 9, in the gas separator 26 </ b> A of this modified example, the back wall surface (upper wall surface in the figure) of the gas inflow channel 48 in facing the surface of the gas diffusion layer 24 is a recess 49 b. Further, the gas separator 26B of the modification of FIG. 10 includes a concave portion 49b that is recessed in a spherical shape so as to face the weir portion 49a. Even in such a modified example, receiving the gas (air) converted into the flow away from the surface of the gas diffusion layer 24 by the weir portion 49a, and then overcoming the gas (air) weir portion 49a The gas flow toward the surface side of the gas diffusion layer 24 can be converted, and the above-described effects can be achieved.

図11は堰部49aと凹所49bの他の変形例を示す説明図である。図示するように、この変形例のガスセパレーター26Cは、堰部49aを、ガス拡散層24の表面から上方に延びるようにされた矩形形状の凸状体とし、この堰部49aに向かい合う凹所49bについても、矩形形状で窪んだ凹所49bとする。この変形例であっても、上記した効果を奏することができる。   FIG. 11 is an explanatory view showing another modification of the weir portion 49a and the recess 49b. As shown in the figure, in the gas separator 26C of this modification, the weir portion 49a is a rectangular convex body extending upward from the surface of the gas diffusion layer 24, and a recess 49b facing the weir portion 49a is formed. Also, the recess 49b is recessed in a rectangular shape. Even in this modification, the above-described effects can be achieved.

また、セル内酸化ガス流路48(ガス流入流路48inおよびガス流出流路48out)については、直線状で隣り合う流路としたが、次のように変形することもできる。図12はガス流入流路48inおよびガス流出流路48outを蛇行軌跡とした変形例を示す説明図である。図示するように、このガスセパレーター26Dは、ガス拡散層24の表面に重なるガス流入流路48inとガス流出流路48outを、三角波状にガス拡散層24の表面面内において蛇行した蛇行経路として隣り合う櫛波状の経路とし、既述したように入口側閉塞部34と出口側閉塞部35で流路端部を閉塞する。そして、ガス流入流路48inは、既述した実施例のガスセパレーター26と同様に複数の堰部49aとこれに向き合う凹所49bを有する。この変形例では、蛇行軌跡流路において直線部が長い側に堰部49aを備え、図におけるX−X線断面は、図5と図8に示した断面と同じである。この変形例であっても、ガス流入流路48inを図中の矢印YAで示すようにその流路(蛇行軌跡流路)に沿って流れるガスに運ばれる水(生成水)については、それぞれの堰部49aでの分散貯め置きを行うので、既述した効果を奏することができる。そして、この変形例では、次の利点がある。   Further, although the in-cell oxidizing gas channel 48 (the gas inflow channel 48in and the gas outflow channel 48out) is a linear and adjacent channel, it can be modified as follows. FIG. 12 is an explanatory view showing a modification in which the gas inflow channel 48in and the gas outflow channel 48out are meandering trajectories. As shown in the figure, the gas separator 26D has a gas inflow channel 48in and a gas outflow channel 48out that overlap the surface of the gas diffusion layer 24 adjacent to each other as a meandering path meandering in the surface of the gas diffusion layer 24 in a triangular wave shape. As described above, the flow path ends are closed by the inlet side blocking portion 34 and the outlet side blocking portion 35 as described above. The gas inflow channel 48in has a plurality of dam portions 49a and recesses 49b facing the same as in the gas separator 26 of the embodiment described above. In this modified example, the weir portion 49a is provided on the long side of the meandering path and the cross section taken along the line XX in the figure is the same as the cross section shown in FIGS. Even in this modified example, the water (product water) carried by the gas flowing along the flow path (meandering path flow path) of the gas inflow flow path 48in as indicated by the arrow YA in the figure is the respective. Since dispersion storage is performed at the weir portion 49a, the above-described effects can be achieved. And this modification has the following advantages.

図中の矢印YAで示すように流れるガスは、蛇行軌跡の蛇行箇所において、流路間の流路間リブ30Aに衝突して、流れの向きを変えるので、このガスに運ばれる生成水も、流路間リブ30Aに衝突して蛇行箇所流路側面に貯まる。ガスは、矢印YAで示す向きに蛇行箇所流路側面に向けて空気搬送の動圧を受けるので、蛇行箇所流路側面に当たる流路間リブ30Aの下のガス拡散層24に透過して、図中の矢印YBに示すように隣のガス流出流路48outの側に入り込む。こうしたガスの拡散層透過と流路への入り込みは、蛇行箇所流路側面に貯まった生成水のガス流出流路48outへの入り込みを起こす。この結果、この変形例によれば、水移動に要する時間のより一層の短縮化と排水性のより一層の向上を図ることができる。なお、蛇行軌跡については、図示する三角波形状の他、湾曲して蛇行した軌跡や、矩形波形状に蛇行した軌跡とすることもできる。   Since the flowing gas as shown by the arrow YA in the figure collides with the rib 30A between the flow paths at the meandering location of the meandering locus and changes the direction of the flow, the generated water carried by this gas is also It collides with the inter-passage rib 30A and accumulates on the side of the meandering passage. Since the gas receives the dynamic pressure of air conveyance toward the meandering portion channel side surface in the direction indicated by the arrow YA, the gas permeates through the gas diffusion layer 24 below the inter-passage rib 30A that hits the meandering portion channel side surface. As shown by the arrow YB in the middle, it enters the side of the adjacent gas outflow channel 48out. Such gas permeation through the diffusion layer and entering the flow path causes the generated water stored on the side surface of the meandering portion flow path to enter the gas outflow path 48out. As a result, according to this modification, it is possible to further shorten the time required for water movement and further improve drainage. The meandering trajectory may be a curved meandering trajectory, a trajectory meandering into a rectangular wave shape, in addition to the triangular wave shape shown in the figure.

10…燃料電池
15…単セル
20…電解質膜
21…アノード
22…カソード
23…ガス拡散層
24…ガス拡散層
25…ガスセパレーター
26、26A〜26D…ガスセパレーター
30…流路間リブ
30A…流路間リブ
32…溝部
34…入口側閉塞部
35…出口側閉塞部
36…凸部
40〜45…孔部
47…セル内燃料ガス流路
48…セル内酸化ガス流路
48out…ガス流出流路
48in…ガス流入流路
49a…堰部
49b…凹所
49c…溝部開口凹所
50…発電領域
60…枠体
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 15 ... Single cell 20 ... Electrolyte membrane 21 ... Anode 22 ... Cathode 23 ... Gas diffusion layer 24 ... Gas diffusion layer 25 ... Gas separator 26, 26A-26D ... Gas separator 30 ... Rib between flow paths 30A ... Flow path Inter-rib 32 ... Groove 34 ... Inlet side closed part 35 ... Outlet side closed part 36 ... Convex part 40-45 ... Hole 47 ... In-cell fuel gas flow path 48 ... In-cell oxidizing gas flow path 48out ... Gas outflow flow path 48in ... Gas inflow channel 49a ... Weir part 49b ... Recess 49c ... Groove opening recess 50 ... Power generation area 60 ... Frame

Claims (5)

電解質膜の両膜面に電極を形成した膜電極接合体と、該膜電極接合体の少なくとも一方の電極面に設けられたガス拡散層と、該ガス拡散層に電気化学反応に供される反応ガスを供給するガス流路とを有する燃料電池であって、
前記ガス流路は、
前記反応ガスの供給用のガス供給マニホールドの側から延びて流路末端で閉塞され、前記ガス供給マニホールドから流入した前記反応ガスを前記ガス拡散層の表面に沿って流す複数のガス流入流路と、
ガス排出用のガス排出マニホールドの側から前記ガス流入流路の隣に並んで延びて流路端部で閉塞され、前記ガス流入流路から前記ガス拡散層を透過したガスを受け取って、該ガスを前記ガス拡散層の表面に沿って流しつつ前記ガス排出マニホールドに流出させる複数のガス流出流路とを備え、
前記ガス流入流路は、
前記ガス拡散層の表面の側に位置してガスを堰き止め、ガスの流れ方向を前記ガス拡散層の表面から離れる側に変換する堰部と、
該堰部により前記ガス拡散層の表面から離れる側の流れに変換されたガスを受け止めて、ガスを前記堰部を乗り越えた上で前記ガス拡散層の表面の側に向けて流す流路内変換部とを有する
燃料電池。
A membrane electrode assembly in which electrodes are formed on both membrane surfaces of the electrolyte membrane, a gas diffusion layer provided on at least one electrode surface of the membrane electrode assembly, and a reaction that is subjected to an electrochemical reaction in the gas diffusion layer A fuel cell having a gas flow path for supplying gas,
The gas flow path is
A plurality of gas inflow passages extending from the side of the gas supply manifold for supplying the reaction gas, blocked at the end of the flow passage, and flowing the reaction gas flowing in from the gas supply manifold along the surface of the gas diffusion layer; ,
A gas that extends side by side from the gas discharge manifold side for gas discharge and that is blocked at the end of the flow path and that has passed through the gas diffusion layer from the gas flow path, receives the gas A plurality of gas outflow passages for flowing out to the gas discharge manifold while flowing along the surface of the gas diffusion layer,
The gas inflow channel is
A dam section located on the surface side of the gas diffusion layer to block the gas, and a dam portion for converting the gas flow direction to the side away from the surface of the gas diffusion layer;
Receiving the gas converted into the flow on the side away from the surface of the gas diffusion layer by the dam part, and converting the gas in the flow path over the dam part and flowing toward the surface side of the gas diffusion layer And a fuel cell.
前記堰部は、ガスの流れの上流側に向いてガスが衝突する堰き止め面を、前記ガス拡散層の表面となす角が鋭角となるように前記上流側に傾斜させている請求項1に記載の燃料電池。   The said dam part inclines the damming surface which a gas collides toward the upstream of the flow of gas to the said upstream so that the angle | corner with the surface of the said gas diffusion layer may become an acute angle. The fuel cell as described. 前記流路内変換部は、前記ガス拡散層の表面と向き合う流路奥壁の側に形成されて、前記堰部に向けて開口した流路内凹所とされている請求項1または請求項2に記載の燃料電池。   The in-channel conversion part is formed on the back wall side facing the surface of the gas diffusion layer, and is a recess in the channel that opens toward the dam part. 2. The fuel cell according to 2. 前記ガス流入流路は、前記堰部と前記流路内変換部とを前記ガス流入流路の複数箇所に備える請求項1ないし請求項3のいずれかに記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein the gas inflow channel includes the dam portion and the in-channel conversion unit at a plurality of locations of the gas inflow channel. 前記ガス流入流路と前記ガス流出流路とは、前記ガス拡散層の表面面内において蛇行した蛇行経路として隣り合い、
前記ガス流入流路は、前記堰部と前記流路内変換部とを前記蛇行経路に備える請求項1ないし請求項4のいずれかに記載の燃料電池。
The gas inflow channel and the gas outflow channel are adjacent to each other as a meandering path meandering in the surface of the gas diffusion layer,
The fuel cell according to any one of claims 1 to 4, wherein the gas inflow passage includes the weir portion and the in-flow passage conversion portion in the meandering path.
JP2010156901A 2010-07-09 2010-07-09 Fuel cell Pending JP2012018883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156901A JP2012018883A (en) 2010-07-09 2010-07-09 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156901A JP2012018883A (en) 2010-07-09 2010-07-09 Fuel cell

Publications (1)

Publication Number Publication Date
JP2012018883A true JP2012018883A (en) 2012-01-26

Family

ID=45603988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156901A Pending JP2012018883A (en) 2010-07-09 2010-07-09 Fuel cell

Country Status (1)

Country Link
JP (1) JP2012018883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118007A1 (en) 2014-11-06 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, fuel cell and fuel cell battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118007A1 (en) 2014-11-06 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, fuel cell and fuel cell battery
CN105591121A (en) * 2014-11-06 2016-05-18 丰田自动车株式会社 Fuel cell separator, fuel cell and fuel cell battery
US10038202B2 (en) 2014-11-06 2018-07-31 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, fuel cell, and fuel cell battery

Similar Documents

Publication Publication Date Title
JP6036825B2 (en) Fuel cell
JP5197995B2 (en) Fuel cell
EP2963711B1 (en) Gas flow channel forming body for fuel cell, and fuel cell
JP6184879B2 (en) Fuel cell stack
JP5321086B2 (en) Fuel cell
JP2005174648A (en) Fuel cell
JP5912579B2 (en) Fuel cell
JP5301406B2 (en) Fuel cell
JP5137460B2 (en) Fuel cell
JP2008311047A (en) Fuel cell
JP5653867B2 (en) Fuel cell
JP2012018883A (en) Fuel cell
JP2006114386A (en) Fuel cell
JP2012048995A (en) Fuel cell
JP5216391B2 (en) Fuel cell separator
JP4572252B2 (en) Fuel cell stack
JP2011210398A (en) Fuel cell
JP5993622B2 (en) Fuel cell
JP2006127770A (en) Fuel battery
JP2009277539A (en) Fuel cell
JP2011034768A (en) Fuel cell
JP5415122B2 (en) Fuel cell stack
JP2011044300A (en) Fuel cell
JP2008293745A (en) Fuel cell
JP2020107397A (en) Fuel battery cell