JP2012013427A - Tracking type laser interferometer and method of controlling tracking type laser interferometer - Google Patents

Tracking type laser interferometer and method of controlling tracking type laser interferometer Download PDF

Info

Publication number
JP2012013427A
JP2012013427A JP2010147407A JP2010147407A JP2012013427A JP 2012013427 A JP2012013427 A JP 2012013427A JP 2010147407 A JP2010147407 A JP 2010147407A JP 2010147407 A JP2010147407 A JP 2010147407A JP 2012013427 A JP2012013427 A JP 2012013427A
Authority
JP
Japan
Prior art keywords
retroreflector
measurement light
tracking
main body
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010147407A
Other languages
Japanese (ja)
Other versions
JP5452391B2 (en
Inventor
Shinichi Hara
慎一 原
Masayuki Nara
正之 奈良
Naoyuki Taketomi
尚之 武富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2010147407A priority Critical patent/JP5452391B2/en
Publication of JP2012013427A publication Critical patent/JP2012013427A/en
Application granted granted Critical
Publication of JP5452391B2 publication Critical patent/JP5452391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tracking type laser interferometer that easily reduces a measurement error of a measured distance, and a method of controlling tracking type laser interferometer.SOLUTION: The tracking type laser interferometer 1 includes a main body 2 having an optical part 22 for tracking including a detector 222 which receives measurement light L21 reflected by a retroreflector R attached to a moving body, and control means 3 of controls the posture of the main body 2 based upon a light reception signal from the optical part 22 for tracking to make the main body 2 track the retroreflector R. The control means 3 includes a target position setting part 32 which sets a target position Q2 of the measurement light L21 received by the detector 222 so as to parallelize the measurement light L2 made incident on the retroreflector R and measurement light L2 reflected by the retroreflector R with each other, and a posture change part 33 which controls the posture of the main body 2 so as to make the measurement light L21 reflected by the retroreflector R incident on the target position Q2.

Description

本発明は追尾式レーザ干渉計および追尾式レーザ干渉計の制御方法に関する。   The present invention relates to a tracking laser interferometer and a tracking laser interferometer control method.

従来、移動体に取り付けられたレトロリフレクタで反射される測定光を用いてレトロリフレクタまでの距離を測定する追尾式レーザ干渉計(以下、干渉計とする。)が知られている(例えば、特許文献1参照)。   Conventionally, a tracking laser interferometer (hereinafter referred to as an interferometer) that measures a distance to a retroreflector using measurement light reflected by a retroreflector attached to a moving body is known (for example, a patent). Reference 1).

図3に示すように、このような干渉計100は、測長部110と追尾用光学部120とを有する本体101を備えている。測長部110は、レーザ光源111と、ハーフミラー112と、参照ミラー113と、検出器114とを備えている。追尾用光学部120はハーフミラー121と検出器122とを備えている。
干渉計100を組み立てたときに、ハーフミラー112が、規定の配置位置A0から所定距離dだけオフセットした位置A1に配置されている場合には、まず、レーザ光源111から出射されたレーザ光L1はハーフミラー112で測定光L2と参照光L3とに分割される。そして、測定光L2は、ハーフミラー121を通ってレトロリフレクタRの位置P1に入射され、中心P0に対して位置P1と点対称な位置P2で反射される。配置位置A0は、本体101の回転中心OとレトロリフレクタRの中心P0とを結ぶ直線O−P0と、レーザ光L1の光軸との交点である。
As shown in FIG. 3, such an interferometer 100 includes a main body 101 having a length measuring unit 110 and a tracking optical unit 120. The length measuring unit 110 includes a laser light source 111, a half mirror 112, a reference mirror 113, and a detector 114. The tracking optical unit 120 includes a half mirror 121 and a detector 122.
When the half mirror 112 is arranged at a position A1 that is offset from the prescribed arrangement position A0 by a predetermined distance d when the interferometer 100 is assembled, first, the laser light L1 emitted from the laser light source 111 is The half mirror 112 splits the measurement light L2 into the reference light L3. Then, the measurement light L2 passes through the half mirror 121 and enters the position P1 of the retroreflector R, and is reflected at a position P2 that is point-symmetric with respect to the position P1 with respect to the center P0. The arrangement position A0 is an intersection of a straight line O-P0 connecting the rotation center O of the main body 101 and the center P0 of the retroreflector R and the optical axis of the laser light L1.

レトロリフレクタRで反射された測定光L2のうち一部の測定光L21がハーフミラー121で反射され、検出器122の規定位置Q1から距離dだけ離れた図3に示す位置Q2に入射されて検出器122で受光される。規定位置Q1は、ハーフミラー112が規定の配置位置A0に配置されているとき(d=0のとき)に、測定光L21が検出器122で受光される位置である。一方、レトロリフレクタRで反射された測定光L2のうち他の測定光L22は、ハーフミラー121を透過してハーフミラー112に入射する。
参照光L3は、参照ミラー113に向かって進み、参照ミラー113で反射されてハーフミラー112に入射し、ハーフミラー112で検出器114に向かって反射される。
ハーフミラー112では、入射してくる測定光L22と入射してくる参照光L3とが合成されて光の干渉が起こり、干渉光が生成されて検出器114に送られる。
A part of the measurement light L21 reflected by the retroreflector R is reflected by the half mirror 121 and is incident on the position Q2 shown in FIG. The light is received by the device 122. The specified position Q1 is a position at which the measurement light L21 is received by the detector 122 when the half mirror 112 is arranged at the prescribed arrangement position A0 (when d = 0). On the other hand, the other measurement light L22 out of the measurement light L2 reflected by the retroreflector R passes through the half mirror 121 and enters the half mirror 112.
The reference light L3 travels toward the reference mirror 113, is reflected by the reference mirror 113, enters the half mirror 112, and is reflected by the half mirror 112 toward the detector 114.
In the half mirror 112, the incident measurement light L22 and the incident reference light L3 are combined to cause light interference, and interference light is generated and sent to the detector 114.

特開2007−57522号公報JP 2007-57522 A

しかし、このような従来の干渉計100では、本体101の姿勢は、レトロリフレクタRで反射された測定光L2が常に検出器122の規定位置Q1に入射するように制御される。この場合には、図4に示すように、レトロリフレクタRで反射された測定光L2の光軸の方向は、本体101を回転させないときの測定光L2の光軸の方向(直線O−P0と平行な方向)に対して回転角度θだけ傾いてしまう。光軸が回転角度θだけ傾いた測定光L2に基づいて測定されるレトロリフレクタRまでの距離は、本体101を回転させずに、直線O−P0と平行な方向の光軸を有する測定光L2に基づいて測定されるレトロリフレクタRまでの距離に対して測定誤差が生じる。   However, in such a conventional interferometer 100, the posture of the main body 101 is controlled such that the measurement light L2 reflected by the retroreflector R is always incident on the specified position Q1 of the detector 122. In this case, as shown in FIG. 4, the direction of the optical axis of the measurement light L2 reflected by the retroreflector R is the direction of the optical axis of the measurement light L2 when the main body 101 is not rotated (straight line O-P0). It is tilted by the rotation angle θ with respect to the (parallel direction). The distance to the retroreflector R measured based on the measurement light L2 whose optical axis is inclined by the rotation angle θ is the measurement light L2 having an optical axis in a direction parallel to the straight line O-P0 without rotating the main body 101. A measurement error occurs with respect to the distance to the retro-reflector R measured based on

なお、ハーフミラー112や検出器122を移動させる移動機構を設けて、その移動機構によってハーフミラー112や検出器122を位置調整することにより、距離dを0とすることも考えられるが、干渉計100の構成が複雑になり、コストが増加する。   Although it is conceivable to provide a moving mechanism for moving the half mirror 112 and the detector 122 and adjust the position of the half mirror 112 and the detector 122 by the moving mechanism, the distance d may be set to 0, but the interferometer The configuration of 100 becomes complicated and the cost increases.

本発明の目的は、測定される距離の測定誤差を容易に低減できる追尾式レーザ干渉計および追尾式レーザ干渉計の制御方法を提供することである。   An object of the present invention is to provide a tracking laser interferometer and a control method for the tracking laser interferometer that can easily reduce the measurement error of the measured distance.

本発明の追尾式レーザ干渉計は、移動体に取り付けられた再帰反射体で反射された測定光を受光する検出器を備える追尾用光学部を有する本体と、前記追尾用光学部からの受光信号に基づいて前記本体の姿勢を制御し、前記本体に前記再帰反射体を追尾させる制御手段とを備える追尾式レーザ干渉計であって、前記制御手段は、前記再帰反射体に入射する測定光と前記再帰反射体で反射される測定光とを平行とするように前記検出器で受光される前記測定光の目標位置を設定する目標位置設定部と、前記本体の姿勢を制御し、前記再帰反射体で反射された測定光を前記目標位置に入射させる姿勢変更部とを備えることを特徴とする。   The tracking laser interferometer according to the present invention includes a main body having a tracking optical unit having a detector that receives measurement light reflected by a retroreflector attached to a moving body, and a light reception signal from the tracking optical unit. A tracking type laser interferometer comprising: control means for controlling the attitude of the main body based on the control unit and tracking the retroreflector on the main body, wherein the control means includes measurement light incident on the retroreflector; A target position setting unit for setting a target position of the measurement light received by the detector so as to be parallel to the measurement light reflected by the retroreflector; And a posture changing unit that causes measurement light reflected by the body to enter the target position.

このような構成によれば、再帰反射体で反射された測定光は常に目標位置に入射される。この場合には、再帰反射体に入射された測定光は、再帰反射体の中心に対して入射位置と点対称な位置で反射され、反射された測定光は入射してきた測定光と常に平行となる。よって、従来のように距離dが0でない場合でも、再帰反射体で反射される測定光の光軸が傾くことがなくなり、再帰反射体までの距離の測定誤差を容易に低減できる。   According to such a configuration, the measurement light reflected by the retroreflector is always incident on the target position. In this case, the measurement light incident on the retroreflector is reflected at a position symmetric with respect to the incident position with respect to the center of the retroreflector, and the reflected measurement light is always parallel to the incident measurement light. Become. Therefore, even when the distance d is not 0 as in the prior art, the optical axis of the measurement light reflected by the retroreflector is not inclined, and the measurement error of the distance to the retroreflector can be easily reduced.

本発明の追尾式レーザ干渉計の制御方法は、移動体に取り付けられた再帰反射体で反射された測定光を受光する検出器を備える追尾用光学部を有する本体と、前記追尾用光学部からの受光信号に基づいて前記本体の姿勢を制御し、前記本体に前記再帰反射体を追尾させる制御手段とを備える追尾式レーザ干渉計の制御方法であって、前記再帰反射体に入射する測定光と前記再帰反射体で反射される測定光とを平行とするように前記検出器で受光される前記測定光の目標位置を設定する目標位置設定工程と、前記本体の姿勢を制御し、前記再帰反射体で反射された測定光を前記目標位置に入射させる姿勢変更工程とを備えることを特徴とする。   The tracking laser interferometer control method of the present invention includes a main body having a tracking optical unit including a detector that receives measurement light reflected by a retroreflector attached to a moving body, and the tracking optical unit. A control method for a tracking laser interferometer, comprising: a control means for controlling the attitude of the main body based on the received light signal and tracking the retroreflector on the main body, and measuring light incident on the retroreflector A target position setting step for setting a target position of the measurement light received by the detector so that the measurement light reflected by the retroreflector and the measurement light reflected by the retroreflector are parallel to each other; A posture changing step of causing the measurement light reflected by the reflector to enter the target position.

このような構成によれば、再帰反射体で反射された測定光を目標位置に適切に入射させることができる。よって、再帰反射体に入射された測定光は、再帰反射体の中心に対して入射位置と点対称な位置で反射され、反射された測定光は入射してきた測定光と常に平行となる。このため、従来のように距離dが0でない場合でも、再帰反射体で反射される測定光の光軸が傾くことがなくなり、再帰反射体までの距離の測定誤差を容易に低減できる。   According to such a configuration, the measurement light reflected by the retroreflector can be appropriately incident on the target position. Therefore, the measurement light incident on the retroreflector is reflected at a position that is point-symmetric with respect to the incident position with respect to the center of the retroreflector, and the reflected measurement light is always parallel to the incident measurement light. For this reason, even when the distance d is not 0 as in the prior art, the optical axis of the measurement light reflected by the retroreflector is not inclined, and the measurement error of the distance to the retroreflector can be easily reduced.

本発明の実施形態に係る追尾式レーザ干渉計の測長部および追尾用光学部の構成と光路とを示す図。The figure which shows the structure and optical path of the length measurement part of the tracking type laser interferometer and tracking optical part which concern on embodiment of this invention. 本発明の実施形態に係る追尾式レーザ干渉計の制御方法を示すフローチャート。6 is a flowchart showing a control method of the tracking laser interferometer according to the embodiment of the present invention. 従来の追尾式レーザ干渉計の構成を示す概略図。Schematic which shows the structure of the conventional tracking type laser interferometer. 従来の制御方法によって制御されたときの追尾式レーザ干渉計を示す図。The figure which shows a tracking type laser interferometer when it is controlled by the conventional control method.

以下、本発明の実施形態を図面に基づいて説明する。
図1に示す追尾式レーザ干渉計1(以下、干渉計1とする。)は、本体2と、図示しない姿勢変更機構を制御して本体2の姿勢を制御する制御手段3とを備え、図示しない三次元測定機などの産業機械に設けられた移動体に取り付けられた再帰反射体としてのレトロリフレクタRを追尾し、本体2の回転中心OからレトロリフレクタRまでの距離Xを測定するものである。移動体としては、例えば測定対象物を測定するためのプローブが取りつけられた三次元測定機のスライダが挙げられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A tracking laser interferometer 1 (hereinafter referred to as an interferometer 1) shown in FIG. 1 includes a main body 2 and a control means 3 that controls a posture of the main body 2 by controlling a posture changing mechanism (not shown). It tracks the retroreflector R as a retroreflector attached to a moving body provided in an industrial machine such as a three-dimensional measuring machine, and measures the distance X from the rotation center O of the main body 2 to the retroreflector R. is there. Examples of the moving body include a slider of a coordinate measuring machine to which a probe for measuring a measurement object is attached.

本体2は測長部21と追尾用光学部22とを備えている。
測長部21は、レーザ光源211と、ハーフミラー212と、参照ミラー213と、検出器214とを備えている。追尾用光学部22はハーフミラー221と検出器222とを備えている。
The main body 2 includes a length measuring unit 21 and a tracking optical unit 22.
The length measuring unit 21 includes a laser light source 211, a half mirror 212, a reference mirror 213, and a detector 214. The tracking optical unit 22 includes a half mirror 221 and a detector 222.

制御手段3は、距離算出部31と、目標位置設定部32と、姿勢変更部33とを備えている。
距離算出部31は、検出器214での干渉光の受光量に応じた受光信号を検出器214から受け取り、この受光信号を用いて、測長部21の固定面215からレトロリフレクタRまでの距離X1を算出する。そして、算出された距離X1に、干渉計1の組み立て時に決まる回転中心Oから測長部21の固定面215までの距離X0を加えることにより距離Xが求められる。
The control unit 3 includes a distance calculation unit 31, a target position setting unit 32, and an attitude change unit 33.
The distance calculation unit 31 receives a light reception signal corresponding to the amount of interference light received by the detector 214 from the detector 214, and uses this light reception signal to measure the distance from the fixed surface 215 of the length measurement unit 21 to the retroreflector R. X1 is calculated. And the distance X is calculated | required by adding the distance X0 from the rotation center O determined at the time of the assembly of the interferometer 1 to the fixed surface 215 of the length measurement part 21 to the calculated distance X1.

目標位置設定部32は、レトロリフレクタRの位置P1に入射する測定光L2と位置P2で反射される測定光L2とを平行とするように検出器222で受光される測定光L21の目標位置Q2を設定する。測定光L21は、レトロリフレクタRで反射された測定光L2のうちハーフミラー221で反射される光である。
姿勢変更部33は、検出器222での測定光L21の受光信号を検出器222から受け取り、レトロリフレクタRで反射され且つハーフミラー221で反射された測定光L21が常に目標位置Q2に入射するように、検出器222での測定光L21の受光信号に基づいて図示しない姿勢変更機構を制御して本体2の姿勢を制御する。
The target position setting unit 32 sets the target position Q2 of the measurement light L21 received by the detector 222 so that the measurement light L2 incident on the position P1 of the retroreflector R and the measurement light L2 reflected at the position P2 are parallel to each other. Set. The measurement light L21 is light reflected by the half mirror 221 out of the measurement light L2 reflected by the retro reflector R.
The posture changing unit 33 receives the light reception signal of the measurement light L21 from the detector 222 from the detector 222, and the measurement light L21 reflected by the retroreflector R and reflected by the half mirror 221 always enters the target position Q2. Further, the posture of the main body 2 is controlled by controlling a posture changing mechanism (not shown) based on the light reception signal of the measurement light L21 from the detector 222.

図1に示すように、干渉計1を組み立てたときに、ハーフミラー212が、本体2の回転中心OとレトロリフレクタRの中心P0とを結ぶ直線O−P0と、レーザ光L1の光軸との交点である規定の配置位置A0から図1中上側に距離dだけオフセットした位置A1に配置されている場合には、目標位置Q2は規定位置Q1から距離dだけ離れた位置となる。規定位置Q1は、ハーフミラー212が規定の配置位置A0に配置されているとき(d=0のとき)に、測定光L21が検出器222で受光される位置である。   As shown in FIG. 1, when the interferometer 1 is assembled, the half mirror 212 has a straight line O-P0 connecting the rotation center O of the main body 2 and the center P0 of the retroreflector R, and the optical axis of the laser beam L1. 1 is located at a position A1 that is offset by a distance d on the upper side in FIG. 1 from the prescribed arrangement position A0, the target position Q2 is located at a distance d from the prescribed position Q1. The specified position Q1 is a position at which the measurement light L21 is received by the detector 222 when the half mirror 212 is arranged at the prescribed arrangement position A0 (when d = 0).

次に、以上のような干渉計1の制御方法について図2に基づいて説明する。以下では、各制御工程をS1,S2で示す。
S1の目標位置設定工程で、まず、例えば図示しない三次元測定機を稼動させることなどによって移動体を移動させ、レトロリフレクタRを本体2から、距離dに対して十分遠く離れた位置に移動させる。このとき、レトロリフレクタRが本体2から、距離dに対して十分遠く離れた位置にあるため、位置A1で分割された測定光L2の光軸は直線O−P0と略一致する。その後、制御手段3の目標位置設定部32によって本体2のレトロリフレクタRへの追尾が止められ、レトロリフレクタRが無限遠方から図1に示す位置に戻される。そうすると、図1に示すように、位置A1で分割された測定光L2はレトロリフレクタRに位置P1で入射し、位置P2で反射されて目標位置Q2に入射する。このとき、目標位置設定部32が目標位置Q2を記憶して設定する。
Next, a method for controlling the interferometer 1 as described above will be described with reference to FIG. Below, each control process is shown by S1, S2.
In the target position setting step of S1, first, the moving body is moved, for example, by operating a coordinate measuring machine (not shown), and the retroreflector R is moved from the main body 2 to a position sufficiently far from the distance d. . At this time, since the retro-reflector R is located far from the main body 2 with respect to the distance d, the optical axis of the measurement light L2 divided at the position A1 substantially coincides with the straight line O-P0. Thereafter, tracking of the main body 2 to the retro reflector R is stopped by the target position setting unit 32 of the control means 3, and the retro reflector R is returned to the position shown in FIG. 1 from infinity. Then, as shown in FIG. 1, the measurement light L2 divided at the position A1 enters the retroreflector R at the position P1, is reflected at the position P2, and enters the target position Q2. At this time, the target position setting unit 32 stores and sets the target position Q2.

次に、S2の姿勢変更工程で、制御手段3の姿勢変更部33が本体2の姿勢を制御し、位置A1で分割された測定光L2の出射方向を変更して、この測定光L2をレトロリフレクタRに入射させる。そして、姿勢変更部33のこの制御によって、レトロリフレクタRで反射され且つハーフミラー221で反射された測定光L21を常に目標位置Q2に入射させる。
このとき、位置A1で分割された測定光L2は、レトロリフレクタRの中心P0とは距離dだけオフセットした位置P1に常に入射して位置P2で常に反射され、位置P2で反射された測定光L2は位置P1に入射してきた測定光L2と常に平行となる。よって、位置P1に入射してきた測定光L2および位置P2で反射された測定光L2が、直線O−P0と常に平行となる。
Next, in the posture changing step of S2, the posture changing unit 33 of the control means 3 controls the posture of the main body 2, changes the emission direction of the measuring light L2 divided at the position A1, and makes this measuring light L2 retro The light enters the reflector R. And by this control of the attitude | position change part 33, the measurement light L21 reflected by the retro reflector R and reflected by the half mirror 221 is always incident on the target position Q2.
At this time, the measurement light L2 divided at the position A1 is always incident on the position P1 offset by the distance d from the center P0 of the retroreflector R, is always reflected at the position P2, and is reflected at the position P2. Is always parallel to the measurement light L2 incident on the position P1. Therefore, the measurement light L2 incident on the position P1 and the measurement light L2 reflected at the position P2 are always parallel to the straight line O-P0.

この場合には、レーザ光L1は、ハーフミラー212に入射され、ハーフミラー212で測定光L2と参照光L3とに分割される。
測定光L2は、ハーフミラー221を通ってレトロリフレクタRの位置P1に入射されて、位置P2で反射される。位置P2で反射された測定光L2は、ハーフミラー221に再び入射し、一部の測定光L21がハーフミラー221で反射され、検出器222の目標位置Q2に入射されて検出器222で受光される。位置P2で反射された測定光L2のうち測定光L22は、ハーフミラー221を透過してハーフミラー212に入射する。
In this case, the laser light L1 is incident on the half mirror 212, and is split into the measurement light L2 and the reference light L3 by the half mirror 212.
The measurement light L2 passes through the half mirror 221 and enters the position P1 of the retroreflector R, and is reflected at the position P2. The measurement light L2 reflected at the position P2 is incident on the half mirror 221 again, a part of the measurement light L21 is reflected by the half mirror 221, is incident on the target position Q2 of the detector 222, and is received by the detector 222. The Of the measurement light L2 reflected at the position P2, the measurement light L22 passes through the half mirror 221 and enters the half mirror 212.

参照光L3は、参照ミラー213に向かって進み、参照ミラー213で反射されてハーフミラー212に入射し、ハーフミラー212で検出器214に向かって反射される。
ハーフミラー212では、入射してくる測定光L22と入射してくる参照光L3とが合成される。この合成によって光の干渉が起こり、干渉光が生成されて検出器214に送られる。
制御手段3の距離算出部31は、検出器214での干渉光の受光量に応じた受光信号を用いて距離X1を算出する。この算出された距離X1に距離X0を加えることにより距離Xが求められる。
The reference light L3 travels toward the reference mirror 213, is reflected by the reference mirror 213, enters the half mirror 212, and is reflected by the half mirror 212 toward the detector 214.
In the half mirror 212, the incident measurement light L22 and the incident reference light L3 are combined. This combination causes light interference, and interference light is generated and sent to the detector 214.
The distance calculation unit 31 of the control unit 3 calculates the distance X1 using a light reception signal corresponding to the amount of interference light received by the detector 214. The distance X is obtained by adding the distance X0 to the calculated distance X1.

ここで、図1では、レーザ光L1、測定光L2、参照光L3が1本の線で示されており、測定光L22と参照光L3とが干渉していないように見えるが、実際にはレーザにはビーム径があるため、測定光L22と参照光L3とは合成されて光の干渉が起こり、図示しない干渉光が生成される。なお、距離dの2倍の長さ2dがレーザのビーム径の半分以下である場合に、測定光L22と参照光L3とが確実に干渉する。
また、レトロリフレクタRの位置P1に入射して位置P2で反射される測定光L2の光路長と、中心P0に入射して中心P0で反射される測定光L2の光路長とが同じであるため、距離X1を確実に測定できる。
Here, in FIG. 1, the laser beam L1, the measurement beam L2, and the reference beam L3 are shown by one line, and it seems that the measurement beam L22 and the reference beam L3 do not interfere with each other. Since the laser has a beam diameter, the measurement light L22 and the reference light L3 are combined to cause light interference, and interference light (not shown) is generated. Note that when the length 2d, which is twice the distance d, is equal to or less than half of the laser beam diameter, the measurement light L22 and the reference light L3 reliably interfere with each other.
In addition, the optical path length of the measurement light L2 incident on the position P1 of the retroreflector R and reflected at the position P2 is the same as the optical path length of the measurement light L2 incident on the center P0 and reflected at the center P0. The distance X1 can be reliably measured.

以上のような本実施形態の干渉計1および干渉計1の制御方法では、以下の効果がある。
本実施形態では、レトロリフレクタRで反射され且つハーフミラー221で反射された測定光L21を常に目標位置Q2に入射させる。このようにすると、測定光L2は、レトロリフレクタRの中心P0とは距離dだけオフセットした位置P1に入射して位置P2で反射され、位置P2で反射された測定光L2は位置P1に入射してきた測定光L2と常に平行となる。よって、距離dが0でない場合でも、従来のように、レトロリフレクタRで反射される測定光L2の光軸が傾くことがなくなり、レトロリフレクタRで反射された測定光L2を用いて測定される距離X1の測定誤差を容易に低減できる。また、干渉計1を組み立てるときに、直線O−P0と、レトロリフレクタRに出射する測定光L2の光軸とを一致させることが不要となる。
The interferometer 1 and the control method of the interferometer 1 according to the present embodiment as described above have the following effects.
In the present embodiment, the measurement light L21 reflected by the retro reflector R and reflected by the half mirror 221 is always incident on the target position Q2. In this way, the measurement light L2 enters the position P1 offset from the center P0 of the retroreflector R by the distance d and is reflected at the position P2, and the measurement light L2 reflected at the position P2 enters the position P1. It is always parallel to the measured light L2. Therefore, even when the distance d is not 0, the optical axis of the measurement light L2 reflected by the retroreflector R does not tilt as in the conventional case, and measurement is performed using the measurement light L2 reflected by the retroreflector R. The measurement error of the distance X1 can be easily reduced. Further, when the interferometer 1 is assembled, it is not necessary to match the straight line O-P0 with the optical axis of the measurement light L2 emitted to the retroreflector R.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前記実施形態では、再帰反射体としてレトロリフレクタRについて説明したが、入射してくる測定光L2をその光軸と平行に反射するものであれば、屈折率2の球面レンズなどであってもよい。
また、前記実施形態では、ハーフミラー212が、直線O−P0と交わる規定の配置位置A0から図1中上側に距離dだけオフセットした位置に配置されたときについて説明したが、配置位置A0から図1中下側に所定距離だけオフセットした位置に配置されたときや、配置位置A0から、図1中紙面と直交する方向に所定距離だけオフセットした位置に配置されたときにも、本発明の制御方法は適用可能である。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the above embodiment, the retroreflector R has been described as a retroreflector. However, a spherical lens having a refractive index of 2 may be used as long as it reflects the incident measurement light L2 in parallel with its optical axis. .
In the above embodiment, the case where the half mirror 212 is arranged at a position offset by the distance d from the prescribed arrangement position A0 intersecting the straight line OP0 in FIG. 1 has been described. The control according to the present invention is also applied when it is arranged at a position offset by a predetermined distance on the lower side of 1, or when it is arranged at a position offset by a predetermined distance from the arrangement position A0 in the direction orthogonal to the paper surface in FIG. The method is applicable.

本発明は追尾式レーザ干渉計および追尾式レーザ干渉計の制御方法に利用することができる。   The present invention can be used for a tracking laser interferometer and a control method of the tracking laser interferometer.

1…追尾式レーザ干渉計、
2…本体、
3…制御手段、
22…追尾用光学部、
32…目標位置設定部、
33…姿勢変更部、
222…検出器、
L2,L21,L22…測定光、
Q2…目標位置、
R…レトロリフレクタ(再帰反射体)、
S1…目標位置設定工程、
S2…姿勢変更工程
1 ... Tracking laser interferometer,
2 ... the body,
3. Control means,
22 ... optical unit for tracking,
32 ... Target position setting section,
33 ... posture changing part,
222. Detector,
L2, L21, L22 ... Measuring light,
Q2 ... Target position,
R: Retro reflector (retroreflector),
S1 ... target position setting step,
S2 ... Posture change process

Claims (2)

移動体に取り付けられた再帰反射体で反射された測定光を受光する検出器を備える追尾用光学部を有する本体と、前記追尾用光学部からの受光信号に基づいて前記本体の姿勢を制御し、前記本体に前記再帰反射体を追尾させる制御手段とを備える追尾式レーザ干渉計であって、
前記制御手段は、前記再帰反射体に入射する測定光と前記再帰反射体で反射される測定光とを平行とするように前記検出器で受光される前記測定光の目標位置を設定する目標位置設定部と、前記本体の姿勢を制御し、前記再帰反射体で反射された測定光を前記目標位置に入射させる姿勢変更部とを備えることを特徴とする追尾式レーザ干渉計。
A main body having a tracking optical unit having a detector for receiving measurement light reflected by a retroreflector attached to a moving body, and controlling the posture of the main body based on a light reception signal from the tracking optical unit A tracking laser interferometer comprising control means for tracking the retroreflector on the main body,
The control means sets a target position of the measurement light received by the detector so that the measurement light incident on the retroreflector and the measurement light reflected by the retroreflector are parallel. A tracking laser interferometer, comprising: a setting unit; and an attitude changing unit that controls the attitude of the main body and causes measurement light reflected by the retroreflector to enter the target position.
移動体に取り付けられた再帰反射体で反射された測定光を受光する検出器を備える追尾用光学部を有する本体と、前記追尾用光学部からの受光信号に基づいて前記本体の姿勢を制御し、前記本体に前記再帰反射体を追尾させる制御手段とを備える追尾式レーザ干渉計の制御方法であって、
前記再帰反射体に入射する測定光と前記再帰反射体で反射される測定光とを平行とするように前記検出器で受光される前記測定光の目標位置を設定する目標位置設定工程と、
前記本体の姿勢を制御し、前記再帰反射体で反射された測定光を前記目標位置に入射させる姿勢変更工程とを備えることを特徴とする追尾式レーザ干渉計の制御方法。
A main body having a tracking optical unit having a detector for receiving measurement light reflected by a retroreflector attached to a moving body, and controlling the posture of the main body based on a light reception signal from the tracking optical unit A control method of a tracking type laser interferometer comprising control means for tracking the retroreflector on the main body,
A target position setting step of setting a target position of the measurement light received by the detector so that the measurement light incident on the retroreflector and the measurement light reflected by the retroreflector are parallel;
A tracking laser interferometer control method comprising: a posture changing step of controlling the posture of the main body and causing measurement light reflected by the retroreflector to enter the target position.
JP2010147407A 2010-06-29 2010-06-29 Tracking laser interferometer and control method of tracking laser interferometer Active JP5452391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147407A JP5452391B2 (en) 2010-06-29 2010-06-29 Tracking laser interferometer and control method of tracking laser interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147407A JP5452391B2 (en) 2010-06-29 2010-06-29 Tracking laser interferometer and control method of tracking laser interferometer

Publications (2)

Publication Number Publication Date
JP2012013427A true JP2012013427A (en) 2012-01-19
JP5452391B2 JP5452391B2 (en) 2014-03-26

Family

ID=45600063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147407A Active JP5452391B2 (en) 2010-06-29 2010-06-29 Tracking laser interferometer and control method of tracking laser interferometer

Country Status (1)

Country Link
JP (1) JP5452391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427005A (en) * 2020-04-22 2020-07-17 中国人民解放军空军研究院战略预警研究所 Rotary direction finding device, system and information reconnaissance equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732406B (en) 2019-12-30 2021-07-01 淨斯人間志業股份有限公司 Container set having a locking structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309677A (en) * 2006-05-16 2007-11-29 Mitsutoyo Corp Method of estimating absolute distance in tracking laser interferometer, and tracking laser interferometer
JP2009236746A (en) * 2008-03-27 2009-10-15 Mitsutoyo Corp Tracking laser interferometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309677A (en) * 2006-05-16 2007-11-29 Mitsutoyo Corp Method of estimating absolute distance in tracking laser interferometer, and tracking laser interferometer
JP2009236746A (en) * 2008-03-27 2009-10-15 Mitsutoyo Corp Tracking laser interferometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427005A (en) * 2020-04-22 2020-07-17 中国人民解放军空军研究院战略预警研究所 Rotary direction finding device, system and information reconnaissance equipment

Also Published As

Publication number Publication date
JP5452391B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5702524B2 (en) Tracking laser interferometer
US7538888B2 (en) Method for estimating absolute distance of tracking laser interferometer and tracking laser interferometer
JP5438988B2 (en) Measurement system and interferometer
US20130083323A1 (en) Photoelectric autocollimation method and apparatus based on beam drift compensation
JP5193490B2 (en) Measuring method using tracking laser interferometer
AU2008300962A1 (en) Method and measuring device for gauging surfaces
US20200198051A1 (en) Device for determining an orientation of an optical device of a coherence tomograph, coherence tomograph and laser processing system
JP2008039765A (en) Lateral and longitudinal metrology system
CN108332678A (en) Measuring device and method for measuring at least one length measurand
CN110686869A (en) High-precision measurement method for characteristic parameters of equal-thickness off-axis parabolic reflector
US9068811B2 (en) Device for determining distance interferometrically
US8537340B2 (en) Optical distance-measuring device
US8514405B2 (en) Tracking type laser gauge interferometer with rotation mechanism correction
JP5452391B2 (en) Tracking laser interferometer and control method of tracking laser interferometer
CN108731593B (en) Front and back binocular position and attitude optical measurement structure and method
EP2722705A1 (en) Optical assembly and laser alignment apparatus
US9316487B2 (en) Laser tracking interferometer
JP7109185B2 (en) Non-contact coordinate measuring device
JP2007285967A (en) Laser length measuring machine
EP3267145B1 (en) Measuring device for accurately determining the displacement of a rotating test object provided with a light reflective surface
JP2012103227A (en) Laser tracker
WO2022259538A1 (en) Position-measuring device, position-measuring system, and measuring device
JP2011075287A (en) Traveling body
US20140111866A1 (en) Optical assembly and laser alignment apparatus
JP2012122843A (en) Laser interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250