JP2012011409A - Cutting and drilling method of composite material member - Google Patents

Cutting and drilling method of composite material member Download PDF

Info

Publication number
JP2012011409A
JP2012011409A JP2010149097A JP2010149097A JP2012011409A JP 2012011409 A JP2012011409 A JP 2012011409A JP 2010149097 A JP2010149097 A JP 2010149097A JP 2010149097 A JP2010149097 A JP 2010149097A JP 2012011409 A JP2012011409 A JP 2012011409A
Authority
JP
Japan
Prior art keywords
composite material
material member
laser beam
cutting
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010149097A
Other languages
Japanese (ja)
Inventor
Yuzo Imagawa
雄三 今川
Kaoru Kishikawa
薫 基志川
Yasuyuki Fujitani
泰之 藤谷
Takashi Ishide
孝 石出
Kohei Kawazoe
浩平 川添
Kazutaka Uda
和孝 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010149097A priority Critical patent/JP2012011409A/en
Publication of JP2012011409A publication Critical patent/JP2012011409A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser beam machining method capable of speed processing, and reducing a heat-affected width around a cutting part without using a special device.SOLUTION: In the cutting and drilling method of a composite material member 2, the width of an allowable heat-affected zone 7 is defined, and the working speed of a laser beam 3 and the output of the laser beam 3 are set based on a heat conduction equation using the specific heat and the density of composite material member 2 so that a temperature in a circumference 8 of the heat-affected zone becomes a prescribed value or lower when the laser beam 3 is irradiated.

Description

本発明は、複合材料部材の切断・穴あけ加工方法に関するものである。   The present invention relates to a method for cutting and drilling a composite material member.

航空機の翼などの構造部材には、炭素繊維強化プラスチック(CFRP)などの複合材が使用される。この複合材の切断・穴あけ加工は、現状、アブレッシブウォータージェット(AWJ)や機械加工で実施されている。しかしながら、上記手法は、加工時の工具消耗が激しく、消耗品費用が高額となる。そのため、加工時に工具等が消耗しない加工方法として、レーザを用いた切断方法の開発が行われている。
特許文献1に、短パルスレーザを用いてMCrAlX層やセラミックス層に穴あけ加工する方法が開示されている。特許文献2に、予め被切断材を冷凍処理し、しかるのちにレーザを用いて高強度繊維を切断する方法が開示されている。特許文献3に、COレーザ及びエキシマレーザの組み合わせにより、プラスチック部材あるいはFRP部材を切断又は穴あけ加工する方法が開示されている。
For structural members such as aircraft wings, composite materials such as carbon fiber reinforced plastic (CFRP) are used. The cutting / drilling of the composite material is currently performed by an abrasive water jet (AWJ) or machining. However, in the above method, tool consumption during processing is severe and the cost of consumables becomes high. Therefore, a cutting method using a laser has been developed as a processing method in which tools and the like are not consumed during processing.
Patent Document 1 discloses a method of drilling a MCrAlX layer or a ceramic layer using a short pulse laser. Patent Document 2 discloses a method of freezing a material to be cut in advance and then cutting high-strength fibers using a laser. Patent Document 3 discloses a method of cutting or drilling a plastic member or FRP member by a combination of a CO 2 laser and an excimer laser.

特表2009−523616号公報(請求項1、要約)JP-T 2009-523616 (Claim 1, Summary) 特開平6−158528号公報(請求項1)JP-A-6-158528 (Claim 1) 特許第2831215号公報(請求項1)Japanese Patent No. 283215 (Claim 1)

複合材の切断や穴あけ加工にレーザを使用すると、レーザ切断時の熱により、切断部周辺が溶融するため、加工精度の悪化や複合材層間剥離などの問題が発生する。例えば、複合材層間剥離が発生した場合、品質を保持するため、熱影響部を除去するなどの追加工程が必要となる。従って、熱影響部をできるだけ小さくすることが求められている。
切断部周辺に熱影響を与えないレーザを用いた加工方法として、近年、短パルスレーザ(fs(フェムト秒)、ps(ピコ秒))を用いた非加熱加工が提案されている。しかしながら、短パルスレーザは出力が低いため、厚物加工時には加工時間が長くなるという問題がある。特許文献1では、表面のみ短パルスレーザにより精密加工することで、加工時間を短縮させているが、全厚における加工精度が考慮されていない。特許文献2では、被切断材を冷凍処理することで熱影響部を極小化しているが、冷凍処理室などの装置が別途必要となる。
When a laser is used for cutting or drilling a composite material, the periphery of the cut portion is melted by heat at the time of laser cutting, which causes problems such as deterioration in processing accuracy and delamination of the composite material. For example, when composite material delamination occurs, an additional process such as removing the heat-affected zone is necessary to maintain the quality. Therefore, it is required to make the heat-affected zone as small as possible.
In recent years, non-heating processing using a short pulse laser (fs (femtosecond), ps (picosecond)) has been proposed as a processing method using a laser that does not affect the periphery of the cut portion. However, since the output of the short pulse laser is low, there is a problem that the processing time becomes long when processing a thick material. In Patent Document 1, only the surface is precisely processed with a short pulse laser to reduce the processing time, but the processing accuracy in the entire thickness is not considered. In Patent Document 2, the heat-affected zone is minimized by freezing the material to be cut, but a device such as a freezing chamber is required separately.

本発明は、このような事情に鑑みてなされたものであって、高速加工が可能で、且つ、特別な装置を用いずに切断部周辺の熱影響幅を小さくするレーザ加工方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a laser processing method capable of high-speed processing and reducing the thermal influence width around a cutting portion without using a special device. With the goal.

上記課題を解決するために、本発明は、許容する熱影響部の幅を定義し、レーザ光を照射した際に、前記熱影響部の外周における温度が所定値以下となるよう複合材料部材の比熱及び密度を用いた熱伝導方程式に基づき、前記レーザ光の加工速度及び前記レーザ光の出力を設定する複合材料部材の切断・穴あけ加工方法を提供する。   In order to solve the above problems, the present invention defines the width of the heat-affected zone to be allowed, and when the laser beam is irradiated, the temperature of the outer periphery of the heat-affected zone is not more than a predetermined value. Provided is a composite material member cutting / drilling method for setting the laser beam processing speed and the laser beam output based on a heat conduction equation using specific heat and density.

本発明によれば、熱伝導方程式に基づいてレーザ光の加工速度及び出力を設定することによって、レーザ光照射による複合材料部材への入熱量を制御することができる。それによって、加工部周辺への熱影響がほとんどない、高精度な加工が可能となる。レーザ光の加工速度や出力は、組み合わせ次第で高速にすることも、高出力とすることもできる。   According to the present invention, the amount of heat input to the composite material member by laser light irradiation can be controlled by setting the processing speed and output of the laser light based on the heat conduction equation. As a result, high-accuracy machining is possible with almost no thermal influence on the periphery of the machining portion. The processing speed and output of the laser light can be increased depending on the combination or can be increased.

本発明の一態様において、前記複合材料部材の表面に基準点を教示し、前記レーザ光の外縁が前記基準点を含む複合材料部材表面の接線に対して垂直または鋭角に入射するよう、光屈折部材を介してレーザ光を照射することが好ましい。   In one aspect of the present invention, a reference point is taught on the surface of the composite material member, and light refraction is performed so that an outer edge of the laser light is incident at a perpendicular or acute angle with respect to a tangent of the composite material surface including the reference point. It is preferable to irradiate a laser beam through a member.

一般的なレーザ光照射装置では、コリメーションレンズにてレーザ光を集光させて、対象の加工部材にレーザ光を照射する。しかしながら、集光されたレーザ光の先端は円錐形状となっており、加工面に傾斜がついてしまう。そのため、加工面を垂直にする仕上げ加工が必要となる。上記一態様によれば、集光されたレーザ光の外縁の入射角度を制御することによって、傾斜をつけずに加工することができるため、仕上げ加工の工程を省略することが可能となる。   In a general laser beam irradiation apparatus, a laser beam is condensed by a collimation lens, and a target processing member is irradiated with the laser beam. However, the tip of the focused laser beam has a conical shape, and the processing surface is inclined. Therefore, it is necessary to finish the processing surface to be vertical. According to the above aspect, by controlling the incident angle of the outer edge of the focused laser beam, it is possible to perform processing without inclining, and thus it is possible to omit the finishing process.

本発明の一態様において、前記レーザ光とは波長の異なる別のレーザ光を加工点に照射して加工点距離を測定し、前記加工点距離をヘッド部の動作を制御する装置にフィードバックして、前記加工点距離が一定に保持されるよう前記ヘッド部を動作させることが好ましい。   In one embodiment of the present invention, a processing point is measured by irradiating a processing point with another laser beam having a wavelength different from that of the laser beam, and the processing point distance is fed back to an apparatus that controls the operation of the head unit. It is preferable to operate the head unit so that the processing point distance is kept constant.

レーザ光照射装置では、加工点距離と焦点距離とを等しくすることで、加工速度を最速とすることができる。「加工点距離」とは、ヘッド部(電子銃の下又はレーザ光照射室の天井)から複合材料部材の加工点までの距離である。従来法では、加工点距離と焦点距離とが等しくなるように加工速度を決定している。上記一態様によれば、切断・穴あけ用のレーザ光とは別の波長を有するレーザ光を用いて加工点距離を測定するため、最適な加工点距離を確保しながら、所望の加工速度で切断・穴あけ加工をすることができる。   In the laser beam irradiation apparatus, the processing speed can be maximized by making the processing point distance and the focal length equal. The “processing point distance” is a distance from the head portion (under the electron gun or the ceiling of the laser beam irradiation chamber) to the processing point of the composite material member. In the conventional method, the processing speed is determined so that the processing point distance is equal to the focal length. According to the above aspect, since the machining point distance is measured using a laser beam having a wavelength different from that of the laser beam for cutting / drilling, cutting is performed at a desired machining speed while ensuring an optimum machining point distance. -Drilling can be performed.

本発明の一態様において、前記レーザ光及び前記別のレーザ光を、出力のタイミングをずらして照射することが好ましい。
そのようにすることで、切断・穴あけ用のレーザ光と、加工点距離測定用のレーザ光との干渉を回避することができる。
In one embodiment of the present invention, it is preferable to irradiate the laser beam and the another laser beam with an output timing shifted.
By doing so, interference between the laser beam for cutting and drilling and the laser beam for measuring the processing point distance can be avoided.

本発明の一態様において、単回照射で前記複合材料部材を切断・穴あけ加工できるレーザ光の加工速度及びレーザ光の出力の条件で、熱影響部が最終加工面に到達しない位置にある前記複合材料部材を粗加工する工程を備えていても良い。
加工面積が大きい場合などは、熱影響を考慮する必要のない部分を粗加工することにより、加工時間を短縮することができる。
In one aspect of the present invention, the composite in which the heat-affected zone does not reach the final processing surface under the conditions of laser beam processing speed and laser beam output capable of cutting and drilling the composite material member by single irradiation. You may provide the process of rough-processing a material member.
When the processing area is large, the processing time can be shortened by roughing a portion that does not need to consider the thermal effect.

本発明によれば、複合材料部材の熱特性を考慮してレーザ加工の条件を設定することで、レーザ光を用いた場合であっても、熱影響が少なく、且つ、高速で複合材料部材を切断・穴あけ加工することができる。   According to the present invention, by setting the laser processing conditions in consideration of the thermal characteristics of the composite material member, even when laser light is used, the thermal effect is small and the composite material member can be processed at high speed. Can be cut and drilled.

本実施形態に係る切断・穴あけ加工方法による穴あけ加工のイメージ図である。It is an image figure of drilling by the cutting and drilling method according to the present embodiment. レーザ光を複合材料部材に照射したときの模式図である。It is a schematic diagram when a composite material member is irradiated with laser light. 式(A)から導き出したレーザ光の出力と加工速度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the output of the laser beam derived | led-out from Formula (A), and a processing speed. 複数回照射を繰り返して穴あけ加工される複合材料部材を説明する図である。It is a figure explaining the composite material member drilled by repeating irradiation several times. 光屈折部材を用いた一例を説明する図である。It is a figure explaining an example using a photorefractive member. 光屈折部材を用いた一例を説明する図である。It is a figure explaining an example using a photorefractive member. 加工点距離の測定方法を説明する図である。It is a figure explaining the measuring method of a process point distance. 粗加工を施す場合のイメージ図である。It is an image figure in the case of performing roughing. 粗加工を施す場合のイメージ図である。It is an image figure in the case of performing roughing.

以下に、本発明に係る複合材料部材を切断・穴あけ加工方法の一実施形態について、図面を参照して説明する。
本実施形態で加工される複合材料部材は、プリプレグなどの複合材料が複数積層された層を備える。複合材料は、繊維で強化された樹脂からなる。繊維としては、ガラス繊維や炭素繊維並びに有機繊維などを用いることができる。樹脂としては、エポキシ樹脂やフェノール樹脂などの熱硬化性樹脂並びにポリアミドやポリスチレンなどの熱可塑性樹脂を用いることができる。複合材料部材は、チタンなどの金属材料の上に複合材料からなる層が形成された部材であっても良い。
Hereinafter, an embodiment of a method for cutting and drilling a composite material member according to the present invention will be described with reference to the drawings.
The composite material member processed in this embodiment includes a layer in which a plurality of composite materials such as prepregs are stacked. The composite material is made of a resin reinforced with fibers. As the fiber, glass fiber, carbon fiber, organic fiber, or the like can be used. As the resin, thermosetting resins such as epoxy resins and phenol resins, and thermoplastic resins such as polyamide and polystyrene can be used. The composite material member may be a member in which a layer made of a composite material is formed on a metal material such as titanium.

本実施形態では、YAGレーザやファイバーレーザなど市販のレーザ照射装置を用い、て、パルス発振方式または連続発振方式にてレーザを照射する。図1に、本実施形態に係る切断・穴あけ加工方法による穴あけ加工のイメージ図を示す。切断・穴あけ加工中、レーザ照射装置のヘッド部1は複合材料部材2面に対して水平方向には固定され、垂直方向(上下方向)にのみ移動する。レーザ光3の走査は、スキャニングで実施される。切断・穴あけ加工する際には、複合材料部材2の表面に基準点4を教示する。   In this embodiment, a laser is irradiated by a pulse oscillation method or a continuous oscillation method using a commercially available laser irradiation device such as a YAG laser or a fiber laser. FIG. 1 shows an image diagram of drilling by the cutting / drilling method according to the present embodiment. During the cutting / drilling process, the head unit 1 of the laser irradiation apparatus is fixed in the horizontal direction with respect to the surface of the composite material member 2 and moves only in the vertical direction (vertical direction). Scanning with the laser beam 3 is performed by scanning. When cutting and drilling, the reference point 4 is taught on the surface of the composite material member 2.

本実施形態に係る複合材料部材の切断・穴あけ加工方法では、許容する熱影響部の幅を定義し、レーザ光を照射した際に、熱影響部の外周における温度が所定値以下となるよう複合材料部材の比熱及び密度に基づいて熱伝導方程式を解き、レーザ光の加工速度及びレーザ光の出力を設定する。   In the composite material member cutting / drilling method according to the present embodiment, the allowable width of the heat-affected zone is defined, and when the laser beam is irradiated, the temperature at the outer periphery of the heat-affected zone becomes a predetermined value or less. The heat conduction equation is solved based on the specific heat and density of the material member, and the processing speed of the laser beam and the output of the laser beam are set.

図2に、レーザ光3を複合材料部材2に照射したときの模式図を示す。熱影響幅5はレーザ光被照射面6(加工面)からの距離で表す。熱影響部7は、できるだけ小さいことが好ましく、その上限は複合材料部材2の適用によって異なるため、適宜所望の熱影響幅5に定義する。
本実施形態では、複合材料部材2を航空機の翼の外板に適用することを想定し、十分な加工精度が得られるよう、レーザ光被照射面6からの距離(熱影響幅5)が0.3mm以内である領域を熱影響部7とする。
FIG. 2 is a schematic diagram when the composite material member 2 is irradiated with the laser light 3. The thermal influence width 5 is expressed as a distance from the laser light irradiated surface 6 (processed surface). The heat-affected zone 7 is preferably as small as possible, and the upper limit thereof varies depending on the application of the composite material member 2, so that it is appropriately defined as a desired heat-affected width 5.
In this embodiment, assuming that the composite material member 2 is applied to the outer plate of an aircraft wing, the distance from the laser beam irradiated surface 6 (heat affected width 5) is 0 so that sufficient processing accuracy can be obtained. The area within 3 mm is defined as the heat affected zone 7.

熱影響部7は、レーザ光3を複合材料部材2に照射した際、レーザ光被照射面6からの入熱によって複合材料部材2の温度が上昇することで発生する。
熱影響部の外周8における温度の所定値は、複合材料部材2に含まれる繊維や樹脂の種類、または繊維と樹脂との組成比などによって適宜設定する。
例えば、熱影響部7における温度の所定値は、樹脂の劣化温度を基準としても良い。例えば、複合材料部材2に用いられるエポキシ系樹脂は、最高使用温度(今回は120℃で指定)を超えて再入熱されると劣化する。ここでいう「劣化」とは、樹脂が変質し、硬化後の性能を失う状態を意味する。樹脂が劣化される温度は、樹脂の種類などによって異なる。
熱影響部7の温度上昇は、低いほど複合材料部材2に含まれる樹脂の劣化を抑制することができる。本実施形態では、熱影響部7における温度の所定値は、レーザ光照射による入熱がほとんどない条件、すなわち、室温付近を基準とした30℃に設定する。
The heat affected zone 7 is generated when the temperature of the composite material member 2 rises due to heat input from the laser light irradiated surface 6 when the composite material member 2 is irradiated with the laser light 3.
The predetermined value of the temperature at the outer periphery 8 of the heat affected zone is appropriately set according to the type of fiber or resin contained in the composite material member 2 or the composition ratio of the fiber and the resin.
For example, the predetermined value of the temperature in the heat affected zone 7 may be based on the deterioration temperature of the resin. For example, the epoxy resin used for the composite material member 2 deteriorates when it is reheated beyond the maximum use temperature (designated at 120 ° C. this time). The term “deterioration” as used herein means a state in which the resin has changed in quality and loses its performance after curing. The temperature at which the resin is deteriorated varies depending on the type of resin.
The lower the temperature rise of the heat affected zone 7, the more the deterioration of the resin contained in the composite material member 2 can be suppressed. In the present embodiment, the predetermined value of the temperature in the heat affected zone 7 is set to a condition where there is almost no heat input due to laser light irradiation, that is, 30 ° C. based on the vicinity of room temperature.

複合材料部材2の熱特性(比熱、密度等)は、複合材料部材2に含まれる繊維と樹脂の組成による。そのため、切断・穴あけ加工する複合材料部材2の熱特性を用いて熱伝導方程式(A)を解く。初期温度は、室温とする。
θ−θ=1/πe×Q/cρ×1/r (瞬間線熱源) ・・・(A)
θ=対象物の温度(℃)
θ=対象物の初期温度(℃)
e=2.71828
Q=単位長さ当たりの入熱(cal/cm)
C=比熱(cal/g℃)
ρ=密度(g/cm
r=溶接部から距離(cm)
The thermal characteristics (specific heat, density, etc.) of the composite material member 2 depend on the composition of fibers and resin contained in the composite material member 2. Therefore, the heat conduction equation (A) is solved using the thermal characteristics of the composite material member 2 to be cut and drilled. The initial temperature is room temperature.
θ−θ 0 = 1 / πe × Q / cρ × 1 / r 2 (instantaneous heat source) (A)
θ = temperature of the object (° C)
θ 0 = initial temperature of the object (° C.)
e = 2.71828
Q = heat input per unit length (cal / cm)
C = specific heat (cal / g ° C.)
ρ = density (g / cm 3 )
r = distance from weld (cm)

熱伝導方程式(A)の結果から、レーザ光を照射した際に、加工面6から0.3mm離れた位置の温度が30℃以下となるレーザ光の入熱を求めた後に、実加工の実験データから、その入熱を下回る最低加工速度を導き出している。   Based on the result of the heat conduction equation (A), when laser light is irradiated, the heat input of the laser light at which the temperature at a position 0.3 mm away from the processing surface 6 is 30 ° C. or less is obtained, and then an actual processing experiment is performed. From the data, the minimum machining speed below the heat input is derived.

具体例として、炭素繊維にエポキシ系樹脂を含浸させた複合材料部材を用いた場合のレーザ光の加工速度及びレーザ光の出力について説明する。炭素繊維/樹脂の組成比(体積)は、実施例1を50/50、実施例2を65/35(実施例2)とした。樹脂が燃焼する温度は、エポキシ系樹脂の熱分解温度で約400℃とした。
図3に、式(A)から導き出したレーザ光の出力と加工速度との関係の一例を示す。同図において、横軸が出力、縦軸が加工速度である。図3によれば、実施例1及び実施例2の線より上側の領域に含まれるレーザ光の加工速度及びレーザ光の出力の組合せであれば、レーザ光被照射面から0.3mm離れた位置の温度を30℃以下とすることができる。実施例2は実施例1よりも炭素繊維の含有率が高いため、複合材料部材を切断するのにより多くのエネルギーが必要となる。
As a specific example, the processing speed of laser light and the output of laser light in the case of using a composite material member in which carbon fiber is impregnated with an epoxy resin will be described. The composition ratio (volume) of carbon fiber / resin was 50/50 in Example 1 and 65/35 in Example 2 (Example 2). The temperature at which the resin burns was about 400 ° C. as the thermal decomposition temperature of the epoxy resin.
FIG. 3 shows an example of the relationship between the laser beam output derived from the formula (A) and the processing speed. In the figure, the horizontal axis is the output, and the vertical axis is the machining speed. According to FIG. 3, if the laser beam processing speed and the laser beam output included in the region above the line of Example 1 and Example 2 are combined, the position is 0.3 mm away from the laser beam irradiated surface. The temperature can be set to 30 ° C. or lower. Since Example 2 has a higher carbon fiber content than Example 1, more energy is required to cut the composite material member.

上記レーザ光の加工速度及びレーザ光の出力の組合せで、複合材料部材2の切断・穴あけ加工を行うと、1回のレーザ光照射による切断深さは数十μm程度となる。そのため、厚さのある複合材料部材2に関しては、図4に示すように、複数回照射を繰り返し実施する。
レーザ光3による入熱を考慮しない従来法では、例えば、加工速度300mm/min、出力1kWでレーザ光を単回照射することによって切断・穴あけ加工を行っており、熱影響部7は0.9mm程度の距離まで達していた。本実施形態によれば、加工速度を高速とすることができるため、複数回繰り返し照射を実施したとしても、総加工時間を所望の時間内とすることが可能である。加工時間を考慮すると、出力が5kW以上、加工速度が10m/min以上の組み合わせでレーザ光3を照射すると良い。
When the composite material member 2 is cut and drilled with a combination of the laser beam processing speed and the laser beam output, the cutting depth by one laser beam irradiation is about several tens of μm. Therefore, with respect to the thick composite material member 2, as shown in FIG. 4, irradiation is repeatedly performed a plurality of times.
In the conventional method that does not consider the heat input by the laser beam 3, for example, cutting and drilling are performed by irradiating the laser beam once at a processing speed of 300 mm / min and an output of 1 kW. The distance was reached. According to this embodiment, since the processing speed can be increased, the total processing time can be set within a desired time even if irradiation is performed a plurality of times. Considering the processing time, the laser beam 3 may be irradiated with a combination of an output of 5 kW or more and a processing speed of 10 m / min or more.

本実施形態では、図5に示すように、コリメーションレンズ9の前後いずれかに光屈折部材10を配置して、光屈折部材10を介することでレーザ光の外縁11が、複合材料部材2の表面に設けられた基準点4を通過する接線に対してθが90°以下で入射するよう制御しても良い。穴あけ加工の場合、光屈折部材は、線対称構造の光屈折板とすることが好ましい。
レーザ光の外縁11とは、集光されたレーザ光3が加工面6に接する縁を意味する。複合材料部材2の表面が平面である場合、基準点4を通過する接線は上記平面に含まれる。このようにすることで、図6に示すように、加工面5を垂直に加工した複合材料部材20とすることが可能となる。
In the present embodiment, as shown in FIG. 5, the light refracting member 10 is disposed either before or after the collimation lens 9, and the outer edge 11 of the laser light is placed on the surface of the composite material member 2 through the light refracting member 10. It is also possible to control so that θ is 90 ° or less with respect to the tangent line passing through the reference point 4 provided in In the case of drilling, the photorefractive member is preferably a photorefractive plate having a line-symmetric structure.
The outer edge 11 of the laser beam means an edge where the condensed laser beam 3 is in contact with the processing surface 6. When the surface of the composite material member 2 is a plane, a tangent line passing through the reference point 4 is included in the plane. By doing in this way, as shown in FIG. 6, it becomes possible to set it as the composite material member 20 which processed the process surface 5 perpendicularly | vertically.

本実施形態では、加工点距離(ワークディスタンス)を測定し、ヘッド部の動作を制御する装置13にフィードバックして、加工点距離が一定に保持されるようヘッド部を動作させても良い。図7に、加工点距離の測定方法を説明する図を示す。
レーザ光3の焦点距離Lfは、レーザ照射装置のヘッド部1に内蔵されるレンズに依存する。加工点距離Lwは、切断・穴あけ加工に使用するレーザ光3の波長とは異なる波長の加工点距離測定用レーザ光11を用いて測定する。ヘッド部1は、加工点距離Lwと焦点距離Lfとが実質的に等しくなるよう、上下動する。
In this embodiment, the machining point distance (work distance) may be measured and fed back to the device 13 that controls the operation of the head unit, and the head unit may be operated so that the machining point distance is kept constant. FIG. 7 illustrates a method for measuring the processing point distance.
The focal length Lf of the laser beam 3 depends on the lens built in the head unit 1 of the laser irradiation apparatus. The processing point distance Lw is measured using the processing point distance measuring laser beam 11 having a wavelength different from the wavelength of the laser beam 3 used for cutting and drilling. The head unit 1 moves up and down so that the processing point distance Lw and the focal length Lf are substantially equal.

切断・穴あけ加工用のレーザ光3と加工点距離測定用レーザ光12とは、出力のタイミングをずらして照射すると良い。それによって、互いに干渉することを防止できる。
上記のようにすることで、常に最適なワークディスタンスを確保できるため、加工速度を高速に保つことができる。
The laser beam 3 for cutting / drilling and the laser beam 12 for measuring the processing point distance may be irradiated with the output timing shifted. Thereby, interference with each other can be prevented.
By doing as mentioned above, since an optimal work distance can always be secured, the machining speed can be kept high.

本実施形態において、レーザ照射装置による切断・穴あけ加工の範囲が広い場合、熱影響を受けても良い部分を粗加工する工程を備えていても良い。図8及び図9に、粗加工を施す場合のイメージ図を示す。同図に本実施形態に係る切断・穴あけ加工方法で加工した精密加工領域14と、粗加工した粗加工領域15を示す。図8は穴あけ加工、図9は切断加工を実施した場合である。
粗加工は、単回照射で複合材料部材を切断・穴あけ加工できるレーザ光16の加工速度及び出力の条件(従来法の出力レベル及び加工速度)で実施する。熱影響を受けても良い部分とは、粗加工によって発生する熱影響部が最終加工面に到達しない程度に最終加工面から離れた位置にある複合材料部材2を意味する。そうすることによって、切断された複合材料部材を加工部から除去しやすくなる。また、熱影響を考慮した切断領域を小さくすることができ、加工時間を短縮することが可能となる。
In this embodiment, when the range of the cutting / drilling processing by the laser irradiation apparatus is wide, a step of roughing a portion that may be affected by heat may be provided. FIG. 8 and FIG. 9 show image diagrams when roughing is performed. FIG. 2 shows a precision processing region 14 processed by the cutting / drilling method according to the present embodiment and a rough processing region 15 subjected to rough processing. FIG. 8 shows a case where drilling is performed, and FIG. 9 shows a case where cutting is performed.
The roughing is performed at the processing speed and output conditions (output level and processing speed of the conventional method) of the laser beam 16 that can cut and drill the composite material member by single irradiation. The portion that may be affected by heat means the composite material member 2 located at a position away from the final processing surface to such an extent that the heat-affected zone generated by rough processing does not reach the final processing surface. By doing so, it becomes easy to remove the cut | disconnected composite material member from a process part. Moreover, the cutting area in consideration of the thermal effect can be reduced, and the processing time can be shortened.

本実施形態において、複合材料からなる層が金属などの異なる材料の上に形成されている場合、金属材料面を検知して加工条件を見直す機構が備えられていても良い。金属材料面は、レーザ光の波長や反射光強度によって検知することができる。   In this embodiment, when the layer made of a composite material is formed on a different material such as a metal, a mechanism for detecting the metal material surface and reviewing the processing conditions may be provided. The metal material surface can be detected by the wavelength of the laser beam and the reflected light intensity.

1 ヘッド部
2 複合材料部材
3 レーザ光
4 基準点
5 熱影響幅
6 レーザ光被照射面(加工面)
7 熱影響部
8 熱影響部の外周
9 コリメーションレンズ
10 光屈折部材
11 レーザ光の外縁
12 加工点距離測定用レーザ光
13 ヘッド部の動作を制御する装置
14 精密加工領域
15 粗加工領域
16 粗加工用レーザ光
20 垂直に加工した複合材料部材
DESCRIPTION OF SYMBOLS 1 Head part 2 Composite material member 3 Laser beam 4 Reference point 5 Thermal influence width 6 Laser beam irradiated surface (processed surface)
7 Heat-affected zone 8 Perimeter 9 of heat-affected zone 9 Collimation lens 10 Photorefractive member 11 Laser beam outer edge 12 Processing point distance measuring laser beam 13 Device 14 for controlling operation of head portion Precision machining area 15 Rough machining area 16 Rough machining Laser beam 20 for composite material processed vertically

Claims (5)

許容する熱影響部の幅を定義し、レーザ光を照射した際に前記熱影響部の外周における温度が所定値以下となるよう複合材料部材の比熱及び密度を用いた熱伝導方程式に基づいて、前記レーザ光の加工速度及び前記レーザ光の出力を設定する複合材料部材の切断・穴あけ加工方法。   Based on the heat conduction equation using the specific heat and density of the composite material member so that the temperature at the outer periphery of the heat-affected zone is equal to or less than a predetermined value when the width of the heat-affected zone is defined and laser light is irradiated. A composite material member cutting / drilling method for setting a processing speed of the laser light and an output of the laser light. 前記複合材料部材の表面に基準点を教示し、前記レーザ光の外縁が前記基準点を含む複合材料部材表面の接線に対して垂直または鋭角に入射するよう、光屈折部材を介してレーザ光を照射する請求項1に記載の複合材料部材の切断・穴あけ加工方法。   A reference point is taught on the surface of the composite material member, and laser light is transmitted through the photorefractive member so that the outer edge of the laser light is incident at a perpendicular or acute angle with respect to the tangent of the surface of the composite material member including the reference point. The method for cutting and drilling a composite material member according to claim 1 to be irradiated. 前記レーザ光とは波長の異なる別のレーザ光を加工点に照射して加工点距離を測定し、前記加工点距離を、ヘッド部の動作を制御する装置にフィードバックして、前記加工点距離が一定に保持されるよう前記ヘッド部を動作させる請求項1または請求項2に記載の複合材料部材の切断・穴あけ加工方法。   The processing point distance is measured by irradiating a processing point with another laser beam having a wavelength different from that of the laser beam, and the processing point distance is fed back to a device that controls the operation of the head unit. The method for cutting and drilling a composite material member according to claim 1, wherein the head portion is operated so as to be held constant. 前記レーザ光及び前記別のレーザ光を、出力のタイミングをずらして照射する請求項3に記載の複合材料部材の切断・穴あけ加工方法。   The method of cutting and drilling a composite material member according to claim 3, wherein the laser beam and the other laser beam are irradiated at different output timings. 単回照射で前記複合材料部材を切断・穴あけ加工できるレーザ光の加工速度及びレーザ光の出力の条件で、熱影響部が最終加工面に到達しない位置にある前記複合材料部材を粗加工する請求項1乃至請求項4のいずれかに記載の複合材料部材の切断・穴あけ加工方法。
Claims for rough machining the composite material member at a position where the heat affected zone does not reach the final processing surface under conditions of laser beam processing speed and laser beam output capable of cutting and drilling the composite material member by single irradiation. A method for cutting and drilling a composite material member according to any one of claims 1 to 4.
JP2010149097A 2010-06-30 2010-06-30 Cutting and drilling method of composite material member Withdrawn JP2012011409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149097A JP2012011409A (en) 2010-06-30 2010-06-30 Cutting and drilling method of composite material member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149097A JP2012011409A (en) 2010-06-30 2010-06-30 Cutting and drilling method of composite material member

Publications (1)

Publication Number Publication Date
JP2012011409A true JP2012011409A (en) 2012-01-19

Family

ID=45598462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149097A Withdrawn JP2012011409A (en) 2010-06-30 2010-06-30 Cutting and drilling method of composite material member

Country Status (1)

Country Link
JP (1) JP2012011409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050953A (en) * 2013-09-06 2015-03-19 ブロードビュー株式会社 Laser beam processing machine for laver, and laser beam processing method for laver
WO2015163408A1 (en) * 2014-04-24 2015-10-29 帝人株式会社 Machined carbon-fiber-reinforced resin product having end face and production method therefor
JP2015214771A (en) * 2014-05-09 2015-12-03 学校法人大同学園 Cutting method of reinforced fiber backing, manufacturing method of fiber-reinforced resin, cutting method of fiber-reinforced resin, preform and fiber-reinforced resin
WO2019058520A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Laser machining device and laser machining method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050953A (en) * 2013-09-06 2015-03-19 ブロードビュー株式会社 Laser beam processing machine for laver, and laser beam processing method for laver
WO2015163408A1 (en) * 2014-04-24 2015-10-29 帝人株式会社 Machined carbon-fiber-reinforced resin product having end face and production method therefor
US11440270B2 (en) 2014-04-24 2022-09-13 Teijin Limited Carbon fiber reinforced resin processed product having end surface and method of manufacturing the same
JP2015214771A (en) * 2014-05-09 2015-12-03 学校法人大同学園 Cutting method of reinforced fiber backing, manufacturing method of fiber-reinforced resin, cutting method of fiber-reinforced resin, preform and fiber-reinforced resin
WO2019058520A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Laser machining device and laser machining method

Similar Documents

Publication Publication Date Title
Oh et al. Investigation of cut quality in fiber laser cutting of CFRP
JP6887502B2 (en) Laser Machining Equipment and Methods
TWI584906B (en) Method and apparatus for non-abaltive, photoaccoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
JP5432285B2 (en) Method of laser processing glass into a shape with chamfered edges
US20120031883A1 (en) Laser machining device and laser machining method
BR112019000361B1 (en) METHOD FOR PROCESSING A WORKPIECE WITH A LASER BEAM AND LASER PROCESSING APPARATUS
Salama et al. Understanding the self-limiting effect in picosecond laser single and multiple parallel pass drilling/machining of CFRP composite and mild steel
JP2012071314A (en) Machining method of composite material, and machining device of composite material
CN110280914B (en) Laser ultrasonic technology assisted pulse laser boring device and method
CN104014936B (en) The laser processing of macromolecular material workpiece and laser cutting system
JP2008503355A (en) Substrate material cutting, dividing or dividing apparatus, system and method
US9776906B2 (en) Laser machining strengthened glass
JP2012011409A (en) Cutting and drilling method of composite material member
US20080047933A1 (en) Method For Machining A Material With High-Power Density Electromagnetic Radiation
JP6547933B2 (en) Laser processing method for fiber reinforced composite material and laser processing apparatus therefor
KR20130048007A (en) Laser drilling apparatus and laser drilling method
Dittmar et al. UV-laser ablation of fibre reinforced composites with ns-pulses
JPWO2011077832A1 (en) Fiber reinforced resin cutting device
JP5873978B2 (en) Laser processing method and nozzle manufacturing method
JP5590642B2 (en) Scribing apparatus and scribing method
EP3307473B1 (en) Laser drilling method and system with laser beam energy modification to reduce back-wall strikes during laser drilling
JP6628939B1 (en) Laser processing method and laser processing apparatus
KR102570759B1 (en) Laser processing apparatus and method thereof
CN115159828B (en) Laser cutting method and system for frosted glass
EP2963743A1 (en) Laser processing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903