JP2012012671A - Galvannealed steel sheet - Google Patents

Galvannealed steel sheet Download PDF

Info

Publication number
JP2012012671A
JP2012012671A JP2010150892A JP2010150892A JP2012012671A JP 2012012671 A JP2012012671 A JP 2012012671A JP 2010150892 A JP2010150892 A JP 2010150892A JP 2010150892 A JP2010150892 A JP 2010150892A JP 2012012671 A JP2012012671 A JP 2012012671A
Authority
JP
Japan
Prior art keywords
plane
steel sheet
alloying
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010150892A
Other languages
Japanese (ja)
Inventor
Reiko Sugihara
玲子 杉原
Tetsuo Shimizu
哲雄 清水
Tetsuya Mega
哲也 妻鹿
Shinjiro Kaneko
真次郎 金子
Takako Yamashita
孝子 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010150892A priority Critical patent/JP2012012671A/en
Publication of JP2012012671A publication Critical patent/JP2012012671A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet excellent in alloying characteristics.SOLUTION: In surfaces of both sides of the steel sheet, X-ray intensity of a {100} plane of a direction parallel to the sheet side is 2.5 or more in a random intensity ratio, and a half value width of an X-ray diffraction peak of the {100} plane in the surface is 0.15 degrees or more. By specifying in this manner, many {100} planes of unrecrystallized grains exist in the steel sheet surface, a diffusion rate of metal atoms in a plating introduced into the steel or the surface becomes large, and an alloying reaction of iron and zinc is promoted after galvanizing, Further, since difference of reaction rates in the grain boundaries can be reduced, outbursts are hard to occur. Solid solution of Ti contributes to making such texture distribution, and Ti of 0.01 to 0.1% is contained in a range satisfying that Ti* is more than 0.007 in an equation Ti*=(Ti%)-3.4×(N%)-1.5×(S%)-4×(C%).

Description

本発明は、自動車の外装板などに使用される、軟質で合金化特性に優れた溶融亜鉛めっき鋼板に関する。   The present invention relates to a hot-dip galvanized steel sheet that is soft and excellent in alloying characteristics, and is used for an exterior plate of an automobile.

従来から、自動車の外装板としては、引張り強さが350MPa未満程度の軟質で加工性に優れた冷延鋼板が使用されている。
軟質で加工性に優れた冷延鋼板としては、炭窒化物形成元素を含有する極低炭素鋼を熱間圧延し、熱延鋼板の段階で炭窒化物を生成させ、鋼中の固溶Cおよび固溶Nを低減させた後、冷間圧延および再結晶焼鈍を経て製造される冷延鋼板、いわゆるIF(Interstitial Free)鋼板が知られている。
Conventionally, a cold-rolled steel sheet having a tensile strength of less than 350 MPa and being excellent in workability has been used as an automobile exterior board.
As a cold-rolled steel sheet that is soft and excellent in workability, an ultra-low carbon steel containing carbonitride-forming elements is hot-rolled to produce carbonitride at the stage of hot-rolled steel sheet. In addition, a cold-rolled steel sheet, so-called IF (Interstitial Free) steel sheet, which is manufactured through cold rolling and recrystallization annealing after reducing solute N is known.

このようなIF鋼板は、車体寿命延長の観点から、合金化溶融亜鉛めっき処理が施されて使用されることが多い。しかし、IF鋼板では、粒界にCなどの固溶元素がほとんど存在しないため、粒界を拡散経路として鉄・亜鉛合金化反応速度が著しく大きくなる、いわゆるアウトバースト反応によって、均一に合金化制御することが難しいという問題があった。また、特に深絞り加工性に優れるTi添加IF鋼板では、合金化反応の不均一による外観ムラが発生しやすいという問題があった。   Such an IF steel sheet is often used after being subjected to a galvannealing treatment from the viewpoint of extending the life of the vehicle body. However, with IF steel sheets, there is almost no solid solution element such as C at the grain boundaries, so the iron-zinc alloying reaction rate is significantly increased using the grain boundaries as a diffusion path, so the alloying is uniformly controlled by the so-called outburst reaction. There was a problem that it was difficult to do. In addition, the Ti-added IF steel sheet, which is particularly excellent in deep drawing workability, has a problem that unevenness in appearance is likely to occur due to non-uniform alloying reaction.

これらの問題を解決する手法として、例えば、特許文献1には、溶融亜鉛めっき処理を行うに際し、鋼板表面に、炭素化合物、窒素化合物およびホウ素化合物の中から選択される1種または2種以上をC、N、B量として0.1〜1000mg/m2付着させ、かつ、硫黄または硫黄化合物をS量として0.1〜1000mg/m2付着させた後、水素を含む非酸化性雰囲気で680℃以上の温度で焼鈍する方法が開示されている。 As a technique for solving these problems, for example, Patent Document 1 discloses that one or more selected from a carbon compound, a nitrogen compound, and a boron compound are provided on the surface of a steel sheet when performing hot dip galvanizing treatment. C, N, B amount 0.1 to 1000 mg / m 2 adhered to as, and sulfur, or after the sulfur compound to 0.1 to 1000 mg / m 2 is deposited as a S content, a temperature above 680 ° C. in a non-oxidizing atmosphere containing hydrogen A method of annealing in is disclosed.

また、特許文献2には、スジムラと呼ばれる表面外観不均一を解決するために、連続鋳造直後のスラブをその表面温度が1000℃以上になるように保持して仕上圧延工程に導き、Ar3点以上の温度で仕上げる方法が開示されている。   In addition, in Patent Document 2, in order to solve the uneven surface appearance called “straight unevenness”, the slab immediately after continuous casting is held at a surface temperature of 1000 ° C. or higher and led to the finishing rolling process, and the Ar3 point or higher A method of finishing at the following temperature is disclosed.

さらに、特許文献3には、同様の表面外観不均一を解決するために、鋼を連続鋳造してスラブとした後加熱し、表面温度が1000℃以上のスラブに酸素を含む酸化性ガスを吹付けた後、熱間圧延、酸洗、冷間圧延、焼鈍を行う方法が開示されている。   Furthermore, in Patent Document 3, in order to solve the similar surface appearance non-uniformity, steel is continuously cast into a slab and then heated, and an oxidizing gas containing oxygen is blown into a slab having a surface temperature of 1000 ° C. or higher. A method of performing hot rolling, pickling, cold rolling, and annealing after application is disclosed.

特開平11−50221号公報Japanese Patent Laid-Open No. 11-50221 特開平9−29622号公報JP-A-9-29622 特開平10−330846号公報Japanese Patent Laid-Open No. 10-330846

しかしながら、上記技術には、次のような問題がある。   However, the above technique has the following problems.

特許文献1に記載の方法では、硫黄または硫黄化合物をS量として0.1〜1000mg/m2付着させる工程が必要となり、生産性の低下やコストの増大を招くという問題がある。 In the method described in Patent Document 1, a step of attaching 0.1 to 1000 mg / m 2 of sulfur or a sulfur compound as the amount of S is required, and there is a problem that the productivity is lowered and the cost is increased.

特許文献2に記載の方法では、スラブの表面を溶削するなどして表面欠陥を防止する、いわゆるスラブ手入れを行うことができず、特に美麗な表面外観を要求される自動車外装板用途に用いるには不適当である。   In the method described in Patent Document 2, it is impossible to perform so-called slab maintenance that prevents surface defects by, for example, cutting the surface of the slab, and it is used for automotive exterior board applications that require a particularly beautiful surface appearance. Inappropriate for

特許文献3に記載の方法では、鋼板の両面で外観不均一を防止するためには、1000℃以上の高温のスラブを表裏反転させて酸化性のガスを吹付ける必要があり、実用的でない。   In the method described in Patent Document 3, in order to prevent non-uniform appearance on both surfaces of the steel sheet, it is necessary to invert a high-temperature slab of 1000 ° C. or higher and spray an oxidizing gas, which is not practical.

本発明は、かかる事情に鑑みなされたもので、特殊な処理を施さずに均一な外観を得ることのできる、合金化特性に優れた合金化溶融亜鉛めっき鋼板を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the galvannealed steel plate excellent in the alloying characteristic which can obtain a uniform external appearance, without giving a special process.

本発明者らは、上記課題を解決するために、鋭意研究を進めた。
その結果、表層部分に特定結晶方位の未再結晶粒を形成させて表層組織を制御することで溶融亜鉛めっき後の合金化特性が向上すること、そして、この未再結晶粒の形成には表層の析出物強化が大きく関与し、Tiを中心とする成分組成の制御が重要であることを見出した。
In order to solve the above-mentioned problems, the present inventors have conducted extensive research.
As a result, by forming non-recrystallized grains with a specific crystal orientation in the surface layer portion and controlling the surface layer structure, the alloying characteristics after hot dip galvanization are improved, and the formation of this non-recrystallized grains It was found that the strengthening of precipitates was greatly involved, and the control of the component composition centered on Ti was important.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
質量%で、C:0.0005〜0.01%、Si:0.2%以下、Mn:0.1〜1.5%、P:0.10%%以下、S:0.003〜0.03%、Ti:0.01〜0.1%、Al:0.01〜0.10%、N: 0.005%以下を含み、かつ、Ti*=(Ti%)−3.4×(N%)−1.5×(S%)−4×(C%)とする時に、Ti*>0.007を満たす範囲で含有し、残部がFe及び不可避的不純物からなる成分組成を有し、鋼板両面の表面において、板面に平行な方向の{100}面X線強度がランダム強度比で2.5以上であり、{100}面X線回折ピークの半価幅が0.15゜以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
ただし、(Ti%)、(N%)、(S%)、(C%)は、それぞれTi、N、S、Cの含有量(質量%)を示す。
The present invention has been made based on the above findings, and the gist thereof is as follows.
In mass%, C: 0.0005 to 0.01%, Si: 0.2% or less, Mn: 0.1 to 1.5%, P: 0.10% or less, S: 0.003 to 0.03%, Ti: 0.01 to 0.1%, Al: 0.01 to 0.10 %, N: Including 0.005% or less and satisfying Ti *> 0.007 when Ti * = (Ti%) − 3.4 × (N%) − 1.5 × (S%) − 4 × (C%) In the range, the balance has a component composition consisting of Fe and inevitable impurities, the surface of both surfaces of the steel plate, the {100} plane X-ray intensity in the direction parallel to the plate surface is 2.5 or more in random intensity ratio, An alloyed hot-dip galvanized steel sheet characterized by having a half width of a {100} plane X-ray diffraction peak of 0.15 ° or more.
However, (Ti%), (N%), (S%), and (C%) indicate the contents (mass%) of Ti, N, S, and C, respectively.

なお、本明細書において、鋼の成分を示す%は、すべて質量%である。   In the present specification, “%” indicating the component of steel is “% by mass”.

本発明によれば、深絞り性改善のためにC量を低減したIF鋼板において、特殊な処理を施さずに均一な外観を得ることのできる、合金化特性に優れた合金化溶融亜鉛めっき鋼板が得られる。   According to the present invention, an IF hot-dip galvanized steel sheet with excellent alloying characteristics that can obtain a uniform appearance without performing special treatment in an IF steel sheet with a reduced amount of C for improving deep drawability Is obtained.

また、本発明の合金化溶融亜鉛めっき鋼板は合金化特性に優れているので、例えば、鋼強化のためにP、Mnを添加し合金化速度が遅くなる傾向があるめっき鋼板に対しても優れた効果を発揮することができる。   In addition, since the galvannealed steel sheet of the present invention is excellent in alloying characteristics, for example, it is excellent also for a plated steel sheet in which P and Mn are added to strengthen the steel and the alloying speed tends to be slow. Can exert the effect.

本発明の合金化溶融亜鉛めっき鋼板は、鋼板両面の表面において、板面に平行な方向の{100}面X線強度がランダム強度比で2.5以上であり、かつ、表面での{100}面X線回折ピークの半価幅が0.15゜以上であることを特徴とする。これは本発明において最も重要な要件である。また、その時の成分組成は質量%で、C:0.0005〜0.01%、Si:0.2%以下、Mn:0.1〜1.5%、P:0.10%以下、S:0.003〜0.03%、Ti:0.01〜0.1%、Al:0.01〜0.10%、N: 0.005%以下を含み、かつ、Ti*=(Ti%)−3.4×(N%)−1.5×(S%)−4×(C%)とする時に、Ti*>0.007を満たす範囲で含有し、残部がFe及び不可避的不純物とする。ただし、(Ti%)、(N%)、(S%)、(C%)は、それぞれTi、N、S、Cの含有量(質量%)を示す。このように、鋼板表面の状態を規定することにより、溶融亜鉛めっき後の合金化特性に優れた鋼板を得ることができる。   The alloyed hot-dip galvanized steel sheet of the present invention has a {100} plane X-ray intensity in a direction parallel to the plate surface on the surfaces of both surfaces of the steel sheet, and a random intensity ratio of 2.5 or more, and the {100} plane on the surface The half width of the X-ray diffraction peak is 0.15 ° or more. This is the most important requirement in the present invention. Moreover, the component composition at that time is mass%, C: 0.0005-0.01%, Si: 0.2% or less, Mn: 0.1-1.5%, P: 0.10% or less, S: 0.003-0.03%, Ti: 0.01-0.1% , Al: 0.01 to 0.10%, N: 0.005% or less and Ti * = (Ti%) − 3.4 × (N%) − 1.5 × (S%) − 4 × (C%) It is contained in a range satisfying Ti *> 0.007, and the balance is Fe and inevitable impurities. However, (Ti%), (N%), (S%), and (C%) indicate the contents (mass%) of Ti, N, S, and C, respectively. Thus, the steel plate excellent in the alloying characteristic after hot dip galvanization can be obtained by prescribing | regulating the state of the steel plate surface.

なお、本発明において、板面に平行な方向の{100}面X線強度がランダム強度比で2.5以上、かつ、表面での{100}面X線回折ピークの半価幅が0.15゜以上とは、冷間圧延後、α→γ変態や再結晶をおこさず回復現象のみを経過した、再結晶粒と比較して転位密度が高く圧延方向に伸展した形態の未再結晶粒が板面に平行な方向の{100}面に集積した状態であることを示している。したがって、変態点以上の温度で行われる焼鈍により得られるα→γ→α変態を経て生成した再結晶粒が集積した組織とは異なるものである。   In the present invention, the {100} plane X-ray intensity in the direction parallel to the plate surface has a random intensity ratio of 2.5 or more, and the half width of the {100} plane X-ray diffraction peak on the surface is 0.15 ° or more. After cold rolling, the α → γ transformation and recrystallization did not occur, and only the recovery phenomenon passed. Compared with the recrystallized grains, unrecrystallized grains in the form of dislocation density and extended in the rolling direction were formed on the plate surface. It shows a state of being accumulated on {100} planes in parallel directions. Therefore, it is different from a structure in which recrystallized grains generated through α → γ → α transformation obtained by annealing performed at a temperature equal to or higher than the transformation point are accumulated.

このように、本発明では、板面に平行な方向の{100}面の集積において、その{100}面方位に集積した結晶粒の形態および転位密度に特徴があり、通常得られる再結晶粒γ→α変態を経て形成された{100}面方位が集積した組織からなる物とは構成が異なる。ゆえに、本発明では、未再結晶粒と再結晶粒の違いを明らかにすべく、ランダム強度比に加え、表面での{100}面X線回折ピークの半価幅を測定し、ランダム強度比と半価幅を用いて合金化溶融亜鉛めっき鋼板の構成を示すこととする。   Thus, in the present invention, in the accumulation of {100} planes in the direction parallel to the plate surface, there is a feature in the morphology and dislocation density of the crystal grains accumulated in the {100} plane orientation, and the recrystallized grains that are usually obtained The composition is different from that of a structure composed of {100} plane orientations formed through the γ → α transformation. Therefore, in the present invention, in order to clarify the difference between unrecrystallized grains and recrystallized grains, in addition to the random intensity ratio, the half-value width of the {100} plane X-ray diffraction peak at the surface is measured, and the random intensity ratio is measured. The structure of the alloyed hot-dip galvanized steel sheet is shown using the half width.

板面に平行な方向の{100}面X線強度がランダム強度比で2.5以上であれば、表面における板面に平行な方向での{100}面の面積比率が十分に高くなる。さらに、表面の{100}面X線回折ピークの半価幅が0.15゜以上であれば、それらの転位密度が十分に高いため、溶融亜鉛めっき後の合金化処理時に拡散速度が大きくなり、合金化特性を向上させることが可能となる。   If the {100} plane X-ray intensity in the direction parallel to the plate surface is 2.5 or more in terms of the random intensity ratio, the area ratio of the {100} plane in the direction parallel to the plate surface on the surface is sufficiently high. Furthermore, if the half width of the {100} plane X-ray diffraction peak on the surface is 0.15 ° or more, the dislocation density is sufficiently high, so that the diffusion rate increases during the alloying treatment after hot dip galvanizing, and the alloy It is possible to improve the conversion characteristics.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

従来、自動車の外装板用鋼板の集合組織は、板面に平行な方向に{111}面が多く形成することが知られている。本発明者らは、様々な製造条件での実験を繰返し実施したところ、鋼板の内部では{111}面が多く存在するが、最表層には{100}面が多く存在する鋼板が得られることを見出した。そして、この{100}面の集積が、変態点以上で焼鈍することにより得られる{100}面ではなく、転位密度が高い未再結晶粒の{100}面である場合に合金化特性が格段に優れることも見出した。   Conventionally, it is known that the texture of a steel plate for an exterior plate of an automobile is formed with many {111} surfaces in a direction parallel to the plate surface. As a result of repeated experiments under various production conditions, the present inventors have found that a steel sheet having many {111} faces in the steel sheet but having many {100} faces in the outermost layer is obtained. I found. When the {100} plane accumulation is not the {100} plane obtained by annealing at or above the transformation point, but the {100} plane of unrecrystallized grains having a high dislocation density, the alloying characteristics are markedly It was also found to be excellent.

未再結晶粒の{100}面は、結晶内の転位密度が高いため、再結晶粒である{111}面に比べて、鋼中あるいは表面に導入されためっき中の金属原子の拡散速度が大きくなる。従って、表層に未再結晶粒の{100}面が多く存在する集合組織分布を有する鋼板は、従来の表面に{111}面が多く形成されたIF鋼板に比べ、溶融亜鉛めっき後の鉄・亜鉛合金化反応が促進され、粒界での反応速度の差をごく小さくできるため、いわゆるアウトバーストが生じにくい。   The {100} plane of unrecrystallized grains has a higher dislocation density in the crystal, so the diffusion rate of metal atoms in the steel or plating introduced to the surface is higher than that of the {111} plane that is recrystallized grains. growing. Therefore, a steel sheet with a texture distribution in which many {100} faces of unrecrystallized grains are present on the surface layer, compared to the conventional IF steel sheet with many {111} faces formed on the surface, Since the zinc alloying reaction is promoted and the difference in reaction rate at the grain boundary can be made extremely small, so-called outburst is unlikely to occur.

また、従来の鋼板表面よりも合金化反応速度が大きいため、合金化反応時間が短縮でき、生産性を向上させることができる。さらに、合金化反応を遅延させる理由で従来は添加量を少量にせざるを得なかった強化元素であるPやMnを添加したとしても、本発明では、従来の工程で十分な合金化反応を生じさせることができるという利点もある。   Moreover, since the alloying reaction rate is higher than that of the conventional steel plate surface, the alloying reaction time can be shortened, and the productivity can be improved. Furthermore, even if P or Mn, which is a strengthening element that conventionally had to be added in a small amount for the reason of delaying the alloying reaction, is added in the present invention, a sufficient alloying reaction occurs in the conventional process. There is also an advantage that can be made.

以上の検討結果を踏まえて、本発明では、合金化特性を改善し、均一な外観と生産性向上を両立させるため、鋼板両面の表面において、板面に平行な方向の{100}面X線強度をランダム強度比で2.5以上、かつ表面での{100}面X線回折ピークの半価幅を0.15゜以上とする。   Based on the above examination results, in the present invention, in order to improve alloying characteristics and achieve both uniform appearance and productivity improvement, {100} plane X-rays in a direction parallel to the plate surface on both surfaces of the steel plate The intensity is 2.5 or more in random intensity ratio, and the half width of {100} plane X-ray diffraction peak on the surface is 0.15 ° or more.

なお、板面に平行な方向の{100}面X線強度は逆極点図法により測定することができる。また、表面での{100}面X線回折ピークの半価幅は、X線源にMoを用い、θ−2θ法により表面での{100}面X線回折ピークを測定して求めることができる。測定方法の詳細条件については、後述する実施例で述べる。   The {100} plane X-ray intensity in the direction parallel to the plate surface can be measured by the inverse pole figure method. The half-value width of the {100} plane X-ray diffraction peak on the surface can be determined by measuring the {100} plane X-ray diffraction peak on the surface using Mo as the X-ray source and the θ-2θ method. it can. Detailed conditions of the measurement method will be described in the examples described later.

また、未再結晶粒が多く存在する領域の、最表層から板厚中心方向への厚さは、鋼板の圧延方向断面を光学顕微鏡で観察することにより測定することができる。未再結晶粒の圧延方向断面の形態は、再結晶粒に比べ厚みが小さく、かつ圧延方向に伸展した形態であるため、容易に区別することができる。そして、概ね、合金化特性改善という効果を得るためには、少なくとも最表層から板厚中心方向5μmの領域までは未再結晶粒の{100}面が多く存在することが好ましい。さらに好ましくは最表層から板厚中心方向20μmの領域までである。   Moreover, the thickness from the outermost layer to the plate thickness center direction in the region where many non-recrystallized grains exist can be measured by observing a cross section in the rolling direction of the steel plate with an optical microscope. The form of the cross section in the rolling direction of the non-recrystallized grains can be easily distinguished because it has a smaller thickness than the recrystallized grains and extends in the rolling direction. In general, in order to obtain the effect of improving the alloying characteristics, it is preferable that there are many {100} planes of non-recrystallized grains at least from the outermost layer to the region in the thickness direction of 5 μm. More preferably, it is from the outermost layer to the region of 20 μm in the plate thickness center direction.

また、上記のような鋼板表面において板面に平行な方向の{100}面X線強度がランダム強度比2.5以上で表面での{100}面X線回折ピークの半価幅が0.15゜以上である鋼板は、熱間圧延および焼鈍工程での製造条件を制御することにより得られる。具体的には、例えば熱間圧延での巻取り温度を630℃以下とし、焼鈍の加熱工程での雰囲気、特に雰囲気(窒素と水素の混合ガス)中の水素濃度を5vol%以上、露点を−40℃以下とすることにより、板面に平行な方向の{100}面X線強度がランダム強度比で2.5以上、かつ表面での{100}面X線回折ピークの半価幅が0.15゜以上となる。   In addition, the {100} plane X-ray intensity in the direction parallel to the plate surface on the steel sheet surface as described above has a random intensity ratio of 2.5 or more and the half width of the {100} plane X-ray diffraction peak on the surface is 0.15 ° or more. A certain steel plate is obtained by controlling the manufacturing conditions in the hot rolling and annealing processes. Specifically, for example, the coiling temperature in hot rolling is set to 630 ° C. or less, the hydrogen concentration in the atmosphere in the annealing heating process, particularly the atmosphere (mixed gas of nitrogen and hydrogen) is 5 vol% or more, and the dew point is − By setting the temperature to 40 ° C or less, the {100} plane X-ray intensity in the direction parallel to the plate surface is 2.5 or more in random intensity ratio, and the half width of the {100} plane X-ray diffraction peak on the surface is 0.15 ° or more. It becomes.

さらに、検討を進めた結果、鋼板の焼鈍過程において、Tiとして、C、N、SとTi化合物を形成して析出に寄与していない、すなわち、鋼中に固溶したTiが存在するような鋼成分組成とすることが、上記のような、表層で未再結晶粒の{100}面方位を多く集積させるのに重要であることも見出した。
固溶Tiの存在が表層で未再結晶粒の{100}面方位を多く集積させる正確な機構は明らかではないが、冷延後の焼鈍時に、Tiが雰囲気中に存在するNと反応して表層近傍で形成される窒化物が、結晶粒界の移動を妨げ再結晶を抑制することで、本来多く形成される{111}面の形成を阻害させることによるものと推察される。
Furthermore, as a result of further investigation, in the annealing process of the steel sheet, as Ti, Ti, C, N, S and Ti compounds are not contributed to precipitation, that is, there is a solid solution Ti in the steel It has also been found that the composition of the steel component is important for accumulating many {100} plane orientations of unrecrystallized grains in the surface layer as described above.
Although the exact mechanism by which the presence of solute Ti accumulates many {100} orientations of unrecrystallized grains on the surface layer is not clear, during the annealing after cold rolling, Ti reacts with N present in the atmosphere. It is assumed that the nitride formed in the vicinity of the surface layer inhibits the formation of {111} planes that are originally formed by preventing the movement of crystal grain boundaries and suppressing recrystallization.

以上より、このように固溶Tiを存在させるための成分組成として、Ti*=(Ti%)−3.4×(N%)−1.5×(S%)−4×(C%)とする時に、Ti*>0.007を満たす範囲で含有することとする。ただし、(Ti%)、(N%)、(S%)、(C%)は、それぞれTi、N、S、Cの含有量(質量%)を示す。詳細な説明は後述する。   From the above, as the component composition for making solute Ti present in this way, when Ti * = (Ti%) − 3.4 × (N%) − 1.5 × (S%) − 4 × (C%), It should be contained within the range satisfying Ti *> 0.007. However, (Ti%), (N%), (S%), and (C%) indicate the contents (mass%) of Ti, N, S, and C, respectively. Detailed description will be given later.

次に、成分元素の限定理由について説明する。   Next, the reasons for limiting the component elements will be described.

C:0.0005〜0.01%
Cは、固溶強化元素であり、降伏強度の上昇に寄与し、面内剛性の向上には有利である。しかし、優れた深絞り性を得るためには、極力低減することが好ましい。また、Cを多量に含有すると鋼中でのTi炭化物量が増加し、鋼中の固溶Ti量が減少して、表層部での板面に平行な方向の{100}面の生成が阻害される。以上より、0.01%を上限とする。一方、0.0005%未満では、結晶粒径が著しく粗大化して降伏強度が大きく低下するため、面内剛性が低下して腰折れなどの欠陥が発生しやすくなる。また、脱炭コストの増大を招く。よって、0.0005%以上0.01%以下とする。
C: 0.0005-0.01%
C is a solid solution strengthening element, contributes to an increase in yield strength, and is advantageous for improving the in-plane rigidity. However, in order to obtain excellent deep drawability, it is preferable to reduce as much as possible. In addition, if C is contained in a large amount, the amount of Ti carbide in the steel increases, the amount of solute Ti in the steel decreases, and the formation of the {100} plane parallel to the plate surface in the surface layer is obstructed. Is done. Based on the above, the upper limit is 0.01%. On the other hand, if it is less than 0.0005%, the crystal grain size becomes extremely coarse and the yield strength is greatly reduced, so that the in-plane rigidity is lowered and defects such as hip breakage are likely to occur. Moreover, the decarburization cost increases. Therefore, the content is 0.0005% or more and 0.01% or less.

Si:0.2%以下
Siは、比較的加工性を劣化することなく固溶強化により鋼を強化する有用な元素である。一方で、焼鈍時に表面に濃化して溶融亜鉛めっき性を著しく阻害する。よって、0.2%以下とする。
Si: 0.2% or less
Si is a useful element for strengthening steel by solid solution strengthening without relatively degrading workability. On the other hand, it concentrates on the surface during annealing and significantly impairs hot dip galvanizing properties. Therefore, it is 0.2% or less.

Mn:0.1〜1.5%
Mnは、固溶強化元素として鋼強度を増大させるため、また、鋼板剛性確保のため、0.1%以上の添加が必要である。一方で、過剰な添加は加工性を阻害するため、1.5%以下とする。
Mn: 0.1-1.5%
Mn must be added in an amount of 0.1% or more in order to increase the steel strength as a solid solution strengthening element and to secure the rigidity of the steel plate. On the other hand, excessive addition inhibits processability, so it is made 1.5% or less.

P:0.10%以下
Pは固溶強化元素であり、鋼の強化に有効であるが、通常、合金化反応を阻害するため、合金化溶融亜鉛めっき鋼板では添加量の上限が0.05%程度に制限される。しかし、本発明では合金化特性が改善されるため、より多量に添加することが可能である。ただし、0.10%を超えて過度に添加すると、熱間、冷間割れの原因となるばかりでなく、溶接不良を生じやすくなる。よって、上限を0.10%とする。
P: 0.10% or less
P is a solid solution strengthening element, which is effective for strengthening steel. However, in order to inhibit the alloying reaction, the upper limit of the additive amount is limited to about 0.05% in the alloyed hot-dip galvanized steel sheet. However, in the present invention, since the alloying characteristics are improved, a larger amount can be added. However, excessive addition exceeding 0.10% not only causes hot and cold cracks, but also tends to cause poor welding. Therefore, the upper limit is set to 0.10%.

S:0.003〜0.03%
Sは不可避的不純物として鋼中に存在するが、0.03%超えでは鋼板製造時の熱間割れが生じ易くなるとともに、鋼中で介在物を形成して、加工性を著しく低下させる。また、過度の添加は、Ti硫化物の形成を促進し、固溶Tiの減少につながる。よって、0.03%を上限とする。一方、S量は少ない方が好ましいが、0.003%未満とするには脱硫コストが増大するので、0.003%を下限とする。
S: 0.003-0.03%
S is present in the steel as an unavoidable impurity, but if it exceeds 0.03%, hot cracking is likely to occur during the production of the steel sheet, and inclusions are formed in the steel, thereby significantly reducing workability. Excessive addition also promotes the formation of Ti sulfide and leads to a decrease in solid solution Ti. Therefore, the upper limit is 0.03%. On the other hand, it is preferable that the amount of S is small. However, if it is less than 0.003%, the desulfurization cost increases, so 0.003% is set as the lower limit.

Al:0.01〜0.10%
Alは脱酸剤として添加する元素であり、0.01%以上必要である。しかし、多量に添加してもより一層の脱酸効果は得られない。よって、上限は0.10%とする。
Al: 0.01-0.10%
Al is an element to be added as a deoxidizer and needs to be 0.01% or more. However, even if added in a large amount, a further deoxidizing effect cannot be obtained. Therefore, the upper limit is 0.10%.

N: 0.005%以下
Nは、少ないほど加工性には有利であるので、少ないほど望ましい。また、0.005%を超えて、過剰に添加すると、成形性の著しい低下と固溶Ti量の低下につながる。よって、上限は0.005%とする。
N: 0.005% or less
The smaller N, the better the workability, so the smaller N is desirable. Moreover, when it exceeds 0.005% and it adds excessively, it will lead to the remarkable fall of a moldability and the fall of solid solution Ti amount. Therefore, the upper limit is made 0.005%.

Ti:0.01〜0.1%
Tiは本発明における最も重要な元素のひとつである。Tiは、鋼中のC、N、Sを析出物として固定することにより、加工性向上効果を有する。また、本発明においては、析出物を形成するのに必要な量よりも余剰にTiを添加することにより、製造時に雰囲気中のNと窒化物を形成させて表層の未再結晶粒の{100}面方位を増大させるため、不可欠である。0.01%未満では、このような効果を得ることができない。一方、Tiを0.1%を超えて添加してもそれ以上の効果が望めないばかりでなく、板内部の異常組織の形成を促進し、加工性を低下させる。以上より、0.01%以上0.1%以下とする。
Ti: 0.01-0.1%
Ti is one of the most important elements in the present invention. Ti has an effect of improving workability by fixing C, N, and S in steel as precipitates. Further, in the present invention, by adding Ti in excess of the amount necessary to form precipitates, N and nitride in the atmosphere are formed at the time of manufacturing to form {100 } Indispensable for increasing the plane orientation. If it is less than 0.01%, such an effect cannot be obtained. On the other hand, adding more than 0.1% of Ti not only can not expect further effects, but also promotes the formation of abnormal structure inside the plate and lowers workability. From the above, it is set to 0.01% or more and 0.1% or less.

さらに、前述したように、鋼中のTiは鋼中のC、N、Sと析出物を形成するため、これらC、N、Sの成分に対して当量を超えてTiを添加して固溶Tiを余剰に存在させることで、表層に未再結晶粒の{100}面を集積させることが本発明においては重要である。そのため、上記0.01%以上0.1%以下の規定に加え、以下の関係式を満たすものとする。
Ti*=(Ti%)−3.4×(N%)−1.5×(S%)−4×(C%)とする時に、Ti*>0.007
ただし、(Ti%)、(N%)、(S%)、(C%)は、それぞれTi、N、S、Cの含有量(質量%)を示す。
Ti*が、0.007を超えるとき、焼鈍時に鋼中に侵入する雰囲気中の窒素と固溶Tiとがごく微細な窒化物を形成し、結晶粒界の移動を妨げて再結晶を抑制する。その結果、転位密度の高い未再結晶粒が残存しやすくなり、鋼板両面の表面において、板面に平行な方向の{100}面X線強度がランダム強度比で2.5以上、かつ、表面での{100}面X線回折ピークの半価幅が0.15゜以上となる。よって、Ti*>0.007と限定する。
Further, as described above, Ti in steel forms precipitates with C, N, and S in steel. Therefore, Ti is added to the C, N, and S components in excess of the equivalent amount to form a solid solution. It is important in the present invention to accumulate {100} planes of non-recrystallized grains on the surface layer by making Ti excessive. Therefore, in addition to the above specification of 0.01% to 0.1%, the following relational expression should be satisfied.
When Ti * = (Ti%) − 3.4 × (N%) − 1.5 × (S%) − 4 × (C%), Ti *> 0.007
However, (Ti%), (N%), (S%), and (C%) indicate the contents (mass%) of Ti, N, S, and C, respectively.
When Ti * exceeds 0.007, nitrogen in the atmosphere that penetrates into the steel during annealing and solute Ti form very fine nitrides, preventing the movement of grain boundaries and suppressing recrystallization. As a result, non-recrystallized grains having a high dislocation density are likely to remain, and on the surfaces of both surfaces of the steel plate, the {100} plane X-ray intensity in the direction parallel to the plate surface is 2.5 or more in a random intensity ratio, and The half width of the {100} plane X-ray diffraction peak is 0.15 ° or more. Therefore, it is limited to Ti *> 0.007.

なお、上記以外の残部はFe及び不可避的不純物からなる。不可避的不純物として、例えば、Oは非金属介在物を形成し品質に悪影響を及ぼすため、0.003%以下に低減するのが望ましい。また、本発明では、本発明の作用効果を害さない微量元素として、Cu、Cr、Ni、W、V、Zr、Sn、Sbを0.1%以下の範囲で含有してもよい。   The remainder other than the above consists of Fe and inevitable impurities. As an unavoidable impurity, for example, O forms non-metallic inclusions and adversely affects quality, so it is desirable to reduce it to 0.003% or less. In the present invention, Cu, Cr, Ni, W, V, Zr, Sn, and Sb may be contained in a range of 0.1% or less as trace elements that do not impair the effects of the present invention.

次に、本発明の合金化溶融亜鉛めっき鋼板の製造方法について説明する。
本発明の合金化溶融亜鉛めっき鋼板は、上記化学成分範囲に調整された鋼を、粗圧延し、所望の仕上温度で仕上圧延し、次いで、所望の冷却条件で冷却し、巻取り、酸洗後、冷間圧延し、焼鈍、溶融亜鉛めっき、合金化処理を行うことにより得られる。中でも、本発明の特徴である鋼板表面において、板面に平行な方向の{100}面X線強度をランダム強度比で2.5以上、表面での{100}面X線回折ピークの半価幅を0.15゜以上とするためには、巻取り温度を630℃以下とするのが好ましい。630℃以下とすることで、Tiを含有する析出物が微細になり、後の焼鈍時に再溶解して固溶Tiを増大させ、鋼板両面の表面に、板面に平行な方向の未再結晶粒の{100}面を集積させることができる。
Next, the manufacturing method of the galvannealed steel plate of this invention is demonstrated.
The alloyed hot-dip galvanized steel sheet of the present invention is obtained by roughly rolling a steel adjusted to the above chemical composition range, finish rolling at a desired finishing temperature, then cooling under desired cooling conditions, winding, pickling Thereafter, it is obtained by cold rolling, annealing, hot dip galvanizing, and alloying treatment. Above all, on the steel sheet surface, which is a feature of the present invention, the {100} plane X-ray intensity in the direction parallel to the plate surface is 2.5 or more in random intensity ratio, and the half width of the {100} plane X-ray diffraction peak on the surface is In order to make it 0.15 ° or more, the winding temperature is preferably 630 ° C. or less. By setting the temperature to 630 ° C or less, the precipitate containing Ti becomes finer, and re-dissolves during subsequent annealing to increase the solid solution Ti. On both surfaces of the steel sheet, unrecrystallized in the direction parallel to the plate surface The {100} faces of the grains can be accumulated.

また、焼鈍時の加熱工程における雰囲気を、水素を5vol%以上含有する水素と窒素の混合ガスとし、露点を−40℃以下とすることで、より効果的に、鋼板両面の表面に、転位密度の高い板面に平行な方向の未再結晶粒の{100}面を集積させることができる。この理由は必ずしも明らかではないが、水素濃度が高いほど、また露点が低いほど、窒素の鋼中への侵入が促進されて鋼中のTiとより多くのごく微細な窒化物を形成させることができ、再結晶抑制効果が高まるためと推定される。より好ましくは、水素濃度8vol%以上、露点−45℃以下である。   In addition, the atmosphere in the heating process during annealing is a mixed gas of hydrogen and nitrogen containing 5 vol% or more of hydrogen, and the dew point is −40 ° C. or less. {100} planes of non-recrystallized grains in a direction parallel to a high plate surface can be accumulated. The reason for this is not always clear, but the higher the hydrogen concentration and the lower the dew point, the more nitrogen can penetrate into the steel and form more fine nitrides with Ti in the steel. This is presumed to be because the recrystallization suppression effect is enhanced. More preferably, the hydrogen concentration is 8 vol% or more and the dew point is −45 ° C. or less.

表1に示す成分からなる溶鋼を、真空脱ガス処理後、連続鋳造によりスラブとし、1180℃に再加熱した後、仕上温度900℃で3.5mm厚まで熱間圧延し、表2に示す巻取り温度にてコイルに巻き取った。
次いで、巻取り後の鋼板を酸洗し、板厚0.65mmまで冷間圧延し、前処理として脱脂した後、ただちに溶融亜鉛めっきシミュレーターを用いて焼鈍、溶融亜鉛めっきを行った。なお、めっき前の原板特性を評価するため、一部の供試材については溶融亜鉛めっきは行わず焼鈍のみの処理とした。また、焼鈍は、表2に示す焼鈍温度にて、雰囲気は水素を含む非酸化性ガス(水素10vol%、窒素90vol%の混合ガス)とし、露点−50℃で行った。溶融亜鉛めっき処理は、Alを0.12%含む460℃の亜鉛めっき浴を用いて、浸入板温460℃、浸漬時間3秒にて行った。
Molten steel consisting of the components shown in Table 1 is vacuum degassed, then slabd by continuous casting, reheated to 1180 ° C, hot rolled to a thickness of 3.5mm at a finishing temperature of 900 ° C, and wound up as shown in Table 2. The coil was wound up at temperature.
Next, the wound steel sheet was pickled, cold-rolled to a thickness of 0.65 mm, degreased as a pretreatment, and immediately annealed and hot-dip galvanized using a hot-dip galvanizing simulator. In order to evaluate the properties of the original sheet before plating, some of the test materials were not subjected to hot dip galvanization but were subjected to annealing only. In addition, annealing was performed at an annealing temperature shown in Table 2, and the atmosphere was a non-oxidizing gas containing hydrogen (mixed gas of 10 vol% hydrogen and 90 vol% nitrogen) at a dew point of −50 ° C. The hot dip galvanizing treatment was performed using a 460 ° C. galvanizing bath containing 0.12% Al at an immersion plate temperature of 460 ° C. and an immersion time of 3 seconds.

次いで、溶融亜鉛めっき処理後、亜鉛付着量が片面当たり60g/m2になるようにN2ガスワイパーを用いて調整した。さらに、めっき処理後の鋼板に対して、誘導加熱装置により皮膜中の鉄含有率が9.5〜10.5%となるように合金化温度を調整し、20秒間の合金化処理を行った。 Subsequently, after the hot dip galvanizing treatment, the N 2 gas wiper was used to adjust the zinc adhesion amount to 60 g / m 2 per side. Furthermore, the alloying temperature was adjusted with respect to the steel sheet after the plating treatment so that the iron content in the film was 9.5 to 10.5% by an induction heating device, and the alloying treatment was performed for 20 seconds.

Figure 2012012671
Figure 2012012671

以上により得られた焼鈍のみの鋼板に対して、以下に示す方法により、{100}面X線ランダム強度比および半価幅を測定、評価した。また、焼鈍を施した後、溶融亜鉛めっき処理および合金化処理を施し、調質圧延した鋼板に対しては、以下に示す方法により、機械的特性、合金化速度、外観を測定、評価した。
得られた結果を表2に製造条件と併せて示す。
With respect to the annealed steel sheet obtained as described above, the {100} plane X-ray random intensity ratio and the half width were measured and evaluated by the following method. Further, after annealing, the steel sheet subjected to hot dip galvanizing treatment and alloying treatment and temper rolled was measured and evaluated for mechanical properties, alloying speed, and appearance by the following methods.
The obtained results are shown in Table 2 together with the production conditions.

{100}面X線ランダム強度比および半価幅
板面に平行な方向の{100}面X線強度は逆極点図法により測定した。表面での{100}面X線強度は、試験片を洗浄、乾燥したのちに、一方で、板厚中心部での板面に平行な方向の{100}面X線強度は、試験片の片面をシュウ酸により化学研磨して、板厚中心部を表面に露出させた後、それぞれ測定を行った。X線源には白色X線を用い、{100}面X線の検出にはGe半導体検出器を用いた。また同時に、選択配向のない、結晶方位が不規則な分布をするランダム試料の{100}面X線強度(ランダム強度)を測定した。ランダム強度比は、ランダム試料の{100}面X線強度に対する実試験片の{100}面X線強度の比により算出した。
表面での板面に平行な方向の{100}面X線ピーク半価幅は、θ−2θ法でX線源にはMoを使用し、表面での{100}面X線回折ピークを測定し求めた。
The {100} plane X-ray random intensity ratio and the {100} plane X-ray intensity in the direction parallel to the half width plate surface were measured by the inverse pole figure method. The {100} plane X-ray intensity at the surface is measured after the specimen is cleaned and dried, while the {100} plane X-ray intensity in the direction parallel to the plane at the center of the thickness is One surface was chemically polished with oxalic acid to expose the central portion of the plate thickness on the surface, and then each measurement was performed. White X-rays were used as the X-ray source, and a Ge semiconductor detector was used to detect {100} plane X-rays. At the same time, the {100} plane X-ray intensity (random intensity) of a random sample with no selective orientation and an irregular distribution of crystal orientation was measured. The random intensity ratio was calculated by the ratio of the {100} plane X-ray intensity of the actual test piece to the {100} plane X-ray intensity of the random sample.
The {100} plane X-ray peak half-width in the direction parallel to the plate surface at the surface is the θ-2θ method, and Mo is used as the X-ray source, and the {100} plane X-ray diffraction peak at the surface is measured. I asked.

機械的特性
成形性は、引張特性とr値の機械的特性により評価した。引張特性は、JISZ 2201記載の5号試験片に加工した後、JISZ 2241記載の試験方法に従って行った。また、平均r値は、15%の引張予歪を与えた後、3点法にて測定し、鋼板の1方向に対して、90°方向、45°方向、0°方向のr値の平均=(r(0°)+2×r(45°)+r(90°))/4として求めた。
Mechanical properties Formability was evaluated by tensile properties and r-value mechanical properties. Tensile properties were measured according to the test method described in JISZ 2241 after being processed into a No. 5 test piece described in JISZ 2201. The average r value was measured by a three-point method after giving a tensile pre-strain of 15%, and the average r value in the 90 °, 45 °, and 0 ° directions relative to one direction of the steel sheet. = (r (0 °) + 2 × r (45 °) + r (90 °)) / 4.

合金化速度
めっき処理後の鋼板に対して、誘導加熱装置により450℃、475℃、500℃、525℃、550℃、575℃、600℃と温度を変化させ、20秒の合金化処理を行って、表層まで合金化できる温度により、合金化速度を比較した。なお、皮膜中の鉄含有率が9.5〜10.5%となるように合金化温度の調整を行った。20秒の一定時間で合金化処理を行った場合、表層まで合金化できる温度が低いほど合金化速度は大きく、525℃以下であれば、一般的な鋼板と比較して合金化特性が良好である。525℃を超える場合、合金化速度は一般的な従来の鋼板と同等以下であるため、好ましくない。
The steel plate after the alloying rate plating treatment is subjected to alloying treatment for 20 seconds by changing the temperature to 450 ° C, 475 ° C, 500 ° C, 525 ° C, 550 ° C, 575 ° C, 600 ° C with an induction heating device. Thus, the alloying speed was compared according to the temperature at which alloying was possible up to the surface layer. The alloying temperature was adjusted so that the iron content in the film was 9.5 to 10.5%. When alloying treatment is performed for a fixed time of 20 seconds, the lower the temperature at which alloying is possible up to the surface layer, the higher the alloying speed, and if it is 525 ° C or less, the alloying characteristics are better compared to general steel plates. is there. When the temperature exceeds 525 ° C., the alloying speed is equal to or lower than that of a general conventional steel sheet, which is not preferable.

外観
合金化処理後の表面外観を目視にて観察し、局部的な不めっきや、合金化の程度が局部的に異なるために発生する色調ムラ(いわゆるスジムラ)の有無を評価した。不めっきやスジムラのない均一な色調を有するものを「良好」とし、不めっきやスジムラが発生した外観不良材は、外観不良の種類を表2に併せて記載した。
The appearance of the surface after the external alloying treatment was visually observed, and the presence or absence of local non-plating and color unevenness (so-called unevenness) that occurred because the degree of alloying was locally different was evaluated. Those having a uniform color tone without any unplating or streaking were regarded as “good”, and the appearance defect materials in which unplating or streaking occurred were listed in Table 2 together with the types of appearance defects.

Figure 2012012671
Figure 2012012671

表2より、板面に平行な方向の{100}面X線強度が、ランダム強度比で2.5以上であり、表面での{100}面X線回折ピークの半価幅が0.15゜以上である本発明例では、深絞り性の指標である平均r値が1.5以上と優れ、比較例に比べて合金化速度が大きいため生産性を向上させることができ、かつ、外観が均一で自動車外装板用途に適した性能を有していた。また、未再結晶粒が多く存在する領域の、最表層から板厚中心方向への厚さを、鋼板の圧延方向断面を光学顕微鏡で観察した結果、いずれも5μm以上であることを確認した。
一方、比較例では、平均r値、合金化速度、外観のいずれかが劣り、自動車外装板用途に適した性能を満足することができなかった。
From Table 2, the {100} plane X-ray intensity in the direction parallel to the plate surface is 2.5 or more in random intensity ratio, and the half-value width of the {100} plane X-ray diffraction peak on the surface is 0.15 ° or more. In the present invention example, the average r value which is an index of deep drawability is excellent as 1.5 or more, the alloying speed is higher than that of the comparative example, so that the productivity can be improved, and the appearance is uniform and the automobile exterior plate It had the performance suitable for the application. Further, as a result of observing the cross section in the rolling direction of the steel sheet with an optical microscope, it was confirmed that the thickness of the region where many non-recrystallized grains existed from the outermost layer to the thickness center direction was 5 μm or more.
On the other hand, in the comparative example, any one of the average r value, the alloying speed, and the appearance was inferior, and the performance suitable for the automobile exterior plate application could not be satisfied.

本発明の合金化溶融亜鉛めっき鋼板は、深絞り性および合金化特性に優れ、均一な外観が得られるため、自動車の外装板などを中心に、多様な用途での使用が可能となる。   The alloyed hot-dip galvanized steel sheet of the present invention is excellent in deep drawability and alloying characteristics and has a uniform appearance, so that it can be used in various applications, mainly for automobile exterior panels.

Claims (1)

質量%で、C:0.0005〜0.01%、Si:0.2%以下、Mn:0.1〜1.5%、P:0.10%%以下、S:0.003〜0.03%、Ti:0.01〜0.1%、Al:0.01〜0.10%、N: 0.005%以下を含み、かつ、Ti*=(Ti%)−3.4×(N%)−1.5×(S%)−4×(C%)とする時に、Ti*>0.007を満たす範囲で含有し、残部がFe及び不可避的不純物からなる成分組成を有し、
鋼板両面の表面において、板面に平行な方向の{100}面X線強度がランダム強度比で2.5以上であり、{100}面X線回折ピークの半価幅が0.15゜以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
ただし、(Ti%)、(N%)、(S%)、(C%)は、それぞれTi、N、S、Cの含有量(質量%)を示す。
In mass%, C: 0.0005 to 0.01%, Si: 0.2% or less, Mn: 0.1 to 1.5%, P: 0.10% or less, S: 0.003 to 0.03%, Ti: 0.01 to 0.1%, Al: 0.01 to 0.10 %, N: Including 0.005% or less and satisfying Ti *> 0.007 when Ti * = (Ti%) − 3.4 × (N%) − 1.5 × (S%) − 4 × (C%) In a range, the remainder has a component composition consisting of Fe and inevitable impurities,
On the surfaces of both sides of the steel plate, the {100} plane X-ray intensity in the direction parallel to the plate surface is 2.5 or more in random intensity ratio, and the half width of the {100} plane X-ray diffraction peak is 0.15 ° or more. An alloyed hot-dip galvanized steel sheet.
However, (Ti%), (N%), (S%), and (C%) indicate the contents (mass%) of Ti, N, S, and C, respectively.
JP2010150892A 2010-07-01 2010-07-01 Galvannealed steel sheet Withdrawn JP2012012671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150892A JP2012012671A (en) 2010-07-01 2010-07-01 Galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150892A JP2012012671A (en) 2010-07-01 2010-07-01 Galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JP2012012671A true JP2012012671A (en) 2012-01-19

Family

ID=45599446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150892A Withdrawn JP2012012671A (en) 2010-07-01 2010-07-01 Galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP2012012671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058741A (en) * 2012-08-22 2014-04-03 Nippon Steel & Sumitomo Metal Hot dip galvannealed steel sheet excellent in productivity and press formability and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058741A (en) * 2012-08-22 2014-04-03 Nippon Steel & Sumitomo Metal Hot dip galvannealed steel sheet excellent in productivity and press formability and production method thereof

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
CN111936650B (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP6727305B2 (en) High-strength hot-dip galvanized steel material excellent in platability and method for producing the same
JP6202234B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP5446430B2 (en) Cold-rolled steel sheet, alloyed hot-dip galvanized steel sheet, and production method thereof
CN116694988A (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP5436009B2 (en) High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same
KR101647223B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
JP2013136809A (en) METHOD FOR PRODUCING Si-CONTAINING HIGH STRENGTH HOT-DIP GALVANIZED STEEL SHEET, AND METHOD FOR PRODUCING Si-CONTAINING HIGH STRENGTH GALVANNEALED STEEL SHEET
JP2023027288A (en) Galvannealed steel sheet
KR100994007B1 (en) High Strength Steel Sheet for Hot-Dip Galvanization with Excellent Galvanizing Properties and Manufacturing Method Thereof
JP6744003B1 (en) Steel plate
JP5655363B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR20090110500A (en) Extremely Low Carbon Steel Sheet, Galvanized Steel Sheet with High Strength and Excellent Surface Properties and Manufacturing Method Thereof
JPH0543982A (en) Cold rolled steel sheet for deep drawing and its production
JP4957829B2 (en) Cold rolled steel sheet and method for producing the same
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
WO2016194342A1 (en) High strength steel sheet and method for producing same
JP2012012671A (en) Galvannealed steel sheet
JPH0559489A (en) Cold rolled steel sheet for deep drawing as well as galvanized product thereof and there manufacturing method
KR102484978B1 (en) High strength galvannealed steel sheet having excellent powdering resistance and manufacturing method for the same
JP3198900B2 (en) Manufacturing method of thin galvanized steel sheet
JP2012012672A (en) Cold-rolled steel sheet
KR102031459B1 (en) Ultra high strength high manganese galvanized steel sheet having excellent coatability and method of manufacturing the same
JP2001181786A (en) High strength hot dip galvanized steel sheet excellent in surface characteristic and workability, and method for manufacture thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903