JP2012012651A - Method for controlling orientation of gold nanorod, and substrate obtained by the same, or the like - Google Patents

Method for controlling orientation of gold nanorod, and substrate obtained by the same, or the like Download PDF

Info

Publication number
JP2012012651A
JP2012012651A JP2010149362A JP2010149362A JP2012012651A JP 2012012651 A JP2012012651 A JP 2012012651A JP 2010149362 A JP2010149362 A JP 2010149362A JP 2010149362 A JP2010149362 A JP 2010149362A JP 2012012651 A JP2012012651 A JP 2012012651A
Authority
JP
Japan
Prior art keywords
aunr
magnetic field
substrate
concentration
ctab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010149362A
Other languages
Japanese (ja)
Inventor
Hiroaki Yonemura
弘明 米村
Atsushi Yamada
淳 山田
Natsuko Sakai
奈津子 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Kyushu University NUC
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Kyushu University NUC
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Kyushu University NUC, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2010149362A priority Critical patent/JP2012012651A/en
Publication of JP2012012651A publication Critical patent/JP2012012651A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the orientation of gold nanorods by the concentration of the gold nanorods, and to provide a substrate having oriented gold nanorods thereon.SOLUTION: In the method for orienting gold nanorods (AuNR) into a fixed direction on a substrate, comprising providing an aqueous dispersion of the AuNR modified with a surfactant on the substrate and evaporating a solvent while applying a magnetic field to the dispersion, the orientation direction of the AuNR is controlled by the concentration of the AuNR. The substrate having the oriented AuNR thereon is also provided.

Description

本発明は、ナノサイズのロッド状の金微粒子(金ナノロッド)を配向制御する方法と金ナノロッド配向基板等に関し、より詳しくは、金ナノロッドの濃度によって金ナノロッドの配向を制御する方法、および金ナノロッド配向基板等に関する。 The present invention relates to a method for controlling the orientation of nano-sized rod-shaped gold fine particles (gold nanorods), a gold nanorod alignment substrate, and the like, and more specifically, a method for controlling the orientation of gold nanorods by the concentration of gold nanorods, and gold nanorods The present invention relates to an alignment substrate and the like.

金属ナノ粒子(ナノサイズの金属微粒子)は表面プラズモン(SP)という光学特性を持つことが知られている。金ナノロッド(AuNR)は棒状の金ナノ粒子であり、その異方的形状に由来した二つのSP吸収ピークを有し、短軸由来の吸収ピークが可視光域に存在し、長軸由来の吸収ピークが近赤外光域に存在する。このような分光特性を有するAuNRは配列制御することによって新規な光機能性材料の用途が期待される。 It is known that metal nanoparticles (nano-sized metal fine particles) have an optical property called surface plasmon (SP). Gold nanorods (AuNR) are rod-shaped gold nanoparticles that have two SP absorption peaks derived from their anisotropic shape, an absorption peak derived from the short axis exists in the visible light region, and absorption derived from the long axis. A peak exists in the near infrared light region. AuNR having such spectral characteristics is expected to be used as a novel optical functional material by controlling the arrangement.

しかし、バルクの金は反磁性であり、その磁化率は小さいため、磁場を利用して単体の金ナノロッドを配向させるのは難しい。このため、従来、カーボンナノチューブなどに金ナノロッドを担持させた複合体を形成し、この複合体を磁場によって配向させる技術が提案されている(非特許文献1)。 However, since bulk gold is diamagnetic and has a low magnetic susceptibility, it is difficult to align a single gold nanorod using a magnetic field. For this reason, conventionally, a technique has been proposed in which a composite in which gold nanorods are supported on carbon nanotubes is formed and the composite is oriented by a magnetic field (Non-patent Document 1).

ところが、本発明者等は、ヘキサデシルトリメチルアンモニウムブロミド(CTAB)やポリスチレンスルホネート(PSS)によって表面修飾された金ナノロッドは、上記複合材を形成しなくても、その水分散液に十分な強さの磁場を印加すれば金ナノロッドを配向できることを見出した。 However, the present inventors have found that gold nanorods surface-modified with hexadecyltrimethylammonium bromide (CTAB) or polystyrene sulfonate (PSS) are sufficiently strong in an aqueous dispersion without forming the composite material. It was found that gold nanorods can be oriented by applying a magnetic field of.

一般に金ナノロッドは、例えば、CTABに溶解した水溶液中の金イオンを化学還元、電気還元、光還元などによって合成することができる。合成した金ナノロッドは表面がCTABによって修飾されており、安定な水分散液を形成している(特許文献1〜4)。 In general, gold nanorods can be synthesized, for example, by chemical reduction, electroreduction, photoreduction, or the like of gold ions in an aqueous solution dissolved in CTAB. The surface of the synthesized gold nanorod is modified with CTAB, and a stable aqueous dispersion is formed (Patent Documents 1 to 4).

特許文献1〜4には金ナノロッドの磁場配向については全く記載されていないが、本発明者等はこのように合成した金ナノロッド水分散液について、磁場を印加しながら分散液の溶媒を蒸発させることによって、カーボンナノチューブなどに金ナノロッドを担持させることなく、金ナノロッドを配向できることを見出し、この知見に基づき、金ナノロッドを配向させて基板上に定着させる技術を提案した(特許文献5)。 Although Patent Documents 1 to 4 do not describe the magnetic field orientation of gold nanorods at all, the present inventors evaporate the solvent of the dispersion liquid while applying a magnetic field to the gold nanorod aqueous dispersion thus synthesized. As a result, the inventors have found that gold nanorods can be aligned without supporting the gold nanorods on carbon nanotubes, and based on this finding, a technique for aligning gold nanorods and fixing them on a substrate has been proposed (Patent Document 5).

特開2004−292627号公報JP 2004-292627 A 特開2005−97718号公報JP-A-2005-97718 特開2006−169544号公報JP 2006-169544 A 特開2006−118036号公報JP 2006-118036 A 特開2010−53442号公報JP 2010-53442 A

H.Yonemura,J.Suyama,Y.Yamamoto,S.Yamada,Y.Fujiwara,Y.Tanimoto,第2回日本磁気科学会年次大会プログラム・要旨集、1P-19(2007)H.Yonemura, J.Suyama, Y.Yamamoto, S.Yamada, Y.Fujiwara, Y.Tanimoto, The 2nd Annual Meeting of the Magnetic Society of Japan, 1P-19 (2007)

本発明者等は、先に提案した金ナノロッドの配向方法に基づいて更に検討したところ、金ナノロッドはその水分散液の金濃度の相違に応じて異なる配向を示すことを見出した。本発明はこの知見に基づき、金ナノロッドの配向方向を制御する技術を提供する。
なお、以下、金ナノロッドをAuNR、CTABで修飾された金ナノロッドをAuNR/CTABと略記する。
The present inventors have further studied based on the previously proposed method for aligning gold nanorods, and found that the gold nanorods exhibit different orientations depending on the difference in gold concentration of the aqueous dispersion. Based on this finding, the present invention provides a technique for controlling the orientation direction of gold nanorods.
Hereinafter, the gold nanorods modified with AuNR and CTAB are abbreviated as AuNR / CTAB.

本発明は、以下の構成からなる金ナノロッドの配向制御方法とその基板等に関する。
〔1〕界面活性剤で修飾された金ナノロッド(AuNR)の水分散液を基板上に存在させて磁場を印加しながら溶媒を蒸発させることによって基板上にAuNRを一定方向に配向させる方法において、AuNRの濃度によってAuNRの配向方向を制御することを特徴とする金ナノロッドの配向制御方法。
〔2〕ヘキサデシルトリメチルアンモニウムブロミド(CTAB)で修飾されたAuNRの水分散液に強磁場を印加してAuNRを配向する方法において、AuNR濃度0.2mg/ml以上のときにAuNRが磁場に平行に配向するAuNR水分散液について、AuNR濃度を0.15mg/ml未満に調整して磁場を印加することによってAuNRを磁場に垂直に配向させる上記[1]に記載する金ナノロッドの配向制御方法。
〔3〕長軸が400nm未満であってアスペクト比が5以上であるAuNRを用いる上記[1]〜上記[2]の何れかに記載する金ナノロッドの配向制御方法。
〔4〕表面が導電処理後に親水化処理された基板の表面に上記[1]〜上記[3]の何れかの方法によってAuNRが配向され固定された基板。
〔5〕上記[4]に記載する基板を用いた導電性材料、メタマテリル、または光素子。
The present invention relates to a method for controlling the orientation of gold nanorods having the following configuration, a substrate thereof, and the like.
[1] In a method of orienting AuNR in a certain direction on a substrate by evaporating the solvent while applying a magnetic field while an aqueous dispersion of gold nanorods (AuNR) modified with a surfactant is present on the substrate, An orientation control method for gold nanorods, wherein the orientation direction of AuNR is controlled by the concentration of AuNR.
[2] In a method of orienting AuNR by applying a strong magnetic field to an aqueous dispersion of AuNR modified with hexadecyltrimethylammonium bromide (CTAB), the AuNR is parallel to the magnetic field when the AuNR concentration is 0.2 mg / ml or more. The method for controlling the orientation of gold nanorods according to [1] above, wherein the AuNR is orientated perpendicularly to the magnetic field by adjusting the AuNR concentration to less than 0.15 mg / ml and applying a magnetic field.
[3] The gold nanorod orientation control method according to any one of the above [1] to [2], wherein AuNR having a major axis of less than 400 nm and an aspect ratio of 5 or more is used.
[4] A substrate in which AuNR is oriented and fixed by the method of any one of [1] to [3] above on the surface of a substrate whose surface has been subjected to a hydrophilic treatment after the conductive treatment.
[5] A conductive material, metamaterial, or optical element using the substrate described in [4] above.

本発明の配向制御方法によれば、界面活性剤で修飾されたAuNR水分散液について、AuNRの濃度によってAuNRの配向方向を制御することができるので、AuNRの配向方向を容易に制御することができる。 According to the alignment control method of the present invention, the AuNR alignment direction of the AuNR aqueous dispersion modified with a surfactant can be controlled by the concentration of AuNR, so that the alignment direction of AuNR can be easily controlled. it can.

具体的には、AuNR濃度0.2mg/ml以上のときにAuNRが磁場に平行に配向するAuNR/CTAB水分散液について、AuNR濃度を0.15mg/ml未満に調整して強磁場を印加することによってAuNRを磁場に垂直に配向させることができる。 Specifically, for an AuNR / CTAB aqueous dispersion in which AuNR is oriented parallel to the magnetic field when the AuNR concentration is 0.2 mg / ml or higher, the strong magnetic field is applied by adjusting the AuNR concentration to less than 0.15 mg / ml. As a result, the AuNR can be oriented perpendicular to the magnetic field.

本発明の配向制御方法によれば、水分散液のAuNR濃度を調整することによって、磁場と平行に配向させたAuNRを表面に固定した基板、あるいは磁場と垂直に配向させたAuNRを表面に固定した基板を容易に製造することができる。 According to the orientation control method of the present invention, by adjusting the AuNR concentration of the aqueous dispersion, a substrate on which AuNR oriented parallel to the magnetic field is fixed on the surface, or AuNR oriented perpendicular to the magnetic field is fixed on the surface. The manufactured substrate can be easily manufactured.

磁場環境(磁場強度の変化)を示す図。The figure which shows a magnetic field environment (change of magnetic field intensity). ガラス基板(I)の吸収スペクトル図(無偏光)。Absorption spectrum of glass substrate (I) (non-polarized). ガラス基板(I)の磁場上部の偏光吸収スペクトル図。The polarization absorption spectrum figure of the magnetic field upper part of a glass substrate (I). ガラス基板(I)の磁場中央部の偏光吸収スペクトル図。The polarization absorption spectrum figure of the magnetic field center part of a glass substrate (I). ガラス基板(I)の磁場下部の偏光吸収スペクトル図。The polarization absorption spectrum figure of the magnetic field lower part of a glass substrate (I). ガラス基板(I)の磁場外部の偏光吸収スペクトル図。The polarization absorption spectrum figure outside the magnetic field of a glass substrate (I). ガラス基板(II)の吸収スペクトル図(無偏光)。Absorption spectrum of glass substrate (II) (non-polarized). ガラス基板(II)の磁場中央部の偏光吸収スペクトル図。The polarization absorption spectrum figure of the magnetic field center part of a glass substrate (II). ガラス基板(II)の磁場外部の偏光吸収スペクトル図。The polarization absorption spectrum figure outside the magnetic field of a glass substrate (II). AuNRが磁場方向に対して垂直に配向するモデル図。The model figure by which AuNR orientates perpendicularly | vertically with respect to a magnetic field direction. AuNRが磁場方向に対して平行に配向するモデル図。FIG. 3 is a model diagram in which AuNR is oriented parallel to the magnetic field direction. 実施例(1-1)のガラス基板の吸収スペクトル図(無偏光)。The absorption spectrum figure (non-polarized light) of the glass substrate of Example (1-1). 実施例(1-1)のガラス基板の偏光吸収スペクトル図Polarized absorption spectrum of the glass substrate of Example (1-1) 実施例(1-2)のガラス基板の吸収スペクトル図(無偏光)。The absorption spectrum figure (non-polarized light) of the glass substrate of Example (1-2). 実施例(1-2)のガラス基板の偏光吸収スペクトル図Polarized absorption spectrum of the glass substrate of Example (1-2)

以下、本発明を実施形態に基づいて具体的に説明する。濃度の%は特に示さない限り質量%である。 Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated,% of concentration is mass%.

本発明の配向制御方法は、界面活性剤で修飾された金ナノロッド(AuNR)の水分散液を基板上に存在させて磁場を印加しながら溶媒を蒸発させることによって基板上にAuNRを一定方向に配向させる方法において、AuNRの濃度によってAuNRの配向方向を制御することを特徴とする金ナノロッドの配向制御方法である。 In the orientation control method of the present invention, an aqueous dispersion of gold nanorods (AuNR) modified with a surfactant is present on a substrate, and the solvent is evaporated while applying a magnetic field, whereby AuNR is directed on the substrate in a certain direction. An orientation control method for gold nanorods, characterized in that the orientation direction of AuNR is controlled by the concentration of AuNR.

本発明のAuNRは、長軸の長さが400nm未満であって、アスペクト比(長径/短径比)が5以上であるのが好ましい。AuNRの長軸は200nm以下がより好ましい。長軸が長くなるにつれて沈降しやすくなる傾向があり、分散媒中の分散安定性が失われる。また、アスペクト比が5より小さいとAuNRの配向が不明瞭になりやすい傾向がある。 The AuNR of the present invention preferably has a major axis length of less than 400 nm and an aspect ratio (major axis / minor axis ratio) of 5 or more. The major axis of AuNR is more preferably 200 nm or less. As the long axis becomes longer, it tends to settle, and the dispersion stability in the dispersion medium is lost. On the other hand, if the aspect ratio is smaller than 5, the orientation of AuNR tends to be unclear.

AuNRは次式[I]で示される4級アンモニウム塩が溶解した水溶液中で金イオンを還元することによって合成することができる。例えば、n=15のヘキサデシルトリメチルアンモニウムブロミド(CTAB)を使用することによって、CTABによって表面が修飾されたAuNRを得ることができる。このAuNRはCTABが表面に修飾しているので水中に安定に分散している。
CH3(CH2)n+(CH3)3Br- (nは1〜15の整数) …[I]
AuNR can be synthesized by reducing gold ions in an aqueous solution in which a quaternary ammonium salt represented by the following formula [I] is dissolved. For example, by using hexadecyltrimethylammonium bromide (CTAB) with n = 15, AuNR whose surface is modified by CTAB can be obtained. This AuNR is stably dispersed in water because CTAB is modified on the surface.
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15)… [I]

上記合成方法によって得られるAuNR/CTAB水分散液について、水中に存在する余剰のCTABを除去するとよい。具体的には、AuNR/CTAB水分散液を遠心分離してAuNR/CTABを遠沈管の底に沈降させ、CTABを含む上澄みを除去する。沈降したAuNR/CTABは水を添加して再分散させる。この操作を1〜3回繰り返すことによって余剰なCTABを除去することができる。なお、CTABを過剰に除去するとAuNRが凝集して水に再分散しなくなるので、AuNR/CTABの分散状態を見ながらCTABを除去すると良い。 For the AuNR / CTAB aqueous dispersion obtained by the above synthesis method, excess CTAB present in the water may be removed. Specifically, the AuNR / CTAB aqueous dispersion is centrifuged to precipitate AuNR / CTAB on the bottom of the centrifuge tube, and the supernatant containing CTAB is removed. The precipitated AuNR / CTAB is redispersed by adding water. Excess CTAB can be removed by repeating this operation 1-3 times. If CTAB is removed excessively, AuNR aggregates and does not re-disperse in water. Therefore, it is preferable to remove CTAB while observing the dispersion state of AuNR / CTAB.

本発明の配向制御方法において、AuNR/CTAB水分散液は、例えば金濃度0.001〜1mg/mlの分散液が用いられる。金濃度が0.001mg/mlより少ないと基板に固定化される金の量が少なくなる。一方、金濃度が1mg/mlより多いと基板に吸着しない余剰の金が多くなり、コスト的に不利である。 In the orientation control method of the present invention, the AuNR / CTAB aqueous dispersion is, for example, a dispersion having a gold concentration of 0.001 to 1 mg / ml. When the gold concentration is less than 0.001 mg / ml, the amount of gold immobilized on the substrate decreases. On the other hand, if the gold concentration is higher than 1 mg / ml, the surplus gold not adsorbed on the substrate increases, which is disadvantageous in terms of cost.

AuNR/CTAB水分散液を基板上に存在させて磁場を印加しながら溶媒(水)を蒸発させることによって、基板上にAuNRを一定方向に配向させることができる。具体的には、例えば、AuNR/CTAB水分散液に基板を浸漬し、基板に対して平行方向に磁場を印加して水を蒸発させる。基板に対して垂直に磁場を印加し、あるいは上記水分散液を滴下した状態で磁場を印加するとAuNRを基板上に十分に配向させることができない。 By allowing the AuNR / CTAB aqueous dispersion to exist on the substrate and evaporating the solvent (water) while applying a magnetic field, the AuNR can be oriented in a certain direction on the substrate. Specifically, for example, the substrate is immersed in an AuNR / CTAB aqueous dispersion, and water is evaporated by applying a magnetic field in a direction parallel to the substrate. If a magnetic field is applied perpendicularly to the substrate, or a magnetic field is applied in a state where the aqueous dispersion is dropped, the AuNR cannot be sufficiently oriented on the substrate.

上記分散液を基板表面に塗布し、この基板に磁場を印加しながら溶媒を蒸発させてAuNRを配向させてもよい。上記分散液を基板上に存在させて磁場を印加するとは、これらの分散液に基板を浸漬して磁場を印加する態様、あるいはこれらの分散液を基板に塗布して磁場を印加する態様を含む。 The dispersion may be applied to the substrate surface, and the AuNR may be oriented by evaporating the solvent while applying a magnetic field to the substrate. Applying a magnetic field while the dispersion is present on the substrate includes a mode in which the substrate is immersed in these dispersions and a magnetic field is applied, or a mode in which these dispersions are applied to the substrate and a magnetic field is applied. .

磁場を印加してAuNRを基板上に配向させるときに、AuNR/CTAB水分散液にバインダーを加え、または基板上にバインダーを設けることによって、AuNRを基板上に強固に定着(固着)させることができる。 When orienting AuNR on a substrate by applying a magnetic field, the AuNR can be firmly fixed (fixed) on the substrate by adding a binder to the AuNR / CTAB aqueous dispersion or providing a binder on the substrate. it can.

基板は、AuNR/CTABを固定でき、測定波長における透過率が高く、AuNRのLPRの吸光測定を妨げない基板であればよく、大きさ、形状などは制限されない。具体的には、ガラス、ポリエチレンテレフタレート、トリアセチルセルロース、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリサルホン、ポリエーテルサルホン、ポリアミド、ポリイミド、アクリル樹脂等を用いることができる。取り扱いの容易さからガラス板が好ましい。 The substrate may be any substrate as long as it can fix AuNR / CTAB, has a high transmittance at the measurement wavelength, and does not interfere with the absorption measurement of the LPR of AuNR, and the size and shape are not limited. Specifically, glass, polyethylene terephthalate, triacetyl cellulose, polyethylene, polypropylene, polystyrene, polycarbonate, polyvinyl chloride, polyvinylidene chloride, polysulfone, polyethersulfone, polyamide, polyimide, acrylic resin, and the like can be used. A glass plate is preferred because of its ease of handling.

基板は親水化処理したものが好ましい。親水化処理は、例えば、過酸化水素を加えたアンモニア水にガラス基板を浸漬して加熱した後に水洗して乾燥すれば良い。また、親水化処理した導電性基板を用いることができる。例えば、基板表面にITO(酸化インジウムスズ)をドープしたガラス基板を用い、この基板をアセトンに浸して超音波を印加し、さらにメタノールに浸して超音波を印加し、窒素乾燥させてオゾン照射した導電性基板を用いることができる。 The substrate is preferably hydrophilized. The hydrophilization treatment may be performed by, for example, immersing the glass substrate in ammonia water to which hydrogen peroxide has been added and heating it, followed by washing with water and drying. In addition, a conductive substrate subjected to a hydrophilic treatment can be used. For example, using a glass substrate doped with ITO (indium tin oxide) on the surface of the substrate, this substrate was immersed in acetone to apply ultrasonic waves, further immersed in methanol to apply ultrasonic waves, dried in nitrogen, and then irradiated with ozone. A conductive substrate can be used.

磁場を印加して溶媒(水)を蒸発させるときの温度は5〜80℃が好ましく、25〜50℃がより好ましい。なお、蒸発温度が25℃の場合には、50℃の場合よりも、AuNRの配向密度が高くなるので、AuNR基板の吸収スペクトルが変化する。具体的には、蒸発温度が25℃の場合には、50℃の場合よりも、AuNR基板のLSPRが低波長側にシフトする傾向がみられる。 The temperature when the magnetic field is applied to evaporate the solvent (water) is preferably 5 to 80 ° C, more preferably 25 to 50 ° C. When the evaporation temperature is 25 ° C., the orientation density of AuNR is higher than that at 50 ° C., so that the absorption spectrum of the AuNR substrate changes. Specifically, when the evaporation temperature is 25 ° C., the LSPR of the AuNR substrate tends to shift to the lower wavelength side than when it is 50 ° C.

印加する磁場の強さは、例えば、金濃度0.001〜1mg/mlの分散液に対して6.1テスラ以上が適当であり、10テスラ以上が好ましい。磁場の強さがこれより弱いとAuNRの配向状態が不十分になる場合がある。 The strength of the magnetic field to be applied is, for example, appropriately 6.1 Tesla or more and preferably 10 Tesla or more for a dispersion having a gold concentration of 0.001 to 1 mg / ml. If the strength of the magnetic field is weaker than this, the orientation state of AuNR may be insufficient.

本発明の配向制御方法は、これらの水分散液を基板上に存在させて磁場を印加しながら溶媒(水)を蒸発させて基板上にAuNRを配向させる方法において、分散液のAuNR濃度によってAuNRの配向方向を制御する。AuNRの配向方向を変えるには分散液のAuNRの濃度差は概ね3倍以上、好ましくは概ね2倍以上、あるいは概ね1/3以下、好ましくは概ね半分以下に調整するとよい。 The alignment control method of the present invention is a method in which these aqueous dispersions are present on a substrate and a solvent (water) is evaporated while applying a magnetic field to align AuNR on the substrate. To control the orientation direction. In order to change the orientation direction of AuNR, the concentration difference of AuNR in the dispersion liquid is adjusted to about 3 times or more, preferably about 2 times or more, or about 1/3 or less, preferably about half or less.

具体的には、例えば、AuNR/CTAB水分散液について、AuNR濃度0.2mg/ml以上のときにAuNRが磁場に平行に配向する場合、AuNR濃度を0.15mg/ml未満に調整して磁場を印加することによってAuNRを磁場に垂直に配向させる。 Specifically, for example, in the case of AuNR / CTAB aqueous dispersion, when AuNR is oriented parallel to the magnetic field when the AuNR concentration is 0.2 mg / ml or more, the AuNR concentration is adjusted to less than 0.15 mg / ml. Is applied to orient the AuNR perpendicular to the magnetic field.

または、AuNR/CTAB水分散液について、AuNR濃度0.1mg/ml以下のときにAuNRが磁場に垂直に配向する場合、AuNR濃度を0.2mg/ml以上に調整して磁場を印加することによってAuNRを磁場に平行に配向させる。 Alternatively, for AuNR / CTAB aqueous dispersion, when AuNR is oriented perpendicular to the magnetic field when the AuNR concentration is 0.1 mg / ml or less, by adjusting the AuNR concentration to 0.2 mg / ml or more and applying the magnetic field The AuNR is oriented parallel to the magnetic field.

一般に、磁場を印加された物質は磁場環境に応じた誘起磁気力を受ける。例えば、超伝導マグネット(磁場強度6.1テスラ〜10テスラ)を用いると、図1に示すような磁場環境が形成される。この超伝導マグネットは重力方向に磁場が印加されるので、磁場勾配によって発生する磁気力によって異なった磁場環境が形成される。具体的には、図1の磁場環境の上部〜下部において次のような磁場環境が形成される。 In general, a substance to which a magnetic field is applied receives an induced magnetic force corresponding to the magnetic field environment. For example, when a superconducting magnet (magnetic field strength: 6.1 Tesla to 10 Tesla) is used, a magnetic field environment as shown in FIG. 1 is formed. Since a magnetic field is applied to the superconducting magnet in the direction of gravity, different magnetic field environments are formed by the magnetic force generated by the magnetic field gradient. Specifically, the following magnetic field environment is formed in the upper part to the lower part of the magnetic field environment of FIG.

上部 … 磁場勾配が負に最大(−485T2/m)、磁場強度6.1T
中央部… 磁場勾配0、磁場強度最大10T
下部 … 磁場勾配が正に最大(+485T2/m)、磁場強度6.1T
(外部は無磁場、Tは磁場単位テスラ)
Upper part ... Magnetic field gradient is negative maximum (-485T 2 / m), magnetic field strength 6.1T
Central part: Magnetic field gradient 0, magnetic field strength 10T maximum
Bottom: Maximum magnetic field gradient (+ 485T 2 / m), magnetic field strength 6.1T
(Externally no magnetic field, T is a magnetic field unit Tesla)

さらに勾配磁場下では、次式[II]で表される誘起磁気力が作用する。
H=χH(dH/dy) [II]
〔χ:磁化率、H:外部磁場強度、dH/dy:磁場勾配(磁場強度を位置で微分)〕
なお、AuNR/CTABにおいて、CTABは反磁性物質であるので、χ<0である。
Furthermore, an induced magnetic force expressed by the following formula [II] acts under a gradient magnetic field.
F H = χH (dH / dy) [II]
[Χ: magnetic susceptibility, H: external magnetic field strength, dH / dy: magnetic field gradient (magnetic field strength is differentiated by position)]
In AuNR / CTAB, χ <0 because CTAB is a diamagnetic substance.

誘起磁気力によって、図1の磁場環境の上部〜下部は次のような磁場環境になる。
磁場の上部では、χH<0、dH/dy<0、従ってFH>0であり、磁気力が重力と反発してつり合う状態になる。
磁場の中央部では、dH/dy=0であり、磁気力が作用しない。
磁場の下部では、χH<0、dH/dy>0、従ってFH<0であり、磁気力が下向きに作用して重力と重なる状態になる。
Due to the induced magnetic force, the upper to lower portions of the magnetic field environment in FIG.
In the upper part of the magnetic field, χH <0, dH / dy <0, and thus F H > 0, and the magnetic force repels gravity and balances.
At the center of the magnetic field, dH / dy = 0, and no magnetic force acts.
In the lower part of the magnetic field, χH <0, dH / dy> 0, and thus F H <0, and the magnetic force acts downward and overlaps with gravity.

このような磁場環境において、AuNR配向ガラス基板の吸収スペクトルを測定することによって、AuNRの配向状態を把握することができる。例えば、AuNR/CTAB(金濃度0.2mg/ml、AuNRの長軸36.6nm、アスペクト比5)が配向したガラス基板(I)について、AuNRの配向状態を以下のようにして把握することができる。 In such a magnetic field environment, the orientation state of AuNR can be grasped by measuring the absorption spectrum of the AuNR oriented glass substrate. For example, it is possible to grasp the orientation state of AuNR as follows for a glass substrate (I) oriented with AuNR / CTAB (gold concentration 0.2 mg / ml, AuNR major axis 36.6 nm, aspect ratio 5). it can.

上記ガラス基板(I)の吸収スペクトル(無偏光)を図2に示す。また、ガラス基板(I)に重力方向(磁場印加方向)と平行な偏光(0°偏光)と垂直な偏光(90°偏光)を照射して測定した偏光吸収スペクトルを図3〜図6に示す。図3は磁場上部の偏光吸収スペクトル図、図4は磁場中央部の偏光吸収スペクトル図、図5は磁場下部の偏光吸収スペクトル図、図6は磁場外部の偏光吸収スペクトル図である。 The absorption spectrum (non-polarized light) of the glass substrate (I) is shown in FIG. Moreover, the polarized light absorption spectrum measured by irradiating the glass substrate (I) with polarized light parallel to the gravity direction (magnetic field application direction) (0 ° polarized light) and perpendicular polarized light (90 ° polarized light) is shown in FIGS. . 3 is a polarization absorption spectrum diagram in the upper part of the magnetic field, FIG. 4 is a polarization absorption spectrum diagram in the central part of the magnetic field, FIG. 5 is a polarization absorption spectrum diagram in the lower part of the magnetic field, and FIG.

図3、図5、図6では偏光吸収スペクトルが概ね重なっており、差が殆どないが、図4の偏光吸収では、長軸由来のピーク波長は0°偏光吸収が90°偏光吸収より大きく、短軸由来のピーク波長は90°偏光吸収が0°偏光吸収よりやや大きい。このことからAuNRの長軸が磁場と平行に配向していることが示唆される。 3, 5, and 6, the polarization absorption spectra are almost overlapped and there is almost no difference, but in the polarization absorption of FIG. 4, the peak wavelength derived from the major axis is 0 ° polarization absorption larger than 90 ° polarization absorption, As for the peak wavelength derived from the short axis, 90 ° polarized absorption is slightly larger than 0 ° polarized absorption. This suggests that the long axis of AuNR is oriented parallel to the magnetic field.

次に、ガラス基板(I)より低い金濃度のAuNR/CTABが配向したガラス基板(II)について、吸収スペクトルを図7〜図9に示す。基板(II)のAuNR/CTAB濃度は基板(I)の金濃度の半分(0.1mg/ml)であり、長軸長さとアスペクト比は基板(I)の場合と同じである。図7はガラス基板(II)の吸収スペクトル(無偏光)、図8は磁場中央部の偏光吸収スペクトル図、図9は磁場外部の偏光吸収スペクトル図である。 Next, the absorption spectra of the glass substrate (II) oriented with AuNR / CTAB having a lower gold concentration than that of the glass substrate (I) are shown in FIGS. The AuNR / CTAB concentration of the substrate (II) is half the gold concentration (0.1 mg / ml) of the substrate (I), and the major axis length and the aspect ratio are the same as those of the substrate (I). 7 is an absorption spectrum (non-polarized light) of the glass substrate (II), FIG. 8 is a polarization absorption spectrum diagram at the center of the magnetic field, and FIG. 9 is a polarization absorption spectrum diagram outside the magnetic field.

基板(II)は、図8および図9に示されているように、長軸由来のピーク波長は90°偏光吸収が0°偏光吸収より大きく、基板(I)とは逆の吸収効果を示している。このことからAuNRの長軸が磁場と垂直に配向していることが示唆される。なお、基板(II)の磁場上部、磁場下部、磁場外部の0°偏光吸収と90°偏光吸収の各スペクトルは基板(I)と同様に差がない(スペクトル図省略)。 As shown in FIG. 8 and FIG. 9, the substrate (II) has a peak wavelength derived from the major axis of 90 ° polarized light absorption larger than 0 ° polarized light absorption, and exhibits an absorption effect opposite to that of the substrate (I). ing. This suggests that the long axis of AuNR is oriented perpendicular to the magnetic field. It should be noted that the spectrum of 0 ° polarized light absorption and 90 ° polarized light absorption above and below the magnetic field of the substrate (II) is the same as the substrate (I) (spectrum diagram omitted).

以上のように、AuNR濃度によってAuNR配向が異なり、具体的には次のような傾向を示す。
(イ)AuNR濃度が低い場合には、AuNRの長軸が磁場印加方向に垂直な配向になる。
(ロ)AuNR濃度が高い場合には、AuNRの長軸が磁場印加方向に平行な配向になる。
(ハ)AuNRの長軸が磁場印加方向と平行に配向する場合、磁場強度が最大のときに最も配向が強く、またアスペクト比が大きいほど配向しやすい。
As described above, the AuNR orientation varies depending on the AuNR concentration, and specifically shows the following tendency.
(A) When the AuNR concentration is low, the major axis of AuNR is oriented perpendicular to the magnetic field application direction.
(B) When the AuNR concentration is high, the major axis of AuNR is oriented parallel to the magnetic field application direction.
(C) When the long axis of AuNR is aligned parallel to the magnetic field application direction, the orientation is strongest when the magnetic field strength is maximum, and the orientation is easier as the aspect ratio is larger.

AuNRがこのような配向を示す理由は次のように推察される。
AuNR濃度が低い場合、AuNRは互いに離れていて、個々のAuNRの磁気特性により配向が起こる。一般にAuNR(常磁性)はその磁気異方性によって短軸方向に磁化するので、AuNRはその長軸が磁場方向に垂直に配向するようになる(図10)。
The reason why AuNR exhibits such orientation is assumed as follows.
When the AuNR concentration is low, the AuNRs are separated from each other, and orientation occurs due to the magnetic properties of the individual AuNRs. In general, AuNR (paramagnetism) is magnetized in the short axis direction due to its magnetic anisotropy, so that the major axis of AuNR is oriented perpendicular to the magnetic field direction (FIG. 10).

一方、AuNR濃度が高い場合、AuNR(常磁性)はその磁気異方性によって短軸方向に磁化するので、近接するAuNRどうしが長軸側の重なったside-to-sideの凝集体を形成する。この凝集体が大きくなると、AuNRの積層方向に沿った側面にも多数のCTABが存在するようになる。積層方向側面のCTABの影響が強い状態で磁気力を受けると、このCTAB(反磁性)が磁場方向に沿って安定化しようとするので、AuNRはその長軸が磁場方向に平行に配向するようになる(図11)。 On the other hand, when the AuNR concentration is high, AuNR (paramagnetism) is magnetized in the short axis direction due to its magnetic anisotropy, so that adjacent AuNRs form side-to-side aggregates in which the long axis sides overlap each other. . When this aggregate increases, a large number of CTABs also exist on the side surfaces along the AuNR stacking direction. When receiving magnetic force under the influence of CTAB on the side of the stacking direction, this CTAB (diamagnetism) tries to stabilize along the magnetic field direction, so that the AuNR is oriented so that its long axis is parallel to the magnetic field direction. (FIG. 11).

〔AuNR配向基板〕
本発明の方法によって製造したAuNR配向基板は、導電膜、電極、電磁波シールドなどの導電性材料として使用することができる。また、AuNRの形状に由来する特性波長の吸収特性によって、偏光フィルター、近赤外カットフィルター、光導波路などの光素子、あるいはメタマテリアルなどの材料として使用することができる。
[AuNR alignment substrate]
The AuNR alignment substrate manufactured by the method of the present invention can be used as a conductive material such as a conductive film, an electrode, and an electromagnetic wave shield. Moreover, it can be used as a material such as a polarizing filter, a near-infrared cut filter, an optical element such as an optical waveguide, or a metamaterial depending on the absorption characteristic of the characteristic wavelength derived from the shape of AuNR.

以下、本発明を実施例によって具体的に示す。磁場はOxford社製液体ヘリウム冷媒型超伝導マグネット(ボア径6.0cm)を用いて印加した。分光特性はShimadzu UV-3150 spectrometerで測定した。AuNR配向基板の吸収スペクトルは測定装置に基板を固定して測定した。 Hereinafter, the present invention will be specifically described by way of examples. The magnetic field was applied using a liquid helium refrigerant superconducting magnet (bore diameter 6.0 cm) manufactured by Oxford. Spectral characteristics were measured with a Shimadzu UV-3150 spectrometer. The absorption spectrum of the AuNR alignment substrate was measured by fixing the substrate to a measuring apparatus.

基板の偏光吸収スペクトルは、固定装置で基板を固定し、偏光子(AssyIII;260〜2
500nm)を用いて測定した。0°偏光は印加した磁場方向に対して平行、90°偏光は印加した磁場方向に対して垂直に波長を照射して測定した。なお、磁場を印加しない基板を測定する場合には0°偏光を重力方向に対して平行に、90°偏光は重力方向に対して垂直にした。
The polarization absorption spectrum of the substrate is obtained by fixing the substrate with a fixing device, and using a polarizer (AssyIII; 260-2).
500 nm). The 0 ° polarized light was measured by irradiating the wavelength parallel to the applied magnetic field direction, and the 90 ° polarized light was irradiated perpendicularly to the applied magnetic field direction. When measuring a substrate to which no magnetic field was applied, 0 ° polarized light was parallel to the direction of gravity, and 90 ° polarized light was perpendicular to the direction of gravity.

〔金ナノロッド水分散液の調製〕
400mMのCTAB水溶液中で合成されたAuNR/CTAB水分散液を遠沈管に入れ、8000(×g)の相対遠心加速度(遠心加速度を地球の重力加速度で除したもの)で15分間遠心分離してAuNR/CTABを遠沈管の底に沈降させ、上澄み液を除去することによって余剰のCTABを除去した。沈降したAuNR/CTABは水で再分散させた。この操作を2回行ってAuNR/CTAB水分散液を調製した。
[Preparation of gold nanorod aqueous dispersion]
An AuNR / CTAB aqueous dispersion synthesized in a 400 mM CTAB aqueous solution is placed in a centrifuge tube and centrifuged at a relative centrifugal acceleration of 8000 (× g) (centrifugal acceleration divided by the gravitational acceleration of the earth) for 15 minutes. Excess CTAB was removed by allowing AuNR / CTAB to settle to the bottom of the centrifuge tube and removing the supernatant. The precipitated AuNR / CTAB was redispersed with water. This operation was performed twice to prepare an AuNR / CTAB aqueous dispersion.

〔実施例1−1〕
AuNR/CTAB水分散液(金濃度0.2mg/ml)4mlに親水処理したガラス基板を浸漬し、ガラス基板に対して平行方向に磁場(10テスラ)を印加しながら、50℃で上記分散液中の水を蒸発させ、AuNR/CTABが固定された基板を作製した。このガラス基板の吸収スペクトル(無偏光)を図12に示す。また、このガラス基板について、0°偏光と90°偏光の吸収スペクトルを図13に示す。図13に示すように、長軸による吸光度(Absorbance)は0°偏光のほうが90°偏光よりも大きく、従って、AuNRの長軸が磁場に平行に配向していることがわかる。
[Example 1-1]
A glass substrate treated with a hydrophilic treatment is immersed in 4 ml of an AuNR / CTAB aqueous dispersion (gold concentration: 0.2 mg / ml), and the above dispersion is applied at 50 ° C. while applying a magnetic field (10 Tesla) in a direction parallel to the glass substrate. Water inside was evaporated to produce a substrate on which AuNR / CTAB was fixed. The absorption spectrum (non-polarized light) of this glass substrate is shown in FIG. Moreover, about this glass substrate, the absorption spectrum of 0 degree polarized light and 90 degree polarized light is shown in FIG. As shown in FIG. 13, the absorbance by the long axis is greater for 0 ° polarized light than for 90 ° polarized light, and thus it can be seen that the long axis of AuNR is oriented parallel to the magnetic field.

〔実施例1−2〕
金濃度が0.1mg/mlである以外は実施例(2−1)と同様のAuNR/CTAB水分散液を用い、実施例(2−1)と同様にしてAuNR/CTABが固定された基板を作製した。このガラス基板の吸収スペクトル(無偏光)を図14に示す。また、このガラス基板について、0°偏光と90°偏光の吸収スペクトルを図15に示す。図15に示すように、長軸による吸光度(Absorbance)は0°偏光のほうが90°偏光よりも小さく、従って、AuNRの長軸が磁場に垂直に配向していることがわかる。
[Example 1-2]
A substrate on which AuNR / CTAB is fixed in the same manner as in Example (2-1) using the same AuNR / CTAB aqueous dispersion as in Example (2-1) except that the gold concentration is 0.1 mg / ml. Was made. The absorption spectrum (non-polarized light) of this glass substrate is shown in FIG. Moreover, about this glass substrate, the absorption spectrum of 0 degree polarized light and 90 degree polarized light is shown in FIG. As shown in FIG. 15, the absorbance by the major axis (Absorbance) is 0 ° polarized light smaller than 90 ° polarized light, and accordingly, it can be seen that the major axis of AuNR is oriented perpendicular to the magnetic field.

Claims (5)

界面活性剤で修飾された金ナノロッド(AuNR)の水分散液を基板上に存在させて磁場を印加しながら溶媒を蒸発させることによって基板上にAuNRを一定方向に配向させる方法において、AuNRの濃度によってAuNRの配向方向を制御することを特徴とする金ナノロッドの配向制御方法。 In a method of orienting AuNR on a substrate in a certain direction by evaporating a solvent while applying a magnetic field while an aqueous dispersion of gold nanorods (AuNR) modified with a surfactant is present on the substrate, the concentration of AuNR A method for controlling the orientation of gold nanorods, characterized in that the orientation direction of AuNR is controlled by the method. ヘキサデシルトリメチルアンモニウムブロミド(CTAB)で修飾されたAuNRの水分散液に強磁場を印加してAuNRを配向する方法において、AuNR濃度0.2mg/ml以上のときにAuNRが磁場に平行に配向するAuNR水分散液について、AuNR濃度を0.15mg/ml未満に調整して磁場を印加することによってAuNRを磁場に垂直に配向させる請求項1に記載する金ナノロッドの配向制御方法。 In a method of orienting AuNR by applying a strong magnetic field to an aqueous dispersion of AuNR modified with hexadecyltrimethylammonium bromide (CTAB), AuNR is oriented parallel to the magnetic field when the AuNR concentration is 0.2 mg / ml or more. The gold nanorod orientation control method according to claim 1, wherein the AuNR is orientated perpendicularly to the magnetic field by adjusting the AuNR concentration to less than 0.15 mg / ml and applying a magnetic field. 長軸が400nm未満であってアスペクト比が5以上であるAuNRを用いる請求項1〜請求項2の何れかに記載する金ナノロッドの配向制御方法。 The gold nanorod orientation control method according to claim 1, wherein AuNR having a major axis of less than 400 nm and an aspect ratio of 5 or more is used. 表面が導電処理後に親水化処理された基板の表面に請求項1〜請求項3の何れかの方法によってAuNRが配向され固定された基板。 A substrate in which AuNR is oriented and fixed by the method according to any one of claims 1 to 3 on the surface of a substrate whose surface has been subjected to a hydrophilization treatment after a conductive treatment. 請求項4に記載する基板を用いた導電性材料、メタマテリル、または光素子。 A conductive material, metamaterial, or an optical element using the substrate according to claim 4.
JP2010149362A 2010-06-30 2010-06-30 Method for controlling orientation of gold nanorod, and substrate obtained by the same, or the like Withdrawn JP2012012651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149362A JP2012012651A (en) 2010-06-30 2010-06-30 Method for controlling orientation of gold nanorod, and substrate obtained by the same, or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149362A JP2012012651A (en) 2010-06-30 2010-06-30 Method for controlling orientation of gold nanorod, and substrate obtained by the same, or the like

Publications (1)

Publication Number Publication Date
JP2012012651A true JP2012012651A (en) 2012-01-19

Family

ID=45599428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149362A Withdrawn JP2012012651A (en) 2010-06-30 2010-06-30 Method for controlling orientation of gold nanorod, and substrate obtained by the same, or the like

Country Status (1)

Country Link
JP (1) JP2012012651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009859A1 (en) * 2014-07-18 2016-01-21 富士フイルム株式会社 Polymerizable liquid crystal composition, wavelength conversion film, wavelength conversion member and method for producing same, backlight unit, and liquid crystal display device
WO2016051663A1 (en) * 2014-09-29 2016-04-07 富士フイルム株式会社 Liquid crystal composition, polarized light emission film, frequency converting member and production method for same, backlight unit, liquid crystal display device
JP2016146421A (en) * 2015-02-09 2016-08-12 富士フイルム株式会社 Liquid crystal composition, polarized light emitting film, wavelength conversion member and method for producing the same, backlight unit, and liquid crystal display device
CN113199022A (en) * 2021-04-14 2021-08-03 华南理工大学 Fluorine-doped ammonium tungsten bronze/gold nanorod composite near-infrared shielding material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009859A1 (en) * 2014-07-18 2016-01-21 富士フイルム株式会社 Polymerizable liquid crystal composition, wavelength conversion film, wavelength conversion member and method for producing same, backlight unit, and liquid crystal display device
JP2016029149A (en) * 2014-07-18 2016-03-03 富士フイルム株式会社 Polymerizable liquid crystal composition, wavelength conversion film, wavelength conversion member and method for producing the same, backlight unit, and liquid crystal display device
WO2016051663A1 (en) * 2014-09-29 2016-04-07 富士フイルム株式会社 Liquid crystal composition, polarized light emission film, frequency converting member and production method for same, backlight unit, liquid crystal display device
JP2016069486A (en) * 2014-09-29 2016-05-09 富士フイルム株式会社 Liquid crystal composition, polarized light-emitting film, wavelength conversion member and production method of the same, backlight unit, and liquid crystal display device
JP2016146421A (en) * 2015-02-09 2016-08-12 富士フイルム株式会社 Liquid crystal composition, polarized light emitting film, wavelength conversion member and method for producing the same, backlight unit, and liquid crystal display device
CN113199022A (en) * 2021-04-14 2021-08-03 华南理工大学 Fluorine-doped ammonium tungsten bronze/gold nanorod composite near-infrared shielding material and preparation method thereof
CN113199022B (en) * 2021-04-14 2022-06-14 华南理工大学 Fluorine-doped ammonium tungsten bronze/gold nanorod composite near-infrared shielding material and preparation method thereof

Similar Documents

Publication Publication Date Title
Yeom et al. Chiromagnetic nanoparticles and gels
Tanigaki et al. Real-space observation of short-period cubic lattice of skyrmions in MnGe
Brullot et al. Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles
Iranizad et al. Nonlinear optical properties of nematic liquid crystal doped with different compositional percentage of synthesis of Fe3O4 nanoparticles
Thorat et al. Surface functionalized LSMO nanoparticles with improved colloidal stability for hyperthermia applications
US8748504B2 (en) Polymeric composites having oriented nanomaterials and methods of making the same
Zhang et al. Liquid crystalline order and magnetocrystalline anisotropy in magnetically doped semiconducting ZnO nanowires
Correia et al. Low-field giant magneto-ionic response in polymer-based nanocomposites
Krutyanskiy et al. Second harmonic generation in magnetic nanoparticles with vortex magnetic state
Park et al. Polymer‐Stabilized Chromonic Liquid‐Crystalline Polarizer
JP2012012651A (en) Method for controlling orientation of gold nanorod, and substrate obtained by the same, or the like
Panich et al. Structure and magnetic properties of pristine and Fe-doped micro-and nanographenes
Rizvi et al. Magnetic alignment for plasmonic control of gold nanorods coated with iron oxide nanoparticles
Rothe et al. Self-assembly of plasmonic nanoantenna–waveguide structures for subdiffractional chiral sensing
Yinnon Liquids prepared by serially diluting and vigorously shaking of aqueous solutions: Unveiling effects of the solute on their properties
Yadav et al. Ferroelectric liquid crystal nanocomposites: recent development and future perspective
Masuda et al. Intense plasmon-induced magneto-optical activity in substoichiometric tungsten oxide (WO3–x) nanowires/nanorods
Rossi et al. Orientational control of colloidal 2D-layered transition metal dichalcogenide nanodiscs via unusual electrokinetic response
Chen et al. Ultrafast pump‐probe spectroscopy—a powerful tool for tracking spin‐quantum dynamics in metal halide perovskites
Petrescu et al. Dynamic behavior of a nematic liquid crystal mixed with CoFe2O4 ferromagnetic nanoparticles in a magnetic field
Alegaonkar et al. Spin transport and magnetic correlation parameters for graphene-like nanocarbon sheets doped with nitrogen
Gantzounis et al. Optical properties of periodic structures of metallic nanodisks
Mukhina et al. Circular dichroism of electric-field-oriented CdSe/CdS quantum dots-in-rods
Novotná et al. Nanocomposite of superparamagnetic maghemite nanoparticles and ferroelectric liquid crystal
JP2010053442A (en) Method for orienting gold nanorod, method for orienting and fixing gold nanorod, and substrate prepared with the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903