JP2012017455A - Method for producing oxide fluorescent particle and light-emitting device - Google Patents

Method for producing oxide fluorescent particle and light-emitting device Download PDF

Info

Publication number
JP2012017455A
JP2012017455A JP2011120122A JP2011120122A JP2012017455A JP 2012017455 A JP2012017455 A JP 2012017455A JP 2011120122 A JP2011120122 A JP 2011120122A JP 2011120122 A JP2011120122 A JP 2011120122A JP 2012017455 A JP2012017455 A JP 2012017455A
Authority
JP
Japan
Prior art keywords
particles
fluorescent particles
alloy
oxide fluorescent
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011120122A
Other languages
Japanese (ja)
Other versions
JP5609775B2 (en
Inventor
Kazuhiro Wataya
和浩 綿谷
Toshihiko Tsukatani
敏彦 塚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2011120122A priority Critical patent/JP5609775B2/en
Publication of JP2012017455A publication Critical patent/JP2012017455A/en
Application granted granted Critical
Publication of JP5609775B2 publication Critical patent/JP5609775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing oxide fluorescent particles which have a stabilized spherical or nearly spherical shape, and in which mutual necking of particles or coarsening of the particles scarcely occurs, by using simple loosening and classification steps, or even without passing through these steps, and to provide a light-emitting device using the oxide fluorescent particle obtained by this method.SOLUTION: The oxide fluorescent particles are produced by melting a metal material including one or more kinds of rare earth metals selected from rare earth metals including Sc and Y and one or more kinds of metals selected from Al, Ga, In, Si and Ge to form an alloy, forming the alloy into spherical or nearly spherical shaped fine particles with an average particle diameter of 50 μm or less, and oxidizing the alloy fine particles. The fluorescent particles obtained by the production method scarcely cause necking or fusion, and consequently, in the production process of the fluorescent particles, loosening and classification steps for eliminating the necking or fusion are reduced. Also in comparison with conventional fluorescent particles, particle size distribution is more sharpened, and when the fluorescent particles are actually used, the fluorescent particles have excellent flowability and are handled with ease in coating and mixing steps of the particles. Furthermore, output efficiency of emission of the phosphor is improved since the shape is kept constant.

Description

本発明は、酸化物蛍光粒子の製造方法、及びこの方法により得られた酸化物蛍光粒子を用いた発光デバイスに関する。   The present invention relates to a method for producing oxide fluorescent particles, and a light-emitting device using the oxide fluorescent particles obtained by this method.

照明及びディスプレイ分野において、蛍光体は波長変換材料としていろいろな製品に使われている。蛍光体の製造方法としては、各構成元素の酸化物等の化合物を混合し、高温にて反応させることで得る方法が一般的である。また、各構成元素の反応や結晶成長を促すために、フラックスと呼ばれる低融点の化合物を添加することもある。   In the field of illumination and display, phosphors are used in various products as wavelength conversion materials. As a method for producing a phosphor, a method obtained by mixing compounds such as oxides of respective constituent elements and reacting them at a high temperature is common. Moreover, in order to promote reaction of each constituent element and crystal growth, a low melting point compound called flux may be added.

このような従来の製造方法によって得られる蛍光粒子は、一般に不定形、柱状、平板状、多面体などの形状になるが、高温で合成するため、また、複数の元素を化合させるため、粒子同士がネッキングや融着によって様々な形状となり、得られた蛍光粒子は、一定の形状をもつことがない。そのため、蛍光粒子を製造する際には、一般に分級による粗大粒子の除去や、解粒によるネッキングの切り離しがなされるが、このことによって蛍光粒子の製造歩留まりが減少し、また、蛍光体の発光特性が低下する。更に、蛍光体形状によっては、蛍光の取り出し効率が低下するおそれがある。   The fluorescent particles obtained by such a conventional manufacturing method generally have an irregular shape, a columnar shape, a flat plate shape, a polyhedron shape, etc., but in order to synthesize at a high temperature and to combine a plurality of elements, the particles are separated from each other. Various shapes are formed by necking or fusion, and the obtained fluorescent particles do not have a certain shape. For this reason, when producing fluorescent particles, coarse particles are generally removed by classification and necking is separated by pulverization. This reduces the production yield of fluorescent particles, and the phosphor emission characteristics. Decreases. Furthermore, depending on the shape of the phosphor, the fluorescence extraction efficiency may decrease.

蛍光体同学会編、蛍光体ハンドブック、III編、第1章Fluorescent Material Society, Fluorescent Handbook, Volume III, Chapter 1

本発明は、上記問題を解決するためになされたものであり、粒子同士のネッキングや粒子の粗大化が起きにくく、簡単な解粒、分級の工程により、又はこれらの工程を経なくとも、球形状乃至略球形状の形状が安定した酸化物蛍光粒子を製造することができる方法、及びこの方法により得られた酸化物蛍光粒子を用いた発光デバイスを提供することを目的とする。   The present invention has been made in order to solve the above problems, and it is difficult for necking of particles or coarsening of particles to occur, and the spheres can be obtained by simple pulverization and classification processes or without these processes. It is an object of the present invention to provide a method capable of producing oxide fluorescent particles having a stable shape or a substantially spherical shape, and a light-emitting device using the oxide fluorescent particles obtained by this method.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、Sc及びYを含む希土類から選ばれる1種類以上の希土類金属と、Al,Ga,In,Si及びGeから選ばれる1種類以上の金属とを含む金属材料を溶融して合金とし、該合金を平均粒径が50μm以下の球形状乃至略球形状の微粒子とし、該合金微粒子を酸化することにより酸化物蛍光粒子を製造すれば、粒子同士のネッキングや粒子の粗大化が起きにくく、簡単な解粒、分級の工程により、又はこれらの工程を経なくとも、球形状乃至略球形状の、形状が安定した酸化物蛍光粒子を製造することができることを見出し、本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have selected one or more rare earth metals selected from rare earths including Sc and Y, and Al, Ga, In, Si and Ge. A metal material containing at least one kind of metal is melted to form an alloy, the alloy is made into spherical or substantially spherical fine particles having an average particle size of 50 μm or less, and oxide fine particles are produced by oxidizing the alloy fine particles. In this way, necking of particles and coarsening of particles are unlikely to occur, and a spherical or substantially spherical oxide-stable oxide fluorescence can be obtained by simple pulverization and classification processes or without these processes. The inventors have found that particles can be produced, and have made the present invention.

従って、本発明は、下記の酸化物蛍光粒子の製造方法及び発光デバイスを提供する。
請求項1:
Sc及びYを含む希土類から選ばれる1種類以上の希土類金属と、Al,Ga,In,Si及びGeから選ばれる1種類以上の金属とを含む金属材料を溶融して合金とし、該合金を平均粒径が50μm以下の球形状乃至略球形状の微粒子に形成し、該合金微粒子を酸化することを特徴とする酸化物蛍光粒子の製造方法。
請求項2:
Y,Gd及びLuから選ばれる1種類以上の希土類金属と、Ce,Nd及びTbから選ばれる1種類以上の希土類金属と、Al及びGaから選ばれる1種類以上の金属とを含む金属材料を溶融して合金とし、該合金を平均粒径が50μm以下の球形状乃至略球形状の微粒子に形成し、該合金微粒子を酸化することを特徴とする酸化物蛍光粒子の製造方法。
請求項3:
上記金属材料が、更に、Li,Na,K,Rb,Cs,Fr,Be,Mg,Ca,Sr,Ba及びRaから選ばれる1種類以上の金属を含むことを特徴とする請求項1又は2記載の酸化物蛍光粒子の製造方法。
請求項4:
回転ディスクアトマイザーを用いて、上記球形状乃至略球形状の微粒子を形成することを特徴とする請求項1乃至3のいずれか1項記載の酸化物蛍光粒子の製造方法。
請求項5:
平均真円度が0.3以下の酸化物蛍光粒子を製造することを特徴とする請求項1乃至4のいずれか1項記載の酸化物蛍光粒子の製造方法。
請求項6:
請求項1乃至5のいずれか1項記載の方法により得られた酸化物蛍光粒子を用いたことを特徴とする発光デバイス。
Accordingly, the present invention provides the following method for producing oxide fluorescent particles and a light emitting device.
Claim 1:
A metal material containing at least one rare earth metal selected from rare earths including Sc and Y and at least one metal selected from Al, Ga, In, Si and Ge is melted to form an alloy, and the alloy is averaged. A method for producing oxide fluorescent particles, comprising forming spherical or substantially spherical fine particles having a particle size of 50 μm or less and oxidizing the alloy fine particles.
Claim 2:
Melting a metal material containing one or more rare earth metals selected from Y, Gd and Lu, one or more rare earth metals selected from Ce, Nd and Tb, and one or more metals selected from Al and Ga. A method for producing oxide fluorescent particles, comprising forming an alloy into spherical or substantially spherical fine particles having an average particle diameter of 50 μm or less and oxidizing the alloy fine particles.
Claim 3:
The metal material further contains one or more kinds of metals selected from Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, and Ra. The manufacturing method of the oxide fluorescent particle of description.
Claim 4:
The method for producing oxide fluorescent particles according to any one of claims 1 to 3, wherein the spherical or substantially spherical fine particles are formed using a rotating disk atomizer.
Claim 5:
The method for producing oxide fluorescent particles according to any one of claims 1 to 4, wherein the oxide fluorescent particles having an average roundness of 0.3 or less are produced.
Claim 6:
A light-emitting device using the oxide fluorescent particles obtained by the method according to claim 1.

本発明の方法で製造した蛍光粒子は、合金粒子を酸化する前の時点で、独立した球形状乃至略球形状となっており、これを酸化して酸化物とした後も、粒子の形状を保ったままの球形状乃至略球形状の酸化物蛍光粒子となる。また、ネッキングや粒子の粗大化が起き難く、通常の蛍光粒子製造に必要な解粒、分級工程が不要又は非常に容易になるという利点がある。また、形状が球形状乃至略球形状で一定していることから、蛍光体の混合や塗布での粒子の並びや配置のコントロールがしやすく、これにより蛍光体からの蛍光の取り出し効率が向上する。   The fluorescent particles produced by the method of the present invention have an independent spherical shape or a substantially spherical shape before the alloy particles are oxidized. The spherical or substantially spherical oxide fluorescent particles are kept as they are. Further, there is an advantage that necking and particle coarsening hardly occur, and the pulverization and classification steps necessary for normal fluorescent particle production are unnecessary or very easy. In addition, since the shape is constant in a spherical shape or a substantially spherical shape, it is easy to control the arrangement and arrangement of the particles in the mixing and application of the phosphor, thereby improving the efficiency of extracting the fluorescence from the phosphor. .

本発明の製造方法により得られた蛍光粒子は、ネッキングや融着が非常に少なく、蛍光粒子製造工程において、ネッキングや融着を解消するための解粒や分級工程が軽減できる。また、従来の蛍光粒子と比較して、粒度分布をシャープにすることができ、実際に蛍光粒子を使用する場合に、粒子の塗布や混合工程において、流動性がよく、取り扱いが容易である。また、形状が一定であることにより、蛍光体の発光の取り出し効率が向上する。   The fluorescent particles obtained by the production method of the present invention have very little necking and fusion, and in the fluorescent particle production process, the pulverization and classification steps for eliminating necking and fusion can be reduced. In addition, the particle size distribution can be sharpened as compared with conventional fluorescent particles, and when fluorescent particles are actually used, they are good in fluidity and easy to handle in the particle coating and mixing process. Further, since the shape is constant, the light emission efficiency of the phosphor is improved.

実施例1で得られた蛍光粒子の電子顕微鏡像である。2 is an electron microscopic image of fluorescent particles obtained in Example 1. FIG.

以下、本発明について詳細に説明する。
本発明において、酸化物蛍光粒子(酸化物蛍光体の粒子)は、酸化物蛍光粒子を構成する2種類以上の金属材料を溶融して合金とし、平均粒径が50μm以下の球形状乃至略球形状の微粒子に形成し、更に、球形状乃至略球形状の合金微粒子を酸化することにより製造される。
Hereinafter, the present invention will be described in detail.
In the present invention, the oxide fluorescent particles (oxide phosphor particles) are formed by melting two or more kinds of metal materials constituting the oxide fluorescent particles into an alloy and having an average particle diameter of 50 μm or less in a spherical or substantially spherical shape. It is manufactured by forming spherical fine particles and further oxidizing spherical or substantially spherical alloy fine particles.

溶融して合金化する処理においては、金属単体又は金属2成分以上からなる合金を酸化物蛍光粒子中の金属の比率に合わせて混合し、融点以上の温度で溶融させる。溶融させる際の雰囲気は、真空又はアルゴンなどの不活性ガス雰囲気とする。溶解された合金の溶湯は、これを直接、球形状乃至略球形状の微粒子を形成する処理に用いてもよく、また、一旦、棒状、塊状に鋳造してもよい。   In the process of melting and alloying, a single metal or an alloy composed of two or more metal components is mixed in accordance with the ratio of the metal in the oxide fluorescent particles and melted at a temperature equal to or higher than the melting point. The atmosphere for melting is an inert gas atmosphere such as vacuum or argon. The molten alloy melt may be used directly in a process of forming spherical or substantially spherical fine particles, or may be once cast into a rod shape or a lump shape.

次に、得られた合金を用いて、球形状乃至略球形状の微粒子を形成する。このような形状の微粒子は、合金の溶湯から球形状乃至略球形状の微粒子を形成する手法、例えば、回転ディスクアトマイザーなどを用い、固体状の合金を用いる場合は合金を溶融させた上で、溶湯を微小液滴に形成して固化させることにより形成することができる。形成する合金微粒子の大きさは、通常、酸化後に得られる酸化物蛍光粒子の大きさと同程度である。合金微粒子の形成時の雰囲気は、真空又はアルゴンなどの不活性ガス雰囲気とすることができ、また、後に合金微粒子を酸化するので、酸素を含む雰囲気、例えば、大気雰囲気であってもよい。   Next, spherical or substantially spherical fine particles are formed using the obtained alloy. The fine particles having such a shape are formed by using spherical or substantially spherical fine particles from a molten alloy, for example, a rotating disk atomizer, and when a solid alloy is used, after melting the alloy, It can be formed by forming molten metal into fine droplets and solidifying them. The size of the alloy fine particles to be formed is usually about the same as the size of the oxide fluorescent particles obtained after oxidation. The atmosphere at the time of forming the alloy fine particles can be an atmosphere of an inert gas such as vacuum or argon. Further, since the alloy fine particles are oxidized later, an atmosphere containing oxygen, for example, an air atmosphere may be used.

次に、得られた合金微粒子を大気雰囲気等の酸素を含む雰囲気で加熱して酸化する。酸化温度は、蛍光体の組成によって異なるが、1000〜1800℃が好ましい。この加熱の時間は、通常30分〜10時間である。また、この酸化の上記加熱温度までの昇温速度は、速すぎると合金の燃焼熱などで、微粒子同士が融着することがあるため、通常、50℃/時間以下、特に10〜30℃/時間のゆっくりとした速度で昇温することが好ましい。この酸化処理後、冷却すれば、酸化物蛍光粒子が得られる。   Next, the obtained alloy fine particles are heated and oxidized in an atmosphere containing oxygen such as an air atmosphere. The oxidation temperature varies depending on the phosphor composition, but is preferably 1000 to 1800 ° C. The heating time is usually 30 minutes to 10 hours. Further, if the temperature rise rate to the above heating temperature of this oxidation is too fast, fine particles may be fused with each other due to the heat of combustion of the alloy. It is preferable to raise the temperature at a slow rate of time. If this oxidation treatment is followed by cooling, oxide fluorescent particles can be obtained.

合金微粒子の製造においては、一部形状が悪いもの、例えば箔状のものや、ひょうたん型など、球形状からかけ離れた形状のものが含まれる場合があるが、その場合は、酸化処理の前又は酸化処理の後に、分級や傾斜法などによって、形状不良の粒子をより分けることができる。また、必要に応じて、粒径を揃えるための分級を実施することも可能である。   In the production of alloy fine particles, there are cases in which a part of the shape is bad, for example, a foil shape, a gourd shape, or a shape far from a spherical shape. After the oxidation treatment, poorly shaped particles can be further separated by classification or a gradient method. Moreover, it is also possible to carry out classification for uniforming the particle diameter as necessary.

酸化処理により得られた酸化物蛍光粒子は、その賦活剤の種類によっては、更に、高温アニール処理を施してもよい。この高温アニール処理は、大気雰囲気等の酸化雰囲気、又はH2+N2ガス、H2+Arガス等の、水素ガスなどを含む還元雰囲気で実施することが好ましく、また、1300〜1800℃の温度で、2〜6時間実施することが好ましい。この高温アニール処理により、酸化物蛍光粒子の吸収率や発光効率を向上させることができる。 The oxide fluorescent particles obtained by the oxidation treatment may be further subjected to a high-temperature annealing treatment depending on the type of the activator. This high-temperature annealing treatment is preferably performed in an oxidizing atmosphere such as an air atmosphere or a reducing atmosphere containing hydrogen gas such as H 2 + N 2 gas or H 2 + Ar gas, and at a temperature of 1300 to 1800 ° C. , Preferably 2 to 6 hours. By this high-temperature annealing treatment, the absorption rate and luminous efficiency of the oxide fluorescent particles can be improved.

本発明の製造方法は、
(A)Sc及びYを含む希土類、即ち、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuから選ばれる1種類以上、好ましくは2種類以上の希土類金属、特に、Y,Gd及びLuから選ばれる1種類以上の希土類金属及びCe,Nd及びTbから選ばれる1種類以上の希土類金属と、
(B)Al,Ga,In,Si及びGeから選ばれる1種類以上の金属、特に、Al及びGaから選ばれる1種類以上の金属
とを含む酸化物蛍光粒子の製造に好適である。酸化物蛍光粒子は、更に、
(C)Li,Na,K,Rb,Cs,Fr,Be,Mg,Ca,Sr,Ba及びRaから選ばれる1種類以上の金属
を含んでいてもよい。
The production method of the present invention comprises:
(A) Rare earth containing Sc and Y, that is, one kind selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu Or more, preferably two or more rare earth metals, in particular one or more rare earth metals selected from Y, Gd and Lu, and one or more rare earth metals selected from Ce, Nd and Tb,
(B) It is suitable for the production of oxide fluorescent particles containing one or more metals selected from Al, Ga, In, Si and Ge, particularly one or more metals selected from Al and Ga. The oxide fluorescent particles are further
(C) One or more metals selected from Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, and Ra may be included.

蛍光体として具体的には、下記組成式(1)
(A1-xx3512 (1)
(式中、AはY,Gd及びLuから選ばれる1種類以上の希土類元素、BはCe,Nd及びTbから選ばれる1種類以上の希土類元素、CはAl及びGaから選ばれる1種類以上の元素であり、xは0.002≦x≦0.2である。)
で示されるガーネット相(YAG相)を含有する蛍光体が挙げられる。このガーネット相は、蛍光粒子における主相であり、粒子中、通常、99体積%以上がガーネット相であることが好ましい。また、蛍光体としては、(Ba,Sr,Ca)2SiO4:Eu、(Ba,Sr,Ca)3SiO5:Eu等のシリケート系蛍光体も好適である。
Specifically, as the phosphor, the following composition formula (1)
(A 1-x B x ) 3 C 5 O 12 (1)
Wherein A is one or more rare earth elements selected from Y, Gd and Lu, B is one or more rare earth elements selected from Ce, Nd and Tb, and C is one or more kinds selected from Al and Ga. And x is 0.002 ≦ x ≦ 0.2.)
And a phosphor containing a garnet phase (YAG phase) shown in FIG. This garnet phase is the main phase in the fluorescent particles, and it is preferable that 99% by volume or more of the particles is usually the garnet phase. As the phosphor, silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 : Eu and (Ba, Sr, Ca) 3 SiO 5 : Eu are also suitable.

このような酸化物蛍光粒子は、製造する蛍光体の種類に応じて、(A)成分の金属と、(B)成分の金属と、必要に応じて(C)成分の金属とを適宜選定し、それらを含む金属単体、金属2成分以上からなる合金、又はそれらの混合物を金属材料として用いて、溶融、微粒子化及び酸化の各処理を実施すればよい。   For such oxide fluorescent particles, the metal of component (A), the metal of component (B), and the metal of component (C) are appropriately selected according to the type of phosphor to be produced. In addition, each of the melting, atomization, and oxidation treatments may be performed using a single metal containing them, an alloy composed of two or more metal components, or a mixture thereof as a metal material.

本発明の製造方法により、平均粒径が50μm以下、特に5〜50μmの酸化物蛍光粒子を製造することができる。平均粒径はD50(メジアン径:累積50vol%における粒径)として求めることができる。   By the production method of the present invention, oxide fluorescent particles having an average particle size of 50 μm or less, particularly 5 to 50 μm can be produced. An average particle diameter can be calculated | required as D50 (median diameter: particle diameter in accumulation 50 vol%).

また、本発明の製造方法により、平均真円度が0.3以下、特に0.2以下、とりわけ0.1以下の酸化物蛍光粒子を製造することができる。平均真円度の下限は理想的には0であるが、通常0.01以上である。真円度は、電子顕微鏡等による観察などにより得られる粒子の投影像において、その外周に対する外接円の直径と内接円の直径とを計測し、これらから、下記式
真円度={(外接円の直径)−(内接円の直径)}/[{(外接円の直径)+(内接円の直径)}÷2]
から求めることができる。
In addition, by the production method of the present invention, oxide fluorescent particles having an average roundness of 0.3 or less, particularly 0.2 or less, and particularly 0.1 or less can be produced. The lower limit of the average roundness is ideally 0, but is usually 0.01 or more. The roundness is measured by measuring the diameter of the circumscribed circle and the diameter of the inscribed circle with respect to the outer periphery of the projected image of the particle obtained by observation with an electron microscope or the like. Circle diameter)-(diameter of inscribed circle)} / [{(diameter of circumscribed circle) + (diameter of inscribed circle)} / 2]
Can be obtained from

更に、本発明の製造方法により、安息角が1〜40°、特に2〜30°、とりわけ5〜20°である酸化物蛍光粒子を製造することができる。   Furthermore, oxide fluorescent particles having an angle of repose of 1 to 40 °, particularly 2 to 30 °, and particularly 5 to 20 ° can be produced by the production method of the present invention.

安息角が小さい流動性が高い蛍光粒子は、封止樹脂への充填再現性がよく、LED等の発光デバイスに用いられる封止樹脂を含む蛍光体層を薄くすることができる。封止樹脂は熱劣化・紫外線劣化により着色するので、封止樹脂を減らすことによりLED寿命を延ばすことができる。更に、分散指数が低く粒度分布が狭い蛍光粒子は、青色LEDと黄色発光蛍光体で擬似白色を発する白色LEDの場合、青色と黄色のLED内の色均一性が高い白色LEDを与える。   The fluorescent particles having a small repose angle and high fluidity have good reproducibility of filling the sealing resin, and can make the phosphor layer containing the sealing resin used in a light emitting device such as an LED thin. Since the sealing resin is colored due to heat deterioration and ultraviolet light deterioration, the life of the LED can be extended by reducing the sealing resin. Further, the fluorescent particles having a low dispersion index and a narrow particle size distribution give a white LED having high color uniformity in the blue and yellow LEDs in the case of a white LED emitting a pseudo white color with a blue LED and a yellow light emitting phosphor.

本発明の蛍光粒子は、LED等の発光デバイス等に好適に用いることができ、例えば、蛍光粒子を波長変換材料として、励起光を発光する発光体上に積層して用いることができ、発光ダイオードの波長変換用の蛍光体として好適である。本発明の蛍光粒子を用いると、これをエポキシ樹脂、シリコーン樹脂等の樹脂、無機ガラス等に分散して、発光体に積層する積層体を製造する際、積層体中で均一分散が可能であり、積層体の基材中の分散性が良好となり、蛍光粒子のばらつきが少ない積層体を得ることができる。   The fluorescent particles of the present invention can be suitably used for light emitting devices such as LEDs. For example, the fluorescent particles can be used by being stacked on a light emitting body that emits excitation light using a fluorescent particle as a wavelength conversion material. It is suitable as a phosphor for wavelength conversion. When the fluorescent particles of the present invention are used, they can be dispersed in an epoxy resin, a resin such as a silicone resin, inorganic glass, etc. to produce a laminate to be laminated on a light emitter, and can be uniformly dispersed in the laminate. In addition, the dispersibility of the laminate in the base material becomes good, and a laminate with little variation in fluorescent particles can be obtained.

本発明の蛍光粒子は、発光ダイオードに用いられる発光素子からの光を波長変換するために用いる蛍光体として好適であり、本発明の蛍光粒子は、発光ダイオード、これを用いた照明装置、液晶パネル用バックライト装置などに好適に使用できる。   The fluorescent particle of the present invention is suitable as a phosphor used for wavelength conversion of light from a light emitting element used in a light emitting diode. The fluorescent particle of the present invention is a light emitting diode, an illumination device using the same, a liquid crystal panel. It can be suitably used for a backlight device for use.

以下に実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

[実施例1]
純度99.9%のイットリウムと、純度99.9%のアルミニウムと、純度99.9%のセリウムとを、各々Y:Al:Ce=2.94:5:0.06のモル比でタングステン容器に入れて真空溶解炉で溶融して合金とした。この合金を直径20mmの円柱状金型に鋳込んで合金棒とした。得られた合金棒を、回転ディスクアトマイザーを用いて球形状の合金粒子とした。得られた球形状の合金粒子は、平均粒径が35μmであった。
[Example 1]
A tungsten container containing 99.9% pure yttrium, 99.9% pure aluminum, and 99.9% pure cerium in a molar ratio of Y: Al: Ce = 2.94: 5: 0.06, respectively. And melted in a vacuum melting furnace to obtain an alloy. This alloy was cast into a cylindrical mold having a diameter of 20 mm to obtain an alloy bar. The obtained alloy rod was made into spherical alloy particles using a rotating disk atomizer. The obtained spherical alloy particles had an average particle size of 35 μm.

次に、この合金粒子を大気炉に入れ、昇温速度30℃/時間で1300℃まで昇温して、同温度で8時間維持した後、冷却して取り出し、酸化物蛍光粒子を得た。得られた酸化物蛍光粒子をXRDで定性分析したところYAG相(ガーネット相)であった。このYAG:Ce粒子を還元雰囲気炉にて、Ar98vol%、水素2vol%の雰囲気下、1600℃で8時間アニールした。アニール後のYAG:Ce粒子は450nmの励起光で黄色発光を示した。   Next, the alloy particles were put into an atmospheric furnace, heated to 1300 ° C. at a temperature rising rate of 30 ° C./hour, maintained at the same temperature for 8 hours, then cooled and taken out to obtain oxide fluorescent particles. When the obtained oxide fluorescent particles were qualitatively analyzed by XRD, they were YAG phase (garnet phase). The YAG: Ce particles were annealed in a reducing atmosphere furnace at 1600 ° C. for 8 hours in an atmosphere of Ar 98 vol% and hydrogen 2 vol%. The annealed YAG: Ce particles showed yellow emission with 450 nm excitation light.

一方、得られた黄色発光蛍光体のアニール前後の吸収率及び内部量子効率を、励起波長450nm、発光範囲480〜780nmの範囲で積分球を用いて測定した。結果を表1に示す。アニール後の吸収率は0.98、内部量子効率は、0.92と高い値を示した。また、この蛍光粒子の安息角を測定したところ、22°であり、流動性が非常に良好であった。更に、蛍光粒子を電子顕微鏡で観察したところ、図1に示されるように、球形状乃至略球形状の粒子であり、蛍光粒子の電子顕微鏡像からランダムに30個を抽出して真円度を画像解析により評価したところ、0.18(平均値)であった。   On the other hand, the absorptance before and after annealing and the internal quantum efficiency of the obtained yellow light-emitting phosphor were measured using an integrating sphere in an excitation wavelength of 450 nm and an emission range of 480 to 780 nm. The results are shown in Table 1. The absorptance after annealing was 0.98, and the internal quantum efficiency was as high as 0.92. Further, the angle of repose of the fluorescent particles was measured and found to be 22 ° and the fluidity was very good. Furthermore, when the fluorescent particles were observed with an electron microscope, as shown in FIG. 1, they were spherical or substantially spherical particles, and 30 particles were randomly extracted from the electron microscopic image of the fluorescent particles to obtain roundness. When evaluated by image analysis, it was 0.18 (average value).

Claims (6)

Sc及びYを含む希土類から選ばれる1種類以上の希土類金属と、Al,Ga,In,Si及びGeから選ばれる1種類以上の金属とを含む金属材料を溶融して合金とし、該合金を平均粒径が50μm以下の球形状乃至略球形状の微粒子に形成し、該合金微粒子を酸化することを特徴とする酸化物蛍光粒子の製造方法。   A metal material containing at least one rare earth metal selected from rare earths including Sc and Y and at least one metal selected from Al, Ga, In, Si and Ge is melted to form an alloy, and the alloy is averaged. A method for producing oxide fluorescent particles, comprising forming spherical or substantially spherical fine particles having a particle size of 50 μm or less and oxidizing the alloy fine particles. Y,Gd及びLuから選ばれる1種類以上の希土類金属と、Ce,Nd及びTbから選ばれる1種類以上の希土類金属と、Al及びGaから選ばれる1種類以上の金属とを含む金属材料を溶融して合金とし、該合金を平均粒径が50μm以下の球形状乃至略球形状の微粒子に形成し、該合金微粒子を酸化することを特徴とする酸化物蛍光粒子の製造方法。   Melting a metal material containing one or more rare earth metals selected from Y, Gd and Lu, one or more rare earth metals selected from Ce, Nd and Tb, and one or more metals selected from Al and Ga. A method for producing oxide fluorescent particles, comprising forming an alloy into spherical or substantially spherical fine particles having an average particle diameter of 50 μm or less and oxidizing the alloy fine particles. 上記金属材料が、更に、Li,Na,K,Rb,Cs,Fr,Be,Mg,Ca,Sr,Ba及びRaから選ばれる1種類以上の金属を含むことを特徴とする請求項1又は2記載の酸化物蛍光粒子の製造方法。   The metal material further contains one or more kinds of metals selected from Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, and Ra. The manufacturing method of the oxide fluorescent particle of description. 回転ディスクアトマイザーを用いて、上記球形状乃至略球形状の微粒子を形成することを特徴とする請求項1乃至3のいずれか1項記載の酸化物蛍光粒子の製造方法。   The method for producing oxide fluorescent particles according to any one of claims 1 to 3, wherein the spherical or substantially spherical fine particles are formed using a rotating disk atomizer. 平均真円度が0.3以下の酸化物蛍光粒子を製造することを特徴とする請求項1乃至4のいずれか1項記載の酸化物蛍光粒子の製造方法。   The method for producing oxide fluorescent particles according to any one of claims 1 to 4, wherein the oxide fluorescent particles having an average roundness of 0.3 or less are produced. 請求項1乃至5のいずれか1項記載の方法により得られた酸化物蛍光粒子を用いたことを特徴とする発光デバイス。   A light-emitting device using the oxide fluorescent particles obtained by the method according to claim 1.
JP2011120122A 2010-06-09 2011-05-30 Oxide fluorescent particle manufacturing method and light emitting device Expired - Fee Related JP5609775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120122A JP5609775B2 (en) 2010-06-09 2011-05-30 Oxide fluorescent particle manufacturing method and light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010131611 2010-06-09
JP2010131611 2010-06-09
JP2011120122A JP5609775B2 (en) 2010-06-09 2011-05-30 Oxide fluorescent particle manufacturing method and light emitting device

Publications (2)

Publication Number Publication Date
JP2012017455A true JP2012017455A (en) 2012-01-26
JP5609775B2 JP5609775B2 (en) 2014-10-22

Family

ID=45602928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120122A Expired - Fee Related JP5609775B2 (en) 2010-06-09 2011-05-30 Oxide fluorescent particle manufacturing method and light emitting device

Country Status (1)

Country Link
JP (1) JP5609775B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153881A (en) * 2011-01-06 2012-08-16 Shin-Etsu Chemical Co Ltd Method for making phosphor particle
WO2013161683A1 (en) * 2012-04-24 2013-10-31 株式会社光波 Phosphor, method for manufacturing same, and light-emitting device
US11597878B2 (en) 2018-12-20 2023-03-07 Nichia Corporation Method for producing rare earth aluminate fluorescent material, rare earth aluminate fluorescent material, and light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013627A (en) * 2006-07-04 2008-01-24 Mitsubishi Chemicals Corp Method for producing phosphor, alloy powder for phosphor raw material and method for producing the same
JP2008127509A (en) * 2006-11-22 2008-06-05 Mitsubishi Chemicals Corp Fluorescent substance, composition containing the fluorescent substance, light-emitting device, image display device, lighting system and method for producing the fluorescent substance
JP2008230873A (en) * 2007-03-19 2008-10-02 Osaka Univ Metallic material for phosphor raw material and method for producing phosphor, phosphor and phosphor-containing composition, luminescent device, image display device and illuminating device
JP2009249445A (en) * 2008-04-03 2009-10-29 Mitsubishi Chemicals Corp Fluorescent substance and method for producing the same, fluorescent substance-containing composition, light-emitting device, lighting device and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013627A (en) * 2006-07-04 2008-01-24 Mitsubishi Chemicals Corp Method for producing phosphor, alloy powder for phosphor raw material and method for producing the same
JP2008127509A (en) * 2006-11-22 2008-06-05 Mitsubishi Chemicals Corp Fluorescent substance, composition containing the fluorescent substance, light-emitting device, image display device, lighting system and method for producing the fluorescent substance
JP2008230873A (en) * 2007-03-19 2008-10-02 Osaka Univ Metallic material for phosphor raw material and method for producing phosphor, phosphor and phosphor-containing composition, luminescent device, image display device and illuminating device
JP2009249445A (en) * 2008-04-03 2009-10-29 Mitsubishi Chemicals Corp Fluorescent substance and method for producing the same, fluorescent substance-containing composition, light-emitting device, lighting device and image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153881A (en) * 2011-01-06 2012-08-16 Shin-Etsu Chemical Co Ltd Method for making phosphor particle
WO2013161683A1 (en) * 2012-04-24 2013-10-31 株式会社光波 Phosphor, method for manufacturing same, and light-emitting device
CN104245883A (en) * 2012-04-24 2014-12-24 株式会社光波 Phosphor, method for manufacturing same, and light-emitting device
US10836961B2 (en) 2012-04-24 2020-11-17 Koha Co., Ltd. Phosphor, method for manufacturing same, and light-emitting device
US11597878B2 (en) 2018-12-20 2023-03-07 Nichia Corporation Method for producing rare earth aluminate fluorescent material, rare earth aluminate fluorescent material, and light emitting device

Also Published As

Publication number Publication date
JP5609775B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5323131B2 (en) Fluorescent particles, light-emitting diodes, illumination device using them, and backlight device for liquid crystal panel
Aboulaich et al. Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index
Jung et al. Luminescent properties of (Sr, Zn) Al2O4: Eu2+, B3+ particles as a potential green phosphor for UV LEDs
JP5041190B2 (en) Method for producing phosphor particles
Raju et al. Blue and green emissions with high color purity from nanocrystalline Ca2Gd8Si6O26: Ln (Ln= Tm or Er) phosphors
TW200536927A (en) Phosphor, process for producing the same, lighting fixture and image display unit
TWI428309B (en) A ceramic composite for optical conversion and a light-emitting device using the ceramic composite
TW201030126A (en) Co-doped 1-1-2 nitrides
Murthy Nano phosphors for light emitting diodes (LEDs) syntheses and characterization
JP5609775B2 (en) Oxide fluorescent particle manufacturing method and light emitting device
US20120126172A1 (en) Luminescent borate glass and preparation method therof
Wang et al. Ce: GdYAG phosphor-in-glass: An innovative yellow-emitting color converter for solid-state laser lighting
JP2010280797A (en) Method for manufacturing phosphor-dispersed glass
Zhou et al. Effect of H3BO3 on structure and photoluminescence of BaAl12O19: Mn2+ phosphor under VUV excitation
JP2007039591A (en) Phosphor and method for producing the same and light emitting device using the same
US8936732B2 (en) White light emitting glass-ceramic and production method thereof
CN109943333B (en) Rare earth aluminate phosphor and method for producing same
Lee et al. Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis
JP4827099B2 (en) Powder phosphor and method for manufacturing the same, and light emitting device, display device and fluorescent lamp having powder phosphor
CN1837327A (en) Process for preparing aluminate luminescent materials
JP2013177511A (en) Method for producing phosphor and phosphor obtained by the method
TWI431099B (en) Method for the preparation of phosphors and phosphors prepared therefrom
JP4373670B2 (en) Method for manufacturing vacuum ultraviolet-excited luminescent material and method for manufacturing plasma display panel
Wang et al. Enhanced photoluminescence of CaTiO3: Pr3+ phosphor films deposited on SiO2 buffered Si substrates
KR101340034B1 (en) Green emitting phosphor by vacuum UV excitation, and the preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees