JP2012015090A - Apparatus and method for producing fuel cell catalyst layer - Google Patents

Apparatus and method for producing fuel cell catalyst layer Download PDF

Info

Publication number
JP2012015090A
JP2012015090A JP2010293141A JP2010293141A JP2012015090A JP 2012015090 A JP2012015090 A JP 2012015090A JP 2010293141 A JP2010293141 A JP 2010293141A JP 2010293141 A JP2010293141 A JP 2010293141A JP 2012015090 A JP2012015090 A JP 2012015090A
Authority
JP
Japan
Prior art keywords
catalyst
paste
fuel cell
catalyst layer
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010293141A
Other languages
Japanese (ja)
Inventor
Taizo Yamamoto
泰三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2010293141A priority Critical patent/JP2012015090A/en
Priority to PCT/JP2011/057895 priority patent/WO2011152111A1/en
Publication of JP2012015090A publication Critical patent/JP2012015090A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8835Screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell capable of stably providing higher output under a slightly humidified environment or an non-humidified environment.SOLUTION: An apparatus for producing a fuel cell catalyst layer according to the present invention includes: a catalyst modification means 10; an ultrasonic homogenizer 20; a rotation/revolution-type centrifugal mixer 30; and a screen printer 40. The catalyst modification means 10 modifies platinum as catalyst metal microparticles with a nitric acid group, which is a modifying group having hydrophilicity, to produce a treated catalyst. The rotation/revolution-type centrifugal mixer 30 mixes a pre-paste together with a solution of a polymer electrolyte 2 to prepare a catalyst paste.

Description

本発明は燃料電池用触媒層の製造装置及び燃料電池用触媒層の製造方法に関する。   The present invention relates to a fuel cell catalyst layer manufacturing apparatus and a fuel cell catalyst layer manufacturing method.

燃料電池のセルは、電解質層と、電解質層の一面に接合されて空気が供給されるカソード極と、電解質層の他面に接合されて燃料が供給されるアノード極とからなる。カソード極やアノード極は触媒層を有している。触媒層は、カーボンブラック等の導電性のある担体に白金等の触媒金属微粒子が担持されてなる無数の触媒と、高分子電解質とを含有している。   A cell of a fuel cell includes an electrolyte layer, a cathode electrode joined to one surface of the electrolyte layer and supplied with air, and an anode electrode joined to the other surface of the electrolyte layer and supplied with fuel. The cathode electrode and the anode electrode have a catalyst layer. The catalyst layer contains innumerable catalysts in which catalytic metal fine particles such as platinum are supported on a conductive carrier such as carbon black, and a polymer electrolyte.

従来の触媒層の製造方法としては、例えば特許文献1に本発明の発明者等による製造方法の発明が開示されている。この製造方法では、まず粉砕後の無数の触媒を水とともに混合してプレペーストとする。この間、水を多く用いた遠心攪拌法を採用することにより、各触媒間に存在し得る気泡が好適に除去される。次いで、プレペーストを高分子電解質の溶液とともに混合して触媒ペーストとする。そして、触媒ペーストにより触媒層を得る。例えば、カーボンクロス等のガス透過性を有する基材に触媒ペーストを印刷し、基材とともに触媒ペーストを乾燥する。これにより、基材上に触媒層が形成されたカソード極やアノード極となる電極が得られる。   As a conventional method for producing a catalyst layer, for example, Patent Document 1 discloses an invention of a production method by the inventors of the present invention. In this production method, first, a countless catalyst after pulverization is mixed with water to obtain a pre-paste. During this time, by adopting a centrifugal stirring method using a large amount of water, bubbles that may exist between the respective catalysts are suitably removed. Next, the pre-paste is mixed with the polymer electrolyte solution to form a catalyst paste. And a catalyst layer is obtained with a catalyst paste. For example, the catalyst paste is printed on a substrate having gas permeability such as carbon cloth, and the catalyst paste is dried together with the substrate. Thereby, the electrode used as the cathode electrode or anode electrode in which the catalyst layer was formed on the base material is obtained.

こうして得られる触媒層では、高分子電解質の親水性官能基が各触媒側に配向し、各触媒と高分子電解質との間に互いに連続する親水層が形成されている。この触媒層はPFF(Proton Film Flow)構造を有していると称される。このPFF構造の触媒層をもつ電極をカソード極及びアノード極とし、電解質層の両面にこれらを設ければ、膜電極接合体(MEA:Membrane Electrode Assembly)が得られる。発明者の試験結果によれば、この膜電極接合体をセルとした燃料電池では、プロトンが好適に移動し、軽加湿又は無加湿でありながら高出力が得られる。   In the catalyst layer thus obtained, the hydrophilic functional groups of the polymer electrolyte are oriented on the catalyst side, and a continuous hydrophilic layer is formed between each catalyst and the polymer electrolyte. This catalyst layer is referred to as having a PFF (Proton Film Flow) structure. When the electrode having the catalyst layer having the PFF structure is used as a cathode electrode and an anode electrode and these are provided on both surfaces of the electrolyte layer, a membrane electrode assembly (MEA) is obtained. According to the test results of the inventor, in the fuel cell using this membrane electrode assembly as a cell, protons move favorably, and high output is obtained while being lightly humidified or non-humidified.

特開2006−140062号公報JP 2006-140062 JP

ところで、軽加湿又は無加湿の下で、より高い出力を安定的に発揮可能な燃料電池が求められている。これに対しては、触媒層の担体を親水化することが有効であることが本発明の発明者による研究によって明らかとなった。   By the way, there is a demand for a fuel cell that can stably exhibit higher output under light humidification or no humidification. For this, it has become clear from the research by the inventors of the present invention that it is effective to hydrophilize the support of the catalyst layer.

担体を親水化する方法としては、「Carbon」(Kim Kinoshita; John Wiley & Sons 1988)の199頁や特開平7−134995号公報には、担体や触媒を硝酸水溶液等の酸の水溶液で煮沸して処理済み触媒を得ることが開示されている。この処理済み触媒は、表面に水酸基を有するものとなり、親水性が向上すると考えられる。このため、この処理済み触媒により触媒層を製造すれば、得られた触媒層は、プロトンが移動し易く、高出力が得られると考えられる。   As a method for hydrophilizing the carrier, “Carbon” (Kim Kinoshita; John Wiley & Sons 1988), page 199 and JP-A-7-134995, the carrier and catalyst are boiled with an aqueous acid solution such as an aqueous nitric acid solution. To obtain a treated catalyst. This treated catalyst has a hydroxyl group on the surface and is considered to improve hydrophilicity. For this reason, if a catalyst layer is manufactured with this treated catalyst, protons are likely to move in the obtained catalyst layer, and high output can be obtained.

しかしながら、本発明の発明者の試験によれば、担体や触媒を酸の水溶液で煮沸すれば、触媒や担体が酸化され、劣化を生じてしまう。このため、この処理済み触媒では高い活性を安定的に望めない。   However, according to the test by the inventors of the present invention, if the carrier or catalyst is boiled with an aqueous acid solution, the catalyst or carrier is oxidized and deteriorated. For this reason, high activity cannot be stably expected with this treated catalyst.

そこで、本発明は、上記従来の実情に鑑みてなされたものであって、軽加湿又は無加湿の下でより高い出力を安定的に発揮可能な燃料電池を提供することを解決すべき課題としている。   Therefore, the present invention has been made in view of the above-described conventional situation, and it is an issue to be solved to provide a fuel cell that can stably exhibit higher output under light humidification or non-humidification. Yes.

本発明の燃料電池用触媒層の製造装置は、触媒ペーストから触媒層を形成する燃料電池用触媒層の製造装置において、
親水性を有する修飾基で触媒金属微粒子を修飾して処理済み触媒を作製する触媒修飾手段と、
該処理済み触媒を水とともに混合してプレペーストを調製するプレペースト調製手段と、
該プレペーストを高分子電解質の溶液とともに混合して触媒ペーストを調製する触媒ペースト調製手段とを備えていることを特徴とする(請求項1)。
The fuel cell catalyst layer production apparatus of the present invention is a fuel cell catalyst layer production apparatus for forming a catalyst layer from a catalyst paste.
A catalyst modifying means for producing a treated catalyst by modifying catalytic metal fine particles with a modifying group having hydrophilicity;
Pre-paste preparation means for preparing the pre-paste by mixing the treated catalyst with water;
And a catalyst paste preparation means for preparing a catalyst paste by mixing the pre-paste together with a polymer electrolyte solution (claim 1).

本発明の製造装置では、まず触媒修飾手段が、触媒金属微粒子と同一若しくは同種の金属錯体であって、修飾基を含むものを触媒金属微粒子へ結合させる。この際、錯体の利用により、触媒の構造に何らストレスを与えることなく、触媒金属微粒子を親水性の修飾基で修飾した処理済み触媒を得ることができる。   In the production apparatus of the present invention, first, the catalyst modifying means binds a metal complex that is the same or the same kind as the catalyst metal fine particles and includes a modifying group to the catalyst metal fine particles. At this time, by using the complex, it is possible to obtain a treated catalyst obtained by modifying the catalytic metal fine particles with a hydrophilic modifying group without giving any stress to the structure of the catalyst.

この処理済み触媒は、担体や触媒を酸の水溶液で煮沸したものではないので、触媒や担体は酸化されておらず、劣化を生じていない。発明者の試験によれば、処理済み触媒は、触媒の重量当りで2400〜7800μg/g、担体の重量当りで5200〜14000μg/gの修飾基を含み得る。   Since this treated catalyst is not a product obtained by boiling the support or catalyst with an aqueous acid solution, the catalyst or support is not oxidized and does not deteriorate. According to the inventors' tests, the treated catalyst may contain 2400-7800 μg / g of modifying groups per weight of catalyst and 5200-14000 μg / g of weight per weight of support.

錯体溶液としては、塩化白金(IV)酸水和物水溶液(H2PtCl6・nH2O/H2O sol.)、塩化白金(IV)酸塩酸溶液(H2PtCl6/HCl sol.)、塩化白金(IV)酸アンモニウム水溶液((NH42PtCl6/H2O sol.)、ジニトロジアミン白金(II)水溶液(cis−[Pt(NH32(NO22]/H2O sol.)、ジニトロジアミン白金(II)硝酸溶液(cis−[Pt(NH32(NO22]/HNO3 sol.)、ジニトロジアミン白金(II)硫酸溶液(cis−[Pt(NH32(NO22]/H2SO4 sol.)、テトラクルル白金(II)酸カリウム水溶液(K2PtCl4)/H2O sol.)、塩化第1白金(II)水溶液(PtCl2/H2O sol.)、塩化第2白金(IV)水溶液(PtCl4/H2O sol.)、テトラアミン白金(II)ジクロライド水和物水溶液([Pt(NH34]Cl2・H2O/H2O sol.)、テトラアミン白金(II)水酸化物水溶液([Pt(NH34](OH)2/H2O sol.)、ヘキサアミン白金(IV)ジクロライド水溶液([Pt(NH36]Cl2/H2O sol.)、ヘキサアミン白金(IV)水酸化物水溶液([Pt(NH36](OH)2/H2O sol.)、ヘキサヒドロキソ白金(IV)酸水溶液(H2[Pt(OH)6]/H2O sol.)、ヘキサヒドロキソ白金(IV)酸硝酸溶液(H2[Pt(OH)6]/HNO3 sol.)、ヘキサヒドロキソ白金(IV)酸硫酸溶液(H2[Pt(OH)6]/H2SO4 sol.)、エタノールアミン白金溶液(H2[Pt(OH)6]/H2NCH2CH2OH sol.)等を採用することができると考える。これらのうち、塩素を含む錯体溶液は塩素が白金を劣化させると考えられるため、あまり好ましくない。なお、ここでは錯体中の金属種が白金であるもののみを挙げているが、必ずしもこれらの限定されるものではない。 As the complex solution, platinum chloride (IV) acid hydrate aqueous solution (H 2 PtCl 6 .nH 2 O / H 2 O sol.), Platinum chloride (IV) hydrochloride acid solution (H 2 PtCl 6 / HCl sol.) , Platinum chloride (IV) ammonium aqueous solution ((NH 4 ) 2 PtCl 6 / H 2 O sol.), Dinitrodiamine platinum (II) aqueous solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / H 2 O sol.), Dinitrodiamine platinum (II) nitric acid solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 sol.), Dinitrodiamine platinum (II) sulfuric acid solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / H 2 SO 4 sol.), Potassium tetracurl platinum (II) acid aqueous solution (K 2 PtCl 4 ) / H 2 O sol. ), Platinum (II) chloride aqueous solution (PtCl 2 / H 2 O sol.), Platinum (IV) chloride aqueous solution (PtCl 4 / H 2 O sol.), Tetraamine platinum (II) dichloride hydrate aqueous solution ([Pt (NH 3 ) 4 ] Cl 2 .H 2 O / H 2 O sol.), Tetraamine platinum (II) hydroxide aqueous solution ([Pt (NH 3 ) 4 ] (OH) 2 / H 2 O sol. .), Hexaamine platinum (IV) dichloride aqueous solution ([Pt (NH 3 ) 6 ] Cl 2 / H 2 O sol.), Hexaamine platinum (IV) hydroxide aqueous solution ([Pt (NH 3 ) 6 ] (OH) 2 / H 2 O sol.), Hexahydroxoplatinum (IV) acid aqueous solution (H 2 [Pt (OH) 6 ] / H 2 O sol.), Hexahydroxoplatinum (IV) acid nitric acid solution (H 2 [Pt ( OH) 6] / HNO 3 sol .), hexahydroxoplatinum IV) acid sulfuric acid solution (H 2 [Pt (OH) 6] / H 2 SO 4 sol.), Ethanolamine platinum solution (H 2 [Pt (OH) 6] / H 2 NCH 2 CH 2 OH sol.) , Etc. Can be adopted. Among these, a complex solution containing chlorine is not so preferable because chlorine is considered to deteriorate platinum. Here, only the metal species in the complex is platinum, but it is not necessarily limited thereto.

発明者の知見によれば、錯体溶液としては、NO3 -を配位子とするジニトロジアミン白金(II)硝酸溶液(cis−[Pt(NH32(NO22]/HNO3 sol.)、ヘキサヒドロキソ白金(IV)酸硝酸溶液((H2Pt(OH)6)/HNO3 sol.)、SO4 2-を配位子とするヘキサヒドロキソ白金(IV)酸硫酸溶液((H2Pt(OH)6)/H2SO4 sol.)、NH4 +を配位子とするテトラアミン白金(II)水酸化物水溶液([Pt(NH34(OH)2]/H2O sln.)等を採用することができる。 According to the inventor's knowledge, as the complex solution, dinitrodiamineplatinum (II) nitric acid solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 sol having NO 3 as a ligand) is used. .), hexahydroxoplatinum (IV) acid nitric acid solution ((H 2 Pt (OH) 6) / HNO 3 sol.), hexahydroxoplatinate SO 4 2-a a ligand source of platinum (IV) acid sulfate solution (( H 2 Pt (OH) 6) / H 2 SO 4 sol.), NH 4 + a tetraamine platinum (II) hydroxide aqueous solution having a ligand ([Pt (NH 3) 4 (OH) 2] / H 2 O sln.) Or the like can be employed.

次いで、プレペースト調製手段が処理済み触媒を水とともに混合してプレペーストとする。この時、処理済み触媒に親水性の修飾基が吸着していることから、各処理済み触媒の表面はより確実に水で覆われた状態になっている。また、水を多く用いた遠心攪拌法を採用することにより、各触媒間に存在し得る気泡が好適に除去される。   Next, the pre-paste preparation means mixes the treated catalyst with water to form a pre-paste. At this time, since the hydrophilic modifying group is adsorbed on the treated catalyst, the surface of each treated catalyst is more reliably covered with water. Further, by adopting a centrifugal stirring method using a large amount of water, bubbles that may exist between the respective catalysts are suitably removed.

そして、触媒ペースト調製手段がプレペーストを高分子電解質の溶液とともに混合して触媒ペーストとする。この時、各処理済み触媒は水に対する濡れ性を有していることから、高分子電解質は各処理済み触媒側に高分子電解質が有する側鎖の親水性官能基を配向させる。そして、互いに接触する各処理済み触媒と高分子電解質との間に水によって互いに連続する親水層が形成された触媒ペーストが得られる。   Then, the catalyst paste preparation means mixes the pre-paste together with the polymer electrolyte solution to obtain a catalyst paste. At this time, since each treated catalyst has wettability to water, the polymer electrolyte orients the hydrophilic functional group of the side chain of the polymer electrolyte on the treated catalyst side. Thus, a catalyst paste is obtained in which hydrophilic layers that are continuous with each other are formed with water between the treated catalyst and the polymer electrolyte that are in contact with each other.

この後、触媒ペーストにより触媒層を得る。このため、この触媒ペーストを用いて触媒層を製造すれば、その触媒層はより確実にPFF構造を有するものとなる。   Thereafter, a catalyst layer is obtained with a catalyst paste. For this reason, if a catalyst layer is manufactured using this catalyst paste, the catalyst layer has a PFF structure more reliably.

このため、この触媒層を有する燃料電池では、親水層が触媒層中に連続的に形成されているので、これを伝ってプロトンが移動しやすい。また、高分子電解質がその親水層側に高分子電解質が有する側鎖の親水性官能基を配向させているため、プロトンの移動に親水層が有効に活用される。このため、プロトンの移動に必要な量の水が水路内に保水されて水路内を良好に移動する。   For this reason, in the fuel cell having this catalyst layer, since the hydrophilic layer is continuously formed in the catalyst layer, protons easily move along this. Further, since the polymer electrolyte has the hydrophilic functional group of the side chain of the polymer electrolyte oriented on the hydrophilic layer side, the hydrophilic layer is effectively used for proton transfer. For this reason, the amount of water necessary for the movement of protons is retained in the water channel and moves well in the water channel.

したがって、本発明の製造装置によれば、軽加湿又は無加湿の下でより高い出力を安定的に発揮可能な燃料電池が得られる。   Therefore, according to the manufacturing apparatus of the present invention, a fuel cell capable of stably exhibiting higher output under light humidification or no humidification can be obtained.

プレペースト作製手段及び触媒ペースト調製手段としては、例えば、ボールミル、スターラ、ビーズミル及びロールミルの他、チャンバーを有する自転/公転式遠心攪拌機等を採用することができる。プレペースト作製手段と触媒ペースト調製手段とで同じものを採用することができる。   As the pre-paste preparation means and the catalyst paste preparation means, for example, a ball mill, a stirrer, a bead mill and a roll mill, a rotation / revolution centrifugal stirrer having a chamber, and the like can be employed. The same thing can be employ | adopted by a pre paste preparation means and a catalyst paste preparation means.

プレペースト作製手段は湿式ジェットミルであり得る(請求項2)。この場合には、より好適なプレペーストを得ることができると考えられる。   The pre-paste preparation means may be a wet jet mill. In this case, it is considered that a more suitable pre-paste can be obtained.

また、触媒ペースト調製手段は湿式ジェットミルであり得る(請求項3)。この場合には、より好適な触媒ペーストを得ることができると考えられる。   The catalyst paste preparation means may be a wet jet mill. In this case, it is considered that a more suitable catalyst paste can be obtained.

本発明の燃料電池用触媒層の製造方法は、触媒ペーストから触媒層を形成する燃料電池用触媒層の製造装置において、
親水性を有する修飾基で触媒金属微粒子を修飾して処理済み触媒を作製する触媒修飾工程と、
該処理済み触媒を水とともに混合してプレペーストを調製するプレペースト調製工程と、
該プレペーストを前記高分子電解質の溶液とともに混合して触媒ペーストを調製する触媒ペースト調製工程とを備えていることを特徴とする(請求項4)。
The method for producing a fuel cell catalyst layer according to the present invention includes a fuel cell catalyst layer production apparatus for forming a catalyst layer from a catalyst paste.
A catalyst modification step for producing a treated catalyst by modifying catalytic metal fine particles with a modifying group having hydrophilicity;
A pre-paste preparation step of preparing the pre-paste by mixing the treated catalyst with water;
And a catalyst paste preparation step of preparing a catalyst paste by mixing the pre-paste together with the polymer electrolyte solution (claim 4).

本発明の製造方法によれば、上記の特徴を有する燃料電池用触媒層を得ることが可能となる。   According to the production method of the present invention, it is possible to obtain a fuel cell catalyst layer having the above characteristics.

したがって、本発明の製造方法によれば、軽加湿又は無加湿の下でより高い出力を安定的に発揮可能な燃料電池が得られる。   Therefore, according to the manufacturing method of the present invention, it is possible to obtain a fuel cell that can stably exhibit higher output under light humidification or non-humidification.

修飾基は、硝酸基、アミノ基、スルホン酸基、水酸基及びハロゲン基から選ばれる少なくとも1種であることが好ましい(請求項5)。発明者は修飾基が硝酸基である場合に本発明の効果を確認している。   The modifying group is preferably at least one selected from nitric acid group, amino group, sulfonic acid group, hydroxyl group and halogen group. The inventor has confirmed the effect of the present invention when the modifying group is a nitrate group.

本発明の製造方法では、プレペースト調製工程において、水中の処理済み触媒に対して粉砕処理を行うことが好ましい(請求項6)。そして、この粉砕処理は超音波ホモジナイザで行われることが好ましい(請求項7)。超音波ホモジナイザによって粉砕処理を行えば、触媒の粒子の次数若しくは大きさが低減し、0.1μm以上の大きな細孔を減らすことができる。このため、触媒層中に無駄な空間(細孔)ができず、触媒層の抵抗値が小さくなり、燃料電池が高出力を発揮する。   In the production method of the present invention, it is preferable to pulverize the treated catalyst in water in the pre-paste preparation step. And it is preferable that this grinding | pulverization process is performed with an ultrasonic homogenizer (Claim 7). If the pulverization process is performed with an ultrasonic homogenizer, the order or size of the catalyst particles can be reduced, and large pores of 0.1 μm or more can be reduced. For this reason, useless spaces (pores) cannot be formed in the catalyst layer, the resistance value of the catalyst layer is reduced, and the fuel cell exhibits high output.

実施例の燃料電池用触媒層の製造装置を示すブロック図である。It is a block diagram which shows the manufacturing apparatus of the catalyst layer for fuel cells of an Example. 実施例の燃料電池用触媒層の製造装置に係り、製造工程を示す流れ図である。It is a flowchart which shows the manufacturing process regarding the manufacturing apparatus of the catalyst layer for fuel cells of an Example. 試験1に係り、試料1及び比較例1、2の燃料電池におけるセル温度と、電圧と、抵抗との関係を示すグラフである。4 is a graph showing a relationship among cell temperature, voltage, and resistance in the fuel cells of Sample 1 and Comparative Examples 1 and 2 in connection with Test 1. 試料1における燃料電池用触媒層の一部を示す模式断面図である。3 is a schematic cross-sectional view showing a part of a fuel cell catalyst layer in Sample 1. FIG. 試験2に係り、試料2及び比較例1、2の燃料電池におけるセル温度と、電圧と、抵抗との関係を示すグラフである。4 is a graph showing a relationship among cell temperature, voltage, and resistance in the fuel cell of Sample 2 and Comparative Examples 1 and 2 in connection with Test 2. 試験3に係り、試料3及び比較例1、2の燃料電池におけるセル温度と、電圧と、抵抗との関係を示すグラフである。6 is a graph showing a relationship among cell temperature, voltage, and resistance in the fuel cell of Sample 3 and Comparative Examples 1 and 2 in connection with Test 3. 試験4に係り、試料2、試料3−1、試料3−2及び試料4における処理済み触媒におけるXPS分析結果をN1sの重ね合わせの下で示すグラフである。It is a graph which shows the XPS analysis result in the processed catalyst in the test 2, the sample 3-1, the sample 3-2, and the sample 4 under N1s superposition. 試験4に係り、試料2、試料3−1、試料3−2及び試料4における処理済み触媒におけるXPS分析結果をS2pの重ね合わせの下で示すグラフである。It is a graph which shows the XPS analysis result in the processed catalyst in Sample 2, Sample 3-1, Sample 3-2 and Sample 4 under the superposition of S2p in connection with Test 4. 試験5に係り、試料4の電極の断面を示す5000倍の顕微鏡写真である。4 is a photomicrograph of a magnification of 5000 times showing a cross section of an electrode of Sample 4 according to Test 5. 試験5に係り、比較例3の電極の断面を示す5000倍の顕微鏡写真である。4 is a photomicrograph at 5000 times showing a cross section of an electrode of Comparative Example 3 according to Test 5. 試験5に係り、試料4と触媒層と比較例3の触媒層との細孔分布を示すグラフである。6 is a graph showing pore distributions of Sample 4, a catalyst layer, and a catalyst layer of Comparative Example 3 according to Test 5. 試験6に係り、試料5及び比較例4の燃料電池における電流密度と電圧との関係を示すグラフである。10 is a graph showing the relationship between current density and voltage in fuel cells of Sample 5 and Comparative Example 4 in connection with Test 6. 試験6に係り、試料6−1、6−2及び比較例5の燃料電池における電流密度と電圧との関係を示すグラフである。10 is a graph showing the relationship between current density and voltage in fuel cells of Samples 6-1, 6-2 and Comparative Example 5 according to Test 6.

(実施例)
実施例の燃料電池用触媒層の製造装置は、図1に示すように、触媒修飾手段10と、湿式粉砕処理を行う超音波ホモジナイザ20と、プレペースト調製手段及び触媒ペースト調製手段としての自転/公転式遠心攪拌機30と、公知のスクリーン印刷機40とを備えている。なお、超音波ホモジナイザ20は、公用品が採用されている。また、自転/公転式遠心攪拌機30として、キーエンス社製、商品名「ハイブリッドミキサーHM−500」を採用している。自転/公転式遠心攪拌機30は図示しないチャンバーを有している。
(Example)
As shown in FIG. 1, the apparatus for producing a catalyst layer for a fuel cell according to the example comprises a catalyst modifying means 10, an ultrasonic homogenizer 20 for performing a wet pulverization process, a pre-paste preparation means, and a rotation / A revolving centrifugal stirrer 30 and a known screen printer 40 are provided. The ultrasonic homogenizer 20 is a public article. In addition, as the rotation / revolution centrifugal stirrer 30, a product name “Hybrid Mixer HM-500” manufactured by Keyence Corporation is adopted. The rotation / revolution centrifugal stirrer 30 has a chamber (not shown).

この製造装置では、図2に示す製造工程を経ることにより燃料電池用触媒層を得ることができる。   In this manufacturing apparatus, the fuel cell catalyst layer can be obtained through the manufacturing process shown in FIG.

まず、無数の触媒からなる集合体を購入した。触媒の担体種はケッチェンブラックEC600JDであり、触媒種はPt/Coである。各触媒はカーボンからなる担体に白金及びコバルトが60質量%の担持量で担持されている。そして、図2に示すステップS1において、この集合体をブレードミルを用いて粉砕した。   First, an assembly consisting of a myriad of catalysts was purchased. The catalyst support type is Ketjen Black EC600JD and the catalyst type is Pt / Co. Each catalyst has platinum and cobalt supported on a carrier made of carbon in a loading amount of 60% by mass. In step S1 shown in FIG. 2, the aggregate was pulverized using a blade mill.

次いで、触媒修飾手段10よって処理済み触媒を得る。この処理済み触媒は硝酸基を吸着した触媒である。具体的には、触媒修飾手段10が有するスターラ及び加熱装置(共に図示しない)によって、ステップS2に示すように、触媒修飾工程を行うことによって、処理済み触媒が得られる。すなわち、錯体溶液を用意し、錯体溶液に粉砕後の触媒を添加した。   Next, the treated catalyst is obtained by the catalyst modifying means 10. This treated catalyst is a catalyst that has adsorbed nitrate groups. Specifically, a treated catalyst is obtained by performing a catalyst modification step with a stirrer and a heating device (both not shown) of the catalyst modification means 10 as shown in step S2. That is, a complex solution was prepared, and the pulverized catalyst was added to the complex solution.

錯体溶液としては、ジニトロジアミン白金(II)硝酸溶液(cis−[Pt(NH32(NO22]/HNO3 sol.)(Pt0.05g/150mL、硝酸濃度0.07%(0.01M))を用意した。 As the complex solution, dinitrodiamine platinum (II) nitric acid solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 sol.) (Pt 0.05 g / 150 mL, nitric acid concentration 0.07% (0 .01M)).

この錯体溶液中に触媒を添加し、スターラで5時間攪拌した。これにより、ジニトロジアミン白金の回りに存在する硝酸基が触媒の白金に吸着すると考えられる。処理後の錯体溶液をろ過し、残留物を60°Cで2時間乾燥し、窒素ガス中において、150°Cで2時間熱処理を行った。処理済み触媒を熱処理するのは、各処理済み触媒の表面の不純物を可及的に除去するためである。こうして、1gの触媒から1.012g(Pt収率84.3%)の処理済み触媒を得た。   The catalyst was added to the complex solution and stirred with a stirrer for 5 hours. Thereby, it is thought that the nitrate group which exists around the dinitrodiamine platinum is adsorbed on the platinum of the catalyst. The complex solution after the treatment was filtered, the residue was dried at 60 ° C. for 2 hours, and heat-treated at 150 ° C. for 2 hours in nitrogen gas. The reason why the treated catalyst is heat-treated is to remove impurities on the surface of each treated catalyst as much as possible. Thus, 1.012 g (Pt yield 84.3%) of the treated catalyst was obtained from 1 g of the catalyst.

この後、ステップS3において、処理済み触媒をプレペースト調製工程に供した。まず、ステップS31において、処理済み触媒1gに対して水を100mL加え、水浸漬を行った。   Thereafter, in step S3, the treated catalyst was subjected to a pre-paste preparation process. First, in step S31, 100 mL of water was added to 1 g of the treated catalyst, and water immersion was performed.

次いで、ステップS32において、処理済み触媒を浸漬させた水中に超音波ホモジナイザ20を差し込んで振動数が20kHzの超音波を10分間加え、粉砕処理としての湿式粉砕処理を行った。   Next, in step S32, the ultrasonic homogenizer 20 was inserted into the water in which the treated catalyst was immersed, and ultrasonic waves with a frequency of 20 kHz were added for 10 minutes to perform a wet pulverization process as a pulverization process.

さらに、ステップS33において、自転/公転式遠心攪拌機30により、遠心攪拌法を実行した。この際、攪拌機のチャンバーに処理済み触媒と、処理済み触媒の8倍当量まで減じた水とを収容した。この後、チャンバーを公転させることによって混合物に遠心力を付与しつつ、チャンバーを自転させることによって混合物を自身の自重で攪拌することによりプレペーストを得た。この間、処理済み触媒に硝酸基が吸着していることから、各処理済み触媒の表面はより確実に水で覆われた状態になっている。なお、プレペースト作製手段については、自転/公転式遠心攪拌機30に替えて、湿式ジェットミルを採用することもできる。   Further, in Step S33, the centrifugal stirring method was executed by the rotation / revolution centrifugal stirrer 30. At this time, the treated catalyst and water reduced to 8 times equivalent to the treated catalyst were accommodated in the chamber of the stirrer. Thereafter, while applying centrifugal force to the mixture by revolving the chamber, the mixture was stirred by its own weight by rotating the chamber to obtain a pre-paste. During this time, since the nitrate group is adsorbed on the treated catalyst, the surface of each treated catalyst is more reliably covered with water. In addition, about a pre-paste preparation means, it can replace with the autorotation / revolution type | formula centrifugal stirrer 30, and can also employ | adopt a wet jet mill.

次いで、ステップS4において、触媒ペースト調製工程を行なう。触媒ペースト調製工程では、自転/公転式遠心攪拌機30内に、プレペースト、高分子電解質の溶液を収容し、遠心攪拌法を実行することで触媒ペーストを得る。この間、各処理済み触媒は水に対する濡れ性を有していることから、高分子電解質は各処理済み触媒側に高分子電解質が有する側鎖の親水性官能基を配向させる。そして、互いに接触する各処理済み触媒と高分子電解質との間に水によって互いに連続する親水層が形成される。なお、触媒ペースト作製手段については、自転/公転式遠心攪拌機30に替えて、湿式ジェットミルを採用することもできる。   Next, in step S4, a catalyst paste preparation process is performed. In the catalyst paste preparation step, the pre-paste and the polymer electrolyte solution are accommodated in the rotation / revolution centrifugal stirrer 30, and the catalyst paste is obtained by executing the centrifugal stirring method. During this time, since each treated catalyst has wettability to water, the polymer electrolyte orients the hydrophilic functional group of the side chain of the polymer electrolyte on the treated catalyst side. A hydrophilic layer that is continuous with water is formed between the treated catalyst and the polymer electrolyte that are in contact with each other. In addition, about a catalyst paste preparation means, it can replace with the autorotation / revolution type | formula centrifugal stirrer 30, and can also employ | adopt a wet jet mill.

この後、ステップS5の最終工程として、この製造装置によって得られた触媒ペーストにより触媒層を得る。まず、ガス透過性を有する基材として、カーボンクロスを用意した。カーボンクロスを基材とし、両面にカーボンブラックとPTFEとの混合物からなる撥水層を付与した拡散層を作製した。この後、ステップS51において、上記の触媒ペーストを用いてカソード触媒層及びアノード触媒層について、スクリーン印刷機40によるスクリーン印刷を行なった。こうして、実施例の製造装置により、燃料電池用触媒層が得られることとなる。   Thereafter, as a final process of step S5, a catalyst layer is obtained from the catalyst paste obtained by the manufacturing apparatus. First, carbon cloth was prepared as a base material having gas permeability. A diffusion layer having a carbon cloth as a base material and a water repellent layer made of a mixture of carbon black and PTFE on both sides was prepared. Thereafter, in step S51, screen printing by the screen printer 40 was performed on the cathode catalyst layer and the anode catalyst layer using the catalyst paste. Thus, the fuel cell catalyst layer is obtained by the manufacturing apparatus of the example.

{検証}
〈試験1〉
さらに、ステップS52において、印刷後の基材を急速乾燥させ、カソード極及びアノード極を得た。電解質層の両面にこれらを設け、膜電極接合体を得た。この膜電極接合体をセルとし、試料1の燃料電池を組付けた。試料1の燃料電池の触媒層はPtが0.1mg/cm2である。
{Verification}
<Test 1>
Further, in step S52, the substrate after printing was rapidly dried to obtain a cathode electrode and an anode electrode. These were provided on both surfaces of the electrolyte layer to obtain a membrane electrode assembly. Using this membrane electrode assembly as a cell, the fuel cell of Sample 1 was assembled. The catalyst layer of the fuel cell of Sample 1 has Pt of 0.1 mg / cm 2 .

比較例1として、触媒修飾工程S2及びホモジナイズ処理S32を行わない従来の製造方法で触媒ペーストを得、この触媒ペーストで同様の燃料電池を組付けた。比較例1の燃料電池の触媒層はPtが0.1mg/cm2である。 As Comparative Example 1, a catalyst paste was obtained by a conventional manufacturing method in which the catalyst modification step S2 and the homogenization treatment S32 were not performed, and a similar fuel cell was assembled using this catalyst paste. The catalyst layer of the fuel cell of Comparative Example 1 has a Pt of 0.1 mg / cm 2 .

また、比較例1と同様、比較例2の燃料電池を組付けた。比較例2の燃料電池の触媒層はPtが0.4mg/cm2である。 Further, as in Comparative Example 1, the fuel cell of Comparative Example 2 was assembled. The catalyst layer of the fuel cell of Comparative Example 2 has Pt of 0.4 mg / cm 2 .

これらの燃料電池において、加湿温度を60°C、H2の供給量を0.8L/分(0.1MPa−G)、空気の供給量を3.0L/分(0.1MPa−G)、電極面積が45mm×45mm(20.25cm2)の条件下、定電流の発電を行い、セル温度(°C)と、電圧(V)と、抵抗(Ω・cm2)との関係を求めた。結果を図3に示す。 In these fuel cells, the humidification temperature is 60 ° C., the supply amount of H 2 is 0.8 L / min (0.1 MPa-G), the supply amount of air is 3.0 L / min (0.1 MPa-G), conditions of electrode area 45mm × 45mm (20.25cm 2), to generate electricity of a constant current, was determined and the cell temperature (° C), and voltage (V), and the relationship between the resistance (Ω · cm 2) . The results are shown in FIG.

図3より、試料1の燃料電池は、比較例1の燃料電池よりも、軽加湿の下でより高い出力を安定的に発揮できることがわかる。また、試料1の燃料電池の性能は白金量が4倍の比較例2と同様である。このため、試料1の燃料電池では、白金量を減らしても、軽加湿の下で高い出力を安定的に発揮できることがわかる。試料1の燃料電池の触媒層は、図4に示すように、担体1aに触媒金属微粒子1bが担持されてなる無数の触媒1と、高分子電解質2とを含有し、この触媒層では、触媒1上に親水層3が形成されるように、高分子電解質2の側鎖101の親水性官能基を触媒1に配向させている(PFF構造)。これにより、試料1の燃料電池の触媒層では、各触媒1と高分子電解質2との間に互いに連続する親水層3が確実に形成されているからである。   FIG. 3 shows that the fuel cell of Sample 1 can stably exhibit higher output under light humidification than the fuel cell of Comparative Example 1. The performance of the fuel cell of Sample 1 is the same as that of Comparative Example 2 in which the platinum amount is four times. For this reason, in the fuel cell of the sample 1, even if it reduces platinum amount, it turns out that a high output can be exhibited stably under light humidification. As shown in FIG. 4, the catalyst layer of the fuel cell of Sample 1 contains an infinite number of catalysts 1 in which catalytic metal fine particles 1b are supported on a carrier 1a and a polymer electrolyte 2. In this catalyst layer, The hydrophilic functional group of the side chain 101 of the polymer electrolyte 2 is oriented to the catalyst 1 so that the hydrophilic layer 3 is formed on the catalyst 1 (PFF structure). Thereby, in the catalyst layer of the fuel cell of Sample 1, the hydrophilic layer 3 that is continuous with each other is reliably formed between each catalyst 1 and the polymer electrolyte 2.

〈試験2〉
錯体溶液をヘキサヒドロキソ白金(IV)酸硝酸溶液((H2Pt(OH)6)/HNO3 sol.)とし、試料2の燃料電池を組付けた。他の条件は試料1と同様である。試料2の燃料電池の触媒層はPtが0.1mg/cm2である。
<Test 2>
The complex solution was a hexahydroxoplatinum (IV) acid nitric acid solution ((H 2 Pt (OH) 6 ) / HNO 3 sol.), And the fuel cell of Sample 2 was assembled. Other conditions are the same as those of Sample 1. The catalyst layer of the fuel cell of Sample 2 has Pt of 0.1 mg / cm 2 .

試料2及び比較例1、2の燃料電池において、試験1と同一の条件下、セル温度(°C)と、電圧(V)と、抵抗(Ω・cm2)との関係を求めた。結果を図5に示す。 In the fuel cell of Sample 2 and Comparative Examples 1 and 2 , the relationship between the cell temperature (° C), the voltage (V), and the resistance (Ω · cm 2 ) was obtained under the same conditions as in Test 1. The results are shown in FIG.

図5より、試料2の燃料電池も、試料1と同様、軽加湿の下で高い出力を安定的に発揮できることがわかる。   From FIG. 5, it can be seen that the fuel cell of Sample 2 can stably exhibit a high output under light humidification as in Sample 1.

〈試験3〉
錯体溶液をテトラアミン白金(II)水酸化物水溶液([Pt(NH34(OH)2]/H2O sln.)とし、試料3の燃料電池を組付けた。他の条件は試料1と同様である。試料3の燃料電池の触媒層はPtが0.1mg/cm2である。
<Test 3>
The complex solution was tetraamine platinum (II) hydroxide aqueous solution ([Pt (NH 3 ) 4 (OH) 2 ] / H 2 O sln.), And the fuel cell of Sample 3 was assembled. Other conditions are the same as those of Sample 1. The catalyst layer of the fuel cell of Sample 3 has Pt of 0.1 mg / cm 2 .

試料3及び比較例1、2の燃料電池において、試験1と同一の条件下、セル温度(°C)と、電圧(V)と、抵抗(mΩ)との関係を求めた。結果を図6に示す。   In the fuel cell of Sample 3 and Comparative Examples 1 and 2, the relationship among the cell temperature (° C.), voltage (V), and resistance (mΩ) was determined under the same conditions as in Test 1. The results are shown in FIG.

図6より、試料3の燃料電池も、試料1、2と同様、軽加湿の下で高い出力を安定的に発揮できることがわかる。   From FIG. 6, it can be seen that the fuel cell of Sample 3 can stably exhibit high output under light humidification as in Samples 1 and 2.

〈試験4〉
錯体溶液をヘキサヒドロキソ白金(IV)酸硫酸溶液((H2Pt(OH)6)/H2SO4 sol.)とし、試料4における処理澄み触媒を得た。
<Test 4>
Hexahydroxoplatinum (IV) acid sulfuric acid solution ((H 2 Pt (OH) 6 ) / H 2 SO 4 sol.) Was used as the complex solution, and a treated catalyst in sample 4 was obtained.

試料2〜4における処理済み触媒のXPS分析を行った。試料3の処理澄み触媒は2種類で結果を求めた(試料3−1、試料3−2)。N1sの重ね合わせを行った結果を図7に示し、S2pの重ね合わせを行った結果を図8に示す。   XPS analysis of the treated catalyst in samples 2-4 was performed. The results were obtained with two types of treatment supernatant catalysts of Sample 3 (Sample 3-1 and Sample 3-2). FIG. 7 shows the result of N1s superposition, and FIG. 8 shows the result of S2p superposition.

図7より、各試料の処理澄み触媒は触媒がアミンやアミドの有機系窒素やアンモニウム塩やNO成分を有する。このため、これらは触媒がNO3 -又はNH4 +を吸着していることがわかる。 As shown in FIG. 7, the processing supernatant catalyst of each sample has an organic nitrogen, ammonium salt, or NO component of amine or amide. For this reason, it turns out that these have adsorbed NO 3 or NH 4 + in the catalyst.

〈試験5〉
試料1と同様に製造した試料4の電極の断面を図9に示し、比較例1と同様に製造した比較例3の電極の断面を図10に示す。試料4及び比較例3の電極の触媒層は同一の条件でスクリーン印刷されたものである。試料4及び比較例3の触媒層はPtが0.11mg/cm2である。図9及び図10は各電極を5000倍に拡大した顕微鏡写真である。
<Test 5>
FIG. 9 shows a cross section of the electrode of Sample 4 manufactured in the same manner as Sample 1, and FIG. 10 shows a cross section of the electrode of Comparative Example 3 manufactured in the same manner as Comparative Example 1. The catalyst layer of the electrode of Sample 4 and Comparative Example 3 was screen-printed under the same conditions. The catalyst layers of Sample 4 and Comparative Example 3 have Pt of 0.11 mg / cm 2 . 9 and 10 are photomicrographs of each electrode magnified 5000 times.

また、試料4の触媒層と比較例3の触媒層との細孔分布を求めた。結果を図11に示す。図11に示すように、0.04〜0.1μm程度の細孔は、試料4の触媒層と比較例3の触媒層とでさほどの相違がない。一方、0.1μm以上の細孔は、湿式粉砕処理により減少していることが分かる。   Further, the pore distributions of the catalyst layer of Sample 4 and the catalyst layer of Comparative Example 3 were determined. The results are shown in FIG. As shown in FIG. 11, the pores of about 0.04 to 0.1 μm are not so different between the catalyst layer of Sample 4 and the catalyst layer of Comparative Example 3. On the other hand, it can be seen that the pores of 0.1 μm or more are reduced by the wet pulverization treatment.

さらに、図9及び図10に示すように、試料4の電極は触媒層の厚さが約2μmであり、触媒層が緻密であり、触媒層中に細孔が存在しないのに対し、比較例3の電極は触媒層の厚さが約5μmであり、触媒層中に細孔が目立つ。この差は、プレペースト調製工程において、水中の処理済み触媒に対して湿式粉砕処理を行うか否かによって生じる。   Further, as shown in FIGS. 9 and 10, the electrode of Sample 4 has a catalyst layer thickness of about 2 μm, the catalyst layer is dense, and no pores are present in the catalyst layer. The electrode of No. 3 has a catalyst layer thickness of about 5 μm, and pores are conspicuous in the catalyst layer. This difference is caused by whether or not wet pulverization is performed on the treated catalyst in water in the pre-paste preparation process.

試料4の電極のように、触媒層が薄ければ、高温低加湿条件下において、電解質層に近い位置で生成水が生じても、その生成水を好適に排除し易いことから好ましい。また、試料4の電極のように、触媒層中に細孔が存在しないことは、抵抗値が低いことを示し、やはり好ましい。   If the catalyst layer is thin like the electrode of sample 4, it is preferable that generated water is easily removed even if generated water is generated at a position close to the electrolyte layer under high temperature and low humidification conditions. In addition, the absence of pores in the catalyst layer as in the electrode of Sample 4 indicates that the resistance value is low, which is also preferable.

したがって、本発明の製造装置においては、プレペースト調製工程において、水中の処理済み触媒に対して超音波ホモジナイザ20による湿式粉砕処理を行うことが好ましい。   Therefore, in the production apparatus of the present invention, in the pre-paste preparation process, it is preferable to perform a wet pulverization treatment with the ultrasonic homogenizer 20 on the treated catalyst in water.

(試験6)
試料1と同様に製造し、硝酸基を2μg/gしか含まない処理済み触媒を用いた試料5の燃料電池と、比較例1と同様に製造し、硝酸基を2μg/gしか含まない触媒を用いた比較例4の燃料電池とについて、50°C、常圧、フル加湿の条件下における電流密度(A/cm2)と電圧(V)との関係を求めた。結果を図12に示す。
(Test 6)
A fuel cell of Sample 5 using a treated catalyst prepared in the same manner as Sample 1 and containing only 2 μg / g of nitrate groups, and a catalyst manufactured in the same manner as Comparative Example 1 and containing only 2 μg / g of nitrate groups. With respect to the fuel cell of Comparative Example 4 used, the relationship between the current density (A / cm 2 ) and the voltage (V) under conditions of 50 ° C., normal pressure, and full humidification was determined. The results are shown in FIG.

一方、試料1と同様に製造し、硝酸基を4700μg/g含む処理済み触媒を用いた試料6の燃料電池と、比較例1と同様に製造し、硝酸基を4700μg/g含む触媒を用いた比較例5の燃料電池とについて、同一の条件下における電流密度(A/cm2)と電圧(V)との関係を求めた。試料6の処理澄み触媒は2種類で結果を求めた(試料6−1、試料6−2)。結果を図13に示す。 On the other hand, the fuel cell of sample 6 using the treated catalyst containing nitrate group 4700 μg / g manufactured in the same manner as sample 1 and the catalyst containing nitrate group 4700 μg / g manufactured using Comparative Example 1 were used. For the fuel cell of Comparative Example 5, the relationship between current density (A / cm 2 ) and voltage (V) under the same conditions was determined. Results were obtained for two types of treatment supernatant catalysts of Sample 6 (Sample 6-1 and Sample 6-2). The results are shown in FIG.

図12に示すように、硝酸基が少ない処理済み触媒では、粉砕処理(湿式粉砕処理)の効果が現れない。しかし、図13に示すように、硝酸基が多い処理済み触媒では、湿式粉砕処理の効果が顕著に現れている。   As shown in FIG. 12, the effect of the pulverization process (wet pulverization process) does not appear in the treated catalyst having a small number of nitrate groups. However, as shown in FIG. 13, the effect of the wet pulverization treatment is remarkable in the treated catalyst having many nitrate groups.

以上において、本発明を実施例及び試験1〜6に即して説明したが、本発明は上記実施例及び試験1〜6に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to Examples and Tests 1 to 6. However, the present invention is not limited to the above Examples and Tests 1 to 6, and may be appropriately changed without departing from the spirit of the present invention. Needless to say, this is applicable.

本発明は電気自動車等の移動用電源、あるいは据え置き用電源に利用可能である。   The present invention can be used for a moving power source for an electric vehicle or the like, or a stationary power source.

1b…触媒金属微粒子
10…触媒修飾手段
1…触媒
30…自転/公転式遠心攪拌機(プレペースト調製手段、触媒ペースト調製手段)
2…高分子電解質
S2…触媒修飾工程
S3…プレペースト調製工程
S4…触媒ペースト調製工程
S32…湿式粉砕処理(粉砕処理)
20…超音波ホモジナイザ
1b ... catalyst metal fine particles 10 ... catalyst modification means 1 ... catalyst 30 ... rotation / revolution centrifugal stirrer (pre-paste preparation means, catalyst paste preparation means)
2 ... polymer electrolyte S2 ... catalyst modification step S3 ... pre-paste preparation step S4 ... catalyst paste preparation step S32 ... wet grinding treatment (grinding treatment)
20 ... Ultrasonic homogenizer

Claims (7)

触媒ペーストから触媒層を形成する燃料電池用触媒層の製造装置において、
親水性を有する修飾基で触媒金属微粒子を修飾して処理済み触媒を作製する触媒修飾手段と、
該処理済み触媒を水とともに混合してプレペーストを調製するプレペースト調製手段と、
該プレペーストを高分子電解質の溶液とともに混合して触媒ペーストを調製する触媒ペースト調製手段とを備えていることを特徴とする燃料電池用触媒層の製造装置。
In a fuel cell catalyst layer manufacturing apparatus for forming a catalyst layer from a catalyst paste,
A catalyst modifying means for producing a treated catalyst by modifying catalytic metal fine particles with a modifying group having hydrophilicity;
Pre-paste preparation means for preparing the pre-paste by mixing the treated catalyst with water;
An apparatus for producing a catalyst layer for a fuel cell, comprising: catalyst paste preparation means for preparing a catalyst paste by mixing the pre-paste together with a polymer electrolyte solution.
前記プレペースト作製手段は湿式ジェットミルである請求項1記載の燃料電池用触媒層の製造装置。   The apparatus for producing a catalyst layer for a fuel cell according to claim 1, wherein the pre-paste preparation means is a wet jet mill. 前記触媒ペースト調製手段は湿式ジェットミルである請求項1又は2記載の燃料電池用触媒層の製造装置。   The apparatus for producing a catalyst layer for a fuel cell according to claim 1 or 2, wherein the catalyst paste preparation means is a wet jet mill. 触媒ペーストから触媒層を形成する燃料電池用触媒層の製造装置において、
親水性を有する修飾基で触媒金属微粒子を修飾して処理済み触媒を作製する触媒修飾工程と、
該処理済み触媒を水とともに混合してプレペーストを調製するプレペースト調製工程と、
該プレペーストを前記高分子電解質の溶液とともに混合して触媒ペーストを調製する触媒ペースト調製工程とを備えていることを特徴とする燃料電池用触媒層の製造方法。
In a fuel cell catalyst layer manufacturing apparatus for forming a catalyst layer from a catalyst paste,
A catalyst modification step for producing a treated catalyst by modifying catalytic metal fine particles with a modifying group having hydrophilicity;
A pre-paste preparation step of preparing the pre-paste by mixing the treated catalyst with water;
And a catalyst paste preparation step of preparing a catalyst paste by mixing the pre-paste together with the polymer electrolyte solution.
前記修飾基は、硝酸基、アミノ基、スルホン酸基、水酸基及びハロゲン基から選ばれる少なくとも1種である請求項4記載の燃料電池用触媒層の製造方法。   The method for producing a fuel cell catalyst layer according to claim 4, wherein the modifying group is at least one selected from a nitric acid group, an amino group, a sulfonic acid group, a hydroxyl group, and a halogen group. 前記プレペースト調製工程において、水中の前記処理済み触媒に対して粉砕処理を行う請求項4又は5記載の燃料電池用触媒層の製造方法。   The method for producing a fuel cell catalyst layer according to claim 4 or 5, wherein in the pre-paste preparation step, the treated catalyst in water is pulverized. 前記粉砕処理は超音波ホモジナイザで行われる請求項6記載の燃料電池用触媒層の製造方法。   The method for producing a fuel cell catalyst layer according to claim 6, wherein the pulverization is performed by an ultrasonic homogenizer.
JP2010293141A 2010-05-31 2010-12-28 Apparatus and method for producing fuel cell catalyst layer Pending JP2012015090A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010293141A JP2012015090A (en) 2010-05-31 2010-12-28 Apparatus and method for producing fuel cell catalyst layer
PCT/JP2011/057895 WO2011152111A1 (en) 2010-05-31 2011-03-29 Apparatus for production of catalyst layer for fuel cell, and method for production of catalyst layer for fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010125400 2010-05-31
JP2010125400 2010-05-31
JP2010293141A JP2012015090A (en) 2010-05-31 2010-12-28 Apparatus and method for producing fuel cell catalyst layer

Publications (1)

Publication Number Publication Date
JP2012015090A true JP2012015090A (en) 2012-01-19

Family

ID=45066498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293141A Pending JP2012015090A (en) 2010-05-31 2010-12-28 Apparatus and method for producing fuel cell catalyst layer

Country Status (2)

Country Link
JP (1) JP2012015090A (en)
WO (1) WO2011152111A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065807A1 (en) * 2012-10-26 2014-05-01 United Technologies Corporation Fuel cell membrane electrode assembly fabrication process
KR101786674B1 (en) * 2015-11-10 2017-10-18 현대자동차 주식회사 Mixing and dispersing system of catalyst slurry for fuel cell
CN112490474A (en) * 2020-11-26 2021-03-12 合肥科威尔电源系统股份有限公司 Gas humidifying device of fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243404A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacture
JP2002324557A (en) * 2001-04-27 2002-11-08 Mitsubishi Electric Corp Solid polymer fuel cell
JP2006140062A (en) * 2004-11-12 2006-06-01 Equos Research Co Ltd Electrode paste for fuel cell, electrode and membrane-electrode assembly, and manufacturing method of fuel cell system
JP2006164789A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Method and apparatus for manufacturing catalyst slurry for use in fuel cell
JP2007103293A (en) * 2005-10-07 2007-04-19 Toray Ind Inc Membrane electrode assembly, its manufacturing method, and polymer electrolyte fuel cell using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243404A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacture
JP2002324557A (en) * 2001-04-27 2002-11-08 Mitsubishi Electric Corp Solid polymer fuel cell
JP2006140062A (en) * 2004-11-12 2006-06-01 Equos Research Co Ltd Electrode paste for fuel cell, electrode and membrane-electrode assembly, and manufacturing method of fuel cell system
JP2006164789A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Method and apparatus for manufacturing catalyst slurry for use in fuel cell
JP2007103293A (en) * 2005-10-07 2007-04-19 Toray Ind Inc Membrane electrode assembly, its manufacturing method, and polymer electrolyte fuel cell using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065807A1 (en) * 2012-10-26 2014-05-01 United Technologies Corporation Fuel cell membrane electrode assembly fabrication process
KR101786674B1 (en) * 2015-11-10 2017-10-18 현대자동차 주식회사 Mixing and dispersing system of catalyst slurry for fuel cell
CN112490474A (en) * 2020-11-26 2021-03-12 合肥科威尔电源系统股份有限公司 Gas humidifying device of fuel cell system
CN112490474B (en) * 2020-11-26 2022-03-11 合肥科威尔电源系统股份有限公司 Gas humidifying device of fuel cell system

Also Published As

Publication number Publication date
WO2011152111A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
Cheng et al. Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells
Li et al. Hierarchical polybenzimidazole-grafted graphene hybrids as supports for Pt nanoparticle catalysts with excellent PEMFC performance
US11322765B2 (en) Smart-MEAs for high power fuel cells
JP2005270976A (en) Carried catalyst and method for preparing it
US7557057B2 (en) Method for preparation of highly dispersed supported platinum catalyst
US9472811B2 (en) Graphite particle-supported Pt-shell/Ni-core nanoparticle electrocatalyst for oxygen reduction reaction
Pan et al. Fabrication and performance of polymer electrolyte fuel cells by self-assembly of Pt nanoparticles
CN1656634A (en) Fuel cell catalyst carrying particle, composite electrolyte containing the same, catalytic electrode, fuel cell and process for producing them
CN104941635A (en) Method for manufacturing alloy catalyst for fuel cell
JP2006297355A (en) Catalyst and its manufacturing method
Moguchikh et al. Platinum nanoparticles supported on nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction
CN1802208A (en) Catalyst for fuel cell oxygen electrodes
Park et al. Mitigating Pt loss in polymer electrolyte membrane fuel cell cathode catalysts using graphene nanoplatelet pickering emulsion processing
WO2011152111A1 (en) Apparatus for production of catalyst layer for fuel cell, and method for production of catalyst layer for fuel cell
JP4952008B2 (en) Electrode catalyst layer for solid polymer electrolyte fuel cell, method for producing the same, and solid polymer electrolyte fuel cell
CN108878904B (en) Catalyst layer for fuel cell electrode and fuel cell
Phan et al. Highly efficient and durable electrochemical hydrogen evolution reaction based on composition/shape controlled CuTi@ Pt core-shell nanotubes in acidic media
JP6635976B2 (en) Electrode catalyst for fuel cell and method for producing the same
KR101769681B1 (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
JP5669201B2 (en) Composition for forming catalyst layer and method for producing catalyst layer
JPWO2011136186A1 (en) Electrode material
KR101628491B1 (en) Carbon-platinum-iridium oxide complex, manufacturing method thereof and catalyst for fuel cell anode using the same
JP6677193B2 (en) How to select the solvent used for the catalyst ink for fuel cell electrodes
JP2013157289A (en) Method of manufacturing structure of electrode catalyst, structure of electrode catalyst, membrane electrode/gas diffusion layer assembly, fuel cell and air battery
Jia et al. Electrodeposition of PtNi nanosheets on flexible PET/ITO substrate and their electrocatalytic properties for methanol oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930