JP2012017236A - METHOD FOR PRODUCING MgO THIN FILM OF PLANE ORIENTATION (111) - Google Patents

METHOD FOR PRODUCING MgO THIN FILM OF PLANE ORIENTATION (111) Download PDF

Info

Publication number
JP2012017236A
JP2012017236A JP2010157342A JP2010157342A JP2012017236A JP 2012017236 A JP2012017236 A JP 2012017236A JP 2010157342 A JP2010157342 A JP 2010157342A JP 2010157342 A JP2010157342 A JP 2010157342A JP 2012017236 A JP2012017236 A JP 2012017236A
Authority
JP
Japan
Prior art keywords
mgo
thin film
substrate
single crystal
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010157342A
Other languages
Japanese (ja)
Other versions
JP5493107B2 (en
Inventor
Tomofumi Suzaki
友文 須崎
Koyu Matsuzaki
功佑 松崎
Hideo Hosono
秀雄 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2010157342A priority Critical patent/JP5493107B2/en
Publication of JP2012017236A publication Critical patent/JP2012017236A/en
Application granted granted Critical
Publication of JP5493107B2 publication Critical patent/JP5493107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve problems that it is not successful to obtain a flat (111) plane in an atomic scale by cutting a bulk single crystal MgO and polishing, and a flat MgO (111) plane in an atomic scale is not obtained even by a film-forming method.SOLUTION: In a method for depositing an MgO thin film on a substrate by a laser ablation deposition method using an MgO sintered compact or single crystal as a target, the method for producing an MgO thin film of plane orientation (111) is characterized by using a single crystal substrate to which deposition of a single crystal NiO (111) thin film layer is carried out to the surface flatness in an atomic scale as the substrate and carrying out deposition of the MgO (111) thin film to the surface flatness in an atomic scale by making lamination accumulate by making "Mg-O" layer into one unit on this NiO (111) thin film layer and carrying out epitaxial growth. The MgO (111) thin film carries out epitaxial growth using "Mg-O" layer as one unit.

Description

本発明は、酸化マグネシウム(MgO)薄膜の作製方法、特に面方位(111)のMgO (以下、
「MgO(111)」という)薄膜を原子スケールで表面平坦にレーザーアブレーション堆積
法によって作製する方法に関する。
The present invention relates to a method for producing a magnesium oxide (MgO) thin film, in particular MgO (hereinafter referred to as (111))
The present invention relates to a method for producing a thin film (referred to as “MgO (111)”) on a flat surface on an atomic scale by a laser ablation deposition method.

結晶系が立方晶系の(111)面を有する薄膜の堆積用基板としては、例えば、イットリア安
定化ジルコニア(YSZ)、チタン酸ストロンチウム(SrTiO3)、酸化マグネシウム(MgO)
、マグネシウムアルミネート(MgAl2O4)、酸化イットリウム、(LaAlO30.3−(SrAl0.5
Ta0.5O30.7(LSAT)、シリコンなどが使用される。原子スケールで平坦でかつ結晶性の
良好な酸化物単結晶基板表面を形成するには通常、単結晶基板の表面を研磨する方法が用
いられている。
Examples of the substrate for depositing a thin film having a cubic (111) crystal system include yttria-stabilized zirconia (YSZ), strontium titanate (SrTiO 3 ), and magnesium oxide (MgO).
, Magnesium aluminate (MgAl 2 O 4 ), yttrium oxide, (LaAlO 3 ) 0.3 − (SrAl 0.5
Ta 0.5 O 3 ) 0.7 (LSAT), silicon, etc. are used. In order to form an oxide single crystal substrate surface that is flat on the atomic scale and has good crystallinity, a method of polishing the surface of the single crystal substrate is usually used.

代表的な酸化物絶縁体であるMgOは、信頼できる絶縁体基板として面方位が (100)の研
磨面を持つ基板が市販されている。しかし、単結晶からMgO(111) 面を切り出し、機械
的に研磨する方法では、表面の平坦性は、きわめて悪く、表面疵等の欠陥も生じやすい。
このような方法で静電的に不安定なMgO(111)の平坦面を得るのは困難であり、RHE
ED 像には表面の凹凸を反映した透過回折像が現われ、Kikuchi線は現われてい
ない(非特許文献1)。
MgO, which is a typical oxide insulator, is commercially available as a reliable insulator substrate having a polished surface with a (100) plane orientation. However, when the MgO (111) plane is cut out from a single crystal and mechanically polished, the flatness of the surface is extremely poor and defects such as surface defects are likely to occur.
It is difficult to obtain an electrostatically unstable MgO (111) flat surface by such a method.
A transmission diffraction image reflecting surface irregularities appears in the ED image, and no Kikuchi line appears (Non-Patent Document 1).

この問題を解決する一手法として、表面が(100)面,(111)面,(110)面のいずれかの面で
あるMgO基板の表面に3C−SiC膜を設ける際に、MgO基板を水素雰囲気中で10
00℃以上1600℃以下に加熱し、所定時間保持することによりMgO基板の表面に原
子ステップを形成する方法が提案されている(特許文献1)。
As a technique for solving this problem, when a 3C—SiC film is provided on the surface of the MgO substrate whose surface is any one of the (100) plane, the (111) plane, and the (110) plane, the MgO substrate is replaced with hydrogen. 10 in the atmosphere
A method has been proposed in which atomic steps are formed on the surface of an MgO substrate by heating to 00 ° C. or higher and 1600 ° C. or lower and holding for a predetermined time (Patent Document 1).

MgO以外の他の基板上に原子スケールで平坦なMgO(111)薄膜を気相成長させる試み
は、6H−SiC(0001)(非特許文献2)、GaN(0002)(非特許文献3)、Al23(0
001)(非特許文献4、5)、Ag(111)(非特許文献6)などの基板を用いて行われてき
たが、原子間力顕微鏡での断面プロファイルにより原子スケールでのステップ段差が確認
でき、成長時に反射高速電子線回折(RHEED)による強度振動が見え、原子スケールでの
積層状(layer by layer)成長が確認できたものは今までなかった。
Attempts to vapor-phase growth of a flat MgO (111) thin film on an atomic scale on a substrate other than MgO include 6H-SiC (0001) (Non-Patent Document 2), GaN (0002) (Non-Patent Document 3), Al 2 O 3 (0
001) (Non-Patent Documents 4 and 5), Ag (111) (Non-Patent Document 6) and other substrates have been used, but the step difference on the atomic scale was confirmed by the cross-sectional profile of the atomic force microscope. In the past, there was no strong vibration due to reflection high-energy electron diffraction (RHEED) during growth, and no layer-by-layer growth on the atomic scale was confirmed.

MgO(111) は、強誘電体薄膜素子のバッファ層としても用いられる(特許文献2,3)
。また、MgO(111) 面は、分子吸着、触媒反応に対して活性を持つことが知られており
、メタノールの低温での分解触媒への利用が報告されている(非特許文献7)。
MgO (111) is also used as a buffer layer of a ferroelectric thin film element (Patent Documents 2 and 3).
. The MgO (111) surface is known to have activity for molecular adsorption and catalytic reaction, and its use as a decomposition catalyst for methanol at low temperatures has been reported (Non-patent Document 7).

本発明者らは、先に、有機ELディスプレイ等の表示デバイス等のホール注入電極や、発
光ダイオード(LED)、レーザーダイオード(LD)、紫外線検出器のp型層として使
用できるp型酸化物半導体として原子スケールで平坦な NiO(111) 薄膜を単結晶基板
上に形成する方法を開発し、特許出願した(特許文献4、非特許文献8)。MgOと同様
に岩塩構造を取る NiOも単結晶を切り出して (111) 平坦面を得るのは困難であるが、
上に示した方法により単結晶基板上にNiO(111) 超平坦面を得ることが出来る。しかし
、この方法では原子スケールで平坦な MgO(111) 表面を形成しようとすると、MgO
と単結晶基板が固溶反応するために実現できない。
The present inventors have previously described a p-type oxide semiconductor that can be used as a p-type layer of a hole injection electrode such as a display device such as an organic EL display, a light emitting diode (LED), a laser diode (LD), or an ultraviolet detector. Has developed a method for forming a flat NiO (111) thin film on an atomic scale on a single crystal substrate, and applied for a patent (Patent Document 4, Non-Patent Document 8). Like MgO, it takes a rock salt structure. NiO is also difficult to obtain a (111) flat surface by cutting out a single crystal.
A NiO (111) ultra-flat surface can be obtained on a single crystal substrate by the method shown above. However, in this method, when trying to form a flat MgO (111) surface on the atomic scale, MgO
This is not possible because the single crystal substrate undergoes a solid solution reaction.

特開2007−149739号公報JP 2007-149739 特開平6−342920号公報JP-A-6-342920 特開平10−120494号公報JP-A-10-120494 特開2004−91253号公報(特許第4,014,473号)JP 2004-91253 A (Patent No. 4,014,473)

Lazarov et al., PHYSICAL REVIEW B 71, 115434 (2005)Lazarov et al., PHYSICAL REVIEW B 71, 115434 (2005) Goodrich et al., APPLIED PHYSICS LETTERS 90, 042910 (2007)Goodrich et al., APPLIED PHYSICS LETTERS 90, 042910 (2007) Craft et al., APPLIED PHYSICS LETTERS 88, 212906 (2006)Craft et al., APPLIED PHYSICS LETTERS 88, 212906 (2006) Susaki et al., Applied Physics Express 2 091403 (2009)Susaki et al., Applied Physics Express 2 091403 (2009) Susaki, ANNUAL REPORT OF THE MURATA SCIENCE FOUNDATION,No.23,A81129 (2009)Susaki, ANNUAL REPORT OF THE MURATA SCIENCE FOUNDATION, No.23, A81129 (2009) Kiguchi et al., PHYSICAL REVIEW B 68, 115402 (2003)Kiguchi et al., PHYSICAL REVIEW B 68, 115402 (2003) Hu et al., J. Phys. Chem. C 111, 12038(2007)Hu et al., J. Phys. Chem. C 111, 12038 (2007) H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 83, 1029 (2003)H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 83, 1029 (2003)

基板、又は基板に堆積した薄膜の原子スケールで平坦な面は、この上に極く薄膜のデバイ
ス構造を作製する際にきわめて重要となる。例えば、極く薄膜のチャンネル層をこの上に
構築する場合、下地の面の粗さがチャンネル層の厚みと同じオーダーの大きさであると、
下地の面の凹凸での散乱の効果が大きくなり、チャンネル層は設計どおりの動作を行わな
い。
The flat surface on the atomic scale of the substrate or the thin film deposited on the substrate is extremely important in fabricating a device structure having a very thin film thereon. For example, when a very thin channel layer is constructed on this, the roughness of the underlying surface is the same order of magnitude as the thickness of the channel layer.
The effect of scattering on the unevenness of the underlying surface is increased, and the channel layer does not operate as designed.

MgOは、(100) 研磨面を持つ基板が市販されている。一方、MgOの (111) 面は原子
スケールで平坦化されると、全て陽イオン(Mg2+)、又は全て陰イオン(O2-)から成る
面が露出することになり、静電的に極めて不安定である。実際、バルク単結晶MgOを切
り出して原子スケールで平坦な (111) 面を研磨により得ることは成功していない。
As for MgO, a substrate having a (100) polished surface is commercially available. On the other hand, when the (111) surface of MgO is flattened on an atomic scale, the surface consisting of all cations (Mg 2+ ) or all anions (O 2− ) will be exposed, and electrostatically It is extremely unstable. In fact, it has not been successful to cut out bulk single crystal MgO and obtain a flat (111) plane on an atomic scale by polishing.

本発明者らは、原子スケールで平坦な面を持つAl23(0001)基板にMgO (111)を堆積
する方法を報告した(非特許文献4)が、 図4に示すように、二乗平均粗さは0.2n
m程度を超え、しかも膜が厚くなるにつれて粗さが大きくなり、厚さ80nmでは粗さは
約0.6nmであり、原子スケールで平坦なMgO (111) 面は得られていなかった。
The present inventors have reported a method of depositing MgO (111) on an Al 2 O 3 (0001) substrate having a flat surface on an atomic scale (Non-Patent Document 4). As shown in FIG. The average roughness is 0.2n
The roughness increased as the film thickness increased beyond about m, and the thickness was about 0.6 nm at a thickness of 80 nm, and a flat MgO (111) surface on an atomic scale was not obtained.

現在、結晶系が3方晶系、6方晶系の薄膜の堆積に用いる酸化物基板としては、Al23
(0001)、YSZ(111) 、MgAl24 (111) 、ZnO (0001)については原子スケールで
平坦な市販品が存在する。これらの基板の格子定数は MgOとは有意に異なるため、そ
のままMgO(111) 平坦面の代わりの基板にはならない。
At present, Al 2 O 3 is an oxide substrate used for depositing thin films having a crystal system of trigonal or hexagonal.
Regarding (0001), YSZ (111), MgAl 2 O 4 (111), and ZnO (0001), there are commercially available products that are flat on the atomic scale. Since the lattice constant of these substrates is significantly different from that of MgO, it cannot be used as a substitute for the MgO (111) flat surface.

MgO(111)面は、結晶系が3方晶系、6方晶系薄膜の堆積用の基板として利用が可能で
あり、MgOは、現在市販されているMgO以外の基板材料とは格子定数が異なるため、
MgO(111)を基板、又はバッファ層として用いれば堆積した薄膜に今までに試されてい
ない格子歪を導入することが可能となる。
The MgO (111) plane can be used as a substrate for deposition of trigonal and hexagonal thin films in the crystal system, and MgO has a lattice constant different from that of commercially available substrate materials other than MgO. Because it is different
If MgO (111) is used as a substrate or a buffer layer, it is possible to introduce a lattice strain that has not been tried so far into the deposited thin film.

また、岩塩構造の (111) 面に固有の電気的な不安定性に起因する電気的、化学的な活性
は理論的に注目されてきたが、原子スケールで平坦な表面を持つMgO(111) 薄膜の実現
は、MgOの大きな電気的な不安定性のためにこれまで阻まれてきた。よって、MgO(1
11) 面の活性の実証的評価はなされておらず、電気的、化学的な活性の触媒等への利用も
進んでいなかった。
Although the electrical and chemical activity due to the electrical instability inherent to the (111) surface of the rock salt structure has attracted theoretical attention, the MgO (111) thin film has a flat surface on the atomic scale. The realization of has been hampered by the large electrical instability of MgO. Therefore, MgO (1
11) There has been no empirical evaluation of surface activity, and there has been no progress in the use of electrically and chemically active catalysts.

本発明は、(1)レーザーアブレーション堆積法によりMgO焼結体又は単結晶をターゲ
ットとして用いてMgO薄膜を基板上に堆積する方法において、基板として、単結晶Ni
O(111)薄膜層を原子スケールで表面平坦に成膜した単結晶基板を用い、該NiO(111)薄
膜層上に「Mg−O」層を1ユニットとして積層状に堆積させてエピタキシャル成長させ
ることによってMgO(111)薄膜を原子スケールで表面平坦に成膜することを特徴とする
面方位(111)のMgO薄膜の作製方法、である。
The present invention relates to (1) a method of depositing an MgO thin film on a substrate using an MgO sintered body or a single crystal as a target by a laser ablation deposition method.
Using a single crystal substrate on which an O (111) thin film layer is formed on a flat surface on an atomic scale, an “Mg—O” layer is deposited as a unit on the NiO (111) thin film layer and grown epitaxially. A method for producing a MgO thin film with a plane orientation (111), characterized in that an MgO (111) thin film is formed on an atomic scale so as to be flat on the surface.

また、本発明は、(2)基板温度を500〜900℃とし、酸素分圧を10-4〜1Paと
してMgO(111)薄膜を成膜することを特徴とする上記(1)のMgO薄膜の作製方法、
である。
The present invention also provides (2) the MgO thin film according to (1) above, wherein the MgO (111) thin film is formed at a substrate temperature of 500 to 900 ° C. and an oxygen partial pressure of 10 −4 to 1 Pa. Production method,
It is.

また、本発明は、(3)「Mg−O」の層数が1〜500であることを特徴とする上記(
1)のMgO薄膜の作製方法、である。
In the present invention, (3) the number of layers of “Mg—O” is 1 to 500,
1) A method for producing an MgO thin film.

また、本発明は、(4)「Mg−O」の層数が1〜10であり、「Mg−O」層の堆積時
にRHEED強度振動をモニタリングすることによって、所望の層数で堆積を停止するこ
とを特徴とする上記(1)のMgO薄膜の作製方法、である。
In the present invention, (4) the number of layers of “Mg—O” is 1 to 10, and the RHEED intensity oscillation is monitored during the deposition of the “Mg—O” layer, thereby stopping the deposition at the desired number of layers. (1) The method for producing an MgO thin film according to (1) above.

また、本発明は、(5)MgO(111)薄膜の二乗平均粗さRRMSが0.25nmを超えない
ことを特徴とする上記(1)のMgO薄膜の作製方法、である。
The present invention is also (5) the method for producing an MgO thin film according to the above (1), wherein the root mean square roughness R RMS of the MgO (111) thin film does not exceed 0.25 nm.

本発明者らは、単結晶基板に成膜した原子スケールで表面平坦な単結晶NiO(111)薄膜
上にレーザーアブレーション堆積法によりMgO焼結体又は単結晶をターゲットとして用
いてMgO薄膜を作製することで、初めて原子スケールで「Mg−O」を積層状(レイヤ
ーバイレイヤー)に堆積することが可能となり、MgO(111)薄膜を原子スケールで表面
平坦に作製できることを見出した。なお、「Mg−O」とは、MgO(111) 薄膜において、
電気的中性を保った最も薄い膜であり、Mgだけが存在する平面と、それに隣接するOだ
けが存在する平面の2平面から構成される層のことをいう。
The present inventors produce an MgO thin film using a MgO sintered body or a single crystal as a target by a laser ablation deposition method on a single crystal NiO (111) thin film having a flat surface on an atomic scale formed on a single crystal substrate. Thus, for the first time, it became possible to deposit “Mg—O” in a layered (layer-by-layer) manner on an atomic scale, and it was found that an MgO (111) thin film can be produced on a flat surface on an atomic scale. “Mg—O” means an MgO (111) thin film,
It is the thinnest film that maintains electrical neutrality, and refers to a layer composed of two planes: a plane in which only Mg exists and a plane in which only O adjacent thereto exists.

上記の単結晶基板としては、好ましくは耐熱性単結晶基板、例えば、YSZのような安定
化ジルコニア等が用いられるが、YSZに直接MgOを室温で堆積し、後で1,300℃
で加熱してアニールするという方法は、MgOとYSZが反応するので実行できない。中
間温度でMgOを堆積させると、ある程度表面平坦な膜が形成されるが、原子スケールで
平坦な表面は得られず、RHEED強度振動も見られない。原子スケールで表面平坦でな
いNiO薄膜上にMgOを堆積すると、原子スケールで平坦なMgO表面は得られず、R
HEED強度振動も見られない。
As the single crystal substrate, a heat-resistant single crystal substrate, for example, stabilized zirconia such as YSZ or the like is preferably used. MgO is directly deposited on YSZ at room temperature, and later, 1,300 ° C.
The method of annealing by heating with is not feasible because MgO and YSZ react. When MgO is deposited at an intermediate temperature, a film with a flat surface is formed to some extent, but a flat surface on the atomic scale cannot be obtained, and no RHEED intensity vibration is observed. When MgO is deposited on a NiO thin film that is not flat on the atomic scale, an MgO surface that is flat on the atomic scale cannot be obtained.
There is no HEED intensity vibration.

なお、岩塩構造の (111) 面の電気的な不安定さという点では MgOもNiOも同様であ
るが、NiOの場合は遷移金属であるNiがさまざまな価数を取りうるため、電気的不安
定性を緩和するような電子配置を取ることが予想できる。その点で、MgO(111) 面の方
は、強いイオン結合性、非常に大きいバンドギャップと合わせて、NiOより不安定性は
高い。単結晶NiO(111)薄膜は、不安定性の高いMgO(111) 面の堆積に際してバッフ
ァ層としての機能を有するが、NiO(111) 薄膜をアニール処理により超平坦単結晶膜と
した場合に、他の基板材料では、従来実現出来なかったより不安定なMgO(111)薄膜の
レイヤーバイレイヤー成長を可能とし、原子スケールで表面平坦な膜が堆積する理由は明
確ではない。
Note that MgO and NiO are the same in terms of electrical instability of the (111) surface of the rock salt structure, but in the case of NiO, Ni, which is a transition metal, can take various valences. It can be expected to take an electron configuration that relaxes qualitative properties. In that respect, the MgO (111) surface is more unstable than NiO, combined with strong ionic bonding and a very large band gap. Single crystal NiO (111) thin film has a function as a buffer layer when depositing highly unstable MgO (111) surface, but when NiO (111) thin film is converted into an ultra-flat single crystal film by annealing treatment, This substrate material enables layer-by-layer growth of a more unstable MgO (111) thin film that could not be realized in the past, and the reason why a flat film on the atomic scale is deposited is not clear.

さらに、NiO(111) 表面では不安定性を部分的に緩和するために原子位置の面内方向の
再構成を生じるのに対し、本発明の方法で作製したMgO(111) 表面は高い不安定性にも
かかわらず面内方向の再構成を生じない。この理由は明らかではないが、再構成を生じな
い本MgO(111)表面は、他の膜の成長のためのテンプレートとして有用性は大きい。
Furthermore, the NiO (111) surface causes in-plane reconstruction of atomic positions to partially alleviate the instability, whereas the MgO (111) surface produced by the method of the present invention is highly unstable. Nevertheless, no in-plane reconstruction occurs. Although the reason for this is not clear, the present MgO (111) surface that does not cause restructuring has great utility as a template for the growth of other films.

本発明の方法で作製した原子スケールで表面平坦なMgO(111)薄膜は、他の薄膜成長の
ためのバッファ層として特に有用である。特に、本MgO(111)薄膜の結晶性は他の薄膜
に比べてきわめて高いため、この上に成長させた薄膜においても高い結晶性を期待できる
という点で有用である。
The atomic scale flat MgO (111) thin film produced by the method of the present invention is particularly useful as a buffer layer for the growth of other thin films. In particular, since the crystallinity of the present MgO (111) thin film is extremely higher than that of other thin films, it is useful in that high crystallinity can be expected even in a thin film grown thereon.

なお、本明細書中で用いている「原子スケールで表面平坦な」の意味は下記のとおりであ
る。酸化物単結晶基板の表面は、通常、その製造工程における光学研磨による研磨痕があ
り、結晶そのものにもダメージが入っている。このような基板を大気中又は真空中で10
00℃以上に加熱することによって表面拡散を起こさせると超平坦化した表面が得られる
。超平坦化した酸化物単結晶基板の表面には結晶構造を反映した構造が現れる。すなわち
、数100nm程度の幅を持つテラスとサブナノメータ(nm)程度の高さを持つステップか
らなる構造を、一般に「原子スケールで表面平坦」と呼ぶ。基板に堆積した薄膜について
も同様である。
In addition, the meaning of “surface flat on the atomic scale” used in this specification is as follows. The surface of the oxide single crystal substrate usually has polishing marks due to optical polishing in the manufacturing process, and the crystal itself is damaged. Such a substrate is placed in air or in vacuum.
When surface diffusion is caused by heating to 00 ° C. or higher, a super flat surface can be obtained. A structure reflecting the crystal structure appears on the surface of the ultra flattened oxide single crystal substrate. That is, a structure composed of a terrace having a width of about several hundreds of nanometers and a step having a height of about a sub-nanometer (nm) is generally called “atomic scale surface flatness”. The same applies to the thin film deposited on the substrate.

テラス部分は平面状に配列した原子からなり、若干存在する欠陥の存在を無視すれば、完
全に平坦化された表面である。ステップの存在により、構造全体で完全平坦化された表面
とはならない。この構造を二乗平均粗さ測定方法による粗さRRMSで表現すれば、RRMS
1.0nm以下のものである。RRMSは、原子間力顕微鏡で、例えば、1μm角の範囲を
走査することによって算出した値である。
The terrace portion is composed of atoms arranged in a plane, and is a completely flattened surface if the presence of some defects is ignored. The presence of the step does not result in a completely planarized surface throughout the structure. If this structure is expressed in terms of roughness R RMS by the mean square roughness measurement method, R RMS is 1.0 nm or less. R RMS is a value calculated by, for example, scanning a 1 μm square range with an atomic force microscope.

単結晶から MgO(111) 面を切り出し、機械的に研磨する方法では不可能であり、また
、従来のAl23(0001)、YSZ(111) 、MgAl24 (111) 、ZnO (0001)等の原子
スケールで平坦な面を持つ基板を用いても得られなかった原子スケールで表面平坦な高い
結晶性のMgO(111) 薄膜の作製に成功した。
It is impossible by a method of cutting out MgO (111) surface from a single crystal and mechanically polishing it, and conventional Al 2 O 3 (0001), YSZ (111), MgAl 2 O 4 (111), ZnO ( We have succeeded in producing a highly crystalline MgO (111) thin film having a flat surface on an atomic scale, which was not obtained using a substrate having a flat surface on an atomic scale such as (0001).

本発明のMgO(111) 薄膜の作製方法の工程を示す模式図。The schematic diagram which shows the process of the manufacturing method of the MgO (111) thin film of this invention. 実施例で得られたMgO(111) 薄膜及び参照系の原子間力顕微鏡像を示す図面代用写真。The drawing substitute photograph which shows the atomic force microscope image of the MgO (111) thin film and reference system which were obtained in the Example. 実施例におけるNiO(111)薄膜、MgO(111)薄膜のRHEED像を示す図面代用写真(A)及びMgO(111)堆積時のRHEED強度振動を示すグラフ(B)。The drawing substitute photograph (A) which shows the RHEED image of the NiO (111) thin film in an Example, and a MgO (111) thin film, and the graph (B) which shows the RHEED intensity vibration at the time of MgO (111) deposition. 原子スケールで平坦な面を持つAl23(0001)基板にPLD法で堆積したMgO(111)薄膜の表面粗さを示すグラフ。Graph showing the Al 2 O 3 (0001) MgO (111) deposited by the PLD method on the substrate surface roughness of the thin film having a planar surface on an atomic scale.

図1に、本発明の方法を実施するための工程を概念図で示す。本発明の方法においては、
表面を研磨した基板に直接、レーザーアブレーション堆積法によりMgO薄膜を堆積する
のではなく、該単結晶基板表面に原子スケールで平坦なテラスとサブナノメータ(nm)のス
テップから構成されている単結晶NiO(111)薄膜を成膜した基板を用いる。このような
単結晶NiO(111)薄膜の成膜方法は、前記特許第4,014,473号明細書・図面記
載の方法を用いることができる。
FIG. 1 is a conceptual diagram showing steps for carrying out the method of the present invention. In the method of the present invention,
Rather than depositing an MgO thin film directly on a substrate whose surface has been polished by laser ablation deposition, a single crystal NiO composed of a flat terrace and sub-nanometer (nm) steps on an atomic scale on the surface of the single crystal substrate A substrate on which a (111) thin film is formed is used. As a method for forming such a single crystal NiO (111) thin film, the method described in the above-mentioned Patent No. 4,014,473 specification and drawings can be used.

基板には、耐熱性単結晶である、酸化物単結晶基板、Si基板、SiC基板、CaF2
板などを用いる。酸化物単結晶基板には、例えば、YSZ等の安定化ジルコニア、サファ
イア、MgO、ZnOなどがある。特に、YSZは、アニールによるNiOとの反応が生
じ難く、結晶性が悪くならないので好ましい。
As the substrate, a heat-resistant single crystal, such as an oxide single crystal substrate, a Si substrate, a SiC substrate, or a CaF 2 substrate, is used. Examples of the oxide single crystal substrate include stabilized zirconia such as YSZ, sapphire, MgO, and ZnO. In particular, YSZ is preferable because the reaction with NiO due to annealing hardly occurs and the crystallinity does not deteriorate.

すなわち、まず、超平坦化した単結晶基板、好ましくはYSZ(111)基板の上にNiO単
結晶薄膜を堆積する(図1のA)。堆積方法には、パルス・レーザー蒸着法、スパッタリ
ング法、CVD法、MO−CVD法、MBE法などを用いることができる。堆積時の基板
温度は100℃以下とする。下限温度は0℃である。堆積時の基板温度はより好ましくは
10〜50℃である。基板表面の二乗平均粗さRRMSは、1.0nm以下のものを用いる
ことが好ましい。RRMSは原子間力顕微鏡で、例えば、1μm角を走査することによって
算出できる。
That is, first, a NiO single crystal thin film is deposited on an ultra flattened single crystal substrate, preferably a YSZ (111) substrate (A in FIG. 1). As the deposition method, a pulse laser deposition method, a sputtering method, a CVD method, an MO-CVD method, an MBE method, or the like can be used. The substrate temperature during deposition is 100 ° C. or lower. The lower limit temperature is 0 ° C. The substrate temperature during deposition is more preferably 10 to 50 ° C. The root mean square roughness R RMS of the substrate surface is preferably 1.0 nm or less. R RMS can be calculated, for example, by scanning a 1 μm square with an atomic force microscope.

上記のYSZ基板に堆積したNiO薄膜は三次元的に堆積された粒子が観察されるのみで
、原子スケールで平坦なテラスと分子層ステップの構造は見られないが、これを高温でア
ニールする。アニール温度は600℃〜1500℃が好ましい。
In the NiO thin film deposited on the YSZ substrate, only three-dimensionally deposited particles are observed, and a flat terrace and molecular layer step structure on the atomic scale are not observed, but this is annealed at a high temperature. The annealing temperature is preferably 600 ° C to 1500 ° C.

アニールする場合、NiO薄膜表面を、YSZ単結晶基板などで覆うことが好ましい。ま
た、NiO薄膜を堆積した基板2枚を、膜部分を内側に挟み込む形で2枚重ねてアニール
してもよい(図1のB)。アニール中の雰囲気は大気又は酸素ガスが好ましい。次に2枚
重ねた場合は、はがして1枚に戻す(図1のC)。これにより原子スケールで表面平坦な
単結晶 NiO(111) (以下、「NiO(111)/YSZ(111)」という)を形成する。
When annealing, it is preferable to cover the NiO thin film surface with a YSZ single crystal substrate or the like. Alternatively, two substrates on which NiO thin films are deposited may be stacked and annealed with the film portion sandwiched inside (B in FIG. 1). The atmosphere during annealing is preferably air or oxygen gas. Next, when two sheets are stacked, they are peeled back to one sheet (C in FIG. 1). Thereby, a single crystal NiO (111) (hereinafter referred to as “NiO (111) / YSZ (111)”) having a flat surface on an atomic scale is formed.

次に、NiO(111)/YSZ(111)上にMgOをレーザーアブレーション法で堆積する(図
1のD)。堆積時の基板温度は好ましくは500℃〜900℃とし、酸素分圧は好ましく
は10-4〜1Paとする。基板温度が500℃より低いとRHEED振動は見えなくなり
、900℃を超えるとNiO層へのMgOの顕著な固溶が予想されるので好ましくない。
酸素分圧が10-4未満では高温では金属Niの析出が起こり、1Paを超えるとRHEE
D振動は再び見えなくなり好ましくない。ターゲットは、MgO焼結体又はMgO単結晶
を用いる。ターゲットと基板との間隔は、任意であるが、装置の規模に応じて適宜選択す
る。上記の方法により、目的に応じて所望の膜厚となるように堆積する。
Next, MgO is deposited on NiO (111) / YSZ (111) by laser ablation (D in FIG. 1). The substrate temperature during deposition is preferably 500 to 900 ° C., and the oxygen partial pressure is preferably 10 −4 to 1 Pa. If the substrate temperature is lower than 500 ° C., the RHEED vibration cannot be seen, and if it exceeds 900 ° C., remarkable solid solution of MgO in the NiO layer is expected, which is not preferable.
When the oxygen partial pressure is less than 10 −4 , precipitation of metallic Ni occurs at a high temperature, and when it exceeds 1 Pa, RHEE.
D vibration is not visible again, which is not preferable. As the target, an MgO sintered body or an MgO single crystal is used. The distance between the target and the substrate is arbitrary, but is appropriately selected according to the scale of the apparatus. By the above method, the film is deposited so as to have a desired film thickness according to the purpose.

この方法により「Mg−O」層を1ユニットとする層が10層まではユニットごとに積層
状(レイヤーバイレイヤー)に成長し、単結晶の研磨では存在しない原子スケールで表面
平坦な(111)面が得られる。また、「Mg−O」の層数を10〜500に増やしても、二
乗平均粗さRRMSが0.5nm、好ましくは0.25nmを超えない平坦性と単結晶に匹
敵する結晶性が得られる。MgO(111) 薄膜をバッファ層として使用する場合、その膜厚
は1nm〜2000nm、好ましくは1nm〜200nm程度が用いられるが、本発明の
方法で得られるMgO(111)薄膜は膜厚が大きくなっても次第に粗くなることはない。
したがって、膜厚1nm〜200nmで0.5nm、好ましくは0.25nmを超えない
平坦性を実現できる。
By this method, up to 10 layers with one unit of “Mg—O” are grown in layers (layer-by-layer), and the surface is flat on an atomic scale that does not exist in single crystal polishing (111) A surface is obtained. Further, even when the number of layers of “Mg—O” is increased to 10 to 500, the flatness not exceeding the mean square roughness R RMS of 0.5 nm, preferably not exceeding 0.25 nm, and the crystallinity comparable to the single crystal can be obtained. It is done. When an MgO (111) thin film is used as a buffer layer, the film thickness is 1 nm to 2000 nm, preferably about 1 nm to 200 nm, but the MgO (111) thin film obtained by the method of the present invention has a large film thickness. However, it does not become rough gradually.
Accordingly, it is possible to realize flatness not exceeding 0.5 nm, preferably 0.25 nm when the film thickness is 1 nm to 200 nm.

また、RHEED強度振動が10周期程度まで観察できるので、10周期程度までは「M
g−O」層ユニット数(原子スケールの膜厚)をRHEED強度振動のモニタリングによ
り制御できることがわかった。RHEEDの電子ビームが照射されている部分の大きさは
ミリメートルのオーダーなので、その領域で、すなわち、極めてマクロなスケールで、膜
表面が完全平坦(ゼロ次スポット強度最大)、膜表面に中途半端に原子が占められていく
途中(強度が下がる)、再び原子が敷き詰められて完全平坦が回復(ゼロ次スポット強度
再び最大に)を繰り返していることをRHEED強度振動は現している。そこで、RHE
ED強度振動を数え、所望の層数に対応する振動回数のところで堆積を終了することで膜
の厚みをその場で正確に決められるので、磁気トンネル接合などでの障壁層をMgOで作
製する際にこの方法を適用できる。
Further, since the RHEED intensity vibration can be observed up to about 10 cycles, “M” is used up to about 10 cycles.
It was found that the number of “gO” layer units (atomic scale film thickness) can be controlled by monitoring the RHEED intensity vibration. Since the size of the portion irradiated with the electron beam of RHEED is on the order of millimeters, the film surface is completely flat (zero-order spot intensity maximum) in that region, that is, on a very macro scale, and the film surface is halfway. While the atoms are occupied (the intensity decreases), the RHEED intensity oscillation shows that the atoms are spread again and the complete flatness is restored (zero order spot intensity is maximized again). So RHE
By counting the ED intensity vibration and finishing the deposition at the number of vibrations corresponding to the desired number of layers, the thickness of the film can be accurately determined on the spot, so when making a barrier layer such as a magnetic tunnel junction with MgO This method can be applied to.

下記の工程により MgO(111) 薄膜を作製した。
1.室温でYSZ(111) 基板2枚にNiO薄膜をパルスレーザーアブレーション法で堆積
した。YSZ(111)単結晶基板(信光社(株)製、10mm角)を大気中1300℃に加熱し
て、原子状平坦面を作製した。レーザーアブレーション用超高真空容器(パスカル(株)
社製)に、このYSZ単結晶基板を設置して温度を室温に保持した。容器中に1×10-3
Paの酸素ガスを導入し、KrFエキシマーレーザー光(ラムダ・フィジクス(株)社製
レーザー発光装置)をNiO焼結体ターゲットに照射して、ターゲットから50mm離し
て対向させた基板上にNiO薄膜を堆積させた。膜厚は20nmとした。次に、NiO薄
膜を堆積した基板を真空容器から取り出した。
An MgO (111) thin film was prepared by the following process.
1. NiO thin films were deposited on two YSZ (111) substrates at room temperature by pulsed laser ablation. A YSZ (111) single crystal substrate (manufactured by Shinko Co., Ltd., 10 mm square) was heated to 1300 ° C. in the atmosphere to produce an atomic flat surface. Ultra-high vacuum container for laser ablation (Pascal)
The YSZ single crystal substrate was installed in the company, and the temperature was kept at room temperature. 1 × 10 −3 in the container
Introduce oxygen gas of Pa, irradiate the NiO sintered body target with KrF excimer laser light (Laser luminescence device manufactured by Lambda Physics Co., Ltd.), and apply the NiO thin film on the substrate facing away from the target by 50 mm. Deposited. The film thickness was 20 nm. Next, the substrate on which the NiO thin film was deposited was taken out of the vacuum container.

2.NiO 薄膜を堆積した基板2枚を、NiO 薄膜部分を内側に挟み込む形で重ねて1
300℃、大気中で1時間アニールした後、室温まで冷却した。2枚の基板をはがすと原
子スケールで平坦な単結晶 NiO(111)表面を基板に形成できたことが図2(b)に示す
原子間力顕微鏡像と鏡像中のC〜D間断面の粗さ(Height)プロファイルによって確認でき
た。RRMSは、0.13nmであった。
2. Two sheets of NiO thin film deposited on top of each other with the NiO thin film part sandwiched inside 1
After annealing at 300 ° C. in the air for 1 hour, it was cooled to room temperature. When the two substrates are peeled off, a flat single crystal NiO (111) surface on the atomic scale can be formed on the substrate. Atomic force microscope image shown in FIG. 2 (b) and rough cross section between C and D in the mirror image It was confirmed by the height profile. R RMS was 0.13 nm.

3.上記1と同じパルスレーザーアブレーション法でNiO(111)/YSZ(111)上にMg
Oを堆積した。ただし、基板温度を600℃、ターゲットをMgO単結晶とした。500
layers 以下の厚みの膜の作製を繰り返し行い試料とした。
3. Mg on NiO (111) / YSZ (111) by the same pulse laser ablation method as above 1.
O was deposited. However, the substrate temperature was 600 ° C. and the target was MgO single crystal. 500
A film having a thickness less than or equal to layers was repeatedly prepared as a sample.

NiO(111)/YSZ(111)上にMgOを堆積させると、図2(c)に示す原子間力顕微鏡
像でみて、原子スケールでのステップ-テラス構造が見え、鏡像中のE〜F間断面の粗さ(
Height)プロファイルを見るとステップ一段が「 Mg−O 」1 ユニット分で7層となっ
ていることが分かる。RRMSは、0.17nmであった。図2(d)に示すように、「 M
g−O 」ユニットの堆積層数を増やして原子間力顕微鏡で見たところ、「 Mg−O 」
10ユニット(10 layers)分、100ユニット(100 layers)分、500ユニット(500 laye
rs)分と膜が厚くなってもRRMSは0.25nmを超えておらず、極めて小さい値に抑えら
れている。
When MgO is deposited on NiO (111) / YSZ (111), the atomic force microscope image shown in FIG. 2 (c) shows a step-terrace structure on the atomic scale, and between E and F in the mirror image. Cross section roughness (
Looking at the (Height) profile, it can be seen that one step consists of 7 units of “Mg—O” units. R RMS was 0.17 nm. As shown in FIG.
When the number of deposited layers of the “gO” unit was increased and viewed with an atomic force microscope, “Mg—O”
10 units (10 layers), 100 units (100 layers), 500 units (500 laye
R RMS does not exceed 0.25 nm even when the film becomes thicker than rs), and is suppressed to an extremely small value.

図3の(A)に示すように、この MgO(111) 薄膜の RHEED 像には鋭い Kiku
chi線が現われ、著しい表面平坦性と高い結晶性を反映している。図3の(B)は、Mg
O(111) 堆積時の RHEED 強度振動を示すグラフであり、横軸に堆積時間(秒)、縦
軸にゼロ次スポットの強度(a.u.)を示す。挿入図中の「1ML:32s」は「Mg−O」1ユ
ニット層に相当する周期が32秒であることを示す。図3の(A)に示すように、NiO
(111)薄膜のRHEED像は鋭いKikuchi線が現れており、著しい表面平坦性と
高い結晶性を反映している。さらに、図3の(B)に示すように、MgO(111) 薄膜の堆積
時の RHEEDのゼロ次スポットの強度には強度振動が観察され、「 Mg−O 」 ユニ
ットごとに層状成長していることが分かった。
As shown in FIG. 3A, the RHEED image of this MgO (111) thin film has a sharp Kiku.
Chi lines appear, reflecting significant surface flatness and high crystallinity. (B) in FIG. 3 shows Mg
It is a graph which shows the RHEED intensity vibration at the time of O (111) deposition, a horizontal axis | shaft shows deposition time (second), and a vertical axis | shaft shows the intensity | strength (au) of zero order spot. “1ML: 32s” in the inset shows that the period corresponding to one unit layer of “Mg—O” is 32 seconds. As shown in FIG. 3A, NiO
The RHEED image of the (111) thin film shows sharp Kikuchi lines, reflecting a remarkable surface flatness and high crystallinity. Further, as shown in FIG. 3 (B), an intensity vibration is observed in the intensity of the zero-order spot of RHEED during the deposition of the MgO (111) thin film, and the layer growth is performed for each “Mg—O” unit. I understood that.

MgO(111) 面は、結晶系が3方晶系、6方晶系薄膜の堆積用の基板として利用可能であ
り、本発明の方法で得られたMgO(111) 面は特に他の薄膜の堆積用のバッファ層として
、TFT(薄膜トランジスタ)、LD(レーザーダイオード)、LED(発光ダイオード
)、MTJ(磁気トンネル接合)等のエレクトロニクスデバイス分野で利用される。また
、MgO(111) 面は、分子吸着、触媒反応に対して活性を持つことが知られているため、
メタノールの低温での分解などの触媒材料としても期待できる。
The MgO (111) surface can be used as a substrate for deposition of trigonal and hexagonal thin films with a crystal system, and the MgO (111) surface obtained by the method of the present invention is particularly suitable for other thin films. As a buffer layer for deposition, it is used in the field of electronic devices such as TFT (thin film transistor), LD (laser diode), LED (light emitting diode), MTJ (magnetic tunnel junction). The MgO (111) surface is known to have activity for molecular adsorption and catalytic reaction.
It can also be expected as a catalyst material for methanol decomposition at low temperatures.

Claims (5)

レーザーアブレーション堆積法によりMgO焼結体又は単結晶をターゲットとして用いて
MgO薄膜を基板上に堆積する方法において、基板として、単結晶NiO(111)薄膜層を
原子スケールで表面平坦に成膜した単結晶基板を用い、該NiO(111)薄膜層上に「Mg
−O」層を1ユニットとして積層状に堆積させてエピタキシャル成長させることによって
MgO(111)薄膜を原子スケールで表面平坦に成膜することを特徴とする面方位(111)のM
gO薄膜の作製方法。
In a method of depositing an MgO thin film on a substrate using an MgO sintered body or a single crystal as a target by a laser ablation deposition method, a single crystal NiO (111) thin film layer is formed as a substrate on a flat surface on an atomic scale. Using a crystal substrate, “Mg” is formed on the NiO (111) thin film layer.
-O "layer is deposited as a unit in a stack and epitaxially grown to form a MgO (111) thin film on an atomic scale with a flat surface. (111) M
A method for producing a gO thin film.
基板温度を500〜900℃とし、酸素分圧を10-4〜1PaとしてMgO(111)薄膜を
成膜することを特徴とする請求項1記載のMgO薄膜の作製方法。
The method for producing an MgO thin film according to claim 1, wherein the MgO (111) thin film is formed at a substrate temperature of 500 to 900 ° C and an oxygen partial pressure of 10 -4 to 1 Pa.
「Mg−O」の層数が1〜500であることを特徴とする請求項1記載のMgO薄膜の作
製方法。
The method for producing an MgO thin film according to claim 1, wherein the number of layers of “Mg—O” is 1 to 500.
「Mg−O」の層数が1〜10であり、「Mg−O」層の堆積時にRHEED強度振動を
モニタリングすることによって、所望の層数で堆積を停止することを特徴とする請求項1
記載のMgO薄膜の作製方法。
The number of layers of “Mg—O” is 1 to 10, and the deposition is stopped at a desired number of layers by monitoring the RHEED intensity oscillation during the deposition of the “Mg—O” layer.
A method for producing the described MgO thin film.
MgO(111)薄膜の二乗平均粗さRRMSが0.25nmを超えないことを特徴とする請求項
1記載のMgO薄膜の作製方法。
2. The method for producing an MgO thin film according to claim 1, wherein the root mean square roughness RMS of the MgO (111) thin film does not exceed 0.25 nm.
JP2010157342A 2010-07-09 2010-07-09 Method for producing MgO thin film with plane orientation (111) Expired - Fee Related JP5493107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157342A JP5493107B2 (en) 2010-07-09 2010-07-09 Method for producing MgO thin film with plane orientation (111)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157342A JP5493107B2 (en) 2010-07-09 2010-07-09 Method for producing MgO thin film with plane orientation (111)

Publications (2)

Publication Number Publication Date
JP2012017236A true JP2012017236A (en) 2012-01-26
JP5493107B2 JP5493107B2 (en) 2014-05-14

Family

ID=45602763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157342A Expired - Fee Related JP5493107B2 (en) 2010-07-09 2010-07-09 Method for producing MgO thin film with plane orientation (111)

Country Status (1)

Country Link
JP (1) JP5493107B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246900B1 (en) * 2012-06-21 2013-07-24 独立行政法人科学技術振興機構 Method for making magnesium oxide thin film
US9741927B2 (en) 2014-04-10 2017-08-22 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having a gradient in magnetic ordering temperature
US9799382B2 (en) 2014-09-21 2017-10-24 Samsung Electronics Co., Ltd. Method for providing a magnetic junction on a substrate and usable in a magnetic device
CN109371376A (en) * 2018-12-04 2019-02-22 北京科技大学 A kind of controllable method for preparing of the NiO film of single crystal orientation
TWI687559B (en) * 2017-10-06 2020-03-11 日商信越聚合物股份有限公司 Substrate manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246900B1 (en) * 2012-06-21 2013-07-24 独立行政法人科学技術振興機構 Method for making magnesium oxide thin film
US9741927B2 (en) 2014-04-10 2017-08-22 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having a gradient in magnetic ordering temperature
US9799382B2 (en) 2014-09-21 2017-10-24 Samsung Electronics Co., Ltd. Method for providing a magnetic junction on a substrate and usable in a magnetic device
TWI687559B (en) * 2017-10-06 2020-03-11 日商信越聚合物股份有限公司 Substrate manufacturing method
CN109371376A (en) * 2018-12-04 2019-02-22 北京科技大学 A kind of controllable method for preparing of the NiO film of single crystal orientation
CN109371376B (en) * 2018-12-04 2021-04-20 北京科技大学 Controllable preparation method of NiO film with single crystal orientation

Also Published As

Publication number Publication date
JP5493107B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
Wang et al. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD
KR101701237B1 (en) Lare-size Single-crystal Monolayer Graphene and Manufacturing Method Thereof
TWI312535B (en)
JP5274785B2 (en) Method for forming AlGaN crystal layer
JP5493107B2 (en) Method for producing MgO thin film with plane orientation (111)
JP5079361B2 (en) Method for forming AlGaN crystal layer
KR102067442B1 (en) Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular mtj element, and perpendicular magnetic recording medium using same
CN107078034B (en) Semiconductor substrate and method for inspecting semiconductor substrate
EP2484816A1 (en) Method for production of laminate
CN111244263A (en) Piezoelectric thin film element
Kim et al. Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils
US20230307232A1 (en) Crystallographically-oriented Metallic Films with Two-dimensional Crystal Layers
Morresi Molecular beam epitaxy (MBE)
JP2003137692A (en) Natural superlattice homologous single crystal thin film and method of manufacturing the same
Ryu et al. Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth
Wang et al. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures
Moon et al. An ultra-thin compliant sapphire membrane for the growth of less strained, less defective GaN
Wang et al. Anisotropic strained cubic MgZnO/MgO multiple-quantum-well nanorods: Growths and optical properties
Mansouri et al. Swift heavy ions effects in III–V nitrides
US20210265554A1 (en) Monocrystalline thin film, method for manufacturing same, and product using same
Meng et al. Preparation and electrical properties of ZnO/PZT films by radio frequency reactive magnetron sputtering
Arkun et al. Scalable GaN-on-Silicon Using Rare Earth Oxide Buffer Layers
JP6773635B2 (en) Crystal growth method and crystal laminated structure
Khodaei et al. (111)-Oriented Pb (Zr 0.52 Ti 0.48) O 3 thin film on Pt (111)/Si substrate using CoFe 2 O 4 nano-seed layer by pulsed laser deposition
JP2004091253A (en) SUPER-FLAT P-TYPE OXIDE SEMICONDUCTOR NiO SINGLE CRYSTAL THIN FILM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5493107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees