JP2012010455A - Ccs operation plan setting system - Google Patents

Ccs operation plan setting system Download PDF

Info

Publication number
JP2012010455A
JP2012010455A JP2010142551A JP2010142551A JP2012010455A JP 2012010455 A JP2012010455 A JP 2012010455A JP 2010142551 A JP2010142551 A JP 2010142551A JP 2010142551 A JP2010142551 A JP 2010142551A JP 2012010455 A JP2012010455 A JP 2012010455A
Authority
JP
Japan
Prior art keywords
ccs
power generation
unit
characteristic
operation plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010142551A
Other languages
Japanese (ja)
Other versions
JP5487021B2 (en
Inventor
Hideki Noda
英樹 野田
Reiko Obara
玲子 小原
Takenori Kobayashi
武則 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010142551A priority Critical patent/JP5487021B2/en
Publication of JP2012010455A publication Critical patent/JP2012010455A/en
Application granted granted Critical
Publication of JP5487021B2 publication Critical patent/JP5487021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a CCS operation plan setting system which can set power generation amount and COcapture rate of each CCS for minimizing total power generation costs by using specific power generation consumption characteristics and output following characteristics, in establishing operation plans of different two or more CCSs.SOLUTION: A CCS operation plan setting system comprises: a condition setting part 11 from which a setting item such as an object period and time width is input when a CCS operation plan of a power plant having different two or more COcapture/storage facilities is established; an individual CCS characteristics acquisition part 12 acquiring specific power generation consumption characteristics and output following characteristics of the respective power plant; an optimum operation condition calculation part 13 calculates, based on the acquired information, power generation amount and COcapture rate of the respective power plant to minimize the total power generation costs including a plurality of the power plants by using relation between the power generation amount and the COcapture rate of the respective power plant; and a calculation result output part 14 through which they are output.

Description

本発明の実施形態は、二酸化炭素の回収設備付き発電プラントのCCS運転計画を策定するCCS運転計画策定システムに関する。   Embodiments described herein relate generally to a CCS operation plan formulation system that formulates a CCS operation plan for a power plant with a carbon dioxide recovery facility.

二酸化炭素の回収設備付き発電プラントは、二酸化炭素(以下COという)の回収・貯留CCS(Carbon Dioxide Capture and Storage)の設備を有した発電プラントであり、CCSは発電プラントの運転時にCO回収率を設定できる。CO回収率が変わると、発電プラントの発電原単位特性(発電量(kWh/h)及び発電原単位(t-CO//kWh)の関係)と、出力追従特性(燃料投入量変化(Δt/Δ分)と出力変化(ΔkWh/Δ分)の関係)が変わる。 A power plant with a carbon dioxide capture facility is a power plant that has carbon dioxide capture and storage (CCS) capture and storage of carbon dioxide (hereinafter referred to as CO 2 ). CCS captures CO 2 during operation of the power plant. You can set the rate. When the CO 2 recovery rate changes, the power generation unit characteristics of the power plant (the relationship between the power generation amount (kWh / h) and the power generation unit (t-CO 2 // kWh)) and the output follow-up characteristics (change in fuel input ( Δt / Δ min) and output change (ΔkWh / Δ min)).

そこで、特性が異なる複数のCCSの発電プラントの運用計画を中央給電指令所などで策定する場合に、CO回収率によって発電原単位(t-CO/kWh)や出力追従特性(許容可能なΔkWh/Δ分)が変わることを考慮することで、全体で運転コストを最小化するCCS毎の最適な発電量とCO回収率を決めることができる。CO回収率を運転者が決める考え方はCCS固有のものであり、全体で運転コストを最小化することは未だ検討されていない。 Therefore, when formulating a management plan of the power plant of the plurality of CCS characteristics are different, such as a central dispatching center, power intensity by CO 2 recovery (t-CO 2 / kWh) and output tracking characteristics (acceptable By taking into account the change in (ΔkWh / Δ minutes), it is possible to determine the optimum power generation amount and CO 2 recovery rate for each CCS that minimizes the operating cost as a whole. The way in which the driver determines the CO 2 recovery rate is unique to CCS, and minimizing the operating cost as a whole has not yet been studied.

国などの事業者が製鉄所設備を用いた二酸化炭素の分離回収システムとして、COを分離回収するために必要なコストを下げるとともに、COを分離回収するために必要となるランニングコストを自動的に算出して課金することができる技術を提供することにより、二酸化炭素の分離回収システムを継続的に運用する事業を成立させるようにしたものがある(例えば、特許文献1参照)。しかし、対象設備が製鉄所用発電設備であり、また、CO回収量の計算手順を特定するものではなく、全体で運転コストを最小化することは検討されていない Automatic as the carbon dioxide separation and recovery system using operators a steelworks facilities such country, with lower the cost required to separate and recover the CO 2, the running cost required for separating and recovering CO 2 In some cases, a technique for continuously operating a carbon dioxide separation and recovery system is established by providing a technique that can be calculated and charged automatically (see, for example, Patent Document 1). However, the target facility is a power plant facility for steelworks, and does not specify the procedure for calculating the CO 2 recovery amount, and it has not been studied to minimize the operating cost as a whole.

特許第4035451号公報Japanese Patent No. 4035451

本発明の目的は、異なる2台以上のCCSの運転計画を立案する際に、発電原単位特性と出力追従特性とを用いて全体の発電コストを最小化する各CCSの発電量とCO回収率を策定するできるCCS運転計画策定システムを提供することである。 The object of the present invention is to generate the power generation amount and CO 2 recovery of each CCS to minimize the total power generation cost by using the power generation unit characteristic and the output follow-up characteristic when planning the operation plan of two or more different CCSs. It is to provide a CCS operation plan formulation system that can formulate rates.

本発明の実施の形態によれば、異なる2台以上の二酸化炭素の回収・貯留設備を有した発電プラントのCCS運転計画立案時に対象期間や時間刻み幅などの設定項目を入力する条件設定部と、前記発電プラント毎の発電原単位特性と出力追従特性とを格納しそのCCS特性情報を取得するCCS別特性取得部と、前記CCS別特性取得部から取得した情報に基づき発電コストを最小にする発電プラント毎の発電量とCO回収率との関係を用いて複数の発電プラントを含む全体の発電コストを最小化する各発電プラントの発電量とCO回収率とを算定する最適運転条件算定部と、前記最適運転条件算定部で算定した結果を出力する算定結果出力部とを備えたことを特徴とする。 According to the embodiment of the present invention, a condition setting unit for inputting setting items such as a target period and a time interval when planning a CCS operation plan of a power plant having two or more different carbon dioxide recovery and storage facilities, and The power generation unit characteristic for each power plant and the output follow-up characteristic are stored, and the CCS characteristic acquisition unit for acquiring the CCS characteristic information, and the power generation cost is minimized based on the information acquired from the CCS characteristic acquisition unit Calculation of optimum operating conditions for calculating the power generation amount and CO 2 recovery rate of each power plant that minimizes the total power generation cost including multiple power plants using the relationship between the power generation amount and CO 2 recovery rate for each power plant And a calculation result output unit for outputting the result calculated by the optimum operating condition calculation unit.

本発明の第1実施形態に係るCCS運転計画策定システムのブロック構成図。The block block diagram of the CCS operation plan formulation system which concerns on 1st Embodiment of this invention. CO回収設備を持たない発電プラントにおける運転計画策定システムのブロック構成図。Block diagram of the operation planning system in a power plant having no CO 2 recovery facility. 図2に示した既存の運転計画策定システムの処理内容の説明図。Explanatory drawing of the processing content of the existing driving | operation plan formulation system shown in FIG. 図1に示した本発明の第1実施形態のCCS運転計画策定システムの処理内容の説明図。Explanatory drawing of the processing content of the CCS operation plan formulation system of 1st Embodiment of this invention shown in FIG. 本発明の第2実施形態のCCS運転計画策定システムの処理内容の説明図。Explanatory drawing of the processing content of the CCS operation plan formulation system of 2nd Embodiment of this invention. 本発明の第3実施形態に係るCCS運転計画策定システムのブロック構成図。The block block diagram of the CCS operation plan formulation system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るCCS運転計画策定システムのブロック構成図。The block block diagram of the CCS driving | operation plan formulation system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るCCS運転計画策定システムのブロック構成図。The block block diagram of the CCS operation plan formulation system which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係るCCS運転計画策定システムのブロック構成図。The block block diagram of the CCS operation plan formulation system which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係るCCS運転計画策定システムのブロック構成図。The block block diagram of the CCS operation plan formulation system which concerns on 7th Embodiment of this invention.

(第1の実施形態)
図1は、本発明の第1実施形態に係るCCS運転計画策定システムのブロック構成図である。本発明の第1実施形態に係るCCS運転計画策定システムは、対象期間や時間刻み幅などの設定項目を入力する条件設定部11と、CCS毎の発電原単位特性と出力追従特性を格納しその情報を取得するCCS別特性取得部12と、取得した情報を用いて複数のCCSの発電量とCO回収率を算定する最適運転条件算定部13と、算定した結果を出力する算定結果出力部14とを有する。
(First embodiment)
FIG. 1 is a block diagram of a CCS operation plan formulation system according to the first embodiment of the present invention. The CCS operation plan formulation system according to the first embodiment of the present invention stores a condition setting unit 11 for inputting setting items such as a target period and a time interval, and a power generation unit characteristic and an output tracking characteristic for each CCS. A CCS-specific characteristic acquisition unit 12 that acquires information, an optimum operating condition calculation unit 13 that calculates the power generation amount and CO 2 recovery rate of a plurality of CCSs using the acquired information, and a calculation result output unit that outputs the calculated results 14.

条件設定部11から異なる2台以上のCOの回収・貯留設備を有した発電プラントのCCS運転計画立案時に対象期間や時間刻み幅などの設定項目を入力する。条件設定部11から入力された設定項目はCCS別特性取得部12に出力される。CCS別特性取得部12は、発電プラント毎の発電原単位特性と出力追従特性とを格納しており、そのCCS特性情報を最適運転条件算定部13に出力する。最適運転条件算定部13は、CCS別特性取得部12から取得した情報に基づき発電コストを最小にする発電プラント毎の発電量とCO回収率との関係を用いて、複数の発電プラントを含む全体の発電コストを最小化する各発電プラントの発電量とCO回収率とを算定する。そして、最適運転条件算定部13で算定された結果は算定結果出力部14により外部に出力される。このように、本発明の第1実施形態では、最適運転条件算定部13において発電量に加えCO回収率を決めることを特徴としている。 When the CCS operation plan of the power plant having two or more different CO 2 collection / storage facilities is set, the setting items such as the target period and the time increment are input from the condition setting unit 11. The setting items input from the condition setting unit 11 are output to the CCS-specific characteristic acquisition unit 12. The CCS-specific characteristic acquisition unit 12 stores the power generation unit characteristic and the output follow-up characteristic for each power plant, and outputs the CCS characteristic information to the optimum operating condition calculation unit 13. The optimum operating condition calculation unit 13 includes a plurality of power plants using the relationship between the power generation amount and the CO 2 recovery rate for each power plant that minimizes the power generation cost based on the information acquired from the CCS-specific characteristic acquisition unit 12. The power generation amount and CO 2 recovery rate of each power plant that minimizes the total power generation cost are calculated. The result calculated by the optimum operating condition calculation unit 13 is output to the outside by the calculation result output unit 14. Thus, the first embodiment of the present invention is characterized in that the optimum operating condition calculation unit 13 determines the CO 2 recovery rate in addition to the power generation amount.

図2は、CO回収設備を持たない発電プラントにおける既存の運転計画策定システムのブロック構成図である。既存の運転計画策定システムでは、条件設定部15で対象期間や分析時間刻み幅などの策定に必要な条件を設定する。発電機別特性取得部16において発電機毎の出力追従特性と発電原単位特性とを取得する。次に、最適運転条件算定部17は発電機別特性取得部16で取得したデータからコストミニマムとなる計画発電量を算定する。そして、算定結果出力部18ではその結果を出力する。 FIG. 2 is a block diagram of an existing operation plan formulation system in a power plant that does not have a CO 2 recovery facility. In the existing operation plan formulation system, the condition setting unit 15 sets conditions necessary for formulation such as a target period and an analysis time increment. The generator-specific characteristic acquisition unit 16 acquires an output follow-up characteristic and a power generation unit characteristic for each generator. Next, the optimum operating condition calculation unit 17 calculates a planned power generation amount that is a cost minimum from the data acquired by the generator-specific characteristic acquisition unit 16. Then, the calculation result output unit 18 outputs the result.

図3は、図2に示した既存の運転計画策定システムの処理内容の説明図である。まず、最初に条件設定部15で対象期間や分析時間刻み幅などの策定に必要な条件を設定する。次に、発電機別特性取得部16において、発電機DB19から発電機毎の出力追従特性と発電原単位特性とを取得する。   FIG. 3 is an explanatory diagram of the processing contents of the existing operation plan formulation system shown in FIG. First, the condition setting unit 15 first sets conditions necessary for formulation of the target period and the analysis time increment. Next, the generator-specific characteristic acquisition unit 16 acquires the output follow-up characteristic and the power generation unit characteristic for each generator from the generator DB 19.

出力追従特性とは、横軸が時間あたりの燃料投入量変化(例えばΔt/Δ分)、縦軸が時間あたりの出力変化(例えばΔMWh/Δ分)である。この特性が得られない場合は、発電機の出力変化許容値(ΔMWh/Δ分)が分かれば良い。この場合は出力追従特性は用いず、与えられた変動許容範囲内で発電出力を計画する。   The output follow-up characteristics are a change in fuel input per hour (for example, Δt / Δ minutes) on the horizontal axis and an output change (for example, ΔMWh / Δ minutes) on the vertical axis. If this characteristic cannot be obtained, it is sufficient to know the output change allowable value (ΔMWh / Δ minutes) of the generator. In this case, the output follow-up characteristics are not used, and the power generation output is planned within a given fluctuation allowable range.

発電原単位特性とは、横軸が時間あたりの発電出力量(例えばkWh/h)または発電出力比(%)などで、縦軸が発電原単位(t-CO/kWh)である。ここで発電原単位は効率に比例するため、発電原単位特性ではなく縦軸を発電効率とした特性でも構わない。その場合、発電効率と石炭種別から発電原単位を算出する必要があるが、この算出方法は発電源の発電原単位を求める手法として公知である。例えば、クリーン開発メカニズムCDM(Clean Development Mechanism)のための方法論が該当する。 In the power generation unit characteristic, the horizontal axis represents the power generation output amount per hour (for example, kWh / h) or the power generation output ratio (%), and the vertical axis represents the power generation unit (t-CO 2 / kWh). Here, since the power generation unit is proportional to the efficiency, the power generation unit characteristic may be used instead of the power generation unit characteristic. In this case, it is necessary to calculate the power generation intensity from the power generation efficiency and the coal type. This calculation method is known as a method for obtaining the power generation intensity of the power generation source. For example, a methodology for a Clean Development Mechanism (CDM) is applicable.

最適運転条件算定部17では発電機別特性取得部16で取得したデータからコストミニマムとなる計画発電量を算定する。ここで求める発電機毎の発電量の最適解は、燃料消費とCO2排出による発電コストを目的関数、需要に見合う総発電量を制約条件とすることで、ラグランジェの未定乗数法などの公知の手法で算定する。算定結果出力部18ではその結果を出力する。   The optimum operating condition calculation unit 17 calculates a planned power generation amount that is a cost minimum from the data acquired by the generator-specific characteristic acquisition unit 16. The optimal solution of the power generation amount for each generator obtained here is a publicly known method such as Lagrange's undetermined multiplier method by using the power generation cost due to fuel consumption and CO2 emission as an objective function and the total power generation amount that meets the demand as a constraint. Calculate by method. The calculation result output unit 18 outputs the result.

次に、図4は図1に示した本発明の第1実施形態のCCS運転計画策定システムの処理内容の説明図である。最初に条件設定部11で対象期間や分析時間刻み幅などの条件設定を行う。次に、CCS別特性取得部12において、CCS−DB20からCCS毎の出力追従特性と発電原単位特性とを取得する。   Next, FIG. 4 is explanatory drawing of the processing content of the CCS operation plan formulation system of 1st Embodiment of this invention shown in FIG. First, the condition setting unit 11 sets conditions such as a target period and an analysis time step. Next, the CCS-specific characteristic acquisition unit 12 acquires output follow-up characteristics and power generation unit characteristics for each CCS from the CCS-DB 20.

出力追従特性とは、横軸が時間あたりの燃料投入量変化(例えばΔt/Δ分)、縦軸が時間あたりの出力変化(例えばΔMWh/Δ分)である。ここで図3との相違点は、この特性がCO回収率により異なるため、CO回収率に応じたデータを有していることである。CO回収率は運転者が決めることができる。出力追従特性が得られない場合は、CO回収率に応じた発電機の出力変化許容値(ΔMWh/Δ分)が分かれば良い。この場合は出力追従特性は用いず、与えられた変動許容範囲内で発電出力を計画する。 The output follow-up characteristics are a change in fuel input per hour (for example, Δt / Δ minutes) on the horizontal axis and an output change (for example, ΔMWh / Δ minutes) on the vertical axis. Here difference from Figure 3 is that the characteristics for different by the CO 2 recovery rate, and has a data corresponding to the CO 2 recovery. The driver can determine the CO 2 recovery rate. When the output follow-up characteristic cannot be obtained, it is sufficient to know the output change allowable value (ΔMWh / Δ minutes) of the generator according to the CO 2 recovery rate. In this case, the output follow-up characteristics are not used, and the power generation output is planned within a given fluctuation allowable range.

発電原単位特性とは、横軸が時間あたりの発電出力量(例えばkWh/h)または発電出力比(%)などで、縦軸が発電原単位(t-CO/kWh)である。ここで図3との相違点は、この特性がCO回収率により異なるため、CO回収率に応じたデータを有していることである。CO回収率は運転者が決めることができる。発電原単位は設備データ、IPCC報告書などの公知データやCDM方法論などによる計算値などを用いる。 In the power generation unit characteristic, the horizontal axis represents the power generation output amount per hour (for example, kWh / h) or the power generation output ratio (%), and the vertical axis represents the power generation unit (t-CO 2 / kWh). Here difference from Figure 3 is that the characteristics for different by the CO 2 recovery rate, and has a data corresponding to the CO 2 recovery. The driver can determine the CO 2 recovery rate. The unit of power generation uses known data such as equipment data, IPCC reports, and calculated values based on CDM methodology.

図4の一例では、CCS−Aはフル発電量相当のCO回収設備を1台設置した場合で、CCS−Bはフル発電量に対して容量が1/2のCO回収設備を2台設置した場合である。この様に、CO回収設備の設計条件で、上記2つの特性は傾向が大きく異なることが考えられる。これはCO回収設備を持たない発電設備では無いことであり、上記の2つの特性は有している方が好ましい。 In the example of FIG. 4, CCS-A is a case where one CO 2 recovery facility equivalent to full power generation amount is installed, and CCS-B is two CO 2 recovery facilities whose capacity is ½ of the full power generation amount. This is the case. In this way, it can be considered that the above two characteristics tend to differ greatly depending on the design conditions of the CO 2 recovery facility. This is not a power generation facility that does not have a CO 2 recovery facility, and preferably has the above two characteristics.

最適運転条件算定部13ではCCS別特性取得部12で得られたデータ、および発電コストを最小にするCCS毎の発電量とCO回収率との関係式(発電量 vs CO回収率特性)を用いて複数のCCSを含む全体で発電コストが最小となる個々のCCSの発電量とCO回収率を算定する。ここで、個々のCCSの発電量とCO回収率を求めるには、ラグランジェ未定乗数法などの公知の手法を用いる。最後に、算定結果出力部14は算定した運転条件を出力する。 In the optimum operating condition calculation unit 13, the data obtained by the CCS-specific characteristic acquisition unit 12 and the relational expression between the power generation amount and the CO 2 recovery rate for each CCS that minimizes the power generation cost (power generation amount vs. CO 2 recovery rate characteristic) Is used to calculate the power generation amount and CO 2 recovery rate of each CCS that minimizes the power generation cost as a whole including a plurality of CCS. Here, in order to obtain the power generation amount and CO 2 recovery rate of each CCS, a known method such as a Lagrange multiplier method is used. Finally, the calculation result output unit 14 outputs the calculated operating conditions.

次に、最適運転条件算定部13での算定手順(ラグランジェの未定乗数法を用いた一例)を説明する。目的関数を複数のCCSを含む全体の発電コストとする。各CCS(例えばi番目のCCS)の発電コストは発電量xi(kWh/h)とCO2回収率yi(%)の関数fi(x,y)で表現できる(実際には燃料消費量、石炭価格なども関係するが、本発明の実施形態に直接関わらないため関数には加えない)。ここで、評価対象となるCCSの総数をn、CCSが供給する総需要(=総発電量)をx0とすると、下記式が成立する(拘束条件1)。

Figure 2012010455
Next, a calculation procedure (an example using Lagrange's undetermined multiplier method) in the optimum operation condition calculation unit 13 will be described. The objective function is the total power generation cost including a plurality of CCSs. The power generation cost of each CCS (for example, the i-th CCS) can be expressed by the function fi (x, y) of the power generation amount xi (kWh / h) and the CO2 recovery rate yi (%) (actually fuel consumption, coal price) However, since it is not directly related to the embodiment of the present invention, it is not added to the function). Here, when the total number of CCS to be evaluated is n and the total demand (= total power generation amount) supplied by the CCS is x0, the following equation is satisfied (constraint condition 1).
Figure 2012010455

また、各CCSにおいて、発電量xi(kWh/h)に応じた発電コストを最小にするCO回収率yi(%)は、発電量 vs CO回収率特性として以下の式で表現できる(拘束条件2)。

Figure 2012010455
In each CCS, the CO 2 recovery rate yi (%) that minimizes the power generation cost according to the power generation amount xi (kWh / h) can be expressed by the following equation as the power generation amount vs. CO 2 recovery rate characteristic (constraint) Condition 2).
Figure 2012010455

上記の関係をラグランジェの未定乗数法にあてはめると、ラグランジェ関数Fは次式となる。

Figure 2012010455
When the above relationship is applied to Lagrange's undetermined multiplier method, the Lagrangian function F is expressed by the following equation.
Figure 2012010455

例えば、3台のCCSが対象(n=3)の場合、上記式は以下となる。

Figure 2012010455
For example, when three CCSs are targets (n = 3), the above formula is as follows.
Figure 2012010455

第1実施形態によれば、異なる2台以上のCCS運転計画立案時にCO回収率毎の発電原単位特性と出力追従特性とを用いることで、発電コストを最小化する各CCSの最適な発電量とCO回収率を策定することが可能となる。 According to the first embodiment, the optimal power generation of each CCS that minimizes the power generation cost by using the power generation unit characteristic and the output follow-up characteristic for each CO 2 recovery rate when planning two or more different CCS operation plans. The amount and CO 2 recovery rate can be formulated.

(第2の実施形態)
図5は本発明の第2実施形態のCCS運転計画策定システムの処理内容の説明図である。図4に示した第1実施形態に対し、CCS別特性取得部12の出力追従特性に代えて、少なくとも、燃料投入量と日時、発電出力と日時、CO回収率と日時、燃料投入と出力発生との時間遅れを用いて出力追従特性を策定し最適運転条件算定部13に出力するCCS別出力追従特性策定部21を追加して設けたものである。図4と同一要素には同一符号を付し重複する説明は省略する。
(Second Embodiment)
FIG. 5 is an explanatory diagram of processing contents of the CCS operation plan formulation system according to the second embodiment of this invention. Compared to the output follow-up characteristic of the CCS-specific characteristic acquisition unit 12 with respect to the first embodiment shown in FIG. 4, at least the fuel input amount and date and time, the power generation output and date and time, the CO 2 recovery rate and date and time, the fuel input and output A CCS-specific output follow-up characteristic formulating unit 21 that formulates an output follow-up characteristic using a time delay from the occurrence and outputs the output follow-up characteristic to the optimum operating condition calculation unit 13 is additionally provided. The same elements as those in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.

図5において、第1実施形態に対しCCS毎の出力追従特性を自動で作成するCCS別出力追従特性作成部21が設けられている。CCS別出力追従特性作成部21は運転データ取得部22と特性作成部23とを有する。   In FIG. 5, a CCS-specific output follow-up characteristic creation unit 21 that automatically creates an output follow-up characteristic for each CCS is provided for the first embodiment. The CCS output follow-up characteristic creation unit 21 includes an operation data acquisition unit 22 and a characteristic creation unit 23.

運転データ取得部22では各CCSデータ24として、燃料投入量と日時、発電出力と日時、CO2回収率と日時、燃料投入から出力発生までの時間遅れの4つの情報を取得する。次に特性作成部23で図5に示す出力追従特性を作成する手順を説明する。例えば、ある日の12:00から12:10と1時間後の13:00から13:10の間の燃料投入量(t)であるX1とX2をそれぞれ得る。   The operation data acquisition unit 22 acquires, as each CCS data 24, four pieces of information including fuel input amount and date / time, power generation output and date / time, CO2 recovery rate and date / time, and time delay from fuel input to output generation. Next, a procedure for creating the output follow-up characteristic shown in FIG. For example, X1 and X2, which are fuel inputs (t) between 12:00 and 12:10 on one day and between 13:00 and 13:10 one hour later, are obtained.

次に、燃料が燃焼し発電出力となる時間遅れ情報(例えば15分)を取得し、その遅れを考慮した12:15から12:25と13:15から13:25の発電量(MWh)であるY1とY2をそれぞれ得る。ここで、12:00と13:00のCO回収率がZ1(%)と同じ値の場合は、出力追従特性のX軸の燃料投入量変化(Δt/Δ分)が(X2-X1)/60として求められ、Y軸の出力変化(ΔMWh/Δ分)が(Y2-Y1)/60として求められる。 Next, the time delay information (for example, 15 minutes) when the fuel burns and becomes the power generation output is acquired, and the power generation amount (MWh) of 12:15 to 12:25 and 13:15 to 13:25 considering the delay Get some Y1 and Y2. Here, when the CO 2 recovery rates at 12:00 and 13:00 are the same value as Z1 (%), the change in the fuel input amount on the X axis (Δt / Δ minutes) of the output follow-up characteristic is (X2-X1) / 60, and the change in the Y-axis output (ΔMWh / Δmin) is obtained as (Y2-Y1) / 60.

これにより、回収率Z1(%)の出力追従特性の1点がプロットできる。このプロットを様々な日時に対し自動で繰り返し実施していくことで、自動的に出力追従特性を作成できる。もし、対象となる2つの時刻(上記例では12:00と13:00)のCO2回収率が同一でない場合には、そのデータは除外し、一致した場合にのみ特性をプロットする。   Thereby, one point of the output follow-up characteristic of the recovery rate Z1 (%) can be plotted. By automatically repeating this plot for various dates and times, output tracking characteristics can be created automatically. If the CO2 recovery rates at the two target times (12:00 and 13:00 in the above example) are not the same, the data is excluded and the characteristics are plotted only when they match.

また、本発明の第2実施形態はCO回収設備を持たない通常の発電設備にも活用できる。通常の発電設備を含んだ運転計画を立案する場合で、図3に示すような出力追従特性を持たない場合に適用される。この場合には上記説明におけるCO回収率は考慮せずに出力追従特性を作成することができる。 In addition, the second embodiment of the present invention can also be used for a normal power generation facility that does not have a CO 2 recovery facility. This is applied to the case where an operation plan including a normal power generation facility is made and does not have the output follow-up characteristic as shown in FIG. In this case, the output follow-up characteristic can be created without considering the CO 2 recovery rate in the above description.

第2実施形態によれば、出力追従特性を持たない場合であっても、運転データから自動に出力追従特性を作成し、CCSの運転計画を策定することができる。   According to the second embodiment, even when the output follow-up characteristic is not provided, the output follow-up characteristic can be automatically created from the operation data, and the CCS operation plan can be formulated.

(第3実施形態)
図6は本発明の第3実施形態に係るCCS運転計画策定システムのブロック構成図である。第3実施形態は、第1実施例形態に対し、最適化する項目である目的関数を設定し前記CCS別特性取得部に出力するための目的関数設定部を設け、前記目的関数設定部で、少なくとも、発電コストを最小にする目的関数、CO排出量を最小にする目的関数、CO回収率を最大にする目的関数のいずれかを設定する目的関数設定部25を追加して設けたものである。
(Third embodiment)
FIG. 6 is a block diagram of a CCS operation plan formulation system according to the third embodiment of the present invention. The third embodiment provides an objective function setting unit for setting an objective function that is an item to be optimized and outputting it to the CCS-specific characteristic acquisition unit, compared to the first example embodiment. In the objective function setting unit, An objective function setting unit 25 for setting at least one of an objective function for minimizing power generation costs, an objective function for minimizing CO 2 emissions, and an objective function for maximizing CO 2 recovery is provided. It is.

目的関数設定部25は最適化する項目を任意に設定するものである。目的関数には発電コストのほかに、CO排出量、CO回収量が考えられる。前者のCO排出量では最小値が最適解、後者のCO回収量では最大値が最適解となる。クリアしなければならないCO回収量が決まっている場合や、CO排出量に制限がかけられた場合に適用できる。目的関数が異なるだけで、CCS別特性取得部12や最適運転条件算定部13の手順は、第1実施形態と同様であるので詳細な説明は省略する。なお、第2実施形態に対して目的関数設定部25を設けてもよい。 The objective function setting unit 25 arbitrarily sets items to be optimized. As the objective function, in addition to the power generation cost, CO 2 emission amount and CO 2 recovery amount can be considered. The minimum value is the optimum solution for the former CO 2 emission amount, and the maximum value is the optimum solution for the latter CO 2 recovery amount. This can be applied when the CO 2 recovery amount to be cleared is determined or when the CO 2 emission amount is limited. The procedure of the CCS-specific characteristic acquisition unit 12 and the optimum operation condition calculation unit 13 is the same as that of the first embodiment except that the objective functions are different, and detailed description thereof is omitted. In addition, you may provide the objective function setting part 25 with respect to 2nd Embodiment.

第3の実施形態によれば、状況に応じて設定した目的関数を最適化する運転計画を策定できる。   According to the third embodiment, it is possible to formulate an operation plan that optimizes the objective function set according to the situation.

(第4実施形態)
図7は本発明の第4実施形態に係るCCS運転計画策定システムのブロック構成図である。第4実施形態は、第1実施形態に対し、各発電プラントのCCS特性情報をLAN経由で取得する特性受信部26を設けたものである。
(Fourth embodiment)
FIG. 7 is a block diagram of a CCS operation plan formulation system according to the fourth embodiment of the present invention. 4th Embodiment provides the characteristic receiving part 26 which acquires the CCS characteristic information of each power plant via LAN with respect to 1st Embodiment.

特性受信部26は、各発電所A、B、CのCCS特性情報をLAN27経由で取得するものである。特性受信部26ではCO回収率に応じた出力追従特性と発電原単位特性とをLAN27経由で各発電所A、B、Cから受信する。 The characteristic receiving unit 26 acquires CCS characteristic information of each power plant A, B, C via the LAN 27. The characteristic receiving unit 26 receives the output follow-up characteristic and the power generation unit characteristic corresponding to the CO 2 recovery rate from each of the power plants A, B, and C via the LAN 27.

また、第2実施形態に特性受信部26を追加するようにしてもよい。この場合には、特性受信部26は、発電原単位特性、およびCCS別出力追従特性作成部21で用いるCCS運転データ(燃料投入量と日時、発電出力と日時、CO2回収率と日時、時間遅れ(燃料投入と出力発生の時間差))を受信することになる。   In addition, the characteristic receiving unit 26 may be added to the second embodiment. In this case, the characteristic receiving unit 26 uses the CCS operation data (fuel injection amount and date / time, power generation output / date / time, CO2 recovery rate / date / time, time delay used by the power generation unit characteristic and the CCS output follow-up characteristic creating unit 21. (Time difference between fuel input and output generation)).

ここでLAN27は電力会社の社内LANでも公的なブロードバンドでも構わない。また、受け取る情報は暗号化などセキュリティー対策が施される場合もある。なお、第3実施形態に特性受信部26を追加するようにしてもよい。   Here, the LAN 27 may be an in-house LAN of a power company or a public broadband. The received information may be subjected to security measures such as encryption. In addition, you may make it add the characteristic receiving part 26 to 3rd Embodiment.

第4実施形態によれば、各発電所A、B、CのCCS特性情報をLAN27経由で取得することが可能となる。   According to the fourth embodiment, the CCS characteristic information of each power plant A, B, C can be acquired via the LAN 27.

(第5実施形態)
図8は本発明の第5実施形態に係るCCS運転計画策定システムのブロック構成図である。第5実施形態は、第1実施形態に対し、最適運転条件算定部13で算定したCCS運転計画情報をLAN27、公共LAN29経由で配信する運転計画配信部28を設けたものである。
(Fifth embodiment)
FIG. 8 is a block diagram of a CCS operation plan formulation system according to the fifth embodiment of the present invention. The fifth embodiment is different from the first embodiment in that an operation plan distribution unit 28 that distributes the CCS operation plan information calculated by the optimum operation condition calculation unit 13 via the LAN 27 and the public LAN 29 is provided.

運転計画配信部28は、最適運転条件算定部13で策定した運転計画をLAN27に配信する。運転計画配信部28では、算定結果であるCCSの発電量とCO回収率および計画時刻情報、さらには、同計画時刻ごとの想定される発電量あたりのCO排出量である発電原単位を発電業者の社内LAN27に配信する。このうち、CCSの発電量とCO回収率および計画時刻情報は各発電所で運転計画データとして活用される。 The operation plan distribution unit 28 distributes the operation plan formulated by the optimum operation condition calculation unit 13 to the LAN 27. In the operation plan distribution unit 28, the power generation amount of the CCS, the CO 2 recovery rate and the plan time information, which are the calculation results, and the power generation basic unit that is the CO 2 emission amount per the power generation amount assumed at each plan time are obtained. Distribute to the power company's internal LAN 27. Of these, the CCS power generation amount, CO 2 recovery rate, and planned time information are utilized as operation plan data at each power plant.

一方で、発電原単位の情報は、事業計画部門30においてCO排出権取引の運転計画情報として活用される。さらに発電原単位の計画情報は公開情報と公共LAN29に配信され、電力使用者が発電原単位計画量を知ることができ、より発電原単位の少ない時間帯に電力を使用するなどの判断に用いることができる。なお、第2実施形態乃至第4実施形態に対し、運転計画配信部28を設けるようにしてもよい。 On the other hand, the power generation unit information is used as operation plan information for CO 2 emission trading in the business planning department 30. Furthermore, the power generation intensity plan information is distributed to public information and the public LAN 29, so that the power user can know the power generation intensity plan amount, and is used for judgments such as using power in a time zone with less power generation intensity. be able to. In addition, you may make it provide the driving plan delivery part 28 with respect to 2nd Embodiment thru | or 4th Embodiment.

第5実施の形態によれば、運転計画に基づくCCSの運転計画に関する種種の情報を発電業者内の関連部門が有効に活用することができる。さらに、発電原単位の計画値を一般需要家などが知ることも可能となり、一般需要家はCO排出の少ない電力を積極的に使用する計画を立案することが可能となる。 According to the fifth embodiment, various types of information related to the CCS operation plan based on the operation plan can be effectively used by the related departments in the power generator. Furthermore, it becomes possible for general consumers to know the planned value of the power generation intensity, and it becomes possible for general consumers to make a plan to actively use electric power with low CO 2 emissions.

(第6実施形態)
図9は本発明の第6実施形態に係るCCS運転計画策定システムのブロック構成図である。第6実施形態は、第5実施形態に対し、公共LAN29に配信する情報に対して公開可否の情報を付加し公開情報を自動的に選択し公共LAN29に配信する公共LAN配信部31を設けたものである。公共LAN配信部31は、運転計画配信部28からLAN29に配信する情報に公開可否の情報を付加しておくことで、公共LAN29に配信する情報を自動的に取得し配信する。
(Sixth embodiment)
FIG. 9 is a block diagram of a CCS operation plan formulation system according to the sixth embodiment of the present invention. The sixth embodiment includes a public LAN distribution unit 31 that adds public permission information to information distributed to the public LAN 29 and automatically selects the public information and distributes the information to the public LAN 29 as compared with the fifth embodiment. Is. The public LAN distribution unit 31 automatically acquires and distributes information distributed to the public LAN 29 by adding information indicating whether or not the information is distributed from the operation plan distribution unit 28 to the LAN 29.

第6実施形態によれば、運転計画策定部門において、事前に許可を得た情報を自動的に公共LAN29に配信することができ、第5実施形態のように別の部門(事業計画部門)を経由しない分、スピーディーな情報配信が可能となる。発電原単位の計画情報は刻一刻と変化することが予想されるため、スピーディーな情報配信は効果的である。   According to the sixth embodiment, information obtained in advance can be automatically distributed to the public LAN 29 in the operation planning department, and another department (business planning department) can be assigned as in the fifth embodiment. Speedy information distribution becomes possible because it does not go through. Since the plan information of power generation intensity is expected to change from moment to moment, speedy information distribution is effective.

(第7実施形態)
図10は本発明の第7実施形態に係るCCS運転計画策定システムのブロック構成図である。第7実施形態は、第5実施形態に対し、公共LAN29から需要家の需要計画を取得する需要計画取得部32を設け、最適運転条件算定部13は、需要家の使用計画として、需要計画取得部32から、少なくとも、必要電力量(MWh)と日時情報(時間幅情報)とを取得し、その情報に基づいて運転計画を更新するようにしたものである。
(Seventh embodiment)
FIG. 10 is a block diagram of a CCS operation plan formulation system according to the seventh embodiment of the present invention. 7th Embodiment provides the demand plan acquisition part 32 which acquires a consumer's demand plan from public LAN29 with respect to 5th Embodiment, and the optimal driving | running condition calculation part 13 acquires a demand plan as a usage plan of a consumer. At least the required electric energy (MWh) and date / time information (time width information) are acquired from the unit 32, and the operation plan is updated based on the information.

需要計画取得部32は公共LAN29から需要家側の需要計画を取得するものである。第5実施形態で説明した通り、一般需要家や一般家庭では、公共LAN29から得られた発電原単位の計画情報に基づいて、より発電原単位の少ない時間帯に電力を使用することが可能となる。しかし、多くの家庭や需要家が同じ計画を策定した場合、供給量が不足し、発電条件が変わり、発電原単位も変わってしまう可能性がある。   The demand plan acquisition unit 32 acquires a demand plan on the customer side from the public LAN 29. As explained in the fifth embodiment, it is possible for general consumers and general households to use electric power in a time zone with a smaller power generation unit based on the plan information of the power generation unit obtained from the public LAN 29. Become. However, when many households and customers formulate the same plan, there is a possibility that the supply amount will be insufficient, the power generation conditions will change, and the power generation intensity will also change.

そこで、需要家側から使用計画の情報として必要電力量(MWh)と日時情報を需要家計画取得部32を介して得ることで、その結果を運転計画にフィードバックし、発電原単位の計画情報を更新し、最新の情報に基づくより確かなデータを配信することが可能となる。なお、第6実施の形態に対し需要計画取得部32を設けるようにしてもよい。   Therefore, by obtaining the required power amount (MWh) and date / time information as information on the usage plan from the customer side via the customer plan acquisition unit 32, the result is fed back to the operation plan, and the plan information of the power generation unit is obtained. It is possible to update and distribute more reliable data based on the latest information. In addition, you may make it provide the demand plan acquisition part 32 with respect to 6th Embodiment.

11…条件設定部、12…CCS別特性取得部、13…最適運転条件算定部、14…算定結果出力部、15…条件設定部、16…発電機別特性取得部、17…最適運転条件算定部、18…算定結果出力部、19…発電機DB、20…CCS−DB、21…CCS別出力追従特性作成部、22…運転データ取得部、23…特性作成部、24…CCSデータ、25…目的関数設定部、26…特性受信部、27…LAN、28…運転計画配信部、29…LAN、30…事業計画部門、31…公共LAN配信部、32…需要計画取得部 DESCRIPTION OF SYMBOLS 11 ... Condition setting part, 12 ... Characteristic acquisition part according to CCS, 13 ... Optimal operation condition calculation part, 14 ... Calculation result output part, 15 ... Condition setting part, 16 ... Characteristic acquisition part according to generator, 17 ... Calculation of optimal operation condition , 18 ... calculation result output unit, 19 ... generator DB, 20 ... CCS-DB, 21 ... CCS output follow-up characteristic creation unit, 22 ... operation data acquisition unit, 23 ... characteristic creation unit, 24 ... CCS data, 25 ... objective function setting unit, 26 ... characteristic reception unit, 27 ... LAN, 28 ... operation plan distribution unit, 29 ... LAN, 30 ... business plan division, 31 ... public LAN distribution unit, 32 ... demand plan acquisition unit

Claims (7)

異なる2台以上の二酸化炭素の回収・貯留設備を有した発電プラントのCCS運転計画立案時に対象期間や時間刻み幅などの設定項目を入力する条件設定部と、
前記発電プラント毎の発電原単位特性と出力追従特性とを格納しそのCCS特性情報を取得するCCS別特性取得部と、
前記CCS別特性取得部から取得した情報に基づき発電コストを最小にする発電プラント毎の発電量とCO回収率との関係を用いて複数の発電プラントを含む全体の発電コストを最小化する各発電プラントの発電量とCO回収率とを算定する最適運転条件算定部と、
前記最適運転条件算定部で算定した結果を出力する算定結果出力部とを備えたことを特徴とするCCS運転計画策定システム。
A condition setting unit for inputting setting items such as a target period and a time interval when a CCS operation plan of a power plant having two or more different carbon dioxide recovery and storage facilities is established;
A CCS-specific characteristic acquisition unit that stores the power generation unit characteristic and output follow-up characteristic for each power plant and acquires CCS characteristic information thereof;
Each of the power generation costs including the plurality of power plants is minimized by using the relationship between the power generation amount for each power plant and the CO 2 recovery rate that minimizes the power generation cost based on the information acquired from the CCS-specific characteristic acquisition unit. An optimum operating condition calculation unit for calculating the power generation amount of the power plant and the CO 2 recovery rate;
A CCS operation plan formulation system, comprising: a calculation result output unit that outputs a result calculated by the optimum operation condition calculation unit.
前記CCS別特性取得部の出力追従特性に代えて、少なくとも、燃料投入量と日時、発電出力と日時、CO回収率と日時、燃料投入と出力発生との時間遅れを用いて出力追従特性を策定し前記最適運転条件算定部に出力するCCS別出力追従特性策定部を設けたことを特徴とする請求項1に記載のCCS運転計画策定システム。 In place of the output follow-up characteristic of the CCS-specific characteristic acquisition unit, the output follow-up characteristic is determined using at least the fuel input amount and date and time, the power generation output and date and time, the CO 2 recovery rate and date and time delay between fuel input and output generation. The CCS operation plan formulation system according to claim 1, further comprising an output follow-up characteristic formulation unit for each CCS that is formulated and output to the optimum operation condition calculation unit. 最適化する項目である目的関数を設定し前記CCS別特性取得部に出力するための目的関数設定部を設け、前記目的関数設定部で、少なくとも、発電コストを最小にする目的関数、CO排出量を最小にする目的関数、CO回収率を最大にする目的関数のいずれかを設定することを特徴とする請求項1または2に記載のCCS運転計画策定システム。 An objective function setting unit is provided for setting an objective function, which is an item to be optimized, and outputting the objective function to the CCS-specific characteristic acquisition unit, and at the objective function setting unit, at least an objective function that minimizes power generation cost, CO 2 emission The CCS operation plan formulation system according to claim 1 or 2, wherein either an objective function that minimizes the amount or an objective function that maximizes the CO 2 recovery rate is set. 各発電プラントのCCS特性情報をLAN経由で取得する特性受信部を設けたことを特徴とする請求項1乃至3のいずれか1項に記載のCCS運転計画策定システム。   The CCS operation plan formulation system according to any one of claims 1 to 3, further comprising a characteristic reception unit that acquires CCS characteristic information of each power plant via a LAN. 前記最適運転条件算定部で算定したCCS運転計画情報をLAN経由で配信する運転計画配信部を設けたことを特徴とする請求項1乃至4のいずれか1項に記載のCCS運転計画策定システム。   The CCS operation plan formulation system according to any one of claims 1 to 4, further comprising an operation plan distribution unit that distributes the CCS operation plan information calculated by the optimum operation condition calculation unit via a LAN. 前記LANに配信する情報に対し、公開可否の情報を付加し公開情報を自動的に選択し公共LANに配信する公共LAN配信部を設けたことを特徴とする請求項5に記載のCCS運転計画策定システム。   6. The CCS operation plan according to claim 5, further comprising: a public LAN distribution unit that adds information on whether or not to be publicly available to the information distributed to the LAN, automatically selects the public information, and distributes the information to the public LAN. Formulation system. 前記公共LANから需要家の需要計画を取得する需要計画取得部を設け、前記最適運転条件算定部は、需要家の使用計画として、前記需要計画取得部から、少なくとも、必要電力量(MWh)と日時情報(時間幅情報)とを取得し、その情報に基づいて運転計画を更新することを特徴とする請求項5または6に記載のCCS運転計画策定システム。   A demand plan acquisition unit that acquires a demand plan of a consumer from the public LAN is provided, and the optimum operating condition calculation unit is configured to use at least a required power (MWh) from the demand plan acquisition unit as a usage plan of the consumer. The CCS operation plan formulation system according to claim 5 or 6, wherein date and time information (time width information) is acquired and the operation plan is updated based on the information.
JP2010142551A 2010-06-23 2010-06-23 CCS operation planning system Active JP5487021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142551A JP5487021B2 (en) 2010-06-23 2010-06-23 CCS operation planning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142551A JP5487021B2 (en) 2010-06-23 2010-06-23 CCS operation planning system

Publications (2)

Publication Number Publication Date
JP2012010455A true JP2012010455A (en) 2012-01-12
JP5487021B2 JP5487021B2 (en) 2014-05-07

Family

ID=45540354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142551A Active JP5487021B2 (en) 2010-06-23 2010-06-23 CCS operation planning system

Country Status (1)

Country Link
JP (1) JP5487021B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846007A (en) * 2017-07-03 2018-03-27 东南大学 Direct current distribution power supply energy storage bi-level programming method based on chaos Local Search
CN114362160A (en) * 2022-01-11 2022-04-15 浙江华云电力工程设计咨询有限公司 Carbon emission and green electricity tracking method and device based on proportion sharing principle
WO2024009436A1 (en) * 2022-07-06 2024-01-11 株式会社日立製作所 Carbon management system and computation processing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846007A (en) * 2017-07-03 2018-03-27 东南大学 Direct current distribution power supply energy storage bi-level programming method based on chaos Local Search
CN114362160A (en) * 2022-01-11 2022-04-15 浙江华云电力工程设计咨询有限公司 Carbon emission and green electricity tracking method and device based on proportion sharing principle
CN114362160B (en) * 2022-01-11 2024-01-30 浙江华云电力工程设计咨询有限公司 Carbon emission and green electricity tracking method and device based on proportion equipartition principle
WO2024009436A1 (en) * 2022-07-06 2024-01-11 株式会社日立製作所 Carbon management system and computation processing device

Also Published As

Publication number Publication date
JP5487021B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
He et al. Sector coupling via hydrogen to lower the cost of energy system decarbonization
Heffron et al. Industrial demand-side flexibility: A key element of a just energy transition and industrial development
Judge et al. Overview of smart grid implementation: Frameworks, impact, performance and challenges
Haas et al. Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems–a review
Hemmati et al. Sustainable energy hub design under uncertainty using Benders decomposition method
Colak et al. Smart grid projects in Europe: Current status, maturity and future scenarios
Cochran et al. Flexibility in 21st century power systems
US20170091791A1 (en) Digital power plant system and method
Zachar et al. Policy effects on microgrid economics, technology selection, and environmental impact
Zhu et al. Planning of regional energy systems: An inexact mixed-integer fractional programming model
US8706311B2 (en) Electric power demand/supply planning apparatus and method for the same
KR20200100626A (en) System and method for optimal control of energy storage system
Alasali et al. Energy management systems for a network of electrified cranes with energy storage
Moradi-Dalvand et al. Self-scheduling of a wind producer based on information gap decision theory
Maluenda et al. Expansion planning under uncertainty for hydrothermal systems with variable resources
Osmani et al. Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties
Rajagopal et al. Risk limiting dispatch of wind power
Han et al. Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission
Astero et al. Electrical market management considering power system constraints in smart distribution grids
Erenoğlu et al. Resiliency-driven multi-step critical load restoration strategy integrating on-call electric vehicle fleet management services
JP5487021B2 (en) CCS operation planning system
Kakodkar et al. A review of analytical and optimization methodologies for transitions in multi-scale energy systems
Zheng et al. Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach
CN102054234B (en) Method for checking reserve capacity of power system based on random optimal power flow
Cobb et al. Forward cycle time distributions for returnable transport items

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R151 Written notification of patent or utility model registration

Ref document number: 5487021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151