JP2012017988A - Event detection device - Google Patents

Event detection device Download PDF

Info

Publication number
JP2012017988A
JP2012017988A JP2010153678A JP2010153678A JP2012017988A JP 2012017988 A JP2012017988 A JP 2012017988A JP 2010153678 A JP2010153678 A JP 2010153678A JP 2010153678 A JP2010153678 A JP 2010153678A JP 2012017988 A JP2012017988 A JP 2012017988A
Authority
JP
Japan
Prior art keywords
event
correlation matrix
event detection
eigenvector
label
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010153678A
Other languages
Japanese (ja)
Other versions
JP5643554B2 (en
Inventor
Tomoaki Otsuki
知明 大槻
Ji-Hun Hong
志勲 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2010153678A priority Critical patent/JP5643554B2/en
Publication of JP2012017988A publication Critical patent/JP2012017988A/en
Application granted granted Critical
Publication of JP5643554B2 publication Critical patent/JP5643554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Emergency Alarm Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate event detection device which can distinguish a difference between statuses of a person or an object that exists there, by monitoring the status of a radio wave.SOLUTION: The event detection device includes: a plurality of antennas 21 for receiving a radio wave transmitted from a transmitter; correlation matrix arithmetic operation means 22 for arithmetically operating a correlation matrix from a received vector, with a signal received by the plurality of the antennas 21 as the received vector; characteristic vector arithmetic operation means 23 for arithmetically operating a characteristic vector of stretching a signal part space, by developing the correlation matrix arithmetically operated by the correlation matrix arithmetic operation means 22 as a characteristic value; an SVM (support vector machine) 24 for discriminating the status, by inputting the characteristic vector operated arithmetically by the characteristic vector arithmetic operation means 23; and event-detecting means 25 for detecting event in consideration of the continuity of the output of the SVM 24.

Description

本発明は、浴室など所定のエリアにおいて、電波を送信する送信機と、その送信機から送信される電波を受信する受信機を配置して、電波の受信特性に基づいて、人が意識を失ったり、転倒したことなどのイベントを検出するイベント検出装置に関する。   According to the present invention, in a predetermined area such as a bathroom, a transmitter that transmits radio waves and a receiver that receives radio waves transmitted from the transmitter are arranged, and a person loses consciousness based on the reception characteristics of the radio waves. The present invention relates to an event detection device that detects an event such as a fall or a fall.

本発明者らは、次のイベント検出装置を提案している(特許文献1参照)。
送信機が送信した電波を受信する複数のアンテナと、該複数のアンテナによって受信した信号を受信ベクトルとして該受信ベクトルから相関行列を演算する相関行列演算手段と、該相関行列演算手段によって演算された相関行列を固有値展開して信号部分空間を張る固有ベクトルを演算する固有ベクトル演算手段と、該固有ベクトル演算手段によって演算された固有ベクトルの経時変化を検出してイベントを検出するイベント検出手段と有するイベント検出装置。
The present inventors have proposed the following event detection device (see Patent Document 1).
A plurality of antennas for receiving radio waves transmitted by the transmitter, a correlation matrix calculating means for calculating a correlation matrix from the received vector using signals received by the plurality of antennas as reception vectors, and a calculation performed by the correlation matrix calculating means An event detection apparatus comprising: eigenvector computing means for computing eigenvectors that expand a signal subspace by expanding eigenvalues of a correlation matrix; and event detection means for detecting an event by detecting a temporal change of the eigenvector computed by the eigenvector computing means.

特開2008−216152号公報JP 2008-216152 A

しかし、上述のイベント検出装置では、物の存否など物理的にはっきりと異なる現象を識別することはできても、人が単に静止しているのか、転倒しているのかといった、そこに存在している人の状態を識別するだけの精度を持たせることができなかった。このようなことは目視によれば簡単に識別することができるが、人が付き切りで監視しなければならず、また、浴室など監視されることに心理的な抵抗がある場面では、人が監視することもままならぬ、という問題があった。   However, in the event detection device described above, even though a physically distinct phenomenon such as the presence or absence of an object can be identified, it exists there, such as whether the person is simply stationary or falls. It was not possible to have enough precision to identify the state of the person who is. Such a thing can be easily identified visually, but a person has to be monitored with care, and in situations where there is psychological resistance to being monitored such as in a bathroom, There was a problem that monitoring would not stop.

本発明は、上記問題点に鑑み、電波の状態を監視することによって、そこに存在する人や物の状態の違いをも識別することができる高い精度を持つイベント検出装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an event detection device with high accuracy capable of discriminating a difference in the state of a person or an object present by monitoring the state of radio waves. And

本発明のイベント検出装置は、送信機が送信した電波を受信する複数のアンテナと、該複数のアンテナによって受信した信号を受信ベクトルとして該受信ベクトルから相関行列を演算する相関行列演算手段と、該相関行列演算手段によって演算された相関行列を固有値展開して信号部分空間を張る固有ベクトルを演算する固有ベクトル演算手段と、該固有ベクトル演算手段によって演算された固有ベクトルを入力してイベントを判別するサポートベクターマシン機能と、該サポートベクターマシン機能によって判別されたイベントに基づいてイベントを検出するイベント検出手段とを備えることを特徴とする。   The event detection apparatus of the present invention includes a plurality of antennas that receive radio waves transmitted by a transmitter, a correlation matrix calculation unit that calculates a correlation matrix from the reception vectors using signals received by the plurality of antennas as reception vectors, Eigenvector calculation means for calculating eigenvectors that expand the eigenvalues of the correlation matrix calculated by the correlation matrix calculation means and extending the signal subspace, and a support vector machine function for determining an event by inputting the eigenvector calculated by the eigenvector calculation means And event detection means for detecting an event based on the event determined by the support vector machine function.

また、前記サポートベクターマシン機能は、浴室の湯船において正常に浸かっている状態と意識を失っている状態とを識別することで、浴室という目視やカメラによる監視では心理的に抵抗がある環境において機械的にかつ確実に異常を検出することが可能となる。   In addition, the support vector machine function distinguishes between a normal bathing state and a loss of consciousness in a bathtub in the bathroom. Thus, it is possible to detect abnormality abnormally and reliably.

また、前記イベント検出手段は、前記サポートベクターマシン機能によって判別されたイベントの連続性に基づいてイベントを検出することで、更に高い精度で異常状態を検出することができる。   In addition, the event detection unit can detect an abnormal state with higher accuracy by detecting an event based on the continuity of the event determined by the support vector machine function.

本発明によれば、電波の状態を監視することによって、そこに存在する人や物の状態の違いをも識別することができる高い精度を持つイベント検出装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the event detection apparatus with the high precision which can also identify the difference in the state of the person and thing which exists there by monitoring the state of an electromagnetic wave can be provided.

本発明の一実施例によるイベント検出装置の構成を示す図である。It is a figure which shows the structure of the event detection apparatus by one Example of this invention. 本実施例の実験を会議室において行った環境を示す図である。It is a figure which shows the environment where the experiment of the present Example was performed in the conference room. 会議室における評価結果の例(その1)を示す図である。It is a figure which shows the example (the 1) of the evaluation result in a meeting room. 会議室における評価結果の例(その2)を示す図である。It is a figure which shows the example (the 2) of the evaluation result in a meeting room. 会議室における評価結果の例(その3)を示す図である。It is a figure which shows the example (the 3) of the evaluation result in a meeting room. 本実施例の実験を浴室において行った環境を示す図である。It is a figure which shows the environment which performed the experiment of the present Example in the bathroom. 浴室において「静的状態」「移動」「入浴中」「意識を失う」の各状態を識別した評価結果の例を示す図である。It is a figure which shows the example of the evaluation result which identified each state of "static state" "moving" "during bathing" "losing consciousness" in a bathroom. 浴室において「静的状態」「移動」「シャワーと頭を洗う」「転倒」の各状態を識別した評価結果の例を示す図である。It is a figure which shows the example of the evaluation result which identified each state of "static state" "moving" "washing a shower and head" "falling" in the bathroom. 乗用車周辺において「何もない状態」「不審行動」の各状態を識別した評価結果の例を示す図である。It is a figure which shows the example of the evaluation result which identified each state of "an empty state" and "suspicious behavior" around a passenger car.

以下、添付図面を参照しながら本発明を実施するための形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施例によるイベント検出装置の構成を示す図である。本実施例のイベント検出装置は、送信機10及び受信機20を備える。これらの送信機10及び受信機20は、人の状態が変化したことなどのイベントを検出するために所定のエリアに設置する。浴室などの閉じた空間が望ましいが、開放されたエリアであっても構わない。送信機10は電波を送信する。受信機20は、アレイアンテナ21、相関行列演算手段22、固有ベクトル演算手段23、SVM24、及びイベント検出手段25を備える。アレイアンテナ21は、複数のアンテナ素子からなり、それぞれのアンテナ素子は送信機10が送信する電波を受信する。ここでは各アンテナ素子が直線上に配列されている例で説明する。アレイアンテナ21の受信信号は、各アレイアンテナ21の受信信号を要素とする受信ベクトルx→(t)で表される。ここで「→」は文章中において、その左の文字がベクトルであることを表す。
x→(t)=a→(θ)s(t)+n→(t) (1)
ただし、a→(θ):アンテナ素子数をL個とするときのL次元ベクトル
s(t):基準点での受信信号
n→(t):雑音
FIG. 1 is a diagram showing a configuration of an event detection apparatus according to an embodiment of the present invention. The event detection apparatus of this embodiment includes a transmitter 10 and a receiver 20. The transmitter 10 and the receiver 20 are installed in a predetermined area in order to detect an event such as a change in the state of a person. A closed space such as a bathroom is desirable, but it may be an open area. The transmitter 10 transmits radio waves. The receiver 20 includes an array antenna 21, a correlation matrix calculation unit 22, an eigenvector calculation unit 23, an SVM 24, and an event detection unit 25. The array antenna 21 includes a plurality of antenna elements, and each antenna element receives a radio wave transmitted by the transmitter 10. Here, an example will be described in which the antenna elements are arranged on a straight line. The reception signal of the array antenna 21 is represented by a reception vector x → (t) having the reception signal of each array antenna 21 as an element. Here, “→” indicates that the left character in the sentence is a vector.
x → (t) = a → (θ) s (t) + n → (t) (1)
However, a → (θ): L-dimensional vector when the number of antenna elements is L s (t): received signal at the reference point n → (t): noise

Figure 2012017988
(2)
ただし、θ:アンテナアレイ21の並びの方向に対する電波到来方向
d:アレイアンテナ21の各素子の間隔
λ:電波の波長
ここで、M個の到来波が平面波として到来するとき、
x→(t)=A→s→(t)+n→(t) (3)
ただし、A→:M個のベクトル(ステアリングベクトルという)を列としたL×M行列
s→(t):各到来波の複素振幅を要素としたM次元ベクトル
Figure 2012017988
(2)
Where θ is the direction of arrival of radio waves relative to the direction in which the antenna array 21 is arranged d: the distance between the elements of the array antenna 21 λ: wavelength of the radio waves where M incoming waves arrive as plane waves,
x → (t) = A → s → (t) + n → (t) (3)
However, A →: L × M matrix having M vectors (referred to as steering vectors) as columns s → (t): M-dimensional vector having complex amplitude of each incoming wave as an element

Figure 2012017988
(4)
Figure 2012017988
(4)

Figure 2012017988
(5)
ただし、Tは転置を表す。
と表せる。
Figure 2012017988
(5)
However, T represents transposition.
It can be expressed.

相関行列演算手段22は、受信ベクトルx→(t)から相関行列R→xxを演算する。   The correlation matrix calculation means 22 calculates a correlation matrix R → xx from the received vector x → (t).

Figure 2012017988
(6)
ただし、E→[・]:集合平均
H:複素共役転置
ここで、雑音は到来波と無関係であり、素子に独立であるので、
Figure 2012017988
(6)
However, E → [·]: Collective average H: Complex conjugate transposition Here, noise is independent of the incoming wave, and is independent of the element.

Figure 2012017988
(7)
ただし、σ:雑音の分散
S→:波源相関行列=E→[s→(t)s→(t)
また、
Figure 2012017988
(7)
However, σ: Noise variance S →: Wave source correlation matrix = E → [s → (t) s → (t) H ]
Also,

Figure 2012017988
(8)
から得られる固有値λi、それに対応する固有ベクトルv→iを用いて、
Figure 2012017988
(8)
Using the eigenvalue λi obtained from Eq. And the corresponding eigenvector v → i,

Figure 2012017988
(9)
と固有値展開できる。ここで、
Figure 2012017988
(9)
And eigenvalue expansion. here,

Figure 2012017988
(10)
である。ここでdiagは行列の対角要素を並べたものである。
Figure 2012017988
(10)
It is. Here, diag is an array of diagonal elements of a matrix.

ここで、受信データ相関行列R→xxの固有値は、コヒーレント波群とインコヒーレント波の数の和に対応するK個の信号固有値、および、大きさが雑音電力に等しいL−K個の雑音固有値に分割できる。すなわち、   Here, the eigenvalues of the received data correlation matrix R → xx are K signal eigenvalues corresponding to the sum of the number of coherent wave groups and incoherent waves, and LK noise eigenvalues whose magnitude is equal to the noise power. Can be divided into That is,

Figure 2012017988
(11)
Figure 2012017988
(11)

以上により、受信ベクトルから生成される相関行列R→xxを固有値展開することにより、信号部分空間と雑音部分空間に分けることができることを示した。信号部分空間を張る固有ベクトルv→とステアリングベクトルa→(θ)は同じ空間を張っていて、互いが他方の線形結合として表せる。つまり、信号部分空間を張る固有ベクトルは到来方向情報を含んだステアリングベクトルの線形結合によって表すことができ、電波伝搬構造を表しているといえる。   From the above, it was shown that the correlation matrix R → xx generated from the received vector can be divided into a signal subspace and a noise subspace by expanding eigenvalues. The eigenvector v → and the steering vector a → (θ) that span the signal subspace span the same space and can be expressed as the other linear combination. That is, the eigenvector spanning the signal subspace can be expressed by a linear combination of steering vectors including the direction of arrival information, and can be said to represent a radio wave propagation structure.

ここで、第1固有ベクトルv→1は固有値が最も高い値を示すλ1に対応する固有ベクトルであり、受信機に信号が届いている限り、必ず信号部分空間の基底となり、   Here, the first eigenvector v → 1 is an eigenvector corresponding to λ1 indicating the highest eigenvalue, and is always the basis of the signal subspace as long as the signal reaches the receiver.

Figure 2012017988
(12)
と表せる。お互いがコヒーレントである波が到来した場合はそのステアリングベクトルの線形結合が新しい1つのステアリングベクトルとなるので、上式の本質には影響しない。したがって、第一固有ベクトルはマルチパス環境の信号空間を表し、伝搬環境によって一意に決まる。そこで、固有ベクトル演算手段23は、相関行列R→xxから第1固有ベクトルv→1を算出する。
Figure 2012017988
(12)
It can be expressed. When waves that are coherent with each other arrive, the linear combination of the steering vectors becomes a new steering vector, so that the essence of the above equation is not affected. Therefore, the first eigenvector represents the signal space of the multipath environment and is uniquely determined by the propagation environment. Therefore, the eigenvector computing means 23 calculates the first eigenvector v → 1 from the correlation matrix R → xx.

ここで、評価関数P(t)を、イベントが何も起こっていないときにあらかじめ取得しておいた第1固有ベクトルv→noneとイベント検出の観測時に取得した第1固有ベクトルv→obとの内積   Here, the inner product of the first eigenvector v → none acquired in advance when the event has not occurred and the first eigenvector v → ob acquired during the event detection observation is used as the evaluation function P (t).

Figure 2012017988
(13)
とする。ただし固有ベクトルの大きさはどちらも1に正規化しておく。
Figure 2012017988
(13)
And However, both eigenvector sizes are normalized to 1.

イベントが何も起こっていない観測時間では、伝搬環境が変化していないので、v→ob(tnone)は、v→noneと非常に近い値を示すので、1に近い値となる。一方、イベントが起きている観測時間t=teventでは、伝搬環境は変化し、v→ob(tevent)は、v→noneとは異なる値を示すので、1より小さい値となる。   Since the propagation environment does not change at the observation time when no event occurs, v → ob (tnone) shows a value very close to v → none, and is close to 1. On the other hand, at the observation time t = tevent when the event occurs, the propagation environment changes, and v → ob (tevent) shows a value different from v → none, and thus becomes a value smaller than 1.

SVM24は、公知のサポートベクターマシン(Support Vector Machine)であり、学習を用いる識別手法の一つである。本実施例では、識別するそれぞれの状態(各複数)を模擬したときの評価関数P(t)をSVM24に入力して、事前に学習させておき、実際に観察するときの評価関数P(t)をSVM24に入力して、想定される状態、すなわち、イベントを判別する。   The SVM 24 is a known support vector machine (Support Vector Machine) and is one of identification methods using learning. In the present embodiment, an evaluation function P (t) for simulating each state to be identified (a plurality) is input to the SVM 24, learned in advance, and an evaluation function P (t for actual observation. ) Is input to the SVM 24 to determine an assumed state, that is, an event.

図2は、本実施例の実験を会議室において行った環境を示す図である。会議室の中に、送信機Tx及び受信機Rxを設置し、人の正常行動と転倒を模擬してSVM24に学習させた。   FIG. 2 is a diagram illustrating an environment in which the experiment of the present example was performed in a conference room. A transmitter Tx and a receiver Rx were installed in the conference room, and the SVM 24 learned by simulating normal human behavior and falls.

図1のイベント検出手段25は、SVM24によって判別されたイベントから最終的なイベントを検出する。状態識別ための特徴量として使用した信号部分空間を張る固有ベクトルのデータを時系列データとして、状態と時間の相関関係を考慮してイベント検出とする。すなわち、瞬間的な時間毎にイベント検出結果とするのではなく、所定の時間幅毎に状態と時間の相関関係を考慮してイベント検出結果とする。具体的には、まず「時間毎」を測定した時の時間、約0.1秒として、「時間幅」はその測定した時間の30倍(0.1×30=3秒)にして、その30個の評価関数を特徴ベクトルとしてSVM24に入力する。   The event detection unit 25 in FIG. 1 detects a final event from the events determined by the SVM 24. The data of the eigenvector that spans the signal subspace used as the feature quantity for state identification is time-series data, and event detection is performed in consideration of the correlation between the state and time. In other words, the event detection result is not taken every momentary time, but is taken into consideration for the correlation between the state and the time every predetermined time width. Specifically, the time when “every hour” is measured is about 0.1 seconds, and the “time width” is 30 times the measured time (0.1 × 30 = 3 seconds). Thirty evaluation functions are input to the SVM 24 as feature vectors.

つぎに、SVM24の判別結果を受けてイベント検出手段25は、偽アラーム(異常状態ではないのに異常状態と判別すること)を無くすために以下のアルゴリズムにて処理をする。   Next, in response to the determination result of the SVM 24, the event detection means 25 performs processing with the following algorithm in order to eliminate a false alarm (determining that it is not an abnormal state but an abnormal state).

(1). まず、偽アラームを確認するために確認する番地(i番)の前後の値を参照値とする。
例:{i−1,i,i+1,i+2}
(2). i番の前値(i−1)と後値(i+1,i+2)が同じだが、前値(i−1)とi番の値が同じではないと偽の値と判断し、i番の値に(i−1)の値を代入する。
(3). 前値(i−1)と異なりi番の値が「異常」となったときでも、(i+1)番又は(i+2)番の値が「正常」であれば偽アラームと判断し、i番の値に(i−1)の値を代入する。これにより、「異常」の状態が9秒(3回)間、連続しない限り、「正常」と擬制する。例えば、人が倒れた時、継続的に倒れていない状態(倒れてもまたすぐ起きる、雑音や装置のミスで倒れたと判断する等)は、正常な状態だと判断してもいいと考えられる。
(4). iを1つずつインクリメントしながら、上記の(2)と(3)の確認作業を行う。
(1). First, values before and after the address to be checked (i.e., i) for checking a false alarm are used as reference values.
Example: {i-1, i, i + 1, i + 2}
(2). The previous value (i-1) and the subsequent value (i + 1, i + 2) of the i-th are the same, but if the previous value (i-1) and the i-th value are not the same, it is determined as a false value. The value of (i-1) is substituted for the i-th value.
(3). Unlike the previous value (i-1), even if the value of i is "abnormal", if the value of (i + 1) or (i + 2) is "normal", it is judged as a false alarm. The value of (i−1) is substituted for the i-th value. As a result, “normal” is assumed as long as the “abnormal” state does not continue for nine seconds (three times). For example, when a person falls down, it can be judged that a state in which the person has not fallen continuously (such as immediately after falling down, judging that the person has fallen due to noise or a device error) is normal. .
(4). While i is incremented by one, check the above (2) and (3).

以上のアルゴリズムの処理によって、イベント検出手段25は、「正常」(正常行動)と「異常」(転倒)とを識別して、それぞれに対応した信号を出力する。   By the processing of the above algorithm, the event detection means 25 identifies “normal” (normal behavior) and “abnormal” (falling), and outputs a signal corresponding to each.

図3、図4、図5は、会議室における評価結果の例を示す図である。各図(a)は、横軸:時間(秒)に対する、縦軸:評価関数P(t)を示し、各図(b)は、横軸:時間(秒)に対する、縦軸:「真のラベル」(実線)と「判定ラベル」(丸付き線)を示す。ラベル「−1」を正常行動、ラベル「1」を転倒とした。図示されるように、評価関数P(t)によって正常行動と転倒とを正確に識別することは困難と考えられるところ、本実施例によれば、判定ラベルは真のラベルと完全に一致した。   3, 4, and 5 are diagrams illustrating examples of evaluation results in the conference room. Each figure (a) shows the horizontal axis: time (seconds), the vertical axis: the evaluation function P (t), and each figure (b) shows the horizontal axis: time (seconds), the vertical axis: “true "Label" (solid line) and "judgment label" (circled line) are shown. Label “−1” was normal behavior, and label “1” was fallen. As shown in the figure, it is considered difficult to accurately identify normal behavior and falls by the evaluation function P (t). However, according to the present example, the determination label completely matched the true label.

図6は、本実施例の実験を浴室において行った環境を示す図である。浴室の中に、送信機Tx及び受信機Rxを設置した。   FIG. 6 is a diagram showing an environment in which the experiment of this example was performed in a bathroom. A transmitter Tx and a receiver Rx were installed in the bathroom.

図7は、浴室において「静的状態」「移動」「入浴中」「意識を失う」の各状態を識別した評価結果の例を示す図である。図7(a)は、横軸:時間(秒)に対する、縦軸:評価関数P(t)を示し、図7(b)は、横軸:時間(秒)に対する、縦軸:「真のラベル」(実線)と「判定ラベル」(丸付き線)を示す。ラベル「1」を静的状態(洗い場)、ラベル「2」を移動(洗い場)、ラベル「3」を入浴中(湯船の中)、ラベル「4」を意識を失う(湯船の中)とした。図示されるように、評価関数P(t)によってこれらの状態を正確に識別することは困難と考えられるところ、本実施例によれば、判定ラベルは真のラベルと完全に一致した。これにより、浴室という目視やカメラによる監視では心理的に抵抗がある環境において機械的にかつ確実に異常を検出することが可能となる。   FIG. 7 is a diagram illustrating an example of an evaluation result that identifies each state of “static state”, “moving”, “during bathing”, and “losing consciousness” in the bathroom. FIG. 7 (a) shows the horizontal axis: time (seconds), the vertical axis: evaluation function P (t), and FIG. 7 (b) shows the horizontal axis: time (seconds), the vertical axis: “true "Label" (solid line) and "judgment label" (circled line) are shown. Label “1” is static (washing area), label “2” is moving (washing area), label “3” is bathing (in the bathtub), and label “4” is unconscious (in the bathtub) . As shown in the figure, it is considered difficult to accurately identify these states by the evaluation function P (t). However, according to the present example, the determination label completely matched the true label. Thereby, it becomes possible to detect abnormalities mechanically and reliably in an environment where psychological resistance exists in visual observation of a bathroom or monitoring by a camera.

図8は、浴室において「静的状態」「移動」「シャワーと頭を洗う」「転倒」の各状態を識別した評価結果の例を示す図である。図8(a)は、横軸:時間(秒)に対する、縦軸:評価関数P(t)を示し、図8(b)は、横軸:時間(秒)に対する、縦軸:「真のラベル」(実線)と「判定ラベル」(丸付き線)を示す。ラベル「1」を静的状態(洗い場)、ラベル「2」を移動(洗い場)、ラベル「3」をシャワーと頭を洗う(洗い場)、ラベル「4」を転倒(洗い場)とした。図示されるように、評価関数P(t)によってこれらの状態を正確に識別することは困難と考えられるところ、本実施例によれば、判定ラベルは真のラベルと完全に一致した。   FIG. 8 is a diagram illustrating an example of an evaluation result identifying each state of “static state”, “moving”, “washing the shower and head”, and “falling” in the bathroom. FIG. 8A shows the horizontal axis: time (seconds), the vertical axis: evaluation function P (t), and FIG. 8B shows the horizontal axis: time (seconds), the vertical axis: “true "Label" (solid line) and "judgment label" (circled line) are shown. Label “1” was in a static state (washing place), label “2” was moved (washing place), label “3” was washed with a shower and head (washing place), and label “4” was overturned (washing place). As shown in the figure, it is considered difficult to accurately identify these states by the evaluation function P (t). However, according to the present example, the determination label completely matched the true label.

図9は、乗用車周辺において「何もない状態」「不審行動」の各状態を識別した評価結果の例を示す図である。図9(a)は、横軸:時間(秒)に対する、縦軸:評価関数P(t)を示し、図9(b)は、横軸:時間(秒)に対する、縦軸:「真のラベル」(実線)と「判定ラベル」(丸付き線)を示す。不審行動A(点線)は、「周辺に車がない時の人の不審行動(覗き込む、うろつくなど)」、不審行動B(実線)は、「周辺に車がある時の人の不審行動(覗き込む、うろつくなど)」である。ラベル「−1」を何もない状態、ラベル「1」を不審行動とした。図示されるように、評価関数P(t)によってこれらの状態を正確に識別することは困難と考えられるところ、本実施例によれば、判定ラベルは真のラベルと完全に一致した。   FIG. 9 is a diagram illustrating an example of an evaluation result identifying each state of “nothing state” and “suspicious behavior” in the vicinity of the passenger car. FIG. 9A shows the horizontal axis: time (seconds), the vertical axis: evaluation function P (t), and FIG. 9B shows the horizontal axis: time (seconds), the vertical axis: “true "Label" (solid line) and "judgment label" (circled line) are shown. Suspicious behavior A (dotted line) is “person's suspicious behavior when there are no cars in the vicinity (look into, hang around, etc.)”, and suspicious behavior B (solid line) is “ Peeking, wandering, etc.) ". The label “−1” is regarded as nothing, and the label “1” is regarded as suspicious behavior. As shown in the figure, it is considered difficult to accurately identify these states by the evaluation function P (t). However, according to the present example, the determination label completely matched the true label.

なお、本発明は上記実施例に限定されるものではない。
送信機は、電波を発生しアレイアンテナで受信できるものであれば、他のシステムで利用しているものを併用することができる。例えば無線LANの基地局が相当する。また、信号は広帯域でも狭帯域でもかまわない。
In addition, this invention is not limited to the said Example.
As long as the transmitter can generate radio waves and can be received by the array antenna, the transmitter used in other systems can be used in combination. For example, it corresponds to a wireless LAN base station. The signal may be a wide band or a narrow band.

アンテナは複数の素子からなるアンテナであればよく、必ずしもアレイアンテナでなくても良い。   The antenna may be an antenna composed of a plurality of elements, and is not necessarily an array antenna.

固有ベクトル演算手段は、複数の固有ベクトルを演算してもよいし、必ずしも相関行列の最大固有値に対応する固有ベクトルだけを演算するものに限られない。また、固有ベクトルの内積をとるものに限られず、例えば差をとったり、比をとったりするものでも良い。   The eigenvector computing means may compute a plurality of eigenvectors, and is not necessarily limited to computing only the eigenvector corresponding to the maximum eigenvalue of the correlation matrix. Further, the present invention is not limited to the one that takes the inner product of eigenvectors, and for example, a difference or a ratio may be taken.

上述の実施例においては状態と時間の相関関係を考慮して状態を識別したが、高い精度を必要としなければ、その必要はない。また、SVMの入力において考慮しても良い。   In the above-described embodiment, the state is identified in consideration of the correlation between the state and the time, but this is not necessary unless high accuracy is required. Further, it may be considered in the input of SVM.

上述の実施例においては、SVMに第1固有ベクトルの内積を入力したが、適応分野によって、第1固有ベクトルをそのまま入力する、又は固有値を入力するようにしても良い。   In the above embodiment, the inner product of the first eigenvector is input to the SVM. However, the first eigenvector may be input as it is or an eigenvalue may be input depending on the application field.

10 送信機
20 受信機
21 アレイアンテナ
22 相関行列演算手段
23 固有ベクトル演算手段
24 SVM(サポートベクターマシン)
25 イベント検出手段
51 ホワイトボード
52 ドア
53 窓
DESCRIPTION OF SYMBOLS 10 Transmitter 20 Receiver 21 Array antenna 22 Correlation matrix calculation means 23 Eigenvector calculation means 24 SVM (support vector machine)
25 Event detection means 51 White board 52 Door 53 Window

Claims (3)

送信機が送信した電波を受信する複数のアンテナと、
該複数のアンテナによって受信した信号を受信ベクトルとして該受信ベクトルから相関行列を演算する相関行列演算手段と、
該相関行列演算手段によって演算された相関行列を固有値展開して信号部分空間を張る固有ベクトルを演算する固有ベクトル演算手段と、
該固有ベクトル演算手段によって演算された固有ベクトルを入力してイベントを判別するサポートベクターマシン機能と、
該サポートベクターマシン機能によって判別されたイベントに基づいてイベントを検出するイベント検出手段と
を備えることを特徴とするイベント検出装置。
Multiple antennas to receive the radio waves transmitted by the transmitter,
Correlation matrix computing means for computing a correlation matrix from the received vector using signals received by the plurality of antennas as received vectors;
Eigenvector computing means for computing eigenvectors that expand the signal subspace by expanding the correlation matrix computed by the correlation matrix computing means;
A support vector machine function for inputting an eigenvector computed by the eigenvector computing means and discriminating an event;
An event detection apparatus comprising: event detection means for detecting an event based on an event determined by the support vector machine function.
前記サポートベクターマシン機能は、浴室の湯船において正常に浸かっている状態と意識を失っている状態とを識別することを特徴とする請求項1記載のイベント検出装置。   The event detection apparatus according to claim 1, wherein the support vector machine function distinguishes between a normal bathing state and a loss of consciousness in a bathtub in a bathroom. 前記イベント検出手段は、前記サポートベクターマシン機能によって判別されたイベントの連続性に基づいてイベントを検出することを特徴とする請求項1又は2記載のイベント検出装置。
The event detection device according to claim 1, wherein the event detection unit detects an event based on continuity of events determined by the support vector machine function.
JP2010153678A 2010-07-06 2010-07-06 Event detection device Expired - Fee Related JP5643554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153678A JP5643554B2 (en) 2010-07-06 2010-07-06 Event detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153678A JP5643554B2 (en) 2010-07-06 2010-07-06 Event detection device

Publications (2)

Publication Number Publication Date
JP2012017988A true JP2012017988A (en) 2012-01-26
JP5643554B2 JP5643554B2 (en) 2014-12-17

Family

ID=45603363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153678A Expired - Fee Related JP5643554B2 (en) 2010-07-06 2010-07-06 Event detection device

Country Status (1)

Country Link
JP (1) JP5643554B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083269A (en) * 2010-10-13 2012-04-26 Keio Gijuku Event detection apparatus
JP2013170848A (en) * 2012-02-17 2013-09-02 Kddi Corp Electric wave sensor device
JP2014190724A (en) * 2013-03-26 2014-10-06 Kddi Corp Space state determination device
WO2016087905A1 (en) 2014-12-05 2016-06-09 Audi Ag Method for assisting a driver of a vehicle, in particular a passenger vehicle
JP2017531811A (en) * 2014-07-17 2017-10-26 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Wireless positioning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159298A (en) * 2001-11-27 2003-06-03 Omron Corp Device and method for detecting behavior of bath taking person
JP2008052626A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Bathroom abnormality detection system
JP2008216152A (en) * 2007-03-06 2008-09-18 Keio Gijuku Device for detecting event
JP2010038826A (en) * 2008-08-07 2010-02-18 Fujitsu Ten Ltd Signal processor and radar apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159298A (en) * 2001-11-27 2003-06-03 Omron Corp Device and method for detecting behavior of bath taking person
JP2008052626A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Bathroom abnormality detection system
JP2008216152A (en) * 2007-03-06 2008-09-18 Keio Gijuku Device for detecting event
JP2010038826A (en) * 2008-08-07 2010-02-18 Fujitsu Ten Ltd Signal processor and radar apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083269A (en) * 2010-10-13 2012-04-26 Keio Gijuku Event detection apparatus
JP2013170848A (en) * 2012-02-17 2013-09-02 Kddi Corp Electric wave sensor device
JP2014190724A (en) * 2013-03-26 2014-10-06 Kddi Corp Space state determination device
JP2017531811A (en) * 2014-07-17 2017-10-26 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Wireless positioning system
WO2016087905A1 (en) 2014-12-05 2016-06-09 Audi Ag Method for assisting a driver of a vehicle, in particular a passenger vehicle

Also Published As

Publication number Publication date
JP5643554B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP4868169B2 (en) POSITION ESTIMATION SYSTEM, POSITION ESTIMATION METHOD, AND POSITION ESTIMATION PROGRAM
Zhang et al. Anti-fall: A non-intrusive and real-time fall detector leveraging CSI from commodity WiFi devices
Zhao et al. Radio tomographic imaging and tracking of stationary and moving people via kernel distance
JP5643554B2 (en) Event detection device
JP4576515B2 (en) Event detection device
RU2519467C2 (en) System and method for detection of electronic article surveillance marker shielding
US20160003932A1 (en) Method and System for Estimating Error in Predicted Distance Using RSSI Signature
US20130162821A1 (en) Security system based on sound field variation pattern analysis and the method
US20110221634A1 (en) Method and system for position and track determination
JP2006311111A (en) Position sensing system and method for sensing position
CN110706463A (en) WIFI passive sensing method and system suitable for tumble monitoring
JP2019117055A (en) Estimation method, estimation device and program
Ding et al. A robust passive intrusion detection system with commodity WiFi devices
US20180306917A1 (en) Method and system for spatial modeling of an interior of a vehicle
Takabatake et al. FMCW radar-based anomaly detection in toilet by supervised machine learning classifier
Chen et al. AFall: Wi-Fi-based device-free fall detection system using spatial angle of arrival
JP7162192B2 (en) Bionumber estimation device, bionumber estimation method, and program
JP5829142B2 (en) Radio wave sensor device
WO2017072810A1 (en) Detection system and detection method
CN107643544B (en) Method for automatically detecting metal
JP6076167B2 (en) Spatial state determination device
JP5567974B2 (en) Event detection device
Kram et al. Delay estimation in dense multipath environments using time series segmentation
CN113869183A (en) Fall detection method and device
JP2014164639A (en) Method of arranging monitoring system, and monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees