JP2012014858A - Cylindrical solid oxide type fuel battery - Google Patents

Cylindrical solid oxide type fuel battery Download PDF

Info

Publication number
JP2012014858A
JP2012014858A JP2010147417A JP2010147417A JP2012014858A JP 2012014858 A JP2012014858 A JP 2012014858A JP 2010147417 A JP2010147417 A JP 2010147417A JP 2010147417 A JP2010147417 A JP 2010147417A JP 2012014858 A JP2012014858 A JP 2012014858A
Authority
JP
Japan
Prior art keywords
battery cell
cylindrical
fuel
electrode layer
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010147417A
Other languages
Japanese (ja)
Inventor
Takemasa Yamada
剛正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010147417A priority Critical patent/JP2012014858A/en
Publication of JP2012014858A publication Critical patent/JP2012014858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical solid oxide type fuel battery that has superior thermal stress and a superior power generation amount per unit volume since a flat plate type solid oxide fuel battery has uneven thermal stress due to a temperature difference between electrodes resulting from heat generation accompanying power generation, and a circular cylinder type solid oxide type fuel battery and a rectangular solid oxide type fuel battery are inferior in output per area to the flat plate type battery cell.SOLUTION: The cylindrical solid oxide type fuel battery constituted by connecting many cylindrical battery cells each comprising of a laminate wall body formed by stacking an air electrode layer, an electrolyte layer and a fuel electrode layer in order comprises a center part cylindrical battery cell arranged at a center-part and a plurality of side-part cylindrical battery cells joined in parallel along a longitudinal surface of the cylindrical battery cell, the side-part cylindrical battery cells each having only one place joined to the longitudinal side face of the center-part cylindrical battery cell in a line contact state.

Description

本発明は、固体酸化物形燃料電池に係り、冷態時からの急速起動が可能で、かつ耐久性に優れ、比出力の高いコンパクトな筒型の固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell, and more particularly to a compact cylindrical solid oxide fuel cell that can be rapidly started from a cold state, has excellent durability, and has a high specific output.

化石燃料を動力に変換する機構として、19世紀は固体燃料である石炭と蒸気機関、20世紀は液体燃料である石油と内燃機関に対し、21世紀は、気体燃料と燃料電池へと変化しつつある。
中でも固体酸化物形燃料電池(以後、SOFCと記述)は、燃料選択性がなく水素や一酸化炭素が同時に燃料として利用でき、貴金属の使用もなく、かつ排熱温度も高い等、他の燃料電池システムに比べて、多くのメリットがあり、その実用化に向けて開発が世界中で進められている。
SOFCは、気体を通さない電解質層とその両面に配置されたポーラス構造の燃料極層及び空気極層で構成(以後、両者を合わせて示す場合は両極層と記述)され、空気極層からの酸素は酸素イオンとして電解質中を移動し、燃料極層で燃料と反応し電気を発生する。
As a mechanism to convert fossil fuel into power, the 19th century is changing to solid fuel coal and steam engine, the 20th century is liquid fuel oil and internal combustion engine, and the 21st century is changing to gas fuel and fuel cell. is there.
Among them, solid oxide fuel cells (hereinafter referred to as SOFC) have no fuel selectivity, hydrogen and carbon monoxide can be used as fuel at the same time, no precious metals are used, and exhaust heat temperature is high. There are many advantages over battery systems, and development is progressing around the world for practical use.
SOFC is composed of an electrolyte layer that does not allow gas to pass through, and a porous fuel electrode layer and an air electrode layer disposed on both sides of the electrolyte layer (hereinafter referred to as a bipolar layer when both are shown). Oxygen moves in the electrolyte as oxygen ions and reacts with fuel in the fuel electrode layer to generate electricity.

電解質層内の酸素イオン導電率を大きくし、また、各極層での反応速度を高めるためにSOFCの作動温度は高く設定される。この高温に対応するため、電解質層を含め主構成要素にはセラミック材が使用される。   The operating temperature of the SOFC is set high in order to increase the oxygen ion conductivity in the electrolyte layer and increase the reaction rate in each electrode layer. In order to cope with this high temperature, a ceramic material is used for main components including the electrolyte layer.

燃料の酸化反応で生ずるエネルギーを100%電気に変換することは熱力学的にみて不可能であり、一定負荷運転状態でも、発電により燃料極層側で熱が発生する。 そして両極層周辺の熱容量、熱伝達率、質量等の不均一な分布が、電池セルに不均一な温度分布をもたらし、熱応力を生じさせる。
特に、急速起動、運転中の急激な負荷変動により両極層周辺の温度の不均一な分布はさらに大きくなり、定常運転時より高い熱応力が発生する。
一方、セラミック材の臨界応力係数が金属に比しほぼ1/100と小さく、セラミック部材にかかる熱応力と熱変形の低減がSOFC実現の大きな課題である。
In view of thermodynamics, it is impossible to convert the energy generated by the oxidation reaction of fuel to 100% electricity, and heat is generated on the fuel electrode layer side by power generation even in a constant load operation state. And non-uniform distribution of the heat capacity, heat transfer coefficient, mass, etc. around the bipolar layers brings about non-uniform temperature distribution in the battery cells, and causes thermal stress.
In particular, due to rapid start-up and sudden load fluctuations during operation, the uneven distribution of temperature around the bipolar layers is further increased, and higher thermal stress is generated than during steady operation.
On the other hand, the critical stress coefficient of the ceramic material is as small as about 1/100 that of metal, and the reduction of thermal stress and thermal deformation applied to the ceramic member is a major issue in realizing SOFC.

さらに、燃料極層及び空気極層が、気体を通過させるためのマクロなポーラス構造であるとすれば、酸素イオンを通過させるために格子内に空房をもつ電解質層は、分子レベルでのミクロなポーラス構造を有すると言える。
先に記述した臨界応力係数の低さと相まって、ミクロ及びマクロなポーラス構造への対応もセラミックで形成されるSOFC実用化への課題と言いうる。
Furthermore, if the fuel electrode layer and the air electrode layer have a macroporous structure for allowing a gas to pass therethrough, an electrolyte layer having vacancies in the lattice for allowing oxygen ions to pass through may have a microscopic structure at the molecular level. It can be said that it has a porous structure.
Combined with the low critical stress coefficient described above, it can be said that the correspondence to micro and macro porous structures is a challenge for the practical application of SOFC formed of ceramics.

SOFCは、固体酸化物形電解質膜で空間を2分し、電解質膜のそれぞれの側に電極を設けて異なる気体を通流し発電するシステムと言える。
現在開発されている空間を2分する方式のSOFCとしては、大別して図9に示す板状電解質層の両面に、また図10に示す筒状の電解質層の内面、外面に、それぞれ電解質層を挟んで燃料極層と空気極層とを配置して発電する平板型SOFCと円筒型SOFCとがある。
The SOFC can be said to be a system for generating electricity by dividing a space by a solid oxide electrolyte membrane and providing an electrode on each side of the electrolyte membrane to flow different gases.
The currently developed SOFC that divides the space into two is roughly divided into two layers: the electrolyte layer on both sides of the plate-like electrolyte layer shown in FIG. 9 and the inner and outer surfaces of the cylindrical electrolyte layer shown in FIG. There are a flat plate type SOFC and a cylindrical type SOFC that generate electric power by arranging a fuel electrode layer and an air electrode layer between them.

平板型SOFCセル100は、図9にその一例を示すように、
電解質層102と、該電解層102の両面にそれぞれ接触する燃料極、あるいは空気極を備え、かつ両極の周辺を外部からシールする2枚のインターコネクタ101と、前記電解層102とインターコネクタ101との間に挟設され両極周辺をシールする2枚のガスケット103とで構成されている。そして電池セルに設けられた4つの穴の対角線上にあるそれぞれ2つの穴で燃料又は空気の通路を形成し、それぞれの通路から供給される燃料と空気との反応により発電される。
The flat SOFC cell 100 has an example as shown in FIG.
Two interconnectors 101 each having an electrolyte layer 102, a fuel electrode or an air electrode in contact with both surfaces of the electrolyte layer 102, and sealing the periphery of both electrodes from the outside; the electrolyte layer 102 and the interconnector 101; And two gaskets 103 which are sandwiched between and seal the periphery of both electrodes. Then, fuel or air passages are formed by two holes on the diagonal of the four holes provided in the battery cell, and power is generated by the reaction between the fuel and air supplied from the respective passages.

この平板型SOFCセル100は、構成部品が主に平面であるため、大きな製造上のメリットを有する。   The flat plate SOFC cell 100 has significant manufacturing advantages because the components are mainly flat.

図10に筒型SOFCセルの一例としての円筒型SOFCセル150を示す。
円筒型SOFCセル150は、図10に示すように、円筒形の電解質層152の外周面に空気極層154を、内周面に燃料極層153を配設して電池セルが構成されてなり、かつ前記電解質層152及びその外周面に配設された空気極層154には軸線に沿ってスリットが穿設され、該スリットから前記電解質層の内周面に配設された燃料極層153に接続されたインターコネクタが電池セルから突出させて設けられている。
そして円筒型SOFC150の中空部に燃料を、外周部に空気通流させることによって発電を行っている。
FIG. 10 shows a cylindrical SOFC cell 150 as an example of a cylindrical SOFC cell.
As shown in FIG. 10, the cylindrical SOFC cell 150 includes a battery cell in which an air electrode layer 154 is disposed on the outer peripheral surface of a cylindrical electrolyte layer 152 and a fuel electrode layer 153 is disposed on the inner peripheral surface. In addition, the electrolyte layer 152 and the air electrode layer 154 disposed on the outer peripheral surface thereof are provided with slits along the axis, and the fuel electrode layer 153 disposed on the inner peripheral surface of the electrolyte layer from the slit. An interconnector connected to the battery cell protrudes from the battery cell.
Electric power is generated by allowing fuel to flow through the hollow portion of the cylindrical SOFC 150 and air to the outer peripheral portion.

円筒型SOFCセル150は、前記平板型SOFCセル100と異なり、閉じた壁で構成されており、電池セルの燃料極層153と空気極層154との間で平板型SOFCセル100と同じ温度差が生じた場合でも、その熱応力は平板型SOFCセルより小さい。
さらに、円筒型SOFCセル150は、平板型SOFCセルに見られる大きなインターコネクタがなく、したがって、両端のガスシール部を除けば発電部の熱容量分布は全域でほぼ一定であり、特に暖気時の熱応力は平板型SOFCセルに比べて小さい。
Unlike the flat plate SOFC cell 100, the cylindrical SOFC cell 150 is formed of a closed wall, and the same temperature difference as the flat plate SOFC cell 100 between the fuel electrode layer 153 and the air electrode layer 154 of the battery cell. Even in the case of the occurrence of thermal stress, the thermal stress is smaller than that of the flat plate SOFC cell.
Furthermore, the cylindrical SOFC cell 150 does not have the large interconnector found in the flat SOFC cell, and therefore the heat capacity distribution of the power generation unit is almost constant throughout the region except for the gas seals at both ends. The stress is smaller than that of a flat plate SOFC cell.

角筒型SOFCセルの例として特許文献1に開示の発明を示す。
特許文献1の段落〔0022〕には、ランタンマンガネート系のポーラスな角筒形状の空気極支持管211の外周面の3側面にYSZ(イットリア安定化ジルコニア)の固体電解質212を積層形成し、さらにこの固体電解質212の外周面にニッケル又はニッケル合金とYSZとのサーメット製のポーラスな燃料極213を積層形成し、空気極支持管211の残る1側面にランタンクロマイト系酸化物(LaCrOn)のインタコネクタ214を積層形成した図11に示す構造の個体電解質燃料電池アセンブリが開示されている。
The invention disclosed in Patent Document 1 is shown as an example of a rectangular tube type SOFC cell.
In paragraph [0022] of Patent Document 1, a solid electrolyte 212 of YSZ (yttria-stabilized zirconia) is laminated on the three side surfaces of the outer peripheral surface of a lanthanum manganate-based porous rectangular tube-shaped air electrode support tube 211, Further, a porous fuel electrode 213 made of cermet made of nickel or a nickel alloy and YSZ is laminated on the outer peripheral surface of the solid electrolyte 212, and a lanthanum chromite oxide (LaCrOn) oxide is formed on the remaining one side of the air electrode support tube 211. A solid electrolyte fuel cell assembly having a structure shown in FIG. 11 in which a connector 214 is laminated is disclosed.

そして、特許文献1の〔請求項1〕には、上記個体電解質燃料電池アセンブリの製造方法として、「空気極若しくは燃料極とその保形体とを兼用する角筒形状の電極支持管の複数体をセパレータ上に等間隔で配列し、次に前記複数体の電極支持管それぞれの開放外周面に固体電解質を積層形成し、続いて前記固体電解質の外周に前記電極支持管と反対の極性の電極層を積層形成することによって、前記セパレータ上に等間隔に複数体の角筒式固体電解質燃料電池が列設された固体電解質燃料電池アセンブリユニットを製造する」と記載されている。   In addition, in [Claim 1] of Patent Document 1, as a manufacturing method of the solid electrolyte fuel cell assembly, “a plurality of prismatic electrode support tubes that serve both as an air electrode or a fuel electrode and a shape-retaining body are provided. An electrode layer having a polarity opposite to that of the electrode support tube is arranged on the outer periphery of the solid electrolyte, and is arranged on the separator at equal intervals, and then, a solid electrolyte is laminated on the open outer peripheral surface of each of the plurality of electrode support tubes. Is manufactured to produce a solid electrolyte fuel cell assembly unit in which a plurality of rectangular cylindrical solid electrolyte fuel cells are arranged at equal intervals on the separator.

また、特許文献1の〔請求項2〕には、「請求項1の製造方法にて製造された固体電解質燃料電池アセンブリユニットの複数体を複数段に積層し、前記電極支持管それぞれの内部に酸化ガスと燃料ガスのいずれか一方を通流させ、前記角筒式固体電解質燃料電池の列間の間隙に酸化ガスと燃料ガスのいずれか他方を通流させる個体電解型燃料電池アセンブリ」と記載され、個体電解型質燃料電池への燃料ガス及び酸化ガスの供給方法が示されている。   Further, in [Claim 2] of Patent Document 1, “a plurality of solid electrolyte fuel cell assembly units manufactured by the manufacturing method of claim 1 are stacked in a plurality of stages, and each of the electrode support tubes is disposed inside each of the electrode support tubes. The solid electrolytic fuel cell assembly in which either one of the oxidizing gas and the fuel gas is allowed to flow, and either the oxidizing gas or the fuel gas is allowed to flow in the gap between the columns of the rectangular tube solid electrolyte fuel cells. A method for supplying fuel gas and oxidizing gas to the solid electrolytic fuel cell is shown.

特許第3722927号公報Japanese Patent No. 3722927

しかし、平板型SOFCセル100は、前述のように燃料極及び空気極周辺部のガスシールのためインターコネクタ101と電解質層102とはガスケット103を介して固定又は半固定されており、電解質層102周辺部の変形が制限された状態にある。したがって、発電に伴う発熱による燃料極と空気極間の温度差に起因する熱応力は拡大されることになる。   However, in the flat SOFC cell 100, as described above, the interconnector 101 and the electrolyte layer 102 are fixed or semi-fixed via the gasket 103 for gas sealing around the fuel electrode and the air electrode. The peripheral deformation is limited. Therefore, the thermal stress resulting from the temperature difference between the fuel electrode and the air electrode due to heat generated by power generation is expanded.

また、平板型SOFCセルの電解質層102の周辺部は、熱容量の大きいインターコネクタとガスケットに接しており、そのため電解質層102の発電に係わる部分と周辺部との熱容量分布の不均一となり、特に暖気途中などの時間的な温度変化が大きい場合は、内部に大きな温度差を生じ、高い熱応力が発生する。
近年、定常運転では安定した出力が得られる平板SOFCセルの例は増加しているものの、まだ起動・停止の繰り返しで劣化が起きる例が見られる。この原因の一つにこの暖気途中の熱応力が考えられる。
In addition, the peripheral portion of the electrolyte layer 102 of the flat plate type SOFC cell is in contact with the interconnector and gasket having a large heat capacity. Therefore, the heat capacity distribution between the portion related to power generation of the electrolyte layer 102 and the peripheral portion becomes non-uniform. When the temporal temperature change such as in the middle is large, a large temperature difference is generated inside, and high thermal stress is generated.
In recent years, examples of flat plate SOFC cells that can provide stable output in steady operation have increased, but there are still examples in which deterioration occurs due to repeated starting and stopping. One of the causes is considered to be the thermal stress during the warm-up.

さらに、平板型SOFCセルのインターコネクタ101やガスケット103が燃料極及び空気極の周辺をシールしているため電池セルの周辺に発電に寄与しない領域が形成されており、今後さらに体積当たりの発電量の増加が求められると、この領域の存在が平板型電池セルの欠点になる可能性が高い。   Furthermore, since the interconnector 101 and the gasket 103 of the flat plate type SOFC cell seal the periphery of the fuel electrode and the air electrode, a region that does not contribute to power generation is formed around the battery cell. If this increase is required, the presence of this region is likely to be a drawback of the flat battery cell.

前記円筒型SOFCセル150は、円筒周囲の発電に係わる面積と円筒の体積の比は平板型SOFCセルより小さく、体積当たりの出力は平板型SOFCセルに劣る。
また、円筒型SOFCセル150の直列連結は、その構造上、平面を介して行える平板型SOFCセルに比べて複雑になる。
In the cylindrical SOFC cell 150, the ratio of the area related to power generation around the cylinder and the volume of the cylinder is smaller than that of the flat plate SOFC cell, and the output per volume is inferior to that of the flat plate SOFC cell.
In addition, the serial connection of the cylindrical SOFC cells 150 is more complicated than the flat plate SOFC cells that can be connected via a plane.

また図11に示す構造の特許文献1に開示の個体電解質燃料電池アセンブリは、その明細書の段落「0029」「0030」に記載されているように、集電体をなすセパレータ221上にインタコネクタ214が同じ向きを向くようにして複数段、複数列のマトリクス配列に固体電解質燃料電池(以降角筒型SOFCセルと記述)200Aをスタックし、下側のセパレータ221と角筒型SOFCセル200Aとの間、上下の角筒型SOFCセル200A、200A相互間、角筒型SOFCセルAと上側のセパレータ221との間には燃料改質作用と導電作用を行うニッケル又はニッケル合金のフェルト222を介在させている。そして各角筒型SOFCセル200Aの長さ方向の端部には閉塞栓体(図示せず)を取り付け、外部から酸化ガスとしての空気を空気極支持管211内を通流させるように空気供給管をその閉塞栓体に接続し、また複数段にスタックされている角筒型SOFCセル200Aの列間の空隙223に燃料ガスを通流させて発電を行わせている。
したがって、上下に積み重ねられた角筒型SOFCセルの上面はインターコネクタ214によって上のセパレータ221または角筒型SOFCセルに接続されており、この面には燃料極がなく、発電に寄与しない面となる。
そのため、セパレータとそ上の固体電解質燃料電池とが一体化したインターコネクタレスの固体電解質アセンブリユニットが形成できる製造方法に見るべき点はあるが、発電面積と角筒の体積の比、体積当たりの出力は円筒型電池セルより劣るという課題がある。
Further, as described in paragraphs “0029” and “0030” of the specification, the solid electrolyte fuel cell assembly disclosed in Patent Document 1 having the structure shown in FIG. 11 is interconnected on a separator 221 forming a current collector. A solid electrolyte fuel cell (hereinafter referred to as a rectangular tube type SOFC cell) 200A is stacked in a matrix arrangement of a plurality of stages and a plurality of columns so that 214 faces the same direction, and a lower separator 221 and a rectangular tube type SOFC cell 200A are stacked. Between the upper and lower rectangular tube type SOFC cells 200A and 200A, and between the rectangular tube type SOFC cell A and the upper separator 221, a nickel or nickel alloy felt 222 that performs a fuel reforming action and a conductive action is interposed. I am letting. An obturator plug (not shown) is attached to the end of each rectangular tube type SOFC cell 200A in the length direction, and air is supplied so that air as an oxidizing gas flows through the air electrode support pipe 211 from the outside. A tube is connected to the plugging body, and fuel gas is allowed to flow through gaps 223 between rows of the rectangular tube type SOFC cells 200A stacked in a plurality of stages to generate electric power.
Therefore, the upper surface of the rectangular tube type SOFC cells stacked up and down is connected to the upper separator 221 or the rectangular tube type SOFC cell by the interconnector 214, and there is no fuel electrode on this surface, and the surface does not contribute to power generation. Become.
Therefore, although there is a point to be seen in the manufacturing method that can form an interconnector-less solid electrolyte assembly unit in which the separator and the solid electrolyte fuel cell thereabove are integrated, the ratio between the power generation area and the volume of the rectangular tube, There exists a subject that an output is inferior to a cylindrical battery cell.

本発明者は、上記に鑑み鋭意研究の結果、次の手段によりこの課題を解決した。
(1)空気極層、電解質層及び燃料極層を順次積層してなる積層壁体で形成された筒型電池セルの多数個を連結してなる固体酸化物形燃料電池において、
中央部に配置された中央部筒型電池セルと、同筒型電池セルの縦側面に沿って平行に接合され、かつ相互に交差することのない複数本の側部筒型電池セルとからなり、かつ前記各側部筒型電池セルは前記中央部筒型電池セルの縦側面に線接触状態で一箇所のみが接合されてなる構成のものであることを特徴とする筒型の固体酸化物形燃料電池。
(2)前記筒型電池セルが、多角筒形のものであることを特徴とする前項(1)記載の筒型の固体酸化物形燃料電池。
(3)前記筒型電池セルが、円筒形のものであることを特徴とする前項(1)記載の筒型の固体酸化物形燃料電池。
(4)前記複数本の側部筒型電池セルが、中央部筒型電池セルの側面に等間隔で放射状に配設され、前記中央部筒型電池セル及び複数本の側部筒型電池セルのいずれもの内壁面が燃料極層、外壁面が空気極層、又は外壁面が燃料極層、内壁面が空気極層でなり、かつ前記各筒型電池セルの外壁面を構成する空気極層又は燃料極層が連続した一つの面で形成されてなることを特徴とする前項(1)〜(3)のいずれか1項に記載の筒型の固体酸化物形燃料電池。
(5)前記筒型電池セルが、その内壁面内側の中空部を内通路とし、外壁面外側の空間を外通路とし、それぞれの通路に、同通路の壁面を構成する燃料極層又は空気極層に対応する燃料又は空気が供給されてなることを特徴とする前項(1)〜(4)のいずれか1項に記載の筒型の固体酸化物形燃料電池。
As a result of intensive studies in view of the above, the present inventor has solved this problem by the following means.
(1) In a solid oxide fuel cell formed by connecting a large number of cylindrical battery cells formed of a laminated wall formed by sequentially laminating an air electrode layer, an electrolyte layer, and a fuel electrode layer,
It consists of a central cylindrical battery cell arranged in the central part and a plurality of side cylindrical battery cells that are joined in parallel along the longitudinal side surface of the cylindrical battery cell and do not cross each other. And each said side part cylindrical battery cell is a thing of the structure formed by joining only one place by the line contact state to the vertical side surface of the said center part cylindrical battery cell, The cylindrical solid oxide characterized by the above-mentioned Fuel cell.
(2) The cylindrical solid oxide fuel cell as described in (1) above, wherein the cylindrical battery cell has a polygonal cylindrical shape.
(3) The cylindrical solid oxide fuel cell as described in (1) above, wherein the cylindrical battery cell is cylindrical.
(4) The plurality of side cylindrical battery cells are radially arranged on the side surface of the central cylindrical battery cell at equal intervals, and the central cylindrical battery cell and the plurality of side cylindrical battery cells are arranged. The inner wall surface is a fuel electrode layer, the outer wall surface is an air electrode layer, or the outer wall surface is a fuel electrode layer, the inner wall surface is an air electrode layer, and the air electrode layer constituting the outer wall surface of each cylindrical battery cell. Alternatively, the cylindrical solid oxide fuel cell as described in any one of (1) to (3) above, wherein the fuel electrode layer is formed on one continuous surface.
(5) In the cylindrical battery cell, a hollow portion inside the inner wall surface is used as an inner passage, a space outside the outer wall surface is used as an outer passage, and a fuel electrode layer or an air electrode constituting the wall surface of the passage is formed in each passage. 6. The cylindrical solid oxide fuel cell as set forth in any one of (1) to (4), wherein fuel or air corresponding to the layer is supplied.

(6)前項(1)〜(5)のいずれか1項に記載の筒型の固体酸化物形燃料電池の複数個を上下に積み重ねて電池セルスタックを構成してなり、各々の上部電池セルの燃料極層と下部電池セルの空気極層、あるいは上部電池セルの空気極層と下部電池セルの燃料極層とを各々導電とガスシールの機能を持つインターコネクタで直列接続してなることを特徴とする筒型の固体酸化物形燃料電池。
(7)前記電池セルスタックにおいて、直列接続された上下の電池セルの燃料極層同士、空気極層同士が接触するのを防止するために、各電池セルの積層壁体の基体部(構造体)となる層が電解質の場合は、それぞれ外壁面では上端部側壁面に、内壁面では下端部側壁面にそれぞれの極層が設けられていない環状のブランク部を設けてなることを特徴とする前項(6)に記載の筒型の固体酸化物形燃料電池。
(8)前記電池セルスタックにおいて、直列接続された上下の電池セルの燃料極層同士、空気極層同士が接触するのを防止するために、各電池セルの積層壁体の基体部(構造体)となる層が燃料極層あるいは空気極層の場合は、積層壁体の内側壁面として基体部となる極層を配設し、その外側面に電解質層を積層し、さらに前記電解質層を基体部となる極層の下端面と内壁面下端部に微小高さの折り返し部として構成されるように連続延伸させ、そして電解質層の外壁面に、前記基体部とし用いられたのとは別の極層となる空気極層又は燃料極層を設け、かつ前記電解質層外側面上部に当該極層が設けられていない環状のブランク部を設けてなることを特徴とする前項(6)に記載の筒型の固体酸化物形燃料電池。
(9)前記電池セルスタックが、その構成電池セルの内壁面が燃料極の場合、各内通路内に同内通路の形状に相似した柱形状スペーサを備えて内通路空間を狭め、燃料極との反応に寄与する量の燃料のみを通流させられるよう構成されてなることを特徴とする前項(6)〜(8)のいずれか1項に記載の筒型の固体酸化物形燃料電池。
(10)前記電池セルスタックが、その構成電池セルの内壁面が燃料極の場合、同電池セルスタックの一端に燃料を供給するチャンバーと、各内通路内に同内通路の形状に相似した筒形状スペーサを備え、
前記チャンバーから供給された燃料が、前記筒形状スペーサの筒内気体通路を通流した後、同筒形状スペーサの他端部で反転し、反転された燃料がこの筒形状スペーサ外周面と前記構成電池セルの内壁面との間の狭められた空間に燃料極との反応に寄与する量の燃料のみを流通させた後に排出されるよう構成されてなることを特徴とする前項(6)〜(8)のいずれか1項に記載の筒型の固体酸化物形燃料電池。
(6) A battery cell stack is formed by stacking a plurality of cylindrical solid oxide fuel cells according to any one of (1) to (5) above and below, and each upper battery cell. The fuel electrode layer and the lower battery cell air electrode layer, or the upper battery cell air electrode layer and the lower battery cell fuel electrode layer are connected in series with an interconnector having the functions of a conductive and gas seal, respectively. A cylindrical solid oxide fuel cell characterized by the above.
(7) In the battery cell stack, in order to prevent the fuel electrode layers and the air electrode layers of the upper and lower battery cells connected in series from contacting each other, the base portion (structure body) of the laminated wall body of each battery cell In the case where the layer to be) is an electrolyte, an annular blank portion in which the respective polar layers are not provided on the upper wall surface on the outer wall surface and on the lower wall surface surface on the inner wall surface is provided. The cylindrical solid oxide fuel cell according to item (6).
(8) In the battery cell stack, in order to prevent the fuel electrode layers and the air electrode layers of the upper and lower battery cells connected in series from contacting each other, the base portion (structure body) of the laminated wall body of each battery cell ) Is a fuel electrode layer or an air electrode layer, an electrode layer serving as a base portion is provided as an inner wall surface of the laminated wall body, an electrolyte layer is laminated on the outer surface thereof, and the electrolyte layer is further attached to the substrate. It is continuously stretched so as to be formed as a folded portion with a minute height at the lower end surface and the lower end portion of the inner wall surface of the polar layer, and the outer wall surface of the electrolyte layer is different from that used as the base portion. The air electrode layer or fuel electrode layer to be an electrode layer is provided, and an annular blank portion not provided with the electrode layer is provided on the outer surface of the electrolyte layer. A cylindrical solid oxide fuel cell.
(9) In the case where the battery cell stack has an inner wall surface of the constituent battery cell as a fuel electrode, each inner passage is provided with a columnar spacer similar to the shape of the inner passage to narrow the inner passage space, The cylindrical solid oxide fuel cell as set forth in any one of (6) to (8), wherein only the fuel of an amount contributing to the reaction of (1) is allowed to flow.
(10) When the battery cell stack has a fuel electrode on the inner wall surface of the constituent battery cell, a chamber for supplying fuel to one end of the battery cell stack, and a cylinder similar to the shape of the inner passage in each inner passage With shape spacer,
After the fuel supplied from the chamber flows through the in-cylinder gas passage of the cylindrical spacer, the fuel is inverted at the other end of the cylindrical spacer, and the inverted fuel is the outer peripheral surface of the cylindrical spacer and the configuration. (6) to (6), wherein the fuel cell is configured to be discharged after passing only an amount of fuel that contributes to the reaction with the fuel electrode in the narrowed space between the inner wall surfaces of the battery cells. 8. The cylindrical solid oxide fuel cell according to any one of 8).

(11)前項(6)〜(10)のいずれか1項に記載の電池セルスタックが複数個同一平面に並置され、それぞれが並列接続、又は直列接続され、あるいは直並列の組み合わせで接続されて電池セルモジュールを形成してなることを特徴とする筒型の固体酸化物形燃料電池。
(12)前記電池セルモジュールが、前記電池セルスタック複数個を同一平面に平行格子状、又は千鳥格子状に並置してなることを特徴とする前項(10)に記載の筒型の固体酸化物形燃料電池。
(13)前記電池セルモジュール複数個が、同一平面に並置され、又は上下に積み重ねられて電気的に接続され、あるいは同一平面に並置されて電気的に接続されたものをさらに複数個上下に積み重ねて電気的に接続してなることを特徴とする前項(11)又は(12)に記載の筒型の固体酸化物形燃料電池。
(11) A plurality of battery cell stacks according to any one of (6) to (10) are juxtaposed on the same plane, and each of them is connected in parallel, connected in series, or connected in a series-parallel combination. A cylindrical solid oxide fuel cell comprising a battery cell module.
(12) The cylindrical solid oxidation according to (10), wherein the battery cell module is formed by juxtaposing a plurality of the battery cell stacks in parallel grids or staggered grids on the same plane. Physical fuel cell.
(13) A plurality of the battery cell modules are juxtaposed in the same plane or stacked up and down and electrically connected, or a plurality of the battery cell modules juxtaposed in the same plane and electrically connected are stacked up and down. The cylindrical solid oxide fuel cell as described in (11) or (12) above, which is electrically connected.

本発明によれば、次のような効果が発揮される。
1.本発明の請求項1の発明によれば、
空気極層、燃料極層及び電解質層を順次積層してなる積層壁体で形成された筒型電池セルの多数個を連結してなる固体酸化物形燃料電池において、
中央部に配置された中央部筒型電池セルと、同筒型電池セルの縦側面に沿って平行に接合された複数本の側部筒型電池セルとからなり、かつ前記各側部筒型電池セルは前記中央部筒型電池セルの縦側面に線接触状態で一箇所のみが接合されてなる構成なので、
前記筒型の固体酸化物形燃料電池を構成する中央部筒型電池セル及び側部筒型電池セルは、その構造上、上下の端面を除きシール機能を必要としないこと、及び
中央部筒型電池セルと複数本の側部筒型電池セルとが線接触状態で一箇所のみ接合されていることから、内外両側面のほぼ全面を燃料極及び空気極とすることができ、かつ前記内外両側面のほぼ全面が燃料又は空気と接触可能なため、発電面積は他の形態の電池セルに比して大きくでき、したがって、体積当たりの発電量の増大が見込める。
According to the present invention, the following effects are exhibited.
1. According to the invention of claim 1 of the present invention,
In a solid oxide fuel cell formed by connecting a large number of cylindrical battery cells formed of a laminated wall body formed by sequentially laminating an air electrode layer, a fuel electrode layer, and an electrolyte layer,
The central cylindrical battery cell disposed in the central part, and a plurality of side cylindrical battery cells joined in parallel along the vertical side surface of the cylindrical battery cell, and each side cylindrical battery Since the battery cell has a configuration in which only one place is joined in a line contact state to the vertical side surface of the central cylindrical battery cell,
The central cylindrical battery cell and the side cylindrical battery cell constituting the cylindrical solid oxide fuel cell do not require a sealing function except for the upper and lower end surfaces, and the central cylindrical battery Since the battery cell and the plurality of side cylindrical battery cells are joined at one point in a line contact state, almost the entire inner and outer side surfaces can be used as the fuel electrode and the air electrode, and both the inner and outer sides Since almost the entire surface can be in contact with fuel or air, the power generation area can be increased as compared with other types of battery cells, and thus the amount of power generation per volume can be expected to increase.

各電池セルを構造的に剛性の高い筒型形状としたので、電解質層を挟んで対向配置した燃料極層及び空気極層間の発電に伴う発熱に起因する電池セルの変形を大幅に低減できる。
また膜構成電池セルを筒型にしたことによって平板型SOFCセルに見られたようなインターコネクタやガスケットといった部材が不要となり、この部材と電解質層との間に生じる不均一な温度分布による熱応力発生を大幅に低減できる。
このため起動に伴う急速な暖気途中、あるいは負荷変動中の筒型の固体酸化物形燃料電池の温度は均一に保たれ、熱応力による変形を大幅に低減でき、したがって高温動作が可能なことから、高出力密度と高い発電効率が得られる。
Since each battery cell has a cylindrical shape with high structural rigidity, deformation of the battery cell due to heat generation due to power generation between the fuel electrode layer and the air electrode layer arranged to face each other with the electrolyte layer interposed therebetween can be greatly reduced.
In addition, since the membrane battery cell is made cylindrical, members such as interconnectors and gaskets as seen in flat SOFC cells are not required, and thermal stress due to nonuniform temperature distribution generated between this member and the electrolyte layer is eliminated. Generation can be greatly reduced.
For this reason, the temperature of a cylindrical solid oxide fuel cell during rapid warm-up or during load fluctuations during startup can be kept uniform, and deformation due to thermal stress can be greatly reduced, thus enabling high-temperature operation. High power density and high power generation efficiency can be obtained.

前記中央部筒型電池セルと複数本の側部筒型電池セルとが中央部筒型電子セルの縦側面に線接触状態で一箇所のみ接合されているので、
互いに他の筒型電池セルの熱応力を受けにくく、このため起動に伴う急速な暖気途中、あるいは負荷変動中の各電池セル筒体温度が均一に保て、熱応力による変形をさらに低減することができる。
Since the central cylindrical battery cell and the plurality of side cylindrical battery cells are joined to the vertical side surface of the central cylindrical electronic cell only in one place in a line contact state,
It is less susceptible to the thermal stresses of the other cylindrical battery cells, so that the temperature of each battery cell cylinder during rapid warm-up during startup or load fluctuations can be kept uniform to further reduce deformation due to thermal stress. Can do.

本発明の固体酸化物形燃料電池が、中央部筒型電池セルとその周辺に配置された複数本の側部筒型電池セルとで構成されているので、前記固体酸化物形燃料電池を積層構造とする際の支持スパンを、従来のシングル筒型電池セルに比べ、大きく取れ、安定した高積層構造の固体酸化物形燃料電池が得られる。   Since the solid oxide fuel cell of the present invention is composed of a central cylindrical battery cell and a plurality of side cylindrical battery cells arranged in the periphery thereof, the solid oxide fuel cell is stacked. The support span for the structure can be made larger than that of the conventional single cylindrical battery cell, and a solid oxide fuel cell having a stable and highly laminated structure can be obtained.

同一形状、同一構造の筒型電池セル複数個で固体酸化物形燃料電池セルを構成できるので、燃料極層、電解質層、あるいは空気極層の生成をスプレーコート法又はスラリーコート法等によって行え、しかも筒形状であるため外壁面への外部からのアクセスも容易で量産に適しており、かつ各層を生成するための製造機器も同一のものが使用でき、製造機器の低コスト化にも寄与する。   Since a solid oxide fuel cell can be composed of a plurality of cylindrical battery cells having the same shape and the same structure, the fuel electrode layer, the electrolyte layer, or the air electrode layer can be generated by a spray coating method or a slurry coating method, Moreover, because of its cylindrical shape, access to the outer wall surface from the outside is easy and suitable for mass production, and the same manufacturing equipment can be used to generate each layer, contributing to the cost reduction of the manufacturing equipment. .

2.本発明の請求項2の発明によれば、
前記請求項1の効果に加えて、
前記筒型電池セルが多角形であるため、他の装置に組み込む燃料電池として、その収納許容スペースに応じて電池セルの形状が選択でき、装置としての設計自由度が広がり、かつ集積密度を高めることができる。
2. According to the invention of claim 2 of the present invention,
In addition to the effect of claim 1,
Since the cylindrical battery cell is polygonal, the shape of the battery cell can be selected as a fuel cell to be incorporated in another device according to the storage space, the design flexibility as the device is widened, and the integration density is increased. be able to.

3.本発明の請求項3の発明によれば、
前記請求項1の効果に加えて、
前記筒型電池セルが、円筒形であるため、同一形状で、かつ同一構造の円筒筒体で電池セルを構成できるので、製造がきわめて容易であり、コンパクト、低コストでありながら高出力の電池セルを実現できる。さらに発電中の発熱反応による変形を大幅に低減できる。
3. According to the invention of claim 3 of the present invention,
In addition to the effect of claim 1,
Since the cylindrical battery cell has a cylindrical shape, the battery cell can be constituted by a cylindrical cylinder having the same shape and the same structure. Therefore, the battery is extremely easy to manufacture, is compact and low in cost, and has a high output. A cell can be realized. Furthermore, deformation due to an exothermic reaction during power generation can be greatly reduced.

4.本発明の請求項4の発明によれば、
前記請求項1〜3の効果に加えて、
前記複数本の側部筒型電池セルが、中央部筒型電池セルの側面に等間隔で放射状に配設され、前記中央部筒型電池セル及び複数本の側部筒型電池セルのいずれもの内壁面が燃料極層、外壁面が空気極層、又は外壁面が燃料極層、内壁面が空気極層であるため、
同一形状で、かつ同一構造の筒型電池セルがシンメトリーに配設されるので、特に発電中の発熱反応による電池セルの電解質層を挟んで対向配置した燃料極層及び空気極層間の温度差で発生する熱応力による変形が各筒型電池セルに均等に発生するため、熱応力による電池セルの変形・破損を防止できる。
4). According to the invention of claim 4 of the present invention,
In addition to the effects of claims 1 to 3,
The plurality of side cylindrical battery cells are arranged radially at equal intervals on the side surface of the central cylindrical battery cell, and any of the central cylindrical battery cell and the multiple side cylindrical battery cells Because the inner wall surface is the fuel electrode layer, the outer wall surface is the air electrode layer, or the outer wall surface is the fuel electrode layer, and the inner wall surface is the air electrode layer,
Cylindrical battery cells with the same shape and the same structure are arranged symmetrically, especially due to the temperature difference between the fuel electrode layer and the air electrode layer that face each other across the battery cell electrolyte layer due to the exothermic reaction during power generation. Since the deformation due to the generated thermal stress occurs uniformly in each cylindrical battery cell, the deformation and breakage of the battery cell due to the thermal stress can be prevented.

また、前記各筒体の外壁面を構成する空気極層又は燃料極層が連続した一つの面で形成されているので、各筒型電池セルの外側面を接続する電極間接続構造物が不要で、コンパクト、低コストでありながら高出力の電池セルを実現できる。   In addition, since the air electrode layer or the fuel electrode layer constituting the outer wall surface of each cylindrical body is formed by one continuous surface, there is no need for an interelectrode connection structure for connecting the outer surface of each cylindrical battery cell. Thus, it is possible to realize a battery cell with high output while being compact and low cost.

5.本発明の請求項5の発明によれば、
前記請求項1〜4の効果に加えて、
前記筒型電池セルが、その内壁面内側の中空部を内通路とし、外壁面外側の空間を外通路とし、それぞれの通路に、その通路の壁面を構成している燃料極層又は空気極層に対応する燃料又は空気が供給できるので、
前記同一形状、同一構造の各筒型電池セルが、シンメトリーに配設されていることと相まって、燃料又は空気の供給通路が単純化され、そのため燃料又は空気の分配・供給装置もシンメトリーな構成で作ることができ、分配・供給装置を含めて、燃料極層及び空気極層間の温度差で発生する熱応力による変形が筒構造体、分配・供給装置に均等に発生するため、熱応力による変形・破損を防止できる。
5. According to the invention of claim 5 of the present invention,
In addition to the effects of the first to fourth aspects,
The cylindrical battery cell has a hollow portion inside the inner wall surface as an inner passage, a space outside the outer wall surface as an outer passage, and a fuel electrode layer or an air electrode layer constituting a wall surface of the passage in each passage. Can be supplied with fuel or air corresponding to
Coupled with the cylindrical battery cells having the same shape and the same structure being arranged symmetrically, the fuel or air supply passage is simplified, and therefore the fuel or air distribution / supply device has a symmetrical configuration. Deformation due to thermal stress generated by the temperature difference between the fuel electrode layer and the air electrode layer, including the distribution / supply device, can occur evenly in the cylindrical structure, distribution / supply device, so deformation due to thermal stress・ Can prevent damage.

6.本発明の請求項6の発明によれば、
請求項1〜5のいずれか1項に記載の筒型の固体酸化物形燃料電池セルの複数個を上下に積み重ね、各々の上部電池セルの燃料極層と下部電池セルの空気極層、あるいは上部電池セルの空気極層と下部電池セルの燃料極層とを各々導電とガスシールの機能を持つインターコネクタで直列接続して電池セルスタック構成しいるので、
前記請求項1〜5の効果に加えて、
前記筒型の固体酸化物形燃料電池セルを複数段直列接続して積み重ねることによって必要とする電源電圧に容易に対応でき、したがって高温動作による内部抵抗の低減と高電圧動作による電流損失の低減によって高効率な電池セルスタックを実現できる。
6). According to the invention of claim 6 of the present invention,
A plurality of cylindrical solid oxide fuel cells according to any one of claims 1 to 5 are stacked one above the other, and a fuel electrode layer of each upper battery cell and an air electrode layer of a lower battery cell, or The battery cell stack is configured by connecting the air electrode layer of the upper battery cell and the fuel electrode layer of the lower battery cell in series with an interconnector having functions of conductivity and gas seal, respectively.
In addition to the effects of the first to fifth aspects,
The cylindrical solid oxide fuel cells can be easily connected to the required power supply voltage by stacking multiple stages in series. Therefore, the internal resistance is reduced by high temperature operation and the current loss is reduced by high voltage operation. A highly efficient battery cell stack can be realized.

7.本発明の請求項7の発明によれば、
前記請求項6の効果に加えて、
前記電池セルスタックにおいて、直列接続された上下の電池セルの燃料極層同士、空気極層同士が接触するのを防止するために、各電池セルの積層壁体の基体部(構造体)となる層が電解質の場合は、それぞれ外壁面では上端部側壁面に、内壁面では下端部側壁面にそれぞれの極層が設けられていないブランク部を設けているので、
電池セルを導電性接着剤の利用により複数段積層する場合も、電極同士の接触は無く、容易に漏電を防止でき、またガスケット等の他の部材を必要とせず単純な構成のため低コストの電池セルスタックを生産することができる。
8.本発明の請求項8の発明によれば、
前記請求項6の効果に加えて、
前記電池セルスタックにおいて、直列接続された上下の電池セルの燃料極層同士、空気極層同士が接触するのを防止するために、各電池セルの積層壁体の基体部(構造体)となる層が燃料極層あるいは空気極層の場合は、積層壁体の内側壁面として基体部となる極層を配設し、その外側面に電解質層を積層し、さらに前記電解質層を基体部となる極層の下端面と内壁面下端部に微小高さの折り返し部として構成されるように連続延伸させ、そして電解質層の外壁面に、前記基体部とし用いられたのとは別の極層となる空気極層又は燃料極層を設け、かつ前記電解質層外側面上部に当該極層が設けられていない環状のブランク部を設けているので、
電池セルを導電性接着剤の利用により複数段積層する場合も、電極同士の接触は無く、容易に漏電を防止でき、またガスケット等の他の部材を必要とせず単純な構成のため低コストの電池セルスタックを生産することができる。
7). According to the invention of claim 7 of the present invention,
In addition to the effect of claim 6,
In the battery cell stack, in order to prevent the fuel electrode layers and the air electrode layers of the upper and lower battery cells connected in series from coming into contact with each other, it becomes a base portion (structure) of the laminated wall body of each battery cell. In the case where the layer is an electrolyte, since the outer wall surface is provided with a blank portion in which the respective polar layers are not provided on the upper wall surface on the outer wall surface and the lower wall surface surface on the inner wall surface,
Even when battery cells are stacked in multiple stages by using a conductive adhesive, there is no contact between the electrodes, electric leakage can be easily prevented, and other components such as gaskets are not required, and the cost is low due to a simple configuration. Battery cell stacks can be produced.
8). According to the invention of claim 8 of the present invention,
In addition to the effect of claim 6,
In the battery cell stack, in order to prevent the fuel electrode layers and the air electrode layers of the upper and lower battery cells connected in series from coming into contact with each other, it becomes a base portion (structure) of the laminated wall body of each battery cell. When the layer is a fuel electrode layer or an air electrode layer, an electrode layer serving as a base part is disposed as an inner wall surface of the laminated wall body, an electrolyte layer is stacked on the outer side surface, and the electrolyte layer is used as a base part. The electrode layer is continuously stretched so as to be formed as a folded portion having a minute height at the lower end surface and the lower end portion of the inner wall surface, and on the outer wall surface of the electrolyte layer, an electrode layer different from that used as the base portion and Since an air electrode layer or a fuel electrode layer is provided, and an annular blank portion in which the electrode layer is not provided is provided on the upper surface of the electrolyte layer,
Even when battery cells are stacked in multiple stages by using a conductive adhesive, there is no contact between the electrodes, electric leakage can be easily prevented, and other components such as gaskets are not required, and the cost is low due to a simple configuration. Battery cell stacks can be produced.

9.本発明の請求項9の発明によれば、
前記請求項6及び7の効果に加えて、
前記電池セルスタックが、その構成電池セルの内壁面が燃料極の場合、各内通路内に同内通路の形状に相似した柱形状スペーサを備えて内通路空間を狭め、燃料極層との反応に寄与する量の燃料のみを通流させられるよう構成されているので、
筒型電池セルの形状が大きくなりその内通路が拡大することによって増加する燃料極層と接触することなく内通路の中心部を通流する無駄な燃料は前記柱形状スペーサによって無くなり、燃料効率のよい燃料電池が構成できる。
9. According to the invention of claim 9 of the present invention,
In addition to the effects of claims 6 and 7,
When the inner wall surface of the battery cell stack is a fuel electrode, the battery cell stack is provided with a columnar spacer similar to the shape of the inner passage in each inner passage to narrow the inner passage space and react with the fuel electrode layer. Because it is configured to allow only the amount of fuel that contributes to the
The columnar spacer eliminates wasted fuel flowing through the center of the inner passage without coming into contact with the fuel electrode layer, which increases as the shape of the cylindrical battery cell increases and the inner passage expands. A good fuel cell can be constructed.

10.本発明の請求項10の発明によれば、
前記請求項6及び7の効果に加えて、
前記電池セルスタックが、その構成電池セルの内壁面が燃料極の場合、同電池セルスタックの一端に燃料を供給するチャンバーと、各内通路内に同内通路の形状に相似した筒形状スペーサを備え、
前記チャンバーから供給された燃料が、前記筒形状スペーサの筒内気体通路を通流した後、同筒形状スペーサの他端部で反転し、反転された燃料がこの筒形状スペーサ外周面と前記構成電池セルの内壁面との間の狭められた空間に燃料極との反応に寄与する量の燃料のみを流通させた後に排出されるよう構成されているので、
筒型電池セルの形状が大きくなりその内通路が拡大することによって増加する燃料極層と接触することなく内通路の中心部を通流する燃料を、まず前記筒形状スペーサの筒内気体通路を通流させた後に同筒形状スペーサの他端部で反転させ、前記筒形状スペーサの外周面と前記構成電池セルの内壁面との間狭められた空間に通流させることによって内通路に供給した燃料が無駄なく燃料極層に接触し、燃料効率のよい燃料電池が構成できる。
10. According to the invention of claim 10 of the present invention,
In addition to the effects of claims 6 and 7,
When the battery cell stack has a fuel electrode on the inner wall surface of the battery cell stack, a chamber for supplying fuel to one end of the battery cell stack, and a cylindrical spacer similar to the shape of the inner passage in each inner passage Prepared,
After the fuel supplied from the chamber flows through the in-cylinder gas passage of the cylindrical spacer, the fuel is inverted at the other end of the cylindrical spacer, and the inverted fuel is the outer peripheral surface of the cylindrical spacer and the configuration. Since it is configured to be discharged after flowing only the amount of fuel that contributes to the reaction with the fuel electrode in the narrowed space between the inner wall surfaces of the battery cells,
The fuel flowing through the central portion of the inner passage without contacting the fuel electrode layer, which increases as the shape of the cylindrical battery cell increases and the inner passage expands, is first introduced into the in-cylinder gas passage of the cylindrical spacer. After passing through, it was reversed at the other end of the cylindrical spacer and supplied to the inner passage by passing through a space narrowed between the outer peripheral surface of the cylindrical spacer and the inner wall surface of the constituent battery cell. A fuel can contact the fuel electrode layer without waste, and a fuel cell with good fuel efficiency can be configured.

また、前記燃料を供給するチャンバーを前記電池セルスタックの下部に配設すれば、同チャンバーから供給された燃料が、前記筒形状スペーサの筒内気体通路を通流した後、同筒形状スペーサの他端部で反転し、反転された燃料はこの筒形状スペーサ外周面と前記複数の電池セル筒体内壁面間に狭められた内通路空間を流通した後排出されるので、軽い水素等の燃料滞留時間を延ばし、2酸化炭素等の重い反応ガスの排出を早められ、燃料効率のさらなる向上を図ることができる。   In addition, if the chamber for supplying the fuel is disposed in the lower part of the battery cell stack, the fuel supplied from the chamber flows through the in-cylinder gas passage of the cylindrical spacer, and then the The fuel is inverted at the other end, and the inverted fuel is discharged after flowing through the inner passage space narrowed between the outer peripheral surface of the cylindrical spacer and the wall surfaces of the plurality of battery cells, so that fuel such as light hydrogen is retained. It is possible to extend the time, expedite the discharge of heavy reaction gas such as carbon dioxide, and further improve the fuel efficiency.

11.本発明の請求項11の発明によれば、
請求項6〜10のいずれか1項に記載の電池セルスタックが複数個同一平面に並置され、それぞれが並列接続、又は直列接続され、あるいは直並列の組み合わせで接続されて電池セルモジュールを形成しているので、
前記請求項6〜10の効果に加えて、
電池セルスタックの並列接続で大電流容量対応型の電池セルモジュールが、、直列接続で高電圧対応型の電池せるモジュールが、また両者の組み合わせで大電流容量・高電圧対応型の電池セルモジュールが容易に形成できる。
11. According to the invention of claim 11 of the present invention,
A plurality of the battery cell stacks according to any one of claims 6 to 10 are juxtaposed on the same plane, and each of them is connected in parallel, connected in series, or connected in a series-parallel combination to form a battery cell module. Because
In addition to the effects of claims 6 to 10,
A battery cell module that supports large current capacity by connecting battery cell stacks in parallel, a module that supports high voltage batteries by connecting in series, and a battery cell module that supports large current capacity and high voltage by combining both Can be easily formed.

12.本発明の請求項12の発明によれば、
前記請求項11の効果に加えて、
前記電池セルモジュールが、前記電池セルスタック複数個を同一平面に平行格子状、又は千鳥格子状に並置されているので、
燃料通路、空気通路を形成しやすく、特に千鳥格子状に電池セルスタックを並置すると各構成筒型電池セルの外壁面で囲まれて形成される各外通路空間はほぼ均一な断面積とすることができ、したがって外通路を通流する燃料又は空気は各構成筒型電池セルに均等に供給されることとなり、かつ燃料又は空気は各筒型電気セルの各極層に均一に接触し、高効率で安定した発電が行われる。
12 According to the invention of claim 12 of the present invention,
In addition to the effect of claim 11,
Since the battery cell modules are juxtaposed in a parallel grid pattern or a staggered grid pattern on the same plane,
Fuel passages and air passages are easy to form. Especially when battery cell stacks are arranged side by side in a staggered pattern, each outer passage space formed by the outer wall surface of each constituent cylindrical battery cell has a substantially uniform cross-sectional area. Therefore, the fuel or air flowing through the outer passage will be supplied uniformly to each constituent tubular battery cell, and the fuel or air will be in uniform contact with each polar layer of each tubular electric cell, Highly efficient and stable power generation is performed.

13.本発明の請求項13の発明によれば、
前記請求項11及び12の効果に加えて、
前記電池セルモジュールは、複数個同一平面に並置され、又は上下に積み重ねられて電気的に接続され、あるいは同一平面に並置されて電気的に接続されたものをさらに複数個上下に積み重ねて電気的に接続しているので、
前記したように、電池セルを複数段積層することで必要とする電源電圧に容易に対応することができ、したがって高温動作による内部抵抗の低減化と高電圧動作による電流損失の低減化によって高効率電池セルスタック複数個を電池セルモジュール化し、電池セルモジュールの並列接続で大電流容量対応型、直列接続で高電圧対応型、あるいはその組み合わせで接続した大電流容量で高電圧対応型SOFCを容易に形成できる。
13. According to the invention of claim 13 of the present invention,
In addition to the effects of claims 11 and 12,
A plurality of the battery cell modules are juxtaposed in the same plane, or stacked up and down and electrically connected, or a plurality of the battery cell modules juxtaposed in the same plane and electrically connected are stacked up and down to be electrically connected. Connected to
As described above, it is possible to easily cope with the required power supply voltage by stacking a plurality of battery cells. Therefore, high efficiency is achieved by reducing internal resistance by high temperature operation and current loss by high voltage operation. Multiple battery cell stacks are made into battery cell modules, so that high current capacity compatible SOFCs with large current capacity connected by connecting battery cell modules in parallel, high voltage compatible with series connection, or a combination of them are easy. Can be formed.

本発明実施例の筒型の固体酸化物形燃料電池の積層壁体の基体部となる層が電解質層の場合の電池セル斜視図。The battery cell perspective view in case the layer used as the base | substrate part of the laminated wall body of the cylindrical solid oxide fuel cell of an Example of this invention is an electrolyte layer. 本発明実施例の筒型の固体酸化物形燃料電池のの積層壁体の基体部となる層が燃料極層あるいは空気極層の場合の電池セルの斜視図。The perspective view of the battery cell in case the layer used as the base | substrate part of the laminated wall body of the cylindrical solid oxide fuel cell of an Example of this invention is a fuel electrode layer or an air electrode layer. 同発明実施例の筒型の固体酸化物形燃料電池の電池セルスタックの斜視図。The perspective view of the battery cell stack of the cylindrical solid oxide fuel cell of the Example of the invention. 同発明実施例の電池セルスタックを構成する各電池セルを直列接続するためのインターコネクタ斜視図。The interconnector perspective view for connecting each battery cell which comprises the battery cell stack of the Example of the invention in series. 同発明実施例の電池セルスタックの電池セル筒体内に配設された筒形スペーサの説明図。Explanatory drawing of the cylindrical spacer arrange | positioned in the battery cell cylinder of the battery cell stack of the Example of the invention. 同発明実施例の平行格子状配置の電池セルモジュールの斜視図。The perspective view of the battery cell module of the parallel grid | lattice-like arrangement | positioning of the Example of the invention. 同発明実施例の千鳥格子状配置の電池セルモジュールの斜視図。The perspective view of the battery cell module of the staggered arrangement of the invention embodiment. 同発明実施例の燃料電池として最小限必要な機能を持つ電池モジュールシステムの斜視図。The perspective view of the battery module system which has a minimum required function as a fuel cell of the Example of the invention. 従来例の平板型SOFCセルの構造図。FIG. 7 is a structural diagram of a conventional flat plate type SOFC cell. 従来例の円筒型SOFCセルの構造図。FIG. 6 is a structural diagram of a conventional cylindrical SOFC cell. 従来例の角筒型SOFCセルの構造図。FIG. 6 is a structural diagram of a conventional rectangular tube type SOFC cell.

本発明の筒型の個体酸化物形燃料電池は、空気極層、電解質層及び燃料極層を順次積層してなる積層壁体で形成された筒型電池セルの多数個を一体化して一つのSOFC電池セルを形成したものであり、特に中央部に配置された中央部筒型電池セルと、同中央部筒型電池セルの縦側面に沿って平行に接合され、かつ相互に交差することのない複数本の側部筒型電池セルとで形成され、各側部筒型電池セルは前記中央部筒型電池セルの縦側面に線接触状態で一箇所のみが接合されて構成されたものである。
なお、各筒型電池セルを構成する積層壁は、電解質層を基体部とし、この基体部となる電解質層を挟んで燃料極層と空気極層を対向配置したもの、あるいは燃料極層(又は空気極層)を基体部とし、その外側面に電解質層及び空気極層(又は燃料極層)を順次配置したもののいずれかが選択使用される。
The cylindrical solid oxide fuel cell according to the present invention integrates a large number of cylindrical battery cells formed of a laminated wall formed by sequentially laminating an air electrode layer, an electrolyte layer, and a fuel electrode layer. The SOFC battery cell is formed, and in particular, the central cylindrical battery cell arranged in the central part is joined in parallel along the longitudinal side surface of the central cylindrical battery cell and intersects each other. Each side cylindrical battery cell is formed by joining only one portion in a line contact state with the vertical side surface of the central cylindrical battery cell. is there.
The laminated wall constituting each cylindrical battery cell has an electrolyte layer as a base part, and a fuel electrode layer and an air electrode layer facing each other with the electrolyte layer serving as the base part interposed therebetween, or a fuel electrode layer (or Any one in which an air electrode layer) is a base portion and an electrolyte layer and an air electrode layer (or a fuel electrode layer) are sequentially arranged on the outer surface thereof is selectively used.

さらに、前記複数本の側部筒型電池セルは、中央部筒型電池セルの側面に等間隔で放射状に配設され、前記中央部筒型電池セル及び複数の側部筒型電池セルのいずれもの内壁面が燃料極層、外壁面が空気極層、又は外壁面が燃料極層、内壁面が空気極層でなり、かつ前記各筒型電池セルの外壁面を構成する空気極層又は燃料極層が連続した一つの面で形成されている。   Further, the plurality of side cylindrical battery cells are arranged radially at equal intervals on a side surface of the central cylindrical battery cell, and any one of the central cylindrical battery cell and the plurality of side cylindrical battery cells is disposed. The inner wall surface is a fuel electrode layer, the outer wall surface is an air electrode layer, or the outer wall surface is a fuel electrode layer, the inner wall surface is an air electrode layer, and the air electrode layer or fuel that constitutes the outer wall surface of each cylindrical battery cell. The polar layer is formed by one continuous surface.

また、前記各筒型電池セルの内壁面内側の中空部を内通路とし、外壁面外側の空間を外通路とし、それぞれの通路に、同通路の壁面を構成する燃料極層又は空気極層に対応する燃料又は空気が供給される。   Further, the hollow portion inside the inner wall surface of each cylindrical battery cell is used as an inner passage, and the space outside the outer wall surface is used as an outer passage. In each passage, a fuel electrode layer or an air electrode layer constituting the wall surface of the passage is provided. Corresponding fuel or air is supplied.

本発明を実施するための形態を図に基づいて詳細に説明する。
本発明の筒型のSOFC電池セル1を構成する各筒型電池セルは、正方形、長方形、菱形、多角形、円形、又は楕円形のいずれでもよいが、代表的な正4角形の断面形状の筒型電池セル5個で形成された筒型のSOFCについて実施例の図に基づいて説明する。
DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described in detail with reference to the drawings.
Each cylindrical battery cell constituting the cylindrical SOFC battery cell 1 of the present invention may be any of a square, a rectangle, a rhombus, a polygon, a circle, or an ellipse, but has a typical regular quadrangular cross-sectional shape. A cylindrical SOFC formed of five cylindrical battery cells will be described with reference to the drawings of the embodiments.

図1に示すように、電解質層4aの基体部を挟んで燃料極層2と空気極層3を対向配置した積層壁、あるいは、図2に示すように、燃料極層(又は空気極層)3を基体部としその外側面に電解質層4a及び空気極層(又は燃料極層)2を順次配置した積層壁で形成された筒型電池セルを、中央部に配置された中央部筒型電池セル5と、同中央部筒型電池セル5の縦側面に線接触状態で一箇所のみが接合された、中央部筒型体5と同一形状、同一寸法で、かつ同一構造の4個の側部筒型電池セル6とを一体化して一つの電池セルを形成している。以降この構造の電池セルを筒型SOFC電池セル1と記述する。   As shown in FIG. 1, a laminated wall in which the fuel electrode layer 2 and the air electrode layer 3 are arranged to face each other with the base portion of the electrolyte layer 4a interposed therebetween, or as shown in FIG. 2, a fuel electrode layer (or air electrode layer). A cylindrical battery cell formed by a laminated wall in which 3 is a base portion and an electrolyte layer 4a and an air electrode layer (or fuel electrode layer) 2 are sequentially arranged on the outer surface thereof is arranged at the central portion. Four sides of the same shape, the same size, and the same structure as the central cylindrical body 5 in which the cell 5 and the central cylindrical battery cell 5 are joined to the longitudinal side surface of the central cylindrical battery cell 5 in a line contact state. The part-cylinder battery cell 6 is integrated to form one battery cell. Hereinafter, the battery cell having this structure is referred to as a cylindrical SOFC battery cell 1.

前記筒型のSOFC電池セル1の側部筒型電池セル6は、中央部筒型体5の側面に等間隔で放射状に上下、左右共にシンメトリーに配設され、前記筒型SOFC電池セル1を構成する。
1個の中央部筒型電池セル5及び4個の側部筒型電池セル6のいずれも、その内壁面が燃料極層2、外壁面が空気極層3であり、かつ前記各筒型電池セルの外壁面を構成する空気極層3は連続した一つの面で形成されている。
Side cylindrical battery cells 6 of the cylindrical SOFC battery cell 1 are symmetrically arranged on the side surface of the central cylindrical body 5 radially at equal intervals both vertically and horizontally. Constitute.
In each of the one central cylindrical battery cell 5 and the four side cylindrical battery cells 6, the inner wall surface is the fuel electrode layer 2, the outer wall surface is the air electrode layer 3, and each of the cylindrical batteries. The air electrode layer 3 constituting the outer wall surface of the cell is formed by one continuous surface.

また、前記筒形SOFC電池セル1は、各筒型電池セルの内壁面内側の中空部を内通路7とし、外壁面外側の空間を外通路8とし、それぞれの内通路7には燃料を、外通路8には空気が通流される。   The cylindrical SOFC battery cell 1 has a hollow portion inside the inner wall surface of each cylindrical battery cell as an inner passage 7, a space outside the outer wall surface as an outer passage 8, fuel in each inner passage 7, Air is passed through the outer passage 8.

前記筒型のSOFC電池セル1を上下に直列接続する場合を考慮し、上下に重なる筒型のSOFC電池セル1の燃料極層2同士、及び空気極層3同士が接触するのを防止するため、図1に示した各筒型電池セルの積層壁体の基体部となる層が電解質層4aの場合は、各筒型電池セルの外側壁面では上端部に、内側壁面では下端部にそれぞれの極層が設けられていないブランク部9を設けている。
また図2に示した各筒型電池セルの積層壁体の基体部となる層が燃料極層あるいは空気極層の場合は、積層壁体の内側壁面として基体部となる極層(図2では燃料極層2)を配設し、その外側面に電解質層4aを積層し、さらに前記電解質層4を基体部となる極層2の下端面4cと内壁面下端部に微小高さの折り返し部4bとして構成されるように連続延伸させ、そして電解質層4aの外壁面に、前記基体部とし用いられたのとは別の極層(図2では空気極層3)を設け、かつ前記電解質層外側面上部に当該極層が設けられていない環状のブランク部9を設けている。
In consideration of the case where the cylindrical SOFC battery cells 1 are connected in series in the vertical direction, in order to prevent the fuel electrode layers 2 and the air electrode layers 3 of the cylindrical SOFC battery cells 1 that are vertically stacked from contacting each other. 1, when the layer serving as the base portion of the laminated wall body of each cylindrical battery cell shown in FIG. 1 is the electrolyte layer 4a, the outer wall surface of each cylindrical battery cell is at the upper end portion, and the inner wall surface is at the lower end portion. A blank portion 9 in which no polar layer is provided is provided.
2 is a fuel electrode layer or an air electrode layer, the polar layer serving as the base portion as the inner wall surface of the multilayer wall body (in FIG. 2). A fuel electrode layer 2) is disposed, an electrolyte layer 4a is laminated on the outer side surface thereof, and the electrolyte layer 4 is further folded to a lower end surface 4c and a lower end portion of the inner wall surface of the electrode layer 2 serving as a base portion. 4b, and the electrode layer 4a is provided with an electrode layer (air electrode layer 3 in FIG. 2) different from that used as the base portion on the outer wall surface of the electrolyte layer 4a. An annular blank portion 9 not provided with the polar layer is provided on the outer surface upper portion.

本発明の筒型のSOFC電池セル1の発電量と、平板型SOFCセルの発電量を同一体積の電池セルの燃料極の発電面積で比較する。
本実施例の筒型のSOFC電池セル1の正方形の筒体の内辺を6mm、高さを10mm、積層壁厚を0.5mmとし、その内壁面を燃料極層とすれば、発電面積は、
(6mm×10mm×4面)×5個=1200mm2
となる。
一方、筒型電池セル5個で作る本発明の筒形SOFC電池セル1全体の一辺の長さは積層壁厚を含めて20mmであり、一辺が20mmの正方形の平板型SOFCセルの厚みを3.3mmとし、周辺シール幅を合計6mmとすれば、一枚の平板型SOFCセルの発電面積は(20mm−6mm)2、本実施例の筒型SOFC電池セル1の高さ10mmは、平板型SOFCセル3枚の厚みに相当することから、
(20mm−6mm)2×3枚=588mm2
となる。したがって、本発明の筒形SOFC電池セル1の発電面積は、平板型SOFCセルの2倍強となる。
The power generation amount of the cylindrical SOFC battery cell 1 of the present invention and the power generation amount of the flat plate SOFC cell are compared with the power generation area of the fuel electrode of the battery cell of the same volume.
If the inner side of the square cylinder of the cylindrical SOFC battery cell 1 of this embodiment is 6 mm, the height is 10 mm, the laminated wall thickness is 0.5 mm, and the inner wall surface is a fuel electrode layer, the power generation area is ,
(6 mm × 10 mm × 4 surfaces) × 5 = 1200 mm 2
It becomes.
On the other hand, the length of one side of the cylindrical SOFC battery cell 1 of the present invention made of five cylindrical battery cells is 20 mm including the thickness of the laminated wall, and the thickness of a square plate-type SOFC cell having a side of 20 mm is 3 mm. If the peripheral seal width is 6 mm in total, the power generation area of one flat plate SOFC cell is (20 mm−6 mm) 2 , and the height of the cylindrical SOFC battery cell 1 of this embodiment is 10 mm. Since it corresponds to the thickness of three SOFC cells,
(20mm-6mm) 2 × 3 = 588mm 2
It becomes. Therefore, the power generation area of the cylindrical SOFC battery cell 1 of the present invention is slightly more than twice that of the flat plate type SOFC cell.

前記5個の筒型電池セルで構成された筒形SOFC電池セル1を12個上下に積み重ねた電池セルスタック10の実施例の斜視図を図3に示す。
図3に見られるように、上下に積み重ねられた12個の電池セル1の間にはそれぞれインターコネクタ11が配設され、このインターコネクタ11により上部の電池セル1の燃料極層2と下部の電池セル1の空気極層3がそれぞれ電気的に接続される〔図5(b)参照〕。
FIG. 3 shows a perspective view of an embodiment of a battery cell stack 10 in which 12 cylindrical SOFC battery cells 1 composed of the five cylindrical battery cells are vertically stacked.
As shown in FIG. 3, an interconnector 11 is disposed between 12 battery cells 1 stacked one above the other, and the interconnector 11 causes the fuel electrode layer 2 of the upper battery cell 1 and the lower electrode layer 1 to The air electrode layers 3 of the battery cells 1 are electrically connected to each other (see FIG. 5B).

また、電池セルスタック10の最上段の電池セル1及び最下段の電池セル1には電力を取り出すための集電プレート12、12が設けられ、さらに、電池セルスタック10の下端部には電池セルスタック10の5つの内通路に燃料を分配するチャンバー14が、また上端部には、後述の筒形状スペーサ18を備えた電池セルスタック10において前記筒型スペーサ18内側の気体通路を上昇してきた燃料を、電池セルスタックを構成する各筒形SOFC電池セル1の燃料極層に接触させ発電に寄与するよう反転させる機能を持つスタック・アッパー13が配設されている。   In addition, the uppermost battery cell 1 and the lowermost battery cell 1 of the battery cell stack 10 are provided with current collecting plates 12 and 12 for taking out electric power. A chamber 14 for distributing fuel to the five inner passages of the stack 10 and a fuel that has moved up the gas passage inside the cylindrical spacer 18 in the battery cell stack 10 provided with a cylindrical spacer 18 described later at the upper end. Is placed in contact with the fuel electrode layer of each cylindrical SOFC battery cell 1 constituting the battery cell stack, and a stack upper 13 having a function of reversing the battery cell stack is provided.

図4に示すインターコネクタ11は、コネクタ折り曲げ部16a及び16bを有し、これにより、構成電池セル1の外側面が空気極層3、内側面が燃料極層2場合、上部の筒形SOFC電池セル1の空気極層3と下部筒形SOFC電池セル1の燃料極層2を連結し、上下の各電池セルが電気的に直列接続される。
上下の各電池セル1の電気導通性と、各筒形SOFC電池セル1とインターコネクター11との接合面でのガスシール性を確保するために、インターコネクター11の全面に導電性接着剤を、その必要に応じて電池セルスタック10の作成前に塗布する。
この場合、電池セルスタック10の作成時、未凝固の導電性接着剤の接着部からのはみ出しによる、各電池セル1のインターコネクター11との接合部での漏電は、図1及び図2のブランク部9及び図2の電解質層4c、4bにより完全に防止される。
The interconnector 11 shown in FIG. 4 has connector bent portions 16a and 16b. When the outer side surface of the constituent battery cell 1 is the air electrode layer 3 and the inner side surface is the fuel electrode layer 2, the upper cylindrical SOFC battery The air electrode layer 3 of the cell 1 and the fuel electrode layer 2 of the lower cylindrical SOFC battery cell 1 are connected, and the upper and lower battery cells are electrically connected in series.
In order to ensure the electrical continuity of the upper and lower battery cells 1 and the gas sealability at the joint surface between each cylindrical SOFC battery cell 1 and the interconnector 11, a conductive adhesive is applied to the entire surface of the interconnector 11. If necessary, it is applied before the battery cell stack 10 is formed.
In this case, when the battery cell stack 10 is produced, the leakage of electric current at the joint portion of each battery cell 1 with the interconnector 11 due to the protrusion of the unsolidified conductive adhesive from the adhesive portion is the blank shown in FIGS. It is completely prevented by the part 9 and the electrolyte layers 4c, 4b of FIG.

また、インターコネクタ11には、上下に積み重ねられた筒形SOFC電池セル1の中央部筒型体5及び側部筒型体6の各内通路7を連通させ、気体を通流させるための通風口17が5箇所に設けられている。   Further, the interconnector 11 communicates the inner passages 7 of the central cylindrical body 5 and the side cylindrical body 6 of the cylindrical SOFC battery cell 1 stacked one above the other so as to allow gas to flow. The mouth 17 is provided in five places.

電池セルスタック10の各内通路7内に配設された筒形状スペーサ18の作用を、図5に示す実施例の外観図(a)とXーX’断面図(b)(c)に基づいて説明する。
電池セルスタック10の内通路7には、同内通路7の形状に相似した筒形状スペーサ18が、また、電池セルスタック10の上端部には最上段の筒形SOFC電池セル1の内通路7を覆うスタック・アッパー13が配設されていている。
The action of the cylindrical spacer 18 disposed in each inner passage 7 of the battery cell stack 10 is based on the external view (a) and the XX ′ cross-sectional views (b) and (c) of the embodiment shown in FIG. I will explain.
The inner passage 7 of the battery cell stack 10 has a cylindrical spacer 18 similar to the shape of the inner passage 7, and the upper end of the battery cell stack 10 has an inner passage 7 of the uppermost tubular SOFC battery cell 1. A stack upper 13 is disposed to cover.

電池セルスタック10の下部に備えたチャンバー14から供給された矢印表示の燃料は、筒形状スペーサ18の気体通路19を通りスタック・アッパー13に到達し、ここで反転され、電池セルスタック10を構成する各筒形SOFC電池セル1の中央部筒型体5及び4個の側部筒型体6の内壁面と筒形状スペーサ18の外周面間に狭められた内通路部分7を通流して燃料極層2と無駄なく反応しながら再び電池セルスタック10の下方に到達し排出される。   The fuel indicated by the arrow supplied from the chamber 14 provided at the lower part of the battery cell stack 10 passes through the gas passage 19 of the cylindrical spacer 18 and reaches the stack upper 13 where it is reversed to constitute the battery cell stack 10. The fuel flows through the inner passage portion 7 narrowed between the inner wall surface of the central cylindrical body 5 and the four side cylindrical bodies 6 of each cylindrical SOFC battery cell 1 and the outer peripheral surface of the cylindrical spacer 18. While reacting with the polar layer 2 without waste, it reaches the lower part of the battery cell stack 10 again and is discharged.

ここで、前記筒形状スペーサ18に代えて、図5(c)に示すように内通路の形状に相似した柱形状スペーサ18’を設けて内通路空間を狭め、チャンバー14から供給された燃料を電池セルスタック10を構成する各筒形SOFC電池セル1の燃料極2と無駄なく反応させ、電池セルスタック10の上端に配設されたスタック・アッパー13’の開口部13aから排出するようにしてもよい。   Here, instead of the cylindrical spacer 18, as shown in FIG. 5C, a columnar spacer 18 ′ similar to the shape of the inner passage is provided to narrow the inner passage space, and the fuel supplied from the chamber 14 is supplied. The fuel electrode 2 of each cylindrical SOFC battery cell 1 constituting the battery cell stack 10 is allowed to react without waste and discharged from the opening 13a of the stack upper 13 ′ disposed at the upper end of the battery cell stack 10. Also good.

図6又は図7に示すように、前記電池セルスタック10を複数個同一平面に並置し、それぞれを並列接続、又は直列接続し、あるいは直並列の組み合わせ接続によって電池セルモジュール20を形成することができる。   As shown in FIG. 6 or FIG. 7, a plurality of the battery cell stacks 10 are juxtaposed on the same plane, and each of them is connected in parallel or in series, or a battery cell module 20 is formed by serial / parallel combination connection. it can.

前記筒形SOFC電池セル1の各筒型電池セルは、正方形、長方形、菱形、円形、又は楕円形のいずれか一つの断面形状を選択でき、かつ前記電池セルスタック10を複数個同一平面に平行格子状に配設(図6)、又は千鳥格子状に配設(図7)して電池セルモジュール20を形成できるので、設計自由度が高く、燃料電池が組み込まれる装置の燃料電池に許容されるスペースに合わせて筒形電池セルの形状を選択し、集積密度を高めることができる。   Each cylindrical battery cell of the cylindrical SOFC battery cell 1 can be selected from any one of square, rectangular, rhombus, circular, or elliptical cross section, and a plurality of the battery cell stacks 10 are parallel to the same plane. Since the battery cell module 20 can be formed by arranging in a grid (FIG. 6) or in a staggered pattern (FIG. 7), the degree of freedom in design is high and the fuel cell of the device in which the fuel cell is incorporated is acceptable. The shape of the cylindrical battery cell can be selected according to the space to be formed, and the integration density can be increased.

また、本例では正方形筒体SOFC5個で電池セル1を構成したが、これに限定されることなく5角形で6個構成の電池セル、又は6角形で7個構成等多角形筒型の電池セルとしてもよい。
また、上記説明において、筒体の内壁面が燃料極層2、外壁面が空気極層3としたが、これに代えて内壁面を空気極層3、外壁面を燃料極層2としてもよい。
Further, in this example, the battery cell 1 is configured with five square cylinder SOFCs, but is not limited to this, and is a polygonal cylindrical battery such as a pentagonal battery with six batteries or a hexagonal battery with seven batteries. It is good also as a cell.
In the above description, the inner wall surface of the cylindrical body is the fuel electrode layer 2 and the outer wall surface is the air electrode layer 3, but the inner wall surface may be the air electrode layer 3 and the outer wall surface may be the fuel electrode layer 2. .

図8に、燃料電池の一例としての電池セルモジュールシステム21の外観図を示した。
この電池セルモジュールシステム21は、アウターハウジング22内に電池セルモジュール20を収容してなり、最下部の燃料入口23より供給された燃料は、前記電池セルモジュール20のチャンバー14を介して、筒型スペーサ18の気体通路19を通り、電池セルスタック10の燃料極層2の上部に供給され、スタック・アッパー13で反転され、燃料極層2において発電反応をしながら下降し、燃料出口24から酸化物として排出される。
In FIG. 8, the external view of the battery cell module system 21 as an example of a fuel cell was shown.
The battery cell module system 21 has a battery cell module 20 accommodated in an outer housing 22, and the fuel supplied from the lowermost fuel inlet 23 passes through the chamber 14 of the battery cell module 20 and is cylindrical. The gas 18 passes through the gas passage 19 of the spacer 18, is supplied to the upper part of the fuel electrode layer 2 of the battery cell stack 10, is inverted by the stack upper 13, and descends while performing a power generation reaction in the fuel electrode layer 2, and is oxidized from the fuel outlet 24. It is discharged as a thing.

一方、空気極層に反応する空気は、アウターハウジング22の上部に設けた空気入口25に供給され、電池セルモジュール20を構成する各電池セルスタック10の外通路8を通流して燃料と反応した後、アウターハウジング22下部に開放された空気出口26から排出される。   On the other hand, the air that reacts with the air electrode layer is supplied to the air inlet 25 provided at the upper part of the outer housing 22 and flows through the outer passage 8 of each battery cell stack 10 constituting the battery cell module 20 to react with the fuel. Thereafter, the air is discharged from the air outlet 26 opened at the lower portion of the outer housing 22.

1:筒形SOFC電池セル
2:燃料極層
3:空気極層
4:電解質層
4a:電解質1
4b:電解質2
4c:電解質3
5:中央部筒型電池セル
6:側部筒型電池セル
7:内通路
8:外通路
9:環状のブランク部
10:電池セルスタック
11:インターコネクタ
12:集電プレート
13、13’:スタック・アッパー
13a:開口部
14:チャンバー
16a、16b:折曲部
17:通風口
18:筒形状スペーサ
18’:柱形状スペーサ
19:気体通路
20:電池セルモジュール
21:電池セルモジュールシステム
22:アウターカバー
23:燃料入口
24:燃料出口
25:空気入口
26:空気出口
100:平板型SOFCセル
101:インターコネクタ
102:電解質
103:ガスケット
150:円筒型SOFCセル
151:インターコネクタ
152:電解質層
153:燃料極層
154:空気極層
200A:角筒型SOFCセル
211:空気極支持管
212:固体電解質
213:燃料極
214:インターコネクタ
221:セパレータ
222:フェルト
223:空隙
1: Cylindrical SOFC battery cell 2: Fuel electrode layer 3: Air electrode layer 4: Electrolyte layer 4a: Electrolyte 1
4b: Electrolyte 2
4c: Electrolyte 3
5: Central cylindrical battery cell 6: Side cylindrical battery cell 7: Inner passage 8: Outer passage 9: Annular blank portion 10: Battery cell stack 11: Interconnector 12: Current collecting plates 13, 13 ′: Stack Upper 13a: Opening portion 14: Chamber 16a, 16b: Bending portion 17: Ventilation port 18: Cylindrical spacer 18 ': Columnar spacer 19: Gas passage 20: Battery cell module 21: Battery cell module system 22: Outer cover 23: Fuel inlet 24: Fuel outlet 25: Air inlet 26: Air outlet 100: Flat plate SOFC cell 101: Interconnector 102: Electrolyte 103: Gasket 150: Cylindrical SOFC cell 151: Interconnector 152: Electrolyte layer 153: Fuel electrode Layer 154: Air electrode layer 200A: Square SOFC cell 211: Air electrode support tube 212: Solid Kaishitsu 213: anode 214: interconnector 221: Separator 222: Felt 223: void

Claims (13)

空気極層、電解質層及び燃料極層を順次積層してなる積層壁体で形成された筒型電池セルの多数個を連結してなる固体酸化物形燃料電池において、
中央部に配置された中央部筒型電池セルと、同筒型電池セルの縦側面に沿って平行に接合され、かつ相互に交差することのない複数本の側部筒型電池セルとからなり、かつ前記各側部筒型電池セルは前記中央部筒型電池セルの縦側面に線接触状態で一箇所のみが接合されてなる構成のものであることを特徴とする筒型の固体酸化物形燃料電池。
In a solid oxide fuel cell formed by connecting a large number of cylindrical battery cells formed of a laminated wall formed by sequentially laminating an air electrode layer, an electrolyte layer, and a fuel electrode layer,
It consists of a central cylindrical battery cell arranged in the central part and a plurality of side cylindrical battery cells that are joined in parallel along the longitudinal side surface of the cylindrical battery cell and do not cross each other. And each said side part cylindrical battery cell is a thing of the structure formed by joining only one place by the line contact state to the vertical side surface of the said center part cylindrical battery cell, The cylindrical solid oxide characterized by the above-mentioned Fuel cell.
前記筒型電池セルが、多角筒形のものであることを特徴とする請求項1記載の筒型の固体酸化物形燃料電池。   2. The cylindrical solid oxide fuel cell according to claim 1, wherein the cylindrical battery cell has a polygonal cylindrical shape. 前記筒型電池セルが、円筒形のものであることを特徴とする請求項1記載の筒型の固体酸化物形燃料電池。   2. The cylindrical solid oxide fuel cell according to claim 1, wherein the cylindrical battery cell is cylindrical. 前記複数本の側部筒型電池セルが、中央部筒型電池セルの側面に等間隔で放射状に配設され、前記中央部筒型電池セル及び複数本の側部筒型電池セルのいずれもの内壁面が燃料極層、外壁面が空気極層、又は外壁面が燃料極層、内壁面が空気極層でなり、かつ前記各筒型電池セルの外壁面を構成する空気極層又は燃料極層が連続した一つの面で形成されてなることを特徴とする請求項1〜3のいずれか1項に記載の筒型の固体酸化物形燃料電池。   The plurality of side cylindrical battery cells are arranged radially at equal intervals on the side surface of the central cylindrical battery cell, and any of the central cylindrical battery cell and the multiple side cylindrical battery cells An air electrode layer or fuel electrode in which the inner wall surface is a fuel electrode layer, the outer wall surface is an air electrode layer, or the outer wall surface is a fuel electrode layer, the inner wall surface is an air electrode layer, and constitutes the outer wall surface of each cylindrical battery cell. The cylindrical solid oxide fuel cell according to any one of claims 1 to 3, wherein the layers are formed on one continuous surface. 前記筒型電池セルが、その内壁面内側の中空部を内通路とし、外壁面外側の空間を外通路とし、それぞれの通路に、同通路の壁面を構成する燃料極層又は空気極層に対応する燃料又は空気が供給されてなることを特徴とする請求項1〜4のいずれか1項に記載の筒型の固体酸化物形燃料電池。   The cylindrical battery cell has a hollow portion inside the inner wall surface as an inner passage and a space outside the outer wall surface as an outer passage, and each passage corresponds to a fuel electrode layer or an air electrode layer constituting the wall surface of the passage. The cylindrical solid oxide fuel cell according to any one of claims 1 to 4, wherein fuel or air is supplied. 請求項1〜5のいずれか1項に記載の筒型の固体酸化物形燃料電池の複数個を上下に積み重ねて電池セルスタックを構成してなり、各々の上部電池セルの燃料極層と下部電池セルの空気極層、あるいは上部電池セルの空気極層と下部電池セルの燃料極層とを各々導電とガスシールの機能を持つインターコネクタで直列接続してなることを特徴とする筒型の固体酸化物形燃料電池。   A plurality of cylindrical solid oxide fuel cells according to any one of claims 1 to 5 are stacked one above the other to form a battery cell stack, and a fuel electrode layer and a lower portion of each upper battery cell A battery-type air electrode layer, or an upper battery cell air electrode layer and a lower battery cell fuel electrode layer, each of which is connected in series with an interconnector having a conductive and gas seal function. Solid oxide fuel cell. 前記電池セルスタックにおいて、直列接続された上下の電池セルの燃料極層同士、空気極層同士が接触するのを防止するために、各電池セルの積層壁体の基体部(構造体)となる層が電解質の場合は、それぞれ外壁面では上端部側壁面に、内壁面では下端部側壁面にそれぞれの極層が設けられていない環状のブランク部を設けてなることを特徴とする請求項6に記載の筒型の固体酸化物形燃料電池。   In the battery cell stack, in order to prevent the fuel electrode layers and the air electrode layers of the upper and lower battery cells connected in series from coming into contact with each other, it becomes a base portion (structure) of the laminated wall body of each battery cell. 7. When the layer is an electrolyte, each of the outer wall surfaces is provided with an annular blank portion that is not provided with the respective polar layers on the upper end portion side wall surface, and the inner wall surface is provided on the lower end portion side wall surface. A cylindrical solid oxide fuel cell as described in 1. 前記電池セルスタックにおいて、直列接続された上下の電池セルの燃料極層同士、空気極層同士が接触するのを防止するために、各電池セルの積層壁体の基体部(構造体)となる層が燃料極層あるいは空気極層の場合は、積層壁体の内側壁面として基体部となる極層を配設し、その外側面に電解質層を積層し、さらに前記電解質層を基体部となる極層の下端面と内壁面下端部に微小高さの折り返し部として構成されるように連続延伸させ、そして電解質層の外壁面に、前記基体部とし用いられたのとは別の極層となる空気極層又は燃料極層を設け、かつ前記電解質層外側面上部に当該極層が設けられていない環状のブランク部を設けてなることを特徴とする請求項6に記載の筒型の固体酸化物形燃料電池。   In the battery cell stack, in order to prevent the fuel electrode layers and the air electrode layers of the upper and lower battery cells connected in series from coming into contact with each other, it becomes a base portion (structure) of the laminated wall body of each battery cell. When the layer is a fuel electrode layer or an air electrode layer, an electrode layer serving as a base part is disposed as an inner wall surface of the laminated wall body, an electrolyte layer is stacked on the outer side surface, and the electrolyte layer is used as a base part. The electrode layer is continuously stretched so as to be formed as a folded portion having a minute height at the lower end surface and the lower end portion of the inner wall surface, and on the outer wall surface of the electrolyte layer, an electrode layer different from that used as the base portion and The cylindrical solid body according to claim 6, wherein an air blank layer or fuel electrode layer is provided, and an annular blank portion not provided with the electrode layer is provided on the outer surface of the electrolyte layer. Oxide fuel cell. 前記電池セルスタックが、その構成電池セルの内壁面が燃料極の場合、各内通路内に同内通路の形状に相似した柱形状スペーサを備えて内通路空間を狭め、燃料極との反応に寄与する量の燃料のみを通流させられるよう構成されてなることを特徴とする請求項6〜8のいずれか1項に記載の筒型の固体酸化物形燃料電池。   In the case where the battery cell stack has an inner wall surface of the constituent battery cell as a fuel electrode, each inner passage is provided with a columnar spacer similar to the shape of the inner passage to narrow the inner passage space for reaction with the fuel electrode. 9. The cylindrical solid oxide fuel cell according to claim 6, wherein only a contributing amount of fuel is allowed to flow. 前記電池セルスタックが、その構成電池セルの内壁面が燃料極の場合、同電池セルスタックの一端に燃料を供給するチャンバーと、各内通路内に同内通路の形状に相似した筒形状スペーサを備え、
前記チャンバーから供給された燃料が、前記筒形状スペーサの筒内気体通路を通流した後、同筒形状スペーサの他端部で反転し、反転された燃料がこの筒形状スペーサ外周面と前記構成電池セルの内壁面との間の狭められた空間に燃料極との反応に寄与する量の燃料のみを流通させた後に排出されるよう構成されてなることを特徴とする請求項6〜8のいずれか1項に記載の筒型の固体酸化物形燃料電池。
When the battery cell stack has a fuel electrode on the inner wall surface of the battery cell stack, a chamber for supplying fuel to one end of the battery cell stack, and a cylindrical spacer similar to the shape of the inner passage in each inner passage Prepared,
After the fuel supplied from the chamber flows through the in-cylinder gas passage of the cylindrical spacer, the fuel is inverted at the other end of the cylindrical spacer, and the inverted fuel is the outer peripheral surface of the cylindrical spacer and the configuration. 9. The fuel cell according to claim 6, wherein only a quantity of fuel that contributes to a reaction with the fuel electrode is circulated in a narrow space between the inner wall surfaces of the battery cells and then discharged. A cylindrical solid oxide fuel cell according to any one of the preceding claims.
請求項6〜10のいずれか1項に記載の電池セルスタックが複数個同一平面に並置され、それぞれが並列接続、又は直列接続され、あるいは直並列の組み合わせで接続されて電池セルモジュールを形成してなることを特徴とする筒型の固体酸化物形燃料電池。   A plurality of the battery cell stacks according to any one of claims 6 to 10 are juxtaposed on the same plane, and each of them is connected in parallel, connected in series, or connected in a series-parallel combination to form a battery cell module. A cylindrical solid oxide fuel cell comprising: 前記電池セルモジュールが、前記電池セルスタック複数個を同一平面に平行格子状、又は千鳥格子状に並置してなることを特徴とする請求項11に記載の筒型の固体酸化物形燃料電池。   12. The cylindrical solid oxide fuel cell according to claim 11, wherein the battery cell module is formed by arranging a plurality of the battery cell stacks side by side in a parallel grid pattern or a staggered grid pattern on the same plane. . 前記電池セルモジュール複数個が、同一平面に並置され、又は上下に積み重ねられて電気的に接続され、あるいは同一平面に並置されて電気的に接続されたものをさらに複数個上下に積み重ねて電気的に接続してなることを特徴とする請求項11又は12に記載の筒型の固体酸化物形燃料電池。
A plurality of the battery cell modules are juxtaposed in the same plane or stacked up and down to be electrically connected, or a plurality of battery cell modules juxtaposed in the same plane and electrically connected are stacked up and down to be electrically connected. The cylindrical solid oxide fuel cell according to claim 11 or 12, wherein the cylindrical solid oxide fuel cell is connected to.
JP2010147417A 2010-06-29 2010-06-29 Cylindrical solid oxide type fuel battery Pending JP2012014858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147417A JP2012014858A (en) 2010-06-29 2010-06-29 Cylindrical solid oxide type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147417A JP2012014858A (en) 2010-06-29 2010-06-29 Cylindrical solid oxide type fuel battery

Publications (1)

Publication Number Publication Date
JP2012014858A true JP2012014858A (en) 2012-01-19

Family

ID=45601071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147417A Pending JP2012014858A (en) 2010-06-29 2010-06-29 Cylindrical solid oxide type fuel battery

Country Status (1)

Country Link
JP (1) JP2012014858A (en)

Similar Documents

Publication Publication Date Title
JP3580455B2 (en) Molten carbonate fuel cell and power generator using the same
JP4397886B2 (en) Multi-layer circular pipe type solid oxide fuel cell module
JP7002900B2 (en) Fuel cell cell stack device
RU2628104C2 (en) Solid oxide fuel cell
EP3276729B1 (en) Cell stack device, module, and module housing device
JP6263638B2 (en) Assembly method and arrangement for cell system
JPH04237962A (en) Flat type solid electrolyte fuel cell
EP2517294A1 (en) Fuel cell module
JP6139231B2 (en) Solid oxide electrochemical cell stack structure and hydrogen power storage system
JP7064678B2 (en) Selectively rotated flow field for thermal management in fuel cell stack
JP2012014858A (en) Cylindrical solid oxide type fuel battery
JP6403908B2 (en) Electrochemical reaction cell stack
JP2021174593A (en) Electrochemical reaction cell stack
JP3153901B2 (en) Disc-stacked solid electrolyte fuel cell
JP6982586B2 (en) Fuel cell cartridges, fuel cell modules and combined cycle systems
JP2018181405A (en) Fuel cell power generation module
US11158878B2 (en) Electrochemical reaction cell stack
JP6489886B2 (en) Fuel cell module
KR20130073370A (en) Design of new support type for the optimization of solid oxide fuel cell stack and new structure of solid oxide fuel cell stack designed by the same
JPH1021940A (en) Solid electrolyte fuel cell
JPH09115528A (en) Flat solid electrolytic fuel cell with relaxed w-plane temperature distribution
JP2009070772A (en) Flat plate type fuel cell stack
JP2013077485A (en) Fuel battery device