JP2012011499A - Grinding work method of workpiece and grinding machine, calculation program of moving route data used for the same and storage medium therefor - Google Patents

Grinding work method of workpiece and grinding machine, calculation program of moving route data used for the same and storage medium therefor Download PDF

Info

Publication number
JP2012011499A
JP2012011499A JP2010149917A JP2010149917A JP2012011499A JP 2012011499 A JP2012011499 A JP 2012011499A JP 2010149917 A JP2010149917 A JP 2010149917A JP 2010149917 A JP2010149917 A JP 2010149917A JP 2012011499 A JP2012011499 A JP 2012011499A
Authority
JP
Japan
Prior art keywords
grinding
ground
data
workpiece
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010149917A
Other languages
Japanese (ja)
Other versions
JP5399331B2 (en
Inventor
Masao Yamaguchi
政男 山口
Takeshi Itatsu
武志 板津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Integrex Co Ltd
Original Assignee
Nagase Integrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Integrex Co Ltd filed Critical Nagase Integrex Co Ltd
Priority to JP2010149917A priority Critical patent/JP5399331B2/en
Publication of JP2012011499A publication Critical patent/JP2012011499A/en
Application granted granted Critical
Publication of JP5399331B2 publication Critical patent/JP5399331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grinding machine which obtains moving route data of a grinding wheel with respect to a slope to be ground of a workpiece, the slope having an inclined angle changed in a three-dimensional curved surface manner, based on distal end shape data of the grinding wheel and working shape data of the workpiece, and which enables an NC program to be easily generated.SOLUTION: Three-dimensional coordinate data of a distal end shape of the grinding wheel are calculated by a distal end shape three-dimensional coordinate data conversion part 51 provided in a CPU 42. Working shape three-dimensional coordinate data of the workpiece are calculated by a working shape tree-dimensional coordinate data conversion part 52. Moving route data of the grinding wheel with respect to the slope to be ground of the workpiece, the slope having an inclined angle changed in a three-dimensional curved surface manner, are calculated by a moving route data calculation part 53 based on both of the coordinate data. NC commandment data are formed by an NC commandment data calculation part 54 based on the moving route data.

Description

本発明は、ワークの三次元曲面の被研削面の研削加工方法及び研削盤、それに用いる移動経路データの演算プログラム並びにその記憶媒体に関する。   The present invention relates to a grinding method and a grinding machine for a surface to be ground having a three-dimensional curved surface of a workpiece, a calculation program for moving path data used therefor, and a storage medium therefor.

従来、図5に示すように、自動車のオートマチックの減速機構に用いられ、かつ回転運動を伝達するスプライン軸32は突条32a及び溝32bを備えている。このスプライン軸32は図6に示す冷間鍛造用金型によって押出成形されるようになっている。この金型は外側に位置する外側金型15と、外側金型15の内側に位置する内側金型20とによって構成されている。前記外側金型15の円環状をなす金型本体15aの内周面15bには、多数の突条17が本体15aの円周方向に等ピッチで一体に形成されている。前記各突条17は、金型本体15aの中心軸線O(図6の紙面直交)方向に関して、図7に示すように横断面がほぼ台形状で大きさが変化しないストレート部18と、中心軸線O方向に関して、横断面が台形状で、その大きさが変化する傾斜部19とによって構成されている。前記ストレート部18の左右両側の被研削斜面18aの前記内周面15bに対する傾斜角α、被研削頂面18bの内周面15bからの高さ及び幅はどの部位も同じに設定されている。前記傾斜部19の左右両側の被研削斜面19aの前記内周面15bに対する傾斜角βは、傾斜部19の先端に行くほど小さくなるように設定されている。傾斜部19の被研削頂面19bの幅は前記被研削頂面18bの幅と同じとなるように、かつ被研削頂面19bの高さは先端ほど低くなるように形成されている。   Conventionally, as shown in FIG. 5, a spline shaft 32 that is used in an automatic speed reduction mechanism of an automobile and transmits a rotational motion includes a protrusion 32 a and a groove 32 b. The spline shaft 32 is extruded by a cold forging die shown in FIG. This mold is composed of an outer mold 15 located outside and an inner mold 20 located inside the outer mold 15. A large number of protrusions 17 are integrally formed at an equal pitch in the circumferential direction of the main body 15 a on the inner peripheral surface 15 b of the mold main body 15 a forming the annular shape of the outer mold 15. Each of the protrusions 17 has a straight portion 18 having a substantially trapezoidal cross section and a size that does not change in size with respect to the direction of the central axis O (perpendicular to the plane of FIG. 6) of the mold body 15a, and the central axis. With respect to the O direction, the cross section has a trapezoidal shape and is configured by an inclined portion 19 whose size changes. The inclination angle α of the to-be-ground slope 18a on both the left and right sides of the straight portion 18 with respect to the inner peripheral surface 15b, and the height and width from the inner peripheral surface 15b of the to-be-ground top surface 18b are set to be the same in all parts. An inclination angle β with respect to the inner peripheral surface 15 b of the inclined slope 19 a on both the left and right sides of the inclined portion 19 is set so as to decrease toward the tip of the inclined portion 19. The width of the top surface 19b to be ground of the inclined portion 19 is the same as the width of the top surface 18b to be ground, and the height of the top surface 19b to be ground is made lower toward the tip.

図6に示すように、前記内側金型20の円環状をなす金型本体20aの外周面には、前記外側金型15のストレート部18及び傾斜部19と同様のストレート部18及び傾斜部19が設けられている。そして、外側金型15及び内側金型20の隙間に円筒状の素材(図示略)を前記傾斜部19側から押し込むことによって、図5に示すスプライン軸32が鍛造成形される。   As shown in FIG. 6, the straight portion 18 and the inclined portion 19 similar to the straight portion 18 and the inclined portion 19 of the outer mold 15 are formed on the outer peripheral surface of the annular mold body 20 a forming the annular shape of the inner mold 20. Is provided. Then, a spline shaft 32 shown in FIG. 5 is forged by pushing a cylindrical material (not shown) into the gap between the outer mold 15 and the inner mold 20 from the inclined portion 19 side.

前記ストレート部18及び傾斜部19の研削は、図8に示す砥石車23によって行われる。この砥石車23の先端部の左右両側には、前記ストレート部18、傾斜部19の被研削斜面18a,19aを研削する傾斜研削面23aが設けられている。砥石車23の先端外周面には、前記被研削頂面18b,19bを研削する頂面研削面23bが形成されている。ストレート部18の被研削斜面18a又は被研削頂面18bの研削は、予めそれぞれ設定された移動経路データに基づいて前記砥石車23を前記中心軸線O方向に平行移動させることによって容易に行うことができる。又、傾斜部19の被研削頂面19bは曲面が二次元的に変化するが、それに合わせて砥石車23の移動経路データを容易に設定することができ、砥石車23をNC指令制御により移動させて被研削頂面19bの研削を行うことができる。   The straight portion 18 and the inclined portion 19 are ground by a grinding wheel 23 shown in FIG. On both the left and right sides of the tip of the grinding wheel 23, there are provided inclined grinding surfaces 23a for grinding the to-be-ground slopes 18a and 19a of the straight portion 18 and the inclined portion 19. A top grinding surface 23b for grinding the ground top surfaces 18b and 19b is formed on the outer peripheral surface of the tip of the grinding wheel 23. Grinding of the to-be-ground slope 18a or the to-be-ground top surface 18b of the straight part 18 can be easily performed by translating the grinding wheel 23 in the direction of the central axis O based on movement path data set in advance. it can. In addition, although the curved surface of the top surface 19b to be ground of the inclined portion 19 changes two-dimensionally, the movement path data of the grinding wheel 23 can be easily set in accordance with this, and the grinding wheel 23 is moved by NC command control. Thus, the grinding top surface 19b can be ground.

前記傾斜部19の被研削斜面19aは、前記内周面15bに対する傾斜角βが傾斜部19の先端に行くに従って連続的に小さくなる。即ち、被研削斜面19aの傾斜角βが変化すると、該斜面19aと砥石車23の傾斜研削面23aとの線接触部が3次元曲面的に変化する。しかし、従来は砥石車23の傾斜研削面23aを刻々変化する被研削斜面19aに適正に線接触させて自動的に研削を行なうことができなかった。このため、作業者が表示装置の表示画面に表示された外側金型15と、砥石車23の傾斜研削面23aとの位置関係、つまり傾斜部19の被研削斜面19aの傾斜角βの変化を目視で確認しながら、砥石車23の傾斜研削面23aが前記被研削斜面19aに常に適正に線接触されるように、該砥石車23の3軸移動機構を手動操作することにより行われていた。即ち、図9に示すように、傾斜部19の被研削斜面19aの小さくなった傾斜角βに応じて、砥石車23の回転軸線Lを2次元的に変化させて中心軸線L´とするだけでは、本来、被研削斜面19aに線接触される筈の傾斜研削面23aが被研削斜面19aに接触される前に、他の接触してはいけない傾斜研削面23aがストレート部18側の被研削斜面19aに干渉し、適正な線接触が行われず、研削動作を適正に行うことができない。従って、前述した干渉を避けるために、作業者は図10に示すように、砥石車23を傾斜させて傾斜研削面23aが被研削斜面19aに適正に線接触されるように3軸移動機構を手動操作するようにしていた。   The slope 19 a to be ground of the inclined portion 19 continuously decreases as the inclination angle β with respect to the inner peripheral surface 15 b goes to the tip of the inclined portion 19. That is, when the inclination angle β of the to-be-ground slope 19a changes, the line contact portion between the slope 19a and the inclined grinding surface 23a of the grinding wheel 23 changes in a three-dimensional curved surface. However, conventionally, it has been impossible to automatically perform grinding by properly bringing the inclined grinding surface 23a of the grinding wheel 23 into line contact with the changing slope 19a to be ground. For this reason, the operator changes the positional relationship between the outer mold 15 displayed on the display screen of the display device and the inclined grinding surface 23a of the grinding wheel 23, that is, the change in the inclination angle β of the inclined surface 19a of the inclined portion 19. While visually confirming, the three-axis moving mechanism of the grinding wheel 23 is manually operated so that the inclined grinding surface 23a of the grinding wheel 23 is always in proper line contact with the ground surface 19a to be ground. . That is, as shown in FIG. 9, the rotational axis L of the grinding wheel 23 is two-dimensionally changed to become the central axis L ′ in accordance with the small inclination angle β of the inclined surface 19 a of the inclined portion 19. Then, before the slanted ground surface 23a that is in line contact with the ground surface 19a to be ground is brought into contact with the ground surface 19a, another ground surface 23a that should not be contacted is ground on the straight portion 18 side. Interfering with the inclined surface 19a, the proper line contact is not performed, and the grinding operation cannot be performed properly. Therefore, in order to avoid the above-described interference, as shown in FIG. 10, the operator tilts the grinding wheel 23 so that the inclined grinding surface 23a is properly in line contact with the ground surface 19a. I was trying to operate it manually.

ところが、上記従来の傾斜部19の被研削斜面19aの研削方法は、熟練された作業者の勘によって行われているので、研削作業の時間が長くなり、ワークの研削作業の能率を向上することができないという問題があった。又、手動操作により行うために、被研削斜面19aの研削加工精度を向上することができないという問題もあった。   However, since the conventional grinding method of the slope 19a to be ground of the inclined portion 19 is performed with the intuition of a skilled operator, the grinding work takes longer time and the work grinding work efficiency is improved. There was a problem that could not. In addition, since it is performed manually, there is a problem that the grinding accuracy of the ground surface 19a to be ground cannot be improved.

一方、ワークの研削盤として、特許文献1に開示されたものが提案されている。この研削盤は、砥石車とワークとの相対的位置を制御して、前記ワークの研削加工を行うようになっている。この研削盤には、ワーク及びダミーワークを支持して砥石車に対して相対的にX,Y軸方向へ移動自在なワークテーブルを備えている。又、この研削盤は、前記ワーク及びダミーワークの研削加工を行うための砥石車と、この砥石車によってダミーワークに転写された砥石車の先端形状を撮像するためのカメラと、このカメラによって撮像された前記先端形状の画像データを格納するための画像データメモリとを備えている。前記研削盤は、ワークの加工形状のデータを格納する形状データメモリと、形状データメモリに格納されているデータに基づいてワークの加工形状を表示画面に表示するとともに、画像データメモリに格納されている画像データに基づく砥石車の先端形状を前記表示画面に表示するための表示手段とを備えている。さらに、この研削盤は、前記表示画面内においてワークの前記加工形状に対して前記砥石車の先端形状を移動するための画面操作手段と、ワークの前記加工形状に対して砥石車の前記先端形状を順次接触したときの教示位置のデータを順次格納するための教示データメモリと、この教示データメモリに格納された教示位置データに基づいて、ワークに対する砥石車の移動経路を求めてNCプログラムを生成するNCプログラム生成手段と備えている。さらに、研削盤はこの生成されたNCプログラムによって研削盤を制御するためのNC制御手段を備えている。   On the other hand, what was disclosed by patent document 1 is proposed as a grinding machine of a workpiece | work. This grinding machine controls the relative position between the grinding wheel and the workpiece to grind the workpiece. The grinding machine includes a work table that supports a work and a dummy work and is movable relative to the grinding wheel in the X and Y axis directions. The grinding machine also includes a grinding wheel for grinding the workpiece and the dummy workpiece, a camera for imaging the tip shape of the grinding wheel transferred to the dummy workpiece by the grinding wheel, and an image captured by the camera. And an image data memory for storing the image data of the tip shape. The grinding machine has a shape data memory for storing workpiece shape data, and displays the workpiece shape on the display screen based on the data stored in the shape data memory, and is stored in the image data memory. Display means for displaying the tip shape of the grinding wheel based on the image data on the display screen. Further, the grinding machine includes a screen operating means for moving the tip shape of the grinding wheel with respect to the processing shape of the workpiece in the display screen, and the tip shape of the grinding wheel with respect to the processing shape of the workpiece. NC data is generated by determining the movement path of the grinding wheel with respect to the workpiece based on the teaching data memory for sequentially storing the data of the teaching position when sequentially touching and the teaching position data stored in the teaching data memory. NC program generating means for performing Further, the grinder is provided with NC control means for controlling the grinder by the generated NC program.

特開2001‐105119号公報JP 2001-105119 A

ところが、特許文献1に開示された研削盤は、ワークの研削精度を向上することができる反面、次のような問題があった。すなわち、砥石車によってダミーワークの研削を行い、ダミーワークに転写された砥石車の先端形状をカメラによって撮像するため、準備作業が面倒であるという問題があった。又、画面操作手段によって、表示画面内においてワークの加工形状に対して砥石車の先端形状を移動することにより、ワークの加工形状に対して砥石車の先端形状を順次接触させたときの教示位置のデータを教示データメモリに順次格納するため、教示位置データの取得作業が非常に面倒であるという問題があった。   However, the grinding machine disclosed in Patent Document 1 can improve the grinding accuracy of the workpiece, but has the following problems. That is, there is a problem that the preparation work is troublesome because the dummy work is ground by the grinding wheel and the tip shape of the grinding wheel transferred to the dummy work is imaged by the camera. The teaching position when the tip shape of the grinding wheel is sequentially brought into contact with the processing shape of the workpiece by moving the tip shape of the grinding wheel with respect to the processing shape of the workpiece within the display screen by the screen operation means. Since the above data are sequentially stored in the teaching data memory, there is a problem that the work of acquiring the teaching position data is very troublesome.

本発明は、砥石車の先端形状データとワークの加工形状データとに基づいて、ワークの被研削斜面の傾斜角が3次元曲面的に変化してもワークの被研削斜面に対する砥石車の移動経路データを容易に演算することができるワークの研削加工方法及び研削盤、それに用いる移動経路データの演算プログラム並びにその記憶媒体を提供することにある。   The present invention is based on the tip shape data of the grinding wheel and the machining shape data of the workpiece, and the movement path of the grinding wheel relative to the workpiece grinding slope even if the inclination angle of the workpiece grinding slope changes in a three-dimensional curved surface. An object is to provide a workpiece grinding method and a grinding machine capable of easily calculating data, a calculation program for moving path data used therefor, and a storage medium thereof.

上記問題点を解決するために、請求項1に記載の発明は、ワークテーブルに支持され、3次元曲面的に傾斜角が変化する被研削斜面を有するワークと、先端に傾斜研削面を有する砥石車とを相対移動させてワークの研削を行う研削加工方法において、砥石車の先端形状データを、記憶媒体に記憶する工程と、ワークの前記被研削斜面の加工形状データを、記憶媒体に記憶する工程と、前記先端形状データ及び加工形状データに基づいて、ワークに対する砥石車の移動経路データを演算する工程と、前記移動経路データに基づいて、ワークテーブル及び砥石車の相対移動を制御してワークの研削加工を行う工程とを備え、前記移動経路データの演算は、ワークの前記被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避するように行われるものであることを要旨とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is a grindstone that is supported by a work table and has a workpiece to be ground that has a three-dimensional curved surface whose inclination angle changes and an inclined grinding surface at the tip. In a grinding method for grinding a workpiece by moving relative to a vehicle, a step of storing tip shape data of a grinding wheel in a storage medium, and a processing shape data of the slope to be ground of the workpiece are stored in a storage medium A step of calculating movement path data of the grinding wheel with respect to the workpiece based on the process, the tip shape data and the machining shape data; and a work by controlling relative movement of the work table and the grinding wheel based on the movement path data. The movement path data is calculated so that the inclined grinding surface of the grinding wheel is in proper line contact with the ground surface to be ground of the workpiece. The grit is that the slant grinding surface other than the slant grinding surface that is normally brought into contact with the ground surface to be ground among the slant grinding surfaces of the grinding wheel is to avoid interference with the ground surface to be ground. To do.

請求項2に記載の発明は、ワークテーブルに支持され、3次元曲面的に傾斜角が変化する被研削斜面を有するワークと、先端に傾斜研削面を有する砥石車とを相対移動させてワークの研削を行う研削盤において、砥石車の先端形状データを記憶する記憶媒体と、ワークの被研削斜面の加工形状データを記憶する記憶媒体と、前記先端形状データ及び加工形状データに基づいて、ワークに対する砥石車の移動経路データを演算する移動経路データ演算手段と、移動経路データに基づいて、ワークテーブル及び砥石車の相対移動を制御してワークの研削加工を行う動作指令手段とを備え、前記移動経路データ演算手段は、ワークの前記被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避する機能を備えていることを要旨とする。   According to the second aspect of the present invention, a workpiece having a slope to be ground that is supported by a work table and whose inclination angle changes in a three-dimensional curved surface and a grinding wheel having an inclined grinding surface at the tip are relatively moved to move the workpiece. In a grinding machine that performs grinding, a storage medium that stores tip shape data of a grinding wheel, a storage medium that stores processing shape data of a ground surface to be ground of a workpiece, and the tip shape data and processing shape data, The movement path data calculating means for calculating the movement path data of the grinding wheel, and the operation command means for controlling the relative movement of the work table and the grinding wheel on the basis of the movement path data, and grinding the workpiece. The route data calculation means is arranged so that the inclined grinding surface of the grinding wheel is properly in line contact with the ground surface to be ground of the workpiece, that is, the correct grinding surface of the grinding wheel. Wherein the gist of the inclined ground surface other than the inclined ground surface is contact with the ground slope is a function to avoid interfering with the to be ground slopes to.

請求項3に記載の発明は、請求項2において、前記ワークは筒状をなす金型であって、その金型本体の内周面には、スプライン軸を成形するための複数の突条が所定のピッチで形成され、前記各突条は横断面が台形状に形成され、各突条は横断面形状が変化しないストレート部と、高さが低くなるとともに、左右両側の被研削斜面の傾斜角が先端に行くに従い小さくなる傾斜部とによって形成され、前記ストレート部の被研削斜面及び傾斜部の被研削斜面がワークの加工形状データとして記憶媒体に記憶され、砥石車の先端の左右両側の前記被研削斜面を研削する傾斜研削面が先端形状データとして記憶媒体に記憶されていることを要旨とする。   The invention described in claim 3 is the invention according to claim 2, wherein the workpiece is a cylindrical mold, and a plurality of protrusions for forming a spline shaft are formed on an inner peripheral surface of the mold body. Each protrusion is formed in a predetermined pitch, and each protrusion has a trapezoidal cross section. Each protrusion has a straight portion where the cross-sectional shape does not change, and the height of the protrusion is reduced, and the slopes of the slopes to be ground on both the left and right sides And the slopes to be ground of the straight part and the slopes to be ground of the sloped part are stored in a storage medium as work shape data of the workpiece, and the left and right sides of the tip of the grinding wheel are The gist is that an inclined ground surface for grinding the ground surface to be ground is stored in a storage medium as tip shape data.

請求項4に記載の発明は、請求項2又は3において、前記砥石車の先端形状データは、三次元座標データ変換部によって、先端形状三次元座標データに変換され、ワークの加工形状データは加工形状三次元座標データ変換部によって、加工形状三次元座標データに変換され、前記移動経路データ演算手段は、前記先端形状三次元座標データ及び加工形状三次元座標データに基づいて移動経路データを演算するように構成されていることを要旨とする。   According to a fourth aspect of the present invention, in the second or third aspect, the tip shape data of the grinding wheel is converted into tip shape three-dimensional coordinate data by a three-dimensional coordinate data conversion unit, and the workpiece shape data is processed. The shape three-dimensional coordinate data conversion unit converts the data into machining shape three-dimensional coordinate data, and the movement path data calculation means calculates movement path data based on the tip shape three-dimensional coordinate data and the machining shape three-dimensional coordinate data. It is summarized as follows.

請求項5に記載の発明は、請求項2〜4のいずれか一項において、ベッドの上面には、X軸移動体が水平X軸方向の往復動可能に装着され、該X軸移動体の上面には、ワークテーブルが水平X軸方向と直交する垂直Z軸の周りでC軸方向に旋回移動可能に装着され、砥石車は前記X軸及びZ軸と直交する水平Y軸方向に往復動可能に装着されるとともに、Y軸の周りでB軸方向に旋回移動可能に装着されていることを要旨とする。   According to a fifth aspect of the present invention, in any one of the second to fourth aspects, the X-axis moving body is mounted on the upper surface of the bed so as to be able to reciprocate in the horizontal X-axis direction. On the upper surface, the work table is mounted so as to be able to turn in the C-axis direction around the vertical Z-axis orthogonal to the horizontal X-axis direction, and the grinding wheel reciprocates in the horizontal Y-axis direction orthogonal to the X-axis and Z-axis. The gist of the present invention is that it is mounted so as to be capable of turning in the B-axis direction around the Y-axis.

請求項6に記載の発明は、請求項2〜5のいずれか一項に記載の研削盤に用いるプログラムであって、砥石車の先端形状データを、記憶媒体に記憶する工程と、ワークの前記被研削斜面の加工形状データを、記憶媒体に記憶する工程と、前記先端形状データ及び加工形状データに基づいて、ワークに対する砥石車の移動経路データを演算する工程と、前記移動経路データの演算は、ワークの前記被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避するように行われるものであることを要旨とする。   Invention of Claim 6 is a program used for the grinding machine as described in any one of Claims 2-5, Comprising: The process which memorize | stores the tip shape data of a grinding wheel in a storage medium, The said workpiece | work The step of storing the machining shape data of the to-be-ground slope in a storage medium, the step of calculating the movement route data of the grinding wheel with respect to the workpiece based on the tip shape data and the machining shape data, and the calculation of the movement route data are as follows: The inclined grinding surface of the grinding wheel is properly in line contact with the ground surface to be ground of the workpiece, that is, the inclined grinding surface that is normally in contact with the ground surface to be ground among the inclined grinding surfaces of the grinding wheel. The gist of the present invention is that it is carried out so as to avoid an inclined grinding surface other than that from interfering with the ground surface to be ground.

請求項7に記載の発明は、請求項6の移動経路データの演算プログラムを記憶した記憶媒体であることを要旨とする。
(作用)
この発明は、砥石車の先端形状データ及びワークの加工形状データに基づいて、移動経路データ演算手段によって、ワークの被研削斜面に対する砥石車の移動経路データが演算される。即ち、移動経路データ演算手段によって、ワークの被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避するように、移動経路データが演算される。
The gist of the invention described in claim 7 is a storage medium storing the calculation program of the movement route data of claim 6.
(Function)
In this invention, the movement path data of the grinding wheel with respect to the ground surface to be ground of the workpiece is calculated by the movement path data calculating means based on the tip shape data of the grinding wheel and the machining shape data of the workpiece. That is, the inclined grinding surface of the grinding wheel is properly brought into line contact with the grinding surface of the workpiece by the movement path data calculation means, that is, the grinding surface of the grinding wheel is properly grounded. The movement path data is calculated so as to avoid an inclined grinding surface other than the inclined grinding surface in contact with the ground to be ground.

本発明によれば、砥石車の先端形状データとワークの加工形状データとに基づいて、被研削斜面の傾斜角が3次元曲面的に変化するワークの被研削斜面に対する砥石車の移動経路データを容易に演算することができる。   According to the present invention, on the basis of the tip shape data of the grinding wheel and the machining shape data of the workpiece, the movement path data of the grinding wheel with respect to the ground to be ground of the workpiece in which the inclination angle of the ground to be ground changes in a three-dimensional curved surface is obtained. It can be easily calculated.

この発明の研削盤の制御システムのブロック回路図。The block circuit diagram of the control system of the grinding machine of this invention. 研削盤の略体正断面図。FIG. 3 is a schematic front sectional view of a grinding machine. 金型の突条の研削作業を説明するための部分拡大平断面図。The partial expanded plane sectional view for demonstrating the grinding | polishing operation | work of the protrusion of a metal mold | die. 同じく金型の突条の研削作業を説明するための部分拡大平断面図。The partial expanded plane sectional view for demonstrating the grinding operation | work of the protrusion of a metal mold | die similarly. スプライン軸の横断面図。The cross-sectional view of a spline shaft. 金型の正面図。The front view of a metal mold | die. 外側金型の部分拡大斜視図。The partial expansion perspective view of an outer side metal mold | die. 金型に形成されたストレート部の斜面の研削方法を説明するための部分正面図。The partial front view for demonstrating the grinding method of the slope of the straight part formed in the metal mold | die. 金型に形成された傾斜部の斜面の手動操作に基づく研削方法を説明するための部分正面図。The partial front view for demonstrating the grinding method based on the manual operation of the slope of the inclined part formed in the metal mold | die. 手動操作に基づく傾斜部の斜面の研削方法を説明するための部分正面図。The partial front view for demonstrating the grinding method of the inclined surface of the inclination part based on manual operation. (a)〜(c)は、砥石車の先端部の形状の別の実施形態を示す部分正面図。(A)-(c) is a partial front view which shows another embodiment of the shape of the front-end | tip part of a grinding wheel.

以下、本発明を具体化した研削盤の一実施形態を図1〜図7にしたがって説明する。この実施形態におけるワークは背景の技術で述べた図6及び図7に示す外側金型15と同じ外側金型である。最初に、図2に基づいて研削盤について説明する。   Hereinafter, an embodiment of a grinding machine embodying the present invention will be described with reference to FIGS. The workpiece in this embodiment is the same outer mold as the outer mold 15 shown in FIGS. 6 and 7 described in the background art. First, the grinding machine will be described with reference to FIG.

ベット10の上面には、X軸移動機構12によってX軸(図2の左右)方向に往復されるX軸移動体11が装着されている。該X軸移動体11の上面にはC軸移動機構14によってC軸方向、つまり上下方向に指向するZ軸の周りで水平方向に旋回されるワークテーブル13が装着されている。前記ワークテーブル13の上面には支持治具16を介して前記金型15が支持されている。   An X-axis moving body 11 that is reciprocated in the X-axis (left and right in FIG. 2) direction by the X-axis moving mechanism 12 is mounted on the upper surface of the bed 10. On the upper surface of the X-axis moving body 11, a work table 13 is mounted that is turned in the horizontal direction around the Z-axis directed in the C-axis direction, that is, the vertical direction by the C-axis moving mechanism. The mold 15 is supported on the upper surface of the work table 13 via a support jig 16.

前記ベット10の上面には、図示しないコラム及び案内機構を介して、3軸移動体21が装着されている。この3軸移動体21の下端部には、軸22を介して背景技術で述べた砥石車23と同じ砥石車23が回転可能に支持されている。前記3軸移動体21はY軸移動機構24によって、図2のX軸と直交するY軸(紙面と直交する水平)方向に往復動されるようになっている。前記3軸移動体21は、Z軸移動機構25によってZ軸(上下)方向に往復動されるようになっている。さらに、3軸移動体21は、B軸移動機構26によって、前記Y軸を中心に上下方向に旋回するB軸方向に往復移動されるようになっている。   A triaxial moving body 21 is mounted on the upper surface of the bed 10 via a column and a guide mechanism (not shown). A grinding wheel 23 that is the same as the grinding wheel 23 described in the background art is rotatably supported by a lower end portion of the triaxial moving body 21 via a shaft 22. The triaxial moving body 21 is reciprocated by a Y axis moving mechanism 24 in a Y axis direction (horizontal direction perpendicular to the paper surface) perpendicular to the X axis in FIG. The triaxial moving body 21 is reciprocated in the Z axis (vertical) direction by a Z axis moving mechanism 25. Further, the triaxial moving body 21 is reciprocally moved in the B-axis direction that pivots in the vertical direction around the Y-axis by the B-axis moving mechanism 26.

前記3軸移動体21には、前記砥石車23を回転するための駆動機構が備えられている。この駆動機構について説明すると、前記3軸移動体21の上端部にはモータ27が取り付けられ、該モータ27の出力軸28には、駆動プーリ29が連結されている。前記砥石車23に連結された前記軸22には、従動プーリ30が連結され、前記駆動プーリ29及び従動プーリ30にはベルト31が掛装されている。そして、前記モータ27が駆動されると、駆動プーリ29、ベルト31及び従動プーリ30などを介して砥石車23が回転されるようになっている。   The triaxial moving body 21 is provided with a drive mechanism for rotating the grinding wheel 23. The drive mechanism will be described. A motor 27 is attached to the upper end of the triaxial moving body 21, and a drive pulley 29 is connected to the output shaft 28 of the motor 27. A driven pulley 30 is connected to the shaft 22 connected to the grinding wheel 23, and a belt 31 is hung on the driving pulley 29 and the driven pulley 30. When the motor 27 is driven, the grinding wheel 23 is rotated via the drive pulley 29, the belt 31, the driven pulley 30, and the like.

次に、図1に基づいて研削盤の制御システムについて説明する。
動作指令手段としての制御装置41には、中央演算処理装置(CPU)42が備えられている。このCPU42には、研削作業の各種の動作プログラムを予め記録した読み出し専用のリードオンリーメモリ(ROM)43が接続されている。又、CPU42には、各種のデータを記憶するための読み出し書き込み可能な記憶媒体としてのランダムアクセスメモリ(RAM)44が接続されている。このRAM44は、前記砥石車23の先端形状データD23(傾斜研削面23a及び頂面研削面23bの形状データを総称して言う)を記憶するための先端形状データメモリ45を備えている。又、RAM44は、外側金型の被研削面の加工形状データD15(斜面18a,19a、頂面18b,19bの加工形状データを総称して言う)を記憶するための加工形状データメモリ46を備えている。
Next, a control system for the grinding machine will be described with reference to FIG.
The control device 41 as the operation command means includes a central processing unit (CPU) 42. The CPU 42 is connected to a read-only read-only memory (ROM) 43 in which various operation programs for grinding work are recorded in advance. The CPU 42 is connected to a random access memory (RAM) 44 as a readable / writable storage medium for storing various data. The RAM 44 includes a tip shape data memory 45 for storing tip shape data D23 of the grinding wheel 23 (referred to collectively as shape data of the inclined grinding surface 23a and the top grinding surface 23b). The RAM 44 also includes a machining shape data memory 46 for storing machining shape data D15 of the surface to be ground of the outer mold (generally called machining shape data of the inclined surfaces 18a and 19a and the top surfaces 18b and 19b). ing.

前記CPU42には、例えば、前記先端形状データD23あるいは加工形状データD15などの各種のデータを入力するための入力装置47が接続されている。前記CPU42には、表示手段48が接続され、該表示手段48には、例えば、砥石車23の先端形状あるいは外側金型の突条17の各部の形状を目視で確認することができる表示画面49が備えられている。前記CPU42には、図示しないデータバス及び駆動回路を介して前述したX軸移動機構12、C軸移動機構14、Y軸移動機構24、Z軸移動機構25及びB軸移動機構26のサーボモータM12、M14、M24、M25、M26が接続されている。   For example, an input device 47 for inputting various data such as the tip shape data D23 or the machining shape data D15 is connected to the CPU. A display means 48 is connected to the CPU 42. The display means 48 can display, for example, the tip shape of the grinding wheel 23 or the shape of each part of the protrusion 17 of the outer mold visually. Is provided. The CPU 42 is connected to the servo motor M12 of the X-axis moving mechanism 12, the C-axis moving mechanism 14, the Y-axis moving mechanism 24, the Z-axis moving mechanism 25, and the B-axis moving mechanism 26 described above via a data bus and a drive circuit (not shown). , M14, M24, M25, and M26 are connected.

次に、前記CPU42の各種の機能について説明する。
前記CPU42には、前記先端形状データメモリ45に記憶された砥石車23の先端形状データD23を、先端形状三次元座標データD23Aに変換するための先端形状三次元座標データ変換部51が設けられている。又、CPU42には、加工形状データメモリ46に記憶された砥石車23の加工形状データD15を、加工形状三次元座標データD15Aに変換するための加工形状三次元座標データ変換部52が設けられている。
Next, various functions of the CPU 42 will be described.
The CPU 42 is provided with a tip shape three-dimensional coordinate data conversion unit 51 for converting the tip shape data D23 of the grinding wheel 23 stored in the tip shape data memory 45 into tip shape three-dimensional coordinate data D23A. Yes. Further, the CPU 42 is provided with a machining shape three-dimensional coordinate data conversion unit 52 for converting the machining shape data D15 of the grinding wheel 23 stored in the machining shape data memory 46 into the machining shape three-dimensional coordinate data D15A. Yes.

前記CPU42には、前記先端形状三次元座標データD23A及び加工形状三次元座標データD15Aに基づいて、砥石車23の移動経路データD23B(詳細は後述する)を演算するための移動経路データ演算手段としての移動経路データ演算部53が設けられている。該移動経路データ演算部53によって、次のような演算動作が行われる。即ち、前記傾斜部19の被研削斜面19aは、外側金型15の中心軸線O方向に行くにしたがって傾斜角βが連続的に小さくなり、被研削斜面19aと砥石車23の傾斜研削面23aとの線接触部が3次元曲面的に変化する。この明細書では「線接触部が3次元曲面的に変化する」と同意義で、場合に応じて「被研削斜面19aの傾斜角βが3次元曲面的に変化する」と表現する。そのため、前記砥石車23の傾斜研削面23aが外側金型15の中心軸線O方向のいずれの位置においても、前記被研削斜面19aに対して常に線接触(実際には帯状の細長い領域で接触)されるように移動経路データD23Bが演算される。即ち、この移動経路データD23Bは、前記砥石車23の傾斜研削面23aが本来接触してはいけない前記ストレート部18側の傾斜部19の被研削斜面19aに干渉しないデータである。さらに詳述すると、傾斜部19の被研削斜面19aに対する砥石車23の傾斜研削面23aの干渉度合を、前記先端形状三次元座標データD23A及び加工形状三次元座標データD15Aに基づいて演算することができる。従って、前記移動経路データ演算部53によって前記干渉度合を打ち消すように移動経路データD23Bが演算される。   The CPU 42 has a movement path data calculation means for calculating movement path data D23B (details will be described later) of the grinding wheel 23 based on the tip shape three-dimensional coordinate data D23A and the machining shape three-dimensional coordinate data D15A. The movement route data calculation unit 53 is provided. The movement route data calculation unit 53 performs the following calculation operation. That is, the inclined surface 19a of the inclined portion 19 has an inclination angle β that decreases continuously in the direction of the central axis O of the outer mold 15, and the inclined surface 19a and the inclined grinding surface 23a of the grinding wheel 23 The line contact portion changes in a three-dimensional curved surface. In this specification, it is synonymous with “the line contact portion changes in a three-dimensional curved surface” and is expressed as “the inclination angle β of the to-be-ground slope 19a changes in a three-dimensional curved surface” depending on the case. Therefore, the inclined grinding surface 23a of the grinding wheel 23 is always in line contact with the ground surface 19a to be ground at any position in the direction of the central axis O of the outer mold 15 (actually in contact with a strip-like elongated region). Thus, the movement route data D23B is calculated. That is, the movement path data D23B is data that does not interfere with the ground surface 19a of the inclined portion 19 on the straight portion 18 side that the inclined grinding surface 23a of the grinding wheel 23 should not be in contact with. More specifically, the degree of interference of the inclined grinding surface 23a of the grinding wheel 23 with the grinding surface 19a of the inclined portion 19 can be calculated based on the tip shape three-dimensional coordinate data D23A and the machining shape three-dimensional coordinate data D15A. it can. Accordingly, the movement path data D23B is calculated by the movement path data calculation unit 53 so as to cancel the interference degree.

前記CPU42には、前記移動経路データD23Bに基づいて、前記各モータM12、M14、M24〜M26に動作指令を出力するためのNC指令データ演算部54が設けられている。このNC指令データによって、ワークテーブル13及び砥石車23が前述した5軸方向に相対移動制御され、外側金型の突条17の研削が行われる。   The CPU 42 is provided with an NC command data calculation unit 54 for outputting an operation command to each of the motors M12, M14, M24 to M26 based on the movement path data D23B. By this NC command data, the relative movement of the work table 13 and the grinding wheel 23 is controlled in the five-axis direction described above, and the outer mold protrusion 17 is ground.

次に、前記のように構成された研削盤による外側金型の突条17の研削作業について説明する。
最初に、図1に示す入力装置47を用いて、前記砥石車23の傾斜研削面23a、頂面研削面23bの側面形状データD23a、頂面形状データD23bを、砥石車23の先端形状データD23として、前記先端形状データメモリ45に予め記憶させる。又、図6に示すストレート部18の斜面18a及び頂面18bの斜面形状データD18a及び頂面形状データD18bを、加工形状データメモリ46に予め記憶させる。さらに、傾斜部19の被研削斜面19a及び頂面19bの加工形状データD19a及び加工形状データD19bを、前記加工形状データメモリ46に予め記憶させる。
Next, the grinding operation of the outer mold ridge 17 by the grinding machine configured as described above will be described.
First, using the input device 47 shown in FIG. 1, the side surface shape data D23a and the top surface shape data D23b of the inclined grinding surface 23a and the top surface grinding surface 23b of the grinding wheel 23 are used as the tip shape data D23 of the grinding wheel 23. Are stored in advance in the tip shape data memory 45. Further, the slope shape data D18a and the top face shape data D18b of the slope 18a and the top face 18b of the straight portion 18 shown in FIG. Further, the machining shape data D19a and the machining shape data D19b of the slope 19a and the top surface 19b of the inclined portion 19 are stored in the machining shape data memory 46 in advance.

次に、入力装置47を操作することによって、先端形状三次元座標データ変換部51を作動させて、先端形状データメモリ45に記憶された先端形状データD23を先端形状三次元座標データD23Aに変換する。同様に、入力装置47を操作することによって、加工形状三次元座標データ変換部52を作動させて、加工形状データメモリ46に記憶された加工形状データD15を、加工形状三次元座標データD15Aに変換する。   Next, by operating the input device 47, the tip shape three-dimensional coordinate data conversion unit 51 is operated to convert the tip shape data D23 stored in the tip shape data memory 45 into tip shape three-dimensional coordinate data D23A. . Similarly, by operating the input device 47, the machining shape three-dimensional coordinate data conversion unit 52 is operated to convert the machining shape data D15 stored in the machining shape data memory 46 into machining shape three-dimensional coordinate data D15A. To do.

次に、入力装置47を操作することによって移動経路データ演算部53を作動させて、前記先端形状三次元座標データD23A及び加工形状三次元座標データD15Aに基づいて、移動経路データD23Bを演算する。   Next, the movement path data calculation unit 53 is operated by operating the input device 47, and the movement path data D23B is calculated based on the tip shape three-dimensional coordinate data D23A and the machining shape three-dimensional coordinate data D15A.

移動経路データD23Bは、図6に示す一つの突条17に関して、ストレート部18の左側の斜面18aと、傾斜部19の左側の被研削斜面19aとを連続して研削する第1移動経路データD231と、頂面18b及び頂面19bを連続して研削する第2移動経路データD232と、ストレート部18の右側の斜面18aと、傾斜部19の右側の被研削斜面19aとを連続して研削する第3移動経路データD233とに区分されている。これら第1〜第3移動経路データD231〜D233の演算動作が終了すると、NC指令データ演算部54が作動され、各移動経路データD231〜D233に基づいて砥石車23の第1〜第3NC指令データが演算される。これらのNC指令データに基づいて、ワークテーブル13及び砥石車23が5軸方向に相対移動され、例えば第1移動経路データD231に関するNC指令データによって、図6に示す外側金型のストレート部18の左側の斜面18a及び傾斜部19の左側の被研削斜面19aが傾斜研削面23aによって適正に研削される。なお、図3は砥石車23の傾斜研削面23aによってストレート部18の斜面18aが研削されている状態を示し、図4は傾斜研削面23aによって、傾斜部19の被研削斜面19aが研削されている状態を示す。   The movement path data D23B is the first movement path data D231 for continuously grinding the slope 18a on the left side of the straight part 18 and the slope 19a to be ground on the left side of the inclined part 19 with respect to one ridge 17 shown in FIG. The second movement path data D232 for continuously grinding the top surface 18b and the top surface 19b, the right slope 18a of the straight portion 18, and the ground slope 19a on the right side of the slope 19 are continuously ground. It is divided into third movement route data D233. When the calculation operation of the first to third movement route data D231 to D233 is completed, the NC command data calculation unit 54 is activated, and the first to third NC command data of the grinding wheel 23 is based on the movement route data D231 to D233. Is calculated. Based on these NC command data, the work table 13 and the grinding wheel 23 are relatively moved in the 5-axis direction. For example, by the NC command data related to the first movement path data D231, the straight portion 18 of the outer mold shown in FIG. The left inclined surface 18a and the left inclined surface 19a of the inclined portion 19 are appropriately ground by the inclined grinding surface 23a. 3 shows a state where the inclined surface 18a of the straight portion 18 is ground by the inclined grinding surface 23a of the grinding wheel 23, and FIG. 4 shows that the inclined surface 19a of the inclined portion 19 is ground by the inclined grinding surface 23a. Indicates the state.

上記実施形態の研削盤によれば、以下のような効果を得ることができる。
(1)上記実施形態では、図7に示すように、先端形状データメモリ45に記憶された砥石車23の先端形状データD23と、加工形状データメモリ46に記憶された外側金型の加工形状データD15とを、それぞれ先端形状三次元座標データD23A及び加工形状三次元座標データD15Aに変換する。そして、両座標データD23A,D15Aに基づいて、砥石車23の移動経路データD23B(第1〜第3移動経路データD231〜D233)を演算するようにした。即ち、外側金型15の傾斜部19の前記傾斜角βが三次元曲面的に変化する被研削斜面19aに対して、砥石車23の傾斜研削面23aが適正に線接触されるように、つまり、砥石車23の傾斜研削面23aのうち正規に前記被研削斜面19aに接触される傾斜研削面23a以外の傾斜研削面23aが前記被研削斜面19aと干渉するのを回避するように行われる。このため、前記傾斜角βが三次元曲面的に変化する被研削斜面19aの砥石車23による研削作業を容易に行うことができる。
According to the grinding machine of the said embodiment, the following effects can be acquired.
(1) In the above embodiment, as shown in FIG. 7, the tip shape data D23 of the grinding wheel 23 stored in the tip shape data memory 45 and the machining shape data of the outer mold stored in the machining shape data memory 46. D15 is converted into tip shape three-dimensional coordinate data D23A and machining shape three-dimensional coordinate data D15A, respectively. And based on both coordinate data D23A and D15A, the movement route data D23B (the 1st-3rd movement route data D231-D233) of the grinding wheel 23 were calculated. That is, the inclined grinding surface 23a of the grinding wheel 23 is properly line-contacted with the grinding slope 19a in which the inclination angle β of the inclined portion 19 of the outer mold 15 changes in a three-dimensional curved surface, that is, The inclined grinding surface 23a of the grinding wheel 23 other than the inclined grinding surface 23a that is normally brought into contact with the to-be-ground slope 19a is prevented from interfering with the to-be-ground slope 19a. For this reason, the grinding operation by the grinding wheel 23 of the to-be-ground slope 19a in which the inclination angle β changes in a three-dimensional curved surface can be easily performed.

(2)上記実施形態では、図2に示すように、外側金型15をX軸移動機構12及びC軸移動機構14によってX軸方向及びC軸方向にそれぞれ移動制御するとともに、3軸移動体21及び砥石車23を、Y軸移動機構24、Z軸移動機構25及びB軸移動機構26によって、Y軸方向、Z軸方向及びB軸方向にそれぞれ移動制御するようにした。このため、例えば、外側金型の傾斜部19の被研削斜面19aの傾斜角βが複雑に変化する場合にも、ワークテーブル13及び砥石車23の相対移動制御を容易に行い、外側金型15の研削を適正に行うことができる。   (2) In the above embodiment, as shown in FIG. 2, the outer mold 15 is controlled to move in the X-axis direction and the C-axis direction by the X-axis moving mechanism 12 and the C-axis moving mechanism 14, respectively, and the three-axis moving body 21 and the grinding wheel 23 are controlled to move in the Y-axis direction, the Z-axis direction, and the B-axis direction by the Y-axis moving mechanism 24, the Z-axis moving mechanism 25, and the B-axis moving mechanism 26, respectively. Therefore, for example, even when the inclination angle β of the slope 19a to be ground of the inclined portion 19 of the outer mold changes in a complicated manner, the relative movement control of the work table 13 and the grinding wheel 23 is easily performed, and the outer mold 15 is controlled. Can be properly ground.

なお、上記実施形態は以下のように変更してもよい。
・図11(a)に示すように砥石車23の先端形状を半円弧研削部23cにしたり、図11(b)に示すように傾斜研削面23aによって山形状にしたり、図11(c)に示すように、一つの傾斜研削面23aと一つの頂面研削面23bとにより形成したりしてもよい。このように前記砥石車23の先端形状を、それぞれ複数種類用意し、それらの複数種の先端形状データを予め記憶媒体に記憶させるとともに、砥石車23が変更になった場合に、複数種の先端形状データの中から選択できるようにしてもよい。
In addition, you may change the said embodiment as follows.
As shown in FIG. 11 (a), the tip shape of the grinding wheel 23 is made into a semicircular grinding part 23c, or as shown in FIG. 11 (b), it is formed into a mountain shape by the inclined grinding surface 23a. As shown, it may be formed by one inclined grinding surface 23a and one top grinding surface 23b. In this way, a plurality of types of tip shapes of the grinding wheel 23 are prepared, and a plurality of types of tip shape data are stored in the storage medium in advance, and when the grinding wheel 23 is changed, a plurality of types of tip shapes are stored. You may make it selectable from shape data.

・前記実施形態では、研削盤に備えられた制御装置41によって、移動経路データの演算プログラムを生成するようにしたが、この移動経路データの演算プログラムを研削盤と無関係のパーソナルコンピュータに付与し、演算された移動経路データを、記憶媒体により、又は有線あるいは無線により研削盤の制御装置41に送信するようにしてもよい。   In the above embodiment, the calculation program for the movement path data is generated by the control device 41 provided in the grinding machine. However, the calculation program for the movement path data is given to a personal computer unrelated to the grinding machine, The calculated movement route data may be transmitted to the control device 41 of the grinding machine by a storage medium, or by wire or wirelessly.

・砥石車23の移動経路データを移動経路データ演算部53によって演算する際に、前記傾斜部19の被研削斜面19aの傾斜角βが変化する研削予定線を通り、かつ該斜面19aと直交する垂直座標面上に砥石車23の回転軸線を位置させるようにしてもよい。   When the movement route data of the grinding wheel 23 is calculated by the movement route data calculation unit 53, it passes through the planned grinding line where the inclination angle β of the inclined surface 19a of the inclined portion 19 changes and is orthogonal to the inclined surface 19a. The axis of rotation of the grinding wheel 23 may be positioned on the vertical coordinate plane.

・研削盤に用いる砥石車の移動経路データのプログラムであって、砥石車の先端形状データを、記憶媒体に記憶する工程と、ワークの前記被研削斜面の加工形状データを、記憶媒体に記憶する工程と、前記先端形状データ及び加工形状データに基づいて、ワークに対する砥石車の移動経路データを演算する工程とを備え、前記移動経路データの演算は、ワークの前記被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避するように行われるものである砥石車の移動経路データの演算プログラムとして具体化してもよい。又、その演算プログラムを記憶した磁気記憶媒体(フレキシブルディスク)あるいはUSBメモリ等の記憶媒体として具体化してもよい。   A program for grinding wheel movement path data used in the grinding machine, the step of storing the grinding wheel tip shape data in a storage medium, and the machining shape data of the workpiece to be ground on the storage medium. And a step of calculating the movement path data of the grinding wheel with respect to the workpiece based on the tip shape data and the machining shape data, and the calculation of the movement path data is performed on the grindstone of the workpiece with respect to the ground surface to be ground. In order for the slant grinding surface of the car to be in line contact properly, that is, among the slant grinding surfaces of the grinding wheel, slant grinding surfaces other than the slant grinding surface that are normally in contact with the ground slant interfere with the ground to be ground. You may embody as a calculation program of movement route data of a grinding wheel which is performed so that it may avoid. Further, the present invention may be embodied as a magnetic storage medium (flexible disk) storing the calculation program or a storage medium such as a USB memory.

・X,Y,Z軸の3軸方向に砥石車23を移動制御する研削盤に具体化してもよい。又、X,Y,Z,C軸の4軸方向あるいはX,Y,Z,B軸の4軸方向に砥石車23を移動制御する研削盤に具体化してもよい。   -You may embody in the grinding machine which carries out movement control of the grinding wheel 23 to the 3 axis directions of X, Y, and Z axis | shaft. Further, the present invention may be embodied in a grinding machine that controls the movement of the grinding wheel 23 in the four axis directions of the X, Y, Z, and C axes or the four axis directions of the X, Y, Z, and B axes.

・例えば斜歯歯車の研削盤として具体化してもよい。   -For example, it may be embodied as a grinding machine for bevel gears.

β…傾斜角、Y,23…砥石車、D15,D19a,D19b…加工形状データ、D23…先端形状データ、D15A…加工形状三次元座標データ、D23A…先端形状三次元座標データ、D23B,D231〜D233…移動経路データ、11…X軸移動体、13…ワークテーブル、15…金型、17…突条、18…ストレート部、19…傾斜部、19a…被研削斜面、22…軸、23a…傾斜研削面、52…加工形状三次元座標データ変換部。   β ... tilt angle, Y, 23 ... grinding wheel, D15, D19a, D19b ... machining shape data, D23 ... tip shape data, D15A ... machining shape three-dimensional coordinate data, D23A ... tip shape three-dimensional coordinate data, D23B, D231- D233 ... Movement path data, 11 ... X-axis moving body, 13 ... Work table, 15 ... Mold, 17 ... Projection, 18 ... Straight part, 19 ... Inclined part, 19a ... Slope to be ground, 22 ... Axis, 23a ... Inclined grinding surface, 52... Machining shape three-dimensional coordinate data conversion unit.

Claims (7)

ワークテーブルに支持され、3次元曲面的に傾斜角が変化する被研削斜面を有するワークと、先端に傾斜研削面を有する砥石車とを相対移動させてワークの研削を行う研削加工方法において、
砥石車の先端形状データを、記憶媒体に記憶する工程と、
ワークの前記被研削斜面の加工形状データを、記憶媒体に記憶する工程と、
前記先端形状データ及び加工形状データに基づいて、ワークに対する砥石車の移動経路データを演算する工程と、
前記移動経路データに基づいて、ワークテーブル及び砥石車の相対移動を制御してワークの研削加工を行う工程と
を備え、
前記移動経路データの演算は、ワークの前記被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避するように行われるものであることを特徴とするワークの研削加工方法。
In a grinding method for grinding a workpiece by relatively moving a workpiece having a to-be-ground slope whose inclination angle is changed in a three-dimensional curved surface and a grinding wheel having an inclined grinding surface at the tip, supported by the work table,
Storing the tip shape data of the grinding wheel in a storage medium;
Storing machining shape data of the to-be-ground slope of the workpiece in a storage medium;
Based on the tip shape data and the machining shape data, calculating the movement path data of the grinding wheel relative to the workpiece,
A step of grinding the workpiece by controlling the relative movement of the work table and the grinding wheel based on the movement path data,
The movement path data is calculated so that the inclined grinding surface of the grinding wheel is properly in line contact with the ground surface to be ground of the workpiece, that is, the ground surface to be ground is properly out of the inclined grinding surface of the grinding wheel. A grinding method for a workpiece, characterized in that it is performed so as to avoid an inclined grinding surface other than the inclined grinding surface in contact with the ground to be ground.
ワークテーブルに支持され、3次元曲面的に傾斜角が変化する被研削斜面を有するワークと、先端に傾斜研削面を有する砥石車とを相対移動させてワークの研削を行う研削盤において、
砥石車の先端形状データを記憶する記憶媒体と、
ワークの被研削斜面の加工形状データを記憶する記憶媒体と、
前記先端形状データ及び加工形状データに基づいて、ワークに対する砥石車の移動経路データを演算する移動経路データ演算手段と、
移動経路データに基づいて、ワークテーブル及び砥石車の相対移動を制御してワークの研削加工を行う動作指令手段と
を備え、
前記移動経路データ演算手段は、ワークの前記被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避する機能を備えていることを特徴とする研削盤。
In a grinding machine that is supported by a work table and grinds a work by relatively moving a work having a to-be-ground slope whose inclination angle changes in a three-dimensional curved surface and a grinding wheel having an inclined grinding surface at the tip,
A storage medium for storing the tip shape data of the grinding wheel;
A storage medium for storing machining shape data of a workpiece to be ground;
Based on the tip shape data and the machining shape data, movement path data calculating means for calculating movement path data of the grinding wheel with respect to the workpiece,
Based on the movement path data, comprising an operation command means for controlling the relative movement of the work table and the grinding wheel and grinding the work,
The movement path data calculation means is configured so that the inclined grinding surface of the grinding wheel is properly in line contact with the ground surface to be ground of the workpiece, that is, the ground surface to be ground is properly out of the inclined grinding surface of the grinding wheel. A grinding machine having a function of preventing an inclined grinding surface other than the inclined grinding surface in contact with the ground surface to interfere with the grinding surface.
請求項2において、前記ワークは筒状をなす金型であって、その金型本体の内周面には、スプライン軸を成形するための複数の突条が所定のピッチで形成され、前記各突条は横断面が台形状に形成され、各突条は横断面形状が変化しないストレート部と、高さが低くなるとともに、左右両側の被研削斜面の傾斜角が先端に行くに従い小さくなる傾斜部とによって形成され、前記ストレート部の被研削斜面及び傾斜部の被研削斜面がワークの加工形状データとして記憶媒体に記憶され、砥石車の先端の左右両側の前記被研削斜面を研削する傾斜研削面が先端形状データとして記憶媒体に記憶されていることを特徴とする研削盤。 In Claim 2, The said workpiece | work is a metal mold | die which makes a cylinder shape, Comprising: On the inner peripheral surface of the metal mold | die main body, several protrusions for shape | molding a spline shaft are formed in predetermined pitch, Each said Each ridge has a trapezoidal cross section, and each ridge has a straight portion where the cross section does not change, and the height decreases, and the inclination angle of the slopes to be ground on both the left and right sides decreases as it goes to the tip. Inclined grinding is performed by grinding the slope to be ground of the straight portion and the slope to be ground of the inclined portion in a storage medium as workpiece shape data, and grinding the slope to be ground on both the left and right sides of the tip of the grinding wheel. A grinding machine characterized in that a surface is stored in a storage medium as tip shape data. 請求項2又は3において、前記砥石車の先端形状データは、三次元座標データ変換部によって、先端形状三次元座標データに変換され、ワークの加工形状データは加工形状三次元座標データ変換部によって、加工形状三次元座標データに変換され、前記移動経路データ演算手段は、前記先端形状三次元座標データ及び加工形状三次元座標データに基づいて移動経路データを演算するように構成されていることを特徴とする研削盤。 In claim 2 or 3, the tip shape data of the grinding wheel is converted into tip shape three-dimensional coordinate data by a three-dimensional coordinate data converter, and the workpiece shape data is converted by a machining shape three-dimensional coordinate data converter, It is converted into machining shape three-dimensional coordinate data, and the movement path data calculating means is configured to calculate movement path data based on the tip shape three-dimensional coordinate data and the machining shape three-dimensional coordinate data. A grinding machine. 請求項2〜4のいずれか一項において、ベッドの上面には、X軸移動体が水平X軸方向の往復動可能に装着され、該X軸移動体の上面には、ワークテーブルが水平X軸方向と直交する垂直Z軸の周りでC軸方向に旋回移動可能に装着され、砥石車は前記X軸及びZ軸と直交する水平Y軸方向に往復動可能に装着されるとともに、Y軸の周りでB軸方向に旋回移動可能に装着されていることを特徴とする研削盤。 5. The X-axis moving body is mounted on the upper surface of the bed so that the X-axis moving body can reciprocate in the horizontal X-axis direction. The grinding wheel is mounted so as to be pivotable in the C-axis direction around the vertical Z-axis orthogonal to the axial direction, and the grinding wheel is mounted so as to be able to reciprocate in the horizontal Y-axis direction orthogonal to the X-axis and Z-axis. A grinding machine characterized by being mounted so as to be pivotable in the B-axis direction around. 請求項2〜5のいずれか一項に記載の研削盤に用いるプログラムであって、
砥石車の先端形状データを、記憶媒体に記憶する工程と、
ワークの前記被研削斜面の加工形状データを、記憶媒体に記憶する工程と、
前記先端形状データ及び加工形状データに基づいて、ワークに対する砥石車の移動経路データを演算する工程と、
前記移動経路データの演算は、ワークの前記被研削斜面に対して、砥石車の傾斜研削面が適正に線接触されるように、つまり、砥石車の傾斜研削面のうち正規に前記被研削斜面に接触される傾斜研削面以外の傾斜研削面が前記被研削斜面と干渉するのを回避するように行われるものであることを特徴とする研削盤に用いる移動経路データの演算プログラム。
A program used for the grinding machine according to any one of claims 2 to 5,
Storing the tip shape data of the grinding wheel in a storage medium;
Storing machining shape data of the to-be-ground slope of the workpiece in a storage medium;
Based on the tip shape data and the machining shape data, calculating the movement path data of the grinding wheel relative to the workpiece,
The movement path data is calculated so that the inclined grinding surface of the grinding wheel is properly in line contact with the ground surface to be ground of the workpiece, that is, the ground surface to be ground is properly out of the inclined grinding surface of the grinding wheel. A program for calculating movement path data used for a grinding machine, wherein the grinding is performed so as to avoid an inclined grinding surface other than the inclined grinding surface in contact with the ground to be ground.
請求項6の移動経路データの演算プログラムを記憶した記憶媒体。 The storage medium which memorize | stored the calculation program of the movement route data of Claim 6.
JP2010149917A 2010-06-30 2010-06-30 Workpiece grinding method and grinding machine, moving path data calculation program used therefor, and storage medium therefor Active JP5399331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149917A JP5399331B2 (en) 2010-06-30 2010-06-30 Workpiece grinding method and grinding machine, moving path data calculation program used therefor, and storage medium therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149917A JP5399331B2 (en) 2010-06-30 2010-06-30 Workpiece grinding method and grinding machine, moving path data calculation program used therefor, and storage medium therefor

Publications (2)

Publication Number Publication Date
JP2012011499A true JP2012011499A (en) 2012-01-19
JP5399331B2 JP5399331B2 (en) 2014-01-29

Family

ID=45598540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149917A Active JP5399331B2 (en) 2010-06-30 2010-06-30 Workpiece grinding method and grinding machine, moving path data calculation program used therefor, and storage medium therefor

Country Status (1)

Country Link
JP (1) JP5399331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112589608A (en) * 2020-12-09 2021-04-02 陕西涵阳机械有限责任公司 Grinding process of ball spline shaft raceway
CN112720150A (en) * 2020-12-30 2021-04-30 西安拽亘弗莱工业自动化科技有限公司 Method and system for generating casting polishing track
CN113146418A (en) * 2021-05-11 2021-07-23 合肥伊丰电子封装有限公司 Photoelectric device shell surface treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110103118A (en) * 2019-06-18 2019-08-09 苏州大学 A kind of paths planning method of milling robot, device, system and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281169A (en) * 1990-03-28 1991-12-11 Okuma Mach Works Ltd Numerical control device for grinding machine
JPH0674229A (en) * 1992-05-29 1994-03-15 Yamada Seisakusho Kk Spline spindle and formation thereof
JPH0816225A (en) * 1994-04-27 1996-01-19 Hitachi Ltd Method and device for controlling robot mechanism
JP2008192001A (en) * 2007-02-06 2008-08-21 Olympus Corp Method for preparing nc program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281169A (en) * 1990-03-28 1991-12-11 Okuma Mach Works Ltd Numerical control device for grinding machine
JPH0674229A (en) * 1992-05-29 1994-03-15 Yamada Seisakusho Kk Spline spindle and formation thereof
JPH0816225A (en) * 1994-04-27 1996-01-19 Hitachi Ltd Method and device for controlling robot mechanism
JP2008192001A (en) * 2007-02-06 2008-08-21 Olympus Corp Method for preparing nc program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112589608A (en) * 2020-12-09 2021-04-02 陕西涵阳机械有限责任公司 Grinding process of ball spline shaft raceway
CN112589608B (en) * 2020-12-09 2023-08-01 陕西涵阳机械有限责任公司 Grinding technology for ball spline shaft roller path
CN112720150A (en) * 2020-12-30 2021-04-30 西安拽亘弗莱工业自动化科技有限公司 Method and system for generating casting polishing track
CN113146418A (en) * 2021-05-11 2021-07-23 合肥伊丰电子封装有限公司 Photoelectric device shell surface treatment device
CN113146418B (en) * 2021-05-11 2023-04-11 合肥伊丰电子封装有限公司 Photoelectric device shell surface treatment device

Also Published As

Publication number Publication date
JP5399331B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
EP0352635B1 (en) Numerically controlled grinding machine
WO2012057280A1 (en) Method for measuring tool dimension, measurement device, and machine tool
JP5962242B2 (en) Grinding equipment
US9573202B2 (en) Workpiece machining method, machine tool, tool path-generating device and tool path-generating program
WO2014068667A1 (en) Processing program generation method and device
JP5737970B2 (en) Machine tool control system
WO2015037143A1 (en) Toolpath evaluation method, toolpath generation method, and toolpath generation device
JP5399331B2 (en) Workpiece grinding method and grinding machine, moving path data calculation program used therefor, and storage medium therefor
JP5271549B2 (en) Control method of movable tool, input device and machine tool
US10241494B2 (en) Cutting method and tool path generating device
JP6022086B2 (en) Machine tool controller
JP2014172123A (en) Gear-cutting processing method and device of bevel gear
JP6196708B2 (en) Machining program creation method and apparatus
JP2008117032A (en) Working control device and its program
JP2008105119A (en) Grinding method by use of grinding machine, and grinding machine
JP5925332B2 (en) Work attachment information notification device
JP2019155557A (en) Method for estimation of drive shaft deviation in machine tool and machine tool with use thereof
JPH0811329B2 (en) Internal thread processing method
JP3808125B2 (en) Numerical controller
JP2017091429A (en) NC program creation device
JP4957153B2 (en) Processing equipment
JP6980357B1 (en) Information processing equipment and information processing programs
JP6587842B2 (en) Curved cutting device
JP3224184B2 (en) Machining method with 5-axis NC machine tool
JP7274649B1 (en) Information processing device and information processing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5399331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250