JP2012012983A - Diesel particulate filter system - Google Patents

Diesel particulate filter system Download PDF

Info

Publication number
JP2012012983A
JP2012012983A JP2010149358A JP2010149358A JP2012012983A JP 2012012983 A JP2012012983 A JP 2012012983A JP 2010149358 A JP2010149358 A JP 2010149358A JP 2010149358 A JP2010149358 A JP 2010149358A JP 2012012983 A JP2012012983 A JP 2012012983A
Authority
JP
Japan
Prior art keywords
filter body
electrodes
temperature
dpf
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010149358A
Other languages
Japanese (ja)
Inventor
Tadashi Uchiyama
正 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010149358A priority Critical patent/JP2012012983A/en
Publication of JP2012012983A publication Critical patent/JP2012012983A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diesel particulate filter system which has a simple structure, can widely raise a temperature, and can detect a PM quantity.SOLUTION: The diesel particulate filter system includes: a porous filter body 2 consisting of a silicon carbide to collect PM; two electrodes 3 and 4 in contact with a circumference of the filter body 2 and opposed mutually; a detecting circuit 5 for detecting the PM quantity accumulated in the filter body 2 based on the change of a reply signal when an AC current is applied between the two electrodes 3 and 4; and a temperature raising circuit 6 for incinerating the PM accumulated in the filter body 2 by applying a DC current between the two electrodes 3 and 4 to raise the temperature of the filter body 2.

Description

本発明は、エンジンの排気ガスを浄化するディーゼルパティキュレートフィルタに係り、構造が単純で、広範囲な昇温ができ、PM量が検出できるディーゼルパティキュレートフィルタシステムに関する。   The present invention relates to a diesel particulate filter that purifies exhaust gas from an engine, and relates to a diesel particulate filter system that has a simple structure, can raise temperature over a wide range, and can detect the amount of PM.

ディーゼルエンジンなどのエンジンを搭載した車両では、エンジンの排気管にディーゼルパティキュレートフィルタ(Diesel Particulate Filter;以下、DPFという)を設置し、排気ガスに含まれる粒子状物質(Particurate Matter)を捕集している。DPFは、コージライト、炭化ケイ素(SiC)などからなるハニカム細孔状(四角い細孔のものでもよい)の構造を有し、PMを一時的に捕集する部材である。   In vehicles equipped with engines such as diesel engines, a diesel particulate filter (DPF) is installed in the exhaust pipe of the engine to collect particulate matter (particurate matter) contained in the exhaust gas. ing. The DPF is a member that temporarily collects PM, having a honeycomb pore structure (or a square pore structure) made of cordierite, silicon carbide (SiC), or the like.

DPFに捕集されたPMが多く蓄積すると、エンジンの排圧が上昇しエンジン特性の低下をきたす。そこで、DPFを昇温することにより、蓄積したPMを燃焼させて除去する必要がある。この動作をDPF再生という。   When a large amount of PM trapped in the DPF accumulates, the exhaust pressure of the engine rises and the engine characteristics deteriorate. Therefore, it is necessary to burn and remove the accumulated PM by raising the temperature of the DPF. This operation is called DPF regeneration.

特開平6−323129号公報JP-A-6-323129 特開2000−297625号公報JP 2000-297625 A 特開2002−213230号公報JP 2002-213230 A

DPF再生の手段として、燃料噴射によって排気温度を上昇させることでDPFを昇温するもの、DPFの上流にバーナーを設けておきバーナーの火力でDPFを昇温するもの、DPFに電気ヒータを内蔵させておき電気ヒータでDPFを昇温するものなどがある。   As means for regenerating DPF, the DPF is heated by raising the exhaust temperature by fuel injection, the burner is provided upstream of the DPF and the DPF is heated by the burner's thermal power, and the DPF has a built-in electric heater. There is an electric heater that raises the temperature of the DPF.

しかし、燃料噴射やバーナーの燃焼を行うと、燃料消費量が増大すると共に、排出されるCO2が多くなる。したがって、電気ヒータによるDPF昇温が経済性、環境保護の観点から好ましい。ただし、電気ヒータを電熱線で構成した場合、DPFの内部に電熱線を組み込む構造が複雑であること、電熱線の直近周辺のみが昇温され、DPF内部全体を広範囲に昇温できないこと、大きな電力を必要とすることなどの課題が残る。 However, when fuel injection or burner combustion is performed, the amount of fuel consumed increases and the amount of CO 2 emitted increases. Therefore, it is preferable to raise the DPF temperature with an electric heater from the viewpoints of economy and environmental protection. However, when the electric heater is composed of a heating wire, the structure for incorporating the heating wire inside the DPF is complicated, the temperature in the immediate vicinity of the heating wire is raised, and the entire DPF cannot be heated in a wide range, Issues such as the need for electric power remain.

一方、DPF再生の時期を判定する手段として、車両の走行距離が所定値に達するごとにDPF再生時期とするもの、DPFの上流と下流の排気ガス圧力の差(差圧)が域値に達するとDPF再生時期とするものなどがある。しかし、DPF再生時期を車両の走行距離から判定したり、差圧から判定するのはPM量を検出するのが困難であるからである。これらの手段でDPF再生の時期を判定する場合は、PM量が多すぎにならないうちに早めにDPF再生が行われるように、域値が設定されるため、必要以上に頻繁にDPF再生が行われることになり、DPF再生手段がいずれであっても、エネルギの無駄が多くなる。   On the other hand, as means for determining the DPF regeneration timing, the DPF regeneration timing is used every time the travel distance of the vehicle reaches a predetermined value, and the difference (differential pressure) between the exhaust gas pressure upstream and downstream of the DPF reaches the threshold value. Then, there are things that make the DPF regeneration time. However, the DPF regeneration timing is determined from the travel distance of the vehicle or from the differential pressure because it is difficult to detect the PM amount. When the DPF regeneration timing is determined by these means, the threshold value is set so that the DPF regeneration is performed early before the PM amount becomes too large, so the DPF regeneration is performed more frequently than necessary. As a result, energy is wasted regardless of the DPF regeneration means.

そこで、本発明の目的は、上記課題を解決し、構造が単純で、広範囲な昇温ができ、PM量が検出できるディーゼルパティキュレートフィルタシステムを提供することにある。   Accordingly, an object of the present invention is to provide a diesel particulate filter system that solves the above problems, has a simple structure, can raise the temperature over a wide range, and can detect the amount of PM.

上記目的を達成するために本発明は、粒子状物質を捕集するための炭化ケイ素からなる多孔状のフィルタ本体と、前記フィルタ本体の外周に接し、互いに対向する2つの電極と、前記2つの電極間に交流電流を印加したときの応答信号の変化に基づいて前記フィルタ本体に蓄積された粒子状物質の量を検出する検出回路と、前記2つの電極間に直流電流を印加して前記フィルタ本体を昇温させることにより、前記フィルタ本体に蓄積された粒子状物質を焼却する昇温回路とを備えたものである。   In order to achieve the above object, the present invention provides a porous filter body made of silicon carbide for collecting particulate matter, two electrodes in contact with the outer periphery of the filter body and facing each other, and the two A detection circuit for detecting the amount of particulate matter accumulated in the filter body based on a change in response signal when an alternating current is applied between the electrodes, and a direct current between the two electrodes to apply the filter A temperature raising circuit for incinerating the particulate matter accumulated in the filter body by raising the temperature of the body.

前記昇温回路は、リターダの回生電流を直流化して前記2つの電極間に印加してもよい。   The temperature raising circuit may convert the regenerative current of the retarder into a direct current and apply it between the two electrodes.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)構造が単純である。   (1) The structure is simple.

(2)広範囲な昇温ができる。   (2) A wide range of temperature increases can be achieved.

(3)PM量が検出できる。   (3) The PM amount can be detected.

本発明の一実施形態を示すDPFシステムのブロック構成図である。It is a block block diagram of the DPF system which shows one Embodiment of this invention. 本発明が適用される排気管の構成図である。It is a block diagram of the exhaust pipe to which this invention is applied. PM量検出の原理を説明するための等価回路図である。It is an equivalent circuit diagram for demonstrating the principle of PM amount detection.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係るDPFシステム1は、PMを捕集するための炭化ケイ素からなる多孔状のフィルタ本体2と、フィルタ本体2の外周に接し、互いに対向する2つの電極3,4と、2つの電極3,4間に交流電流を印加したときの応答信号の変化に基づいてフィルタ本体2に蓄積されたPM量を検出する検出回路5と、2つの電極3,4間に直流電流を印加してフィルタ本体2を昇温させることにより、フィルタ本体2に蓄積されたPMを焼却する昇温回路6とを備える。   As shown in FIG. 1, a DPF system 1 according to the present invention includes a porous filter body 2 made of silicon carbide for collecting PM, and two electrodes that are in contact with the outer periphery of the filter body 2 and face each other. 3 and 4, and a detection circuit 5 for detecting the amount of PM accumulated in the filter body 2 based on a change in response signal when an alternating current is applied between the two electrodes 3 and 4, and the two electrodes 3 and 4 A heating circuit 6 is provided for incinerating PM accumulated in the filter body 2 by applying a direct current therebetween to raise the temperature of the filter body 2.

フィルタ本体2の構造は、従来からあるものと同じ構造でよい。フィルタ本体2の材質は、フィルタ本体2それ自体を電熱ヒータとするために、電流をよく流す炭化ケイ素がよい(特許文献1〜3参照)。   The structure of the filter body 2 may be the same as a conventional structure. The material of the filter body 2 is preferably silicon carbide through which a current flows well in order to use the filter body 2 itself as an electric heater (see Patent Documents 1 to 3).

電極3,4は、フィルタ本体2を挟んで互いに対向するよう、フィルタ本体2の上下に配置される。電極3,4は、フィルタ本体2の中を偏らずに広範囲に電流が流れるよう、フィルタ本体2の上下面にそれぞれ全面的に密着する平面電極とする。   The electrodes 3 and 4 are arranged above and below the filter body 2 so as to face each other with the filter body 2 interposed therebetween. The electrodes 3 and 4 are planar electrodes that are in close contact with the upper and lower surfaces of the filter body 2 so that current flows in a wide range without being biased in the filter body 2.

検出回路5は、1乃至複数の周波数の交流電流を発生する交流電源(高周波発振器)と負荷の静電容量変化を電気的に検出する回路とからなる電源兼検出部7と、交流重畳と直流遮断のための交流結合用コンデンサ8とを有する。   The detection circuit 5 includes a power source / detection unit 7 including an AC power source (high frequency oscillator) that generates an AC current having one or more frequencies and a circuit that electrically detects a change in capacitance of the load, AC superposition, and DC. And an AC coupling capacitor 8 for blocking.

昇温回路6は、直流電源からなり、昇温回路6と電極3とを繋ぐ配線の途中に、交流結合用コンデンサ8が接続される。交流結合用コンデンサ8と昇温回路6の接続点9よりも昇温回路6側に、交流遮断のためのインダクタを挿入してもよい。   The temperature raising circuit 6 is composed of a DC power source, and an AC coupling capacitor 8 is connected in the middle of the wiring connecting the temperature raising circuit 6 and the electrode 3. An inductor for AC interruption may be inserted closer to the temperature rising circuit 6 side than the connection point 9 between the AC coupling capacitor 8 and the temperature rising circuit 6.

図2に示されるように、本発明が適用される車両にあっては、エンジン21に接続された排気管22に、DPF23が設置されている。DPF23の内部は図示しないが、DPF23は、排気管22に取り付けられた金属製のハウジング内に図1のフィルタ本体2が収容されたものである。電極3,4は、ハウジングに対して電気的に絶縁されて設けられる。   As shown in FIG. 2, in a vehicle to which the present invention is applied, a DPF 23 is installed in an exhaust pipe 22 connected to an engine 21. Although the inside of the DPF 23 is not shown, the DPF 23 is one in which the filter main body 2 of FIG. 1 is accommodated in a metal housing attached to the exhaust pipe 22. The electrodes 3 and 4 are provided so as to be electrically insulated from the housing.

電極3,4に接続された配線24,25は、回路ユニット26に接続されている。回路ユニット26は、図1の昇温回路6、検出回路5、接続点9を一箇所にまとめたものである。DPF再生の制御は、図示しない電子制御装置(ECU)が行う。したがって、回路ユニット26は、ECUの周辺に配置するのがよい。このため、配線24,25は、DPF23からECUの周辺まで引き回して設けられる。   The wirings 24 and 25 connected to the electrodes 3 and 4 are connected to the circuit unit 26. The circuit unit 26 is a combination of the temperature raising circuit 6, the detection circuit 5, and the connection point 9 of FIG. The DPF regeneration is controlled by an electronic control unit (ECU) (not shown). Therefore, the circuit unit 26 is preferably arranged around the ECU. For this reason, the wirings 24 and 25 are provided from the DPF 23 to the periphery of the ECU.

図示しないが、本発明が適用される車両には、従来からあるリターダが設けられている。図1の昇温回路6は、リターダの回生電流を直流化回路により直流化して2つの電極3,4間に印加するように構成されている。   Although not shown, a conventional retarder is provided in a vehicle to which the present invention is applied. The temperature raising circuit 6 in FIG. 1 is configured so that the regenerative current of the retarder is converted into a direct current by a direct current circuit and applied between the two electrodes 3 and 4.

図3に示されるように、等価コンデンサ31は、図1のようにフィルタ本体2を電極3,4で挟んで構成されたコンデンサを表している。等価コンデンサ31は、フィルタ本体2に蓄積されたPM量に応じて静電容量が変化する。このため、電極3,4間に交流電流を印加したときの応答信号(振幅や位相)がPM量に応じて変化する。したがって、応答信号の変化を検出することで、PM量を検出することができる。   As shown in FIG. 3, the equivalent capacitor 31 represents a capacitor configured by sandwiching the filter body 2 between the electrodes 3 and 4 as shown in FIG. 1. The capacitance of the equivalent capacitor 31 changes according to the amount of PM accumulated in the filter body 2. For this reason, the response signal (amplitude and phase) when an alternating current is applied between the electrodes 3 and 4 changes according to the amount of PM. Therefore, the PM amount can be detected by detecting the change in the response signal.

以下、本発明に係るDPFシステム1の動作を説明する。   Hereinafter, the operation of the DPF system 1 according to the present invention will be described.

検出回路5は、エンジン21の運転中、定期的に電極3,4間に交流電流を印加し応答信号の変化を検出する。応答信号の変化は、フィルタ本体2に蓄積されたPM量に対応するので、あらかじめ実験により応答信号の変化に対してDPF再生時期を判定する閾値を設定しておくことにより、検出した応答信号の変化からDPF再生時期を判定することができる。   The detection circuit 5 periodically applies an alternating current between the electrodes 3 and 4 during operation of the engine 21 to detect a change in the response signal. Since the change in the response signal corresponds to the amount of PM accumulated in the filter main body 2, by setting a threshold value for determining the DPF regeneration timing with respect to the change in the response signal by an experiment in advance, The DPF regeneration time can be determined from the change.

DPF再生時期になると、昇温回路6は、電極3,4間に直流電流を印加する。炭化ケイ素からなるフィルタ本体2は、半導体であり、直流電流が流れると発熱する。このようにしてフィルタ本体2をそれ自体の発熱によって昇温させることにより、フィルタ本体2に蓄積されたPMを焼却することができる。   At the DPF regeneration time, the temperature raising circuit 6 applies a direct current between the electrodes 3 and 4. The filter body 2 made of silicon carbide is a semiconductor and generates heat when a direct current flows. Thus, PM accumulated in the filter body 2 can be incinerated by raising the temperature of the filter body 2 by its own heat generation.

以上説明したように、本発明によれば、フィルタ本体2の外周に接して互いに対向するように電極3,4を設けたので、フィルタ本体2の内部に電熱線あるいは電極を組み込まない構造となり、構造が単純で製造が容易となる。   As described above, according to the present invention, since the electrodes 3 and 4 are provided so as to be in contact with the outer periphery of the filter body 2 and face each other, a structure in which no heating wire or electrode is incorporated in the filter body 2 is provided. Simple structure and easy manufacture.

本発明によれば、炭化ケイ素からなるフィルタ本体2自体に電流を流すので、電熱線を用いたものとは異なり、広範囲な昇温ができる。   According to the present invention, since a current flows through the filter body 2 itself made of silicon carbide, it is possible to raise the temperature over a wide range, unlike the case using a heating wire.

本発明によれば、電極3の全面から電極4の全面に向かってフィルタ本体2の中を均等に電流が流れることにより、図1のような温度分布が形成される。すなわち、中心部が最も高温の高温部Hとなり、その高温部Hの周辺が高温部Hに比べてやや温度が低い中温部Mとなる。中温部Mの周辺はさらに温度が低いが、それでもPMを焼却可能な高温である。PMが最も多く蓄積される場所は中心部であるので、中心部が高温部Hになることで、PMを効果的に焼却することができる。   According to the present invention, current flows uniformly in the filter body 2 from the entire surface of the electrode 3 toward the entire surface of the electrode 4, thereby forming a temperature distribution as shown in FIG. 1. That is, the central portion becomes the highest temperature high temperature portion H, and the periphery of the high temperature portion H becomes the intermediate temperature portion M having a slightly lower temperature than the high temperature portion H. Although the temperature around the intermediate temperature portion M is still lower, the temperature is still high enough to incinerate PM. Since the place where the most PM is accumulated is the central portion, the central portion becomes the high temperature portion H, so that the PM can be effectively incinerated.

本発明によれば、電極3,4間に交流電流を印加することで、PM量が検出できる。   According to the present invention, the amount of PM can be detected by applying an alternating current between the electrodes 3 and 4.

本発明によれば、電極3,4がフィルタ本体2の外周に設けられているので、電極3,4にPMが付着することがない。仮に、電極がフィルタ本体2の端面や内部にあると、排気ガスに触れるため、電極にPMが付着して圧力損失が増え、エンジン21の排圧上昇に繋がる。電極は電熱線ではなく、ヒータの効果がないため、電極に付着したPMは焼却できない。   According to the present invention, since the electrodes 3 and 4 are provided on the outer periphery of the filter body 2, PM does not adhere to the electrodes 3 and 4. If the electrode is on the end face or inside of the filter main body 2, it touches the exhaust gas, so that PM adheres to the electrode and pressure loss increases, leading to an increase in exhaust pressure of the engine 21. Since the electrode is not a heating wire and there is no heater effect, PM adhering to the electrode cannot be incinerated.

本発明によれば、昇温回路6がリターダの回生電流を使用してフィルタ本体2を昇温するので、バッテリの負担を低減することができる。リターダは大きな発電量が得られるので、大電流が必要なフィルタ本体2の昇温に好適である。   According to the present invention, since the temperature raising circuit 6 raises the temperature of the filter body 2 using the regenerative current of the retarder, the burden on the battery can be reduced. Since the retarder can generate a large amount of power, it is suitable for increasing the temperature of the filter body 2 that requires a large current.

本発明によれば、電極3,4をPM量検出のための交流電流印加と昇温のための直流電流印加に兼用するので、目的別にそれぞれ電極を設ける場合に比べて、構成が簡素でコストが抑えられる。   According to the present invention, the electrodes 3 and 4 are used both for applying an alternating current for detecting the amount of PM and for applying a direct current for raising the temperature. Is suppressed.

本発明によれば、検出回路5の交流電流と昇温回路6の直流電流を交流結合用コンデンサ8を介して重畳するので、接続点9から電極3,4までの配線は、直流電流用の配線と交流電流用の配線を別々に設けるよりも、経済的である。   According to the present invention, since the alternating current of the detection circuit 5 and the direct current of the temperature raising circuit 6 are superimposed via the AC coupling capacitor 8, the wiring from the connection point 9 to the electrodes 3 and 4 is a direct current wiring. It is more economical than providing separate wiring for AC current.

1 DPFシステム
2 フィルタ本体
3、4 電極
5 検出回路
6 昇温回路
DESCRIPTION OF SYMBOLS 1 DPF system 2 Filter body 3, 4 Electrode 5 Detection circuit 6 Temperature rising circuit

Claims (2)

粒子状物質を捕集するための炭化ケイ素からなる多孔状のフィルタ本体と、
前記フィルタ本体の外周に接し、互いに対向する2つの電極と、
前記2つの電極間に交流電流を印加したときの応答信号の変化に基づいて前記フィルタ本体に蓄積された粒子状物質の量を検出する検出回路と、
前記2つの電極間に直流電流を印加して前記フィルタ本体を昇温させることにより、前記フィルタ本体に蓄積された粒子状物質を焼却する昇温回路とを備えたことを特徴とするディーゼルパティキュレートフィルタシステム。
A porous filter body made of silicon carbide for collecting particulate matter;
Two electrodes in contact with the outer periphery of the filter body and facing each other;
A detection circuit for detecting the amount of particulate matter accumulated in the filter body based on a change in a response signal when an alternating current is applied between the two electrodes;
Diesel particulates comprising: a temperature raising circuit for incinerating particulate matter accumulated in the filter body by applying a direct current between the two electrodes to raise the temperature of the filter body Filter system.
前記昇温回路は、リターダの回生電流を直流化して前記2つの電極間に印加することを特徴とする請求項1記載のディーゼルパティキュレートフィルタシステム。   2. The diesel particulate filter system according to claim 1, wherein the temperature raising circuit converts the regenerative current of the retarder into a direct current and applies it between the two electrodes.
JP2010149358A 2010-06-30 2010-06-30 Diesel particulate filter system Pending JP2012012983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149358A JP2012012983A (en) 2010-06-30 2010-06-30 Diesel particulate filter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149358A JP2012012983A (en) 2010-06-30 2010-06-30 Diesel particulate filter system

Publications (1)

Publication Number Publication Date
JP2012012983A true JP2012012983A (en) 2012-01-19

Family

ID=45599712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149358A Pending JP2012012983A (en) 2010-06-30 2010-06-30 Diesel particulate filter system

Country Status (1)

Country Link
JP (1) JP2012012983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129449A1 (en) * 2013-02-22 2014-08-28 いすゞ自動車株式会社 Exhaust purification device for internal combustion engine
WO2015053324A1 (en) * 2013-10-08 2015-04-16 いすゞ自動車株式会社 Exhaust purification system
WO2021161716A1 (en) * 2020-02-12 2021-08-19 ソニーグループ株式会社 Filter cleaning device, filter system, and filter cleaning method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192213U (en) * 1984-05-30 1985-12-20 日野自動車株式会社 Automobile exhaust gas purification device
JPH06323129A (en) * 1993-05-14 1994-11-22 Osaka Cement Co Ltd Exhaust gas treatment filter for diesel engine
JP2007077878A (en) * 2005-09-14 2007-03-29 Ngk Insulators Ltd Particulate collecting filter and filter unit
JP2010106735A (en) * 2008-10-29 2010-05-13 Comotec Corp Heating element, exhaust emission control device for internal combustion engine, and fuel reformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192213U (en) * 1984-05-30 1985-12-20 日野自動車株式会社 Automobile exhaust gas purification device
JPH06323129A (en) * 1993-05-14 1994-11-22 Osaka Cement Co Ltd Exhaust gas treatment filter for diesel engine
JP2007077878A (en) * 2005-09-14 2007-03-29 Ngk Insulators Ltd Particulate collecting filter and filter unit
JP2010106735A (en) * 2008-10-29 2010-05-13 Comotec Corp Heating element, exhaust emission control device for internal combustion engine, and fuel reformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129449A1 (en) * 2013-02-22 2014-08-28 いすゞ自動車株式会社 Exhaust purification device for internal combustion engine
JP2014163253A (en) * 2013-02-22 2014-09-08 Isuzu Motors Ltd Exhaust emission control device of internal combustion engine
US9664090B2 (en) 2013-02-22 2017-05-30 Isuzu Motors Limited Exhaust purification device for internal combustion engine
WO2015053324A1 (en) * 2013-10-08 2015-04-16 いすゞ自動車株式会社 Exhaust purification system
JP2015075008A (en) * 2013-10-08 2015-04-20 いすゞ自動車株式会社 Exhaust emission control system
WO2021161716A1 (en) * 2020-02-12 2021-08-19 ソニーグループ株式会社 Filter cleaning device, filter system, and filter cleaning method
AU2021219404B2 (en) * 2020-02-12 2023-10-05 Sony Group Corporation Filter cleaning device, filter system, and filter cleaning method

Similar Documents

Publication Publication Date Title
JP5331578B2 (en) Failure determination device for particulate matter detection means
JP5115873B2 (en) Particulate filter failure detection device
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP5786958B2 (en) Failure detection device for electrically heated catalyst
JP2010275917A (en) Failure determination device for particulate matter detection means
JP2011232065A (en) Gas sensor
JP2017003572A (en) Particulate matter sensor and exhaust gas purification system using the same
JP6136298B2 (en) Exhaust gas purification device for internal combustion engine
KR102340459B1 (en) Method for operating a particle sensor
JP4574411B2 (en) Wrinkle detection sensor and wrinkle detection method
JP5725187B2 (en) Electric heating catalyst
JP2012012983A (en) Diesel particulate filter system
JP2016170118A (en) Particulate matter detecting system
JP2001173429A (en) Exhaust emission control device and heater control method for exhaust emission control device
JP2008231930A (en) Fine particle deposit amount measurement method of honeycomb structure
KR101593670B1 (en) Particular Matter Sensor and exhaust gas purification system using the same
JP2005194935A (en) Exhaust emission control device
EP3056700A1 (en) Exhaust purification system
KR19980032928A (en) Exhaust gas filter
JP4889717B2 (en) Particulate matter detector
JP2014010146A (en) Soot sensing system of diesel engine
KR101558373B1 (en) Sensor unit that senses particulate matters
JP2014118968A (en) Particulate material sensor unit
JP6466002B2 (en) Particulate matter sensor and exhaust gas purification system including the same
JP2015225022A (en) Particulate matter detector and particulate matter detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210