JP2012009401A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2012009401A
JP2012009401A JP2010146886A JP2010146886A JP2012009401A JP 2012009401 A JP2012009401 A JP 2012009401A JP 2010146886 A JP2010146886 A JP 2010146886A JP 2010146886 A JP2010146886 A JP 2010146886A JP 2012009401 A JP2012009401 A JP 2012009401A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
water
repellent resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010146886A
Other languages
Japanese (ja)
Other versions
JP5472743B2 (en
Inventor
Masahiro Morita
昌宏 森田
Hiroyoshi Nagai
裕喜 永井
Shozo Fujiwara
昌三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010146886A priority Critical patent/JP5472743B2/en
Publication of JP2012009401A publication Critical patent/JP2012009401A/en
Application granted granted Critical
Publication of JP5472743B2 publication Critical patent/JP5472743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery which can suppress the reaction between an positive electrode active material and moisture sufficiently.SOLUTION: The lithium secondary battery has a positive electrode including positive electrode active material particles 10. The positive electrode active material particles 10 are coated with a water-repellent resin 12. If the average particle diameter (median diameter: d50) of the positive electrode active material particles 10 coated with the water-repellent resin 12 is represented by A[μm], the mass thereof is represented by B[g], the mass of coatings of the water-repellent resin 12 applied to the positive electrode active material particles 10 is represented by C[g], and the degree of crystallization of the water-repellent resin is represented by D[%], the following relational expression is satisfied: 3.0≤A×(C/B)×D≤10.0.

Description

本発明は、リチウム二次電池、特に正極活物質粒子を含む正極活物質層が正極集電体上に保持された構造を有する正極を備えたタイプのリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery of a type including a positive electrode having a structure in which a positive electrode active material layer including positive electrode active material particles is held on a positive electrode current collector.

近年、リチウムイオン電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。   In recent years, lithium-ion batteries, nickel-metal hydride batteries, and other secondary batteries have become increasingly important as power sources for vehicles or as power sources for personal computers and portable terminals. In particular, a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.

この種のリチウム二次電池の一つの典型的な構成では、リチウムイオンを可逆的に吸蔵および放出し得る材料(電極活物質)が導電性部材(電極集電体)に保持された構成の電極を備える。例えば、正極に用いられる電極活物質(正極活物質)の一つとして、リチウムと一種または二種以上の遷移金属元素を構成金属元素として含む酸化物(リチウム遷移金属複合酸化物)が挙げられる。特に、リチウムとニッケルを構成金属元素として含むリチウムニッケル複合酸化物は、容量が比較的大きいことから、エネルギー密度を高めうるとともに負荷追従性も兼ね備える正極活物質として好ましく用いられている。しかし、リチウムニッケル複合酸化物等の正極活物質は、その表面において、空気中の水分と反応することで、LiOHを生成し、電極集電体として用いられるアルミニウム箔が腐食される。アルミニウム箔が腐食されると、抵抗増加を引き起こし、入出力特性が著しく低下するので好ましくない。また、環境条件の変動に応じて水分との反応量が変動するため、電池性能にバラツキが生じる要因にもなり得る。   In one typical configuration of this type of lithium secondary battery, an electrode having a configuration in which a material (electrode active material) capable of reversibly occluding and releasing lithium ions is held in a conductive member (electrode current collector) Is provided. For example, as one of the electrode active materials (positive electrode active materials) used for the positive electrode, an oxide (lithium transition metal composite oxide) containing lithium and one or more transition metal elements as constituent metal elements can be given. In particular, a lithium-nickel composite oxide containing lithium and nickel as constituent metal elements is preferably used as a positive electrode active material that can increase energy density and also have load followability because of its relatively large capacity. However, a positive electrode active material such as a lithium nickel composite oxide reacts with moisture in the air on the surface thereof to generate LiOH, and an aluminum foil used as an electrode current collector is corroded. When the aluminum foil is corroded, resistance is increased and input / output characteristics are remarkably deteriorated. In addition, since the amount of reaction with moisture varies according to the variation in environmental conditions, it may be a factor that causes variations in battery performance.

このような正極活物質と水分との反応抑制を目的として、正極活物質の表面を耐食性のある物質でコーティングすることが検討されている。例えば、特許文献1には、リチウム含有複合酸化物微粒子よりなる正極活物質(正極材)を含む正極を備えたリチウムイオン二次電池において、該リチウム含有複合酸化物微粒子の表面に、ポリフッ化ビニリデン等の撥水性物質の被膜を形成することが記載されている。この種の正極活物質表面の被膜材に関する他の従来技術としては、特許文献2等が挙げられる。   For the purpose of suppressing the reaction between the positive electrode active material and moisture, it has been studied to coat the surface of the positive electrode active material with a corrosion-resistant material. For example, in Patent Document 1, in a lithium ion secondary battery including a positive electrode including a positive electrode active material (positive electrode material) made of lithium-containing composite oxide fine particles, polyvinylidene fluoride is formed on the surface of the lithium-containing composite oxide fine particles. Forming a film of a water-repellent substance such as As another conventional technique regarding the coating material on the surface of this type of positive electrode active material, Patent Document 2 can be cited.

特開平11−224664号公報Japanese Patent Laid-Open No. 11-224664 特開2007−265668号公報JP 2007-265668 A

しかしながら、特許文献1のように、リチウム含有複合酸化物微粒子よりなる正極活物質を含む正極を備えたリチウムイオン二次電池において、該リチウム含有複合酸化物微粒子の表面にポリフッ化ビニリデン等の撥水性物質の被膜を形成すると、該ポリフッ化ビニリデン等の撥水性物質はそれ自体がリチウムイオン伝導の抵抗成分として働くため、正極活物質の反応性(リチウムイオンの挿入脱離反応の活性)が大幅に低下してしまう。すなわち、ポリフッ化ビニリデン等の撥水性物質の被膜を設けることによって正極活物質と水分との反応を抑制することはできるが、その背反として該被膜の存在によりリチウムイオンの挿入脱離反応が阻害されるため、該正極活物質を用いて構築されたリチウム二次電池の反応抵抗が増大して高出力型電池への応用が難しいという課題がある。   However, as in Patent Document 1, in a lithium ion secondary battery including a positive electrode including a positive electrode active material made of lithium-containing composite oxide fine particles, water repellency such as polyvinylidene fluoride is formed on the surface of the lithium-containing composite oxide fine particles. When a coating of the material is formed, the water-repellent material such as polyvinylidene fluoride itself acts as a resistance component for lithium ion conduction, so that the reactivity of the positive electrode active material (the activity of lithium ion insertion / release reaction) is greatly increased. It will decline. That is, by providing a coating of a water repellent material such as polyvinylidene fluoride, it is possible to suppress the reaction between the positive electrode active material and moisture, but on the contrary, the presence of the coating inhibits the lithium ion insertion and desorption reaction. Therefore, there is a problem that the reaction resistance of the lithium secondary battery constructed using the positive electrode active material is increased, making it difficult to apply to a high-power battery.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、電池の反応抵抗を増大させることなく、正極活物質と水分との反応を十分に抑制し得るリチウム二次電池を提供することである。   The present invention has been made in view of such points, and its main object is to provide a lithium secondary battery that can sufficiently suppress the reaction between the positive electrode active material and moisture without increasing the reaction resistance of the battery. It is to be.

本発明により提供される電池は、正極活物質粒子を含む正極を備えるリチウム二次電池である。上記正極活物質粒子は、その表面が撥水性樹脂により被覆されている。ここで、上記撥水性樹脂により被覆されている正極活物質粒子の平均粒径(メジアン径:d50)をA[μm]、その質量をB[g]とし、かつ、該正極活物質粒子を被覆している撥水性樹脂被膜の質量をC[g]、該撥水性樹脂の結晶化度をD[%]としたとき、3.0≦A×(C/B)×D≦10.0なる関係式を満たすことを特徴とする。   The battery provided by the present invention is a lithium secondary battery including a positive electrode including positive electrode active material particles. The surface of the positive electrode active material particles is coated with a water-repellent resin. Here, the average particle diameter (median diameter: d50) of the positive electrode active material particles coated with the water-repellent resin is A [μm], the mass is B [g], and the positive electrode active material particles are coated. When the mass of the water-repellent resin coating is C [g] and the crystallinity of the water-repellent resin is D [%], 3.0 ≦ A × (C / B) × D ≦ 10.0 It is characterized by satisfying the relational expression.

ここで上記式中の「A×(C/B)」は、正極活物質粒子を被覆している撥水性樹脂被膜の厚みに相当するパラメータであり、その値が大きいほど撥水性樹脂被膜が厚く、水分やCOが透過しにくくなるが、同時に該被膜のリチウムイオン透過性も低下する。また上記式中の「D」は、撥水性樹脂の結晶化度を表すパラメータであり、その値が大きいほど撥水性樹脂被膜の結晶性が向上し、水分やCOが透過しにくくなるが、同時に該被膜のリチウムイオン透過性も低下する。 Here, “A × (C / B)” in the above formula is a parameter corresponding to the thickness of the water-repellent resin film covering the positive electrode active material particles, and the larger the value, the thicker the water-repellent resin film. Moisture and CO 2 are difficult to permeate, but at the same time the lithium ion permeability of the coating is also reduced. “D” in the above formula is a parameter representing the crystallinity of the water-repellent resin, and the larger the value, the better the crystallinity of the water-repellent resin film, making it difficult for moisture and CO 2 to pass through. At the same time, the lithium ion permeability of the coating also decreases.

本発明の構成によれば、正極活物質粒子の表面を撥水性樹脂でコーティングしているので、正極活物質と水分とCOとの反応を好ましく抑制することができる。その際、撥水性樹脂被膜が薄すぎたり撥水性樹脂の結晶化度が小さすぎたりすると(典型的には「A×(C/B)×D」の値が3.0を下回る場合)、撥水性樹脂被膜を水分やCOが透過するため、正極活物質と水分とCOとの反応を十分に抑制できない。一方、撥水性樹脂被が厚すぎたり撥水性樹脂の結晶化度が大きすぎたりすると(典型的には「A×(C/B)×D」の値が10.0を上回る場合)、水分やCOの透過を抑制することはできるが、同時にリチウムイオン透過性も低下するため、リチウムイオンの挿入脱離反応が阻害されてしまう。これらの事象は、いずれも電池の反応抵抗を増大させ、性能劣化を引き起こす要因になり得る。 According to the configuration of the present invention, since the surfaces of the positive electrode active material particles are coated with the water-repellent resin, the reaction between the positive electrode active material, moisture, and CO 2 can be preferably suppressed. At that time, if the water-repellent resin film is too thin or the crystallinity of the water-repellent resin is too small (typically when the value of “A × (C / B) × D” is less than 3.0), Since moisture and CO 2 permeate through the water-repellent resin film, the reaction between the positive electrode active material, moisture and CO 2 cannot be sufficiently suppressed. On the other hand, if the water-repellent resin coating is too thick or the crystallinity of the water-repellent resin is too large (typically when the value of “A × (C / B) × D” exceeds 10.0), And the permeation of CO 2 can be suppressed, but at the same time, the lithium ion permeability is also lowered, so that the insertion / extraction reaction of lithium ions is inhibited. Any of these events can increase the reaction resistance of the battery and cause performance degradation.

これに対して、本発明のリチウム二次電池によれば、3.0≦A×(C/B)×D≦10.0の関係式を満足し、撥水性樹脂被膜の厚みと撥水性樹脂の結晶化度とが適度なバランスで調整されているので、良好なリチウムイオン透過性を備え、且つ、水分やCOの透過を好ましく抑制できる。そのため、撥水性樹脂被膜の存在によってリチウムイオンの挿入脱離反応が阻害されることなく、正極活物質と水とCOとの反応を確実に抑制することができる。このことによって従来よりも電池の反応抵抗を低下させることができ、性能劣化を改善することができる。 On the other hand, according to the lithium secondary battery of the present invention, the relational expression of 3.0 ≦ A × (C / B) × D ≦ 10.0 is satisfied, and the thickness of the water repellent resin film and the water repellent resin are satisfied. Therefore, the lithium ion permeability is good, and the permeation of moisture and CO 2 can be preferably suppressed. Therefore, the reaction between the positive electrode active material, water, and CO 2 can be reliably suppressed without inhibiting the lithium ion insertion / release reaction due to the presence of the water-repellent resin coating. As a result, the reaction resistance of the battery can be lowered as compared with the conventional case, and the performance deterioration can be improved.

ここに開示されるリチウム二次電池の好ましい一態様では、上記平均粒径Aと、上記質量B,Cとの間に、関係式0.05≦A×(C/B)≦0.20が成立する。この範囲よりも小さすぎると撥水性樹脂被膜によって正極活物質と水分との反応を十分に抑制できない場合があり、この範囲よりも大きすぎると撥水性樹脂被膜の存在によりリチウムイオンの挿入脱離反応が阻害されてしまう場合がある。ここに開示される好ましい技術では、上記正極活物質粒子の平均粒径Aが4μm〜8μmであり、上記撥水性樹脂被膜と上記正極活物質粒子との質量比(C/B)が0.01〜0.04である。
また好ましくは、撥水性樹脂の結晶化度Dが40%〜70%である。この範囲を下回ると正極活物質と水分とCOとの反応を十分に抑制できないことがあり、この範囲を上回ると撥水性樹脂被膜の存在によりリチウムイオンの挿入脱離反応が阻害されてしまうことがある。
In a preferred embodiment of the lithium secondary battery disclosed herein, the relational expression 0.05 ≦ A × (C / B) ≦ 0.20 is established between the average particle diameter A and the masses B and C. To establish. If it is smaller than this range, the reaction between the positive electrode active material and moisture may not be sufficiently suppressed by the water repellent resin film. If it is larger than this range, lithium ion insertion / desorption reaction may occur due to the presence of the water repellent resin film. May be disturbed. In the preferred technology disclosed herein, the average particle diameter A of the positive electrode active material particles is 4 μm to 8 μm, and the mass ratio (C / B) between the water-repellent resin film and the positive electrode active material particles is 0.01. ~ 0.04.
Preferably, the crystallinity D of the water repellent resin is 40% to 70%. Below this range, the reaction between the positive electrode active material, moisture, and CO 2 may not be sufficiently suppressed, and above this range, the lithium ion insertion / desorption reaction may be inhibited due to the presence of the water-repellent resin coating. There is.

上記正極活物質粒子を構成する材料としては、従来からリチウム二次電池に用いられる物質と同様の組成を有する材料(典型的には粒子状)の一種または二種以上を特に限定することなく使用することができる。好適例として、リチウムニッケル複合酸化物(LiNiO)、リチウムマンガン複合酸化物(LiMn)、リチウムコバルト複合酸化物(LiCoO)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質材料が挙げられる。 As the material constituting the positive electrode active material particles, one or two or more materials (typically particulate) having the same composition as the materials conventionally used in lithium secondary batteries are used without particular limitation. can do. As a preferred example, lithium and a transition metal element such as lithium nickel composite oxide (LiNiO 2 ), lithium manganese composite oxide (LiMn 2 O 4 ), and lithium cobalt composite oxide (LiCoO 2 ) are included as constituent metal elements. A positive electrode active material mainly containing an oxide (lithium transition metal oxide) can be given.

中でも、以下の一般式:
Li1+x(NiCoMn1−y−z−γγ)O
(但し、上記式中のx、y、z及びγは、0≦x≦0.2、0.3≦y≦1.0、0≦z≦0.5、0≦γ≦0.2、0.3≦y+z+γ≦1を全て満足する数であり、
Mは、存在しないか若しくF、B、Al、W、Mo、Cr、Ta、Nb、V、Zr、Ti、Yからなる群から選ばれる1種又は2種以上の元素である。)
で示されるリチウムニッケル複合酸化物への適用が好ましい。
Among them, the following general formula:
Li 1 + x (Ni y Co z Mn 1-y-z-γ M γ) O 2
(However, x, y, z and γ in the above formula are 0 ≦ x ≦ 0.2, 0.3 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.5, 0 ≦ γ ≦ 0.2, 0.3 ≦ y + z + γ ≦ 1 is satisfied.
M is one or two or more elements selected from the group consisting of F, B, Al, W, Mo, Cr, Ta, Nb, V, Zr, Ti, and Y which do not exist or are young. )
Application to a lithium nickel composite oxide represented by

特に、上記一般式中のyが0.5≦y≦1.0であり、0.5≦y+z+γ≦1を満足する数であることが好ましい。   In particular, y in the above general formula is preferably 0.5 ≦ y ≦ 1.0 and a number satisfying 0.5 ≦ y + z + γ ≦ 1.

このようなNiの組成比が高いリチウムニッケル複合酸化物を主成分とする正極活物質は、正極活物質と水分とCOとの反応が生じやすいことから、本発明を適用することが特に有益である。なお、正極活物質として例えばLiNiOを用いる場合、正極活物質と水分とCOとの反応は2段階で起こると考えられる。まず、1段階目のLiNiO+HO→NiOOH+LiOHの反応によりLiOHが生成し、これが正極集電体として用いられるアルミニウム箔を腐食するため、抵抗増加を引き起こす。次いで、2段階目の2LiOH+CO→LiCO+HOの反応によりLiCOが生成し、これが正極活物質表面を覆うことで、リチウムイオンの挿入脱離反応が阻害されるため、さらなる抵抗増加を引き起こす。本発明を適用すれば、上記のような正極活物質と水分とCOとの反応による抵抗増加を確実に抑制でき、高性能なリチウム二次電池を構築し得る。
なお、本明細書中のリチウムニッケル複合酸化物を示す化学式では、便宜上、O(酸素)の組成比を2として示しているが厳密ではなく、多少の組成の変動(典型的には1.95以上2.05以下の範囲に包含される)を許容するものである。
The positive electrode active material mainly composed of a lithium nickel composite oxide having such a high Ni composition ratio is likely to cause a reaction between the positive electrode active material, moisture, and CO 2 , so that the present invention is particularly useful. It is. Note that, for example, when LiNiO 2 is used as the positive electrode active material, the reaction between the positive electrode active material, moisture, and CO 2 is considered to occur in two stages. First, LiOH is generated by the reaction of LiNiO 2 + H 2 O → NiOOH + LiOH in the first stage, and this corrodes the aluminum foil used as the positive electrode current collector, causing an increase in resistance. Next, Li 2 CO 3 is generated by the reaction of 2LiOH + CO 2 → Li 2 CO 3 + H 2 O in the second stage, and this covers the surface of the positive electrode active material, thereby inhibiting the lithium ion insertion / desorption reaction. Causes further resistance increase. By applying the present invention, an increase in resistance due to the reaction between the positive electrode active material, moisture, and CO 2 as described above can be reliably suppressed, and a high-performance lithium secondary battery can be constructed.
Note that in the chemical formula showing the lithium nickel composite oxide in this specification, the composition ratio of O (oxygen) is shown as 2 for convenience, but it is not strict, and some compositional variation (typically 1.95). Included in the range of 2.05 or less).

ここに開示されるリチウム二次電池の好ましい一態様では、上記撥水性樹脂は、ポリフッ化ビニリデン系樹脂である。ポリフッ化ビニリデン系樹脂は、リチウムイオン伝導性が比較的高いため、その被膜の存在によってリチウムイオンの挿入脱離が阻害されにくく、特に好適である。   In a preferred embodiment of the lithium secondary battery disclosed herein, the water repellent resin is a polyvinylidene fluoride resin. Polyvinylidene fluoride-based resins are particularly suitable because lithium ion conductivity is relatively high, and the presence of the coating hardly inhibits insertion / extraction of lithium ions.

ここに開示されるいずれかのリチウム二次電池(例えばリチウムイオン電池)は、上記したように、従来よりも電池の反応抵抗を低下させることができるため、特にハイレート充放電が要求される車両に搭載される電池として適した性能を備える。したがって本発明によると、ここに開示されるいずれかのリチウム二次電池(複数のリチウム二次電池が接続された組電池の形態であり得る。)を備える車両が提供される。特に、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。   As described above, any of the lithium secondary batteries (for example, lithium ion batteries) disclosed herein can lower the reaction resistance of the battery as compared with the conventional battery, and therefore, particularly for vehicles that require high-rate charge / discharge. It has performance suitable as a battery to be installed. Therefore, according to the present invention, there is provided a vehicle including any of the lithium secondary batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of lithium secondary batteries are connected). In particular, a vehicle (for example, an automobile) including the lithium secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.

本発明の一実施形態に係る被膜付き正極活物質粒子を模式的に示す図である。It is a figure which shows typically the positive electrode active material particle with a film concerning one embodiment of the present invention. 本発明の一実施形態に係るリチウム二次電池を模式的に示す図である。It is a figure which shows typically the lithium secondary battery which concerns on one Embodiment of this invention. 一試験例において製造したPVDF被膜付き正極活物質粉末の熱質量分析結果の一例を示すグラフである。It is a graph which shows an example of the thermal-mass-analysis result of the positive electrode active material powder with a PVDF film manufactured in one test example. 一試験例において製造したPVDF被膜付き正極活物質粉末の示差熱走査熱量測定結果の一例を示すグラフである。It is a graph which shows an example of the differential thermal scanning calorimetry result of the positive electrode active material powder with a PVDF film manufactured in one test example. 一試験例において製造したPVDF被膜付き正極活物質粉末のX=A×(C/B)×Dの値とLiCO量および反応抵抗比との関係を表わすグラフである。Is a graph showing the relationship between X = A × a PVDF film with the positive electrode active material powder produced (C / B) × values and Li 2 CO 3 amount and reaction resistance ratio of D in one test example. 一試験例において製造したラミネートセル(試験用リチウム二次電池)を模式的に示す側面図である。It is a side view which shows typically the laminate cell (lithium secondary battery for a test) manufactured in one test example. 本発明の一実施形態に係るリチウム二次電池を備えた車両を模式的に示す側面図である。It is a side view showing typically a vehicle provided with a lithium secondary battery concerning one embodiment of the present invention.

以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解質の構成および製法、リチウム二次電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, members / parts having the same action are described with the same reference numerals. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than the matters specifically mentioned in the present specification and matters necessary for carrying out the present invention (for example, the configuration and manufacturing method of an electrode body including a positive electrode and a negative electrode, the configuration and manufacturing method of a separator and an electrolyte, The general technology related to the construction of the lithium secondary battery, etc.) can be grasped as a design matter of those skilled in the art based on the prior art in the field.

ここに開示されるリチウム二次電池は、図1に示すように、正極活物質粒子10を含む正極を備えるリチウム二次電池である。正極活物質粒子10は、その表面が撥水性樹脂12により被覆されている。ここで、撥水性樹脂12により被覆されている正極活物質粒子10の平均粒径(メジアン径:d50)をA[μm]、その質量をB[g]とし、該正極活物質粒子を被覆している撥水性樹脂被膜の質量をC[g]、該撥水性樹脂の結晶化度をD[%]としたとき、3.0≦A×(C/B)×D≦10.0なる関係式を満たすことを特徴とする。ここで、上記式中の「A×(C/B)」は、撥水性樹脂被膜12の厚みに相当するパラメータであり、その値が大きいほど撥水性樹脂被膜が厚く、水分やCOが透過しにくくなるが、同時にリチウムイオン透過性が低下する。また上記式中の「D」は、撥水性樹脂の結晶化度を表すパラメータであり、その値が大きいほど撥水性樹脂被膜の結晶性が向上し、水分やCOが透過しにくくなるが、同時にリチウムイオン透過性が低下する。 As shown in FIG. 1, the lithium secondary battery disclosed herein is a lithium secondary battery including a positive electrode including positive electrode active material particles 10. The surfaces of the positive electrode active material particles 10 are covered with a water repellent resin 12. Here, the average particle diameter (median diameter: d50) of the positive electrode active material particles 10 coated with the water-repellent resin 12 is A [μm] and the mass thereof is B [g], and the positive electrode active material particles are coated. When the mass of the water-repellent resin film is C [g] and the crystallinity of the water-repellent resin is D [%], a relationship of 3.0 ≦ A × (C / B) × D ≦ 10.0 It is characterized by satisfying the formula. Here, “A × (C / B)” in the above formula is a parameter corresponding to the thickness of the water-repellent resin coating 12, and the larger the value is, the thicker the water-repellent resin coating is, and moisture and CO 2 are transmitted. At the same time, the lithium ion permeability decreases. “D” in the above formula is a parameter representing the crystallinity of the water-repellent resin, and the larger the value, the better the crystallinity of the water-repellent resin film, making it difficult for moisture and CO 2 to pass through. At the same time, the lithium ion permeability decreases.

このように3.0≦A×(C/B)×D≦10.0の関係式を満足し、撥水性樹脂被膜12の厚みと撥水性樹脂の結晶化度とが適度なバランスで調整されているリチウム二次電池は、撥水性樹脂被膜12が良好なリチウムイオン透過性を備え、且つ、水分やCOの透過が十分に抑制されるため、撥水性樹脂被膜によってリチウムイオンの挿入脱離反応が阻害されることなく、正極活物質10と水とCOとの反応を確実に抑制することができる。このことによって従来よりも電池の反応抵抗を低下させることができ、電池の性能劣化を改善することができる。 Thus, the relational expression of 3.0 ≦ A × (C / B) × D ≦ 10.0 is satisfied, and the thickness of the water repellent resin film 12 and the crystallinity of the water repellent resin are adjusted with an appropriate balance. In the lithium secondary battery, the water-repellent resin coating 12 has good lithium ion permeability and the permeation of moisture and CO 2 is sufficiently suppressed. The reaction between the positive electrode active material 10, water, and CO 2 can be reliably suppressed without inhibiting the reaction. As a result, the reaction resistance of the battery can be reduced as compared with the conventional case, and the performance deterioration of the battery can be improved.

例えば、本構成によって提供される撥水性樹脂被膜付き正極活物質粒子としては、3.0≦A×(C/B)×D≦10.0を満足するものが好ましく、4.0≦A×(C/B)×D≦9.0を満足するものがさらに好ましく、5.0≦A×(C/B)×D≦8.0を満足するものが特に好ましい。その一方で、「A×(C/B)×D」が10.0を上回る場合は、撥水性樹脂被膜が厚すぎたり撥水性樹脂の結晶化度が大きすぎたりするので、水分やCOの透過を抑制することはできるが、同時にリチウムイオン透過性が低下する。そのため、リチウムイオンの挿入脱離反応が阻害され、電池の反応抵抗を増大させる要因になり得る。
また、「A×(C/B)×D」が3.0を下回る場合は、撥水性樹脂被膜が薄すぎたり撥水性樹脂の結晶化度が小さすぎたりするので、該被膜を水分やCOが透過しやすくなる。そのため、正極活物質と水分とCOとの反応を十分に抑制できない。また、環境条件の変動に応じて水分及びCOとの反応量も変動するため、電池性能にバラツキが生じる要因になり得る。従って、低抵抗かつ性能バラツキのないリチウム二次電池を実現する観点からも、「A×(C/B)×D」は3.0以上が適当であり、好ましくは4.0以上であり、特に好ましくは5.0以上である。
For example, the positive electrode active material particles with a water-repellent resin coating provided by this configuration preferably satisfy 3.0 ≦ A × (C / B) × D ≦ 10.0, 4.0 ≦ A × Those satisfying (C / B) × D ≦ 9.0 are more preferable, and those satisfying 5.0 ≦ A × (C / B) × D ≦ 8.0 are particularly preferable. On the other hand, if the "A × (C / B) × D " exceeds 10.0, the crystallinity of the water-repellent resin or too thick water-repellent resin film is too large, water and CO 2 Can be suppressed, but at the same time, lithium ion permeability is lowered. Therefore, the insertion / extraction reaction of lithium ions is hindered, which can be a factor that increases the reaction resistance of the battery.
When “A × (C / B) × D” is less than 3.0, the water-repellent resin film is too thin or the crystallinity of the water-repellent resin is too small. 2 is easily transmitted. Therefore, the reaction between the positive electrode active material, moisture, and CO 2 cannot be sufficiently suppressed. In addition, since the amount of reaction with moisture and CO 2 varies according to the variation in environmental conditions, it can be a factor that causes variations in battery performance. Therefore, from the viewpoint of realizing a lithium secondary battery with low resistance and no performance variation, “A × (C / B) × D” is suitably 3.0 or more, preferably 4.0 or more, Most preferably, it is 5.0 or more.

ここに開示される好ましい一態様では、正極活物質粒子の平均粒径Aと、撥水性樹脂被膜と正極活物質粒子との質量比(C/B)との間に、関係式0.05≦A×(C/B)≦0.20が成立する。この範囲を下回ると正極活物質と水との反応を十分に抑制できない場合があり、この範囲を上回ると撥水性樹脂被膜のリチウムイオン透過性が低下しすぎる場合がある。好ましくは正極活物質粒子の平均粒径Aが4μm〜8μmの範囲であり、好ましくは撥水性樹脂被膜と正極活物質粒子との質量比(C/B)が0.01〜0.04の範囲である。また好ましくは、撥水性樹脂の結晶化度Dが40%〜70%(より好ましくは40%〜65%)である。この範囲を下回ると撥水性樹脂被膜によって正極活物質と水とCOとの反応を十分に抑制できない場合があり、この範囲を上回ると撥水性樹脂被膜の存在によりリチウムイオンの挿入脱離反応が阻害されてしまう場合がある。 In a preferred embodiment disclosed herein, there is a relational expression 0.05 ≦ between the average particle diameter A of the positive electrode active material particles and the mass ratio (C / B) of the water repellent resin coating to the positive electrode active material particles. A × (C / B) ≦ 0.20 is established. If it is below this range, the reaction between the positive electrode active material and water may not be sufficiently suppressed, and if it exceeds this range, the lithium ion permeability of the water-repellent resin film may be too low. Preferably, the average particle diameter A of the positive electrode active material particles is in the range of 4 μm to 8 μm, and preferably the mass ratio (C / B) of the water repellent resin coating to the positive electrode active material particles is in the range of 0.01 to 0.04. It is. Also preferably, the crystallinity D of the water repellent resin is 40% to 70% (more preferably 40% to 65%). Below this range, the reaction between the positive electrode active material, water, and CO 2 may not be sufficiently suppressed by the water-repellent resin coating. When this range is exceeded, lithium ion insertion and desorption reactions may occur due to the presence of the water-repellent resin coating. It may be obstructed.

ここで開示される正極活物質粒子を構成する材料としては、従来からリチウム二次電池に用いられる物質と同様の組成を有する材料(典型的には粒子状)の一種または二種以上を特に限定することなく使用することができる。好適例として、リチウムニッケル複合酸化物(LiNiO)、リチウムマンガン複合酸化物(LiMn)、リチウムコバルト複合酸化物(LiCoO)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質材料が挙げられる。リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)を主成分とする正極活物質(典型的には、実質的にリチウムニッケルコバルトマンガン複合酸化物からなる正極活物質)へも好ましく適用し得る。 The material constituting the positive electrode active material particles disclosed herein is particularly limited to one or more materials (typically in particulate form) having the same composition as the materials conventionally used in lithium secondary batteries. Can be used without. As a preferred example, lithium and a transition metal element such as lithium nickel composite oxide (LiNiO 2 ), lithium manganese composite oxide (LiMn 2 O 4 ), and lithium cobalt composite oxide (LiCoO 2 ) are included as constituent metal elements. A positive electrode active material mainly containing an oxide (lithium transition metal oxide) can be given. Positive electrode active material (typically substantially composed of lithium nickel cobalt manganese composite oxide) mainly composed of lithium nickel cobalt manganese composite oxide (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) It can be preferably applied to a positive electrode active material.

中でも、一般式Li1+x(NiCoMn1−y−z−γγ)Oで示されるリチウムニッケル複合酸化物への適用が好ましい。ここで、上記式中のxの値は0≦x≦0.2であり、yの値は0.3≦y≦1.0であり、zの値は0≦z≦0.5であり、γの値は0≦γ≦0.2であり、0.3≦y+z+γ≦1である。特に、上記一般式中のyが0.5≦y≦1.0であり、0.5≦y+z+γ≦1を満足する数であることが好ましい。このようなNiの組成比が高いリチウムニッケル複合酸化物を主成分とする正極活物質は、正極活物質と水分とCOとの反応が生じやすいことから、本構成を適用することが特に有益である。なお、正極活物質として例えばLiNiOを用いる場合、正極活物質と水分とCOとの反応は2段階で起こると考えられる。まず、1段階目のLiNiO+HO→NiOOH+LiOHの反応によりLiOHが生成し、これが正極集電体として用いられるアルミニウム箔を腐食するため、抵抗増加を引き起こす。次いで、2段階目の2LiOH+CO→LiCO+HOの反応によりLiCOが生成し、これが正極活物質表面を覆うことで、リチウムイオンの挿入脱離反応が阻害されるため、さらなる抵抗増加を引き起こす。本構成を適用すれば、上記のような正極活物質と水分とCOとの反応による抵抗増加を確実に抑制でき、高性能なリチウム二次電池を構築し得る。 Among these, application to a lithium nickel composite oxide represented by the general formula Li 1 + x (Ni y Co z Mn 1-yz-γ M γ ) O 2 is preferable. Here, the value of x in the above formula is 0 ≦ x ≦ 0.2, the value of y is 0.3 ≦ y ≦ 1.0, and the value of z is 0 ≦ z ≦ 0.5. , Γ is 0 ≦ γ ≦ 0.2, and 0.3 ≦ y + z + γ ≦ 1. In particular, y in the above general formula is preferably 0.5 ≦ y ≦ 1.0 and a number satisfying 0.5 ≦ y + z + γ ≦ 1. Since the positive electrode active material mainly composed of a lithium nickel composite oxide having a high Ni composition ratio is likely to cause a reaction between the positive electrode active material, moisture, and CO 2 , it is particularly beneficial to apply this configuration. It is. Note that, for example, when LiNiO 2 is used as the positive electrode active material, the reaction between the positive electrode active material, moisture, and CO 2 is considered to occur in two stages. First, LiOH is generated by the reaction of LiNiO 2 + H 2 O → NiOOH + LiOH in the first stage, and this corrodes the aluminum foil used as the positive electrode current collector, causing an increase in resistance. Next, Li 2 CO 3 is generated by the reaction of 2LiOH + CO 2 → Li 2 CO 3 + H 2 O in the second stage, and this covers the surface of the positive electrode active material, thereby inhibiting the lithium ion insertion / desorption reaction. Causes further resistance increase. When this configuration is applied, an increase in resistance due to the reaction between the positive electrode active material, moisture, and CO 2 as described above can be reliably suppressed, and a high-performance lithium secondary battery can be constructed.

なお、ここでいうリチウムニッケル複合酸化物とは、上記一般式で示されるように、Li及びNiを構成金属元素とする酸化物のほか、Li及びNi以外に他の少なくとも一種の金属元素(すなわち、Li及びNi以外の遷移金属元素および/または典型金属元素)を含む酸化物をも包含する意味である。かかる金属元素は、典型的にはCo及びMnである。また、かかる金属元素は、Co及びMnのほかに、F、B、Al、W、Mo、Cr、Ta、Nb、V、Zr、Ti及びYからなる群から選択される一種または二種以上の元素であり得る。   Note that the lithium nickel composite oxide here is an oxide having Li and Ni as constituent metal elements, as shown by the above general formula, and at least one other metal element in addition to Li and Ni (that is, , Oxides containing transition metal elements and / or typical metal elements other than Li and Ni). Such metallic elements are typically Co and Mn. In addition to Co and Mn, the metal element is one or more selected from the group consisting of F, B, Al, W, Mo, Cr, Ta, Nb, V, Zr, Ti, and Y. Can be an element.

このようなリチウム遷移金属酸化物を主成分する正極活物質粒子は、上記したような撥水性樹脂でコーティングされている点を除いては、従来公知のリチウム遷移金属酸化物粉末を構成する粒子と同様の性状(外形)であり得る。ここに開示される正極活物質粒子は、例えば、平均粒径が凡そ2μm〜10μmの範囲(特に好ましくは4μm〜8μmの範囲)にある二次粒子(リチウム遷移金属酸化物からなる微粒子が多数凝集して形成された粒状粉末)によって実質的に構成されたリチウム遷移金属酸化物からなる正極活物質粒子であり得る。   The positive electrode active material particles containing such a lithium transition metal oxide as a main component are particles constituting a conventionally known lithium transition metal oxide powder, except that the positive electrode active material particles are coated with a water-repellent resin as described above. It can be the same property (outer shape). The positive electrode active material particles disclosed herein are, for example, secondary particles (a number of fine particles made of a lithium transition metal oxide are aggregated) having an average particle size in the range of about 2 μm to 10 μm (particularly preferably in the range of 4 μm to 8 μm). Positive electrode active material particles substantially composed of a lithium transition metal oxide substantially composed of a granular powder formed as described above.

ここで開示される撥水性樹脂被膜を構成する材料としては特に限定されずに幅広く使用することができるが、中でもリチウムイオン伝導性が比較的高いものが好ましい。好適例として、ポリフッ化ビニリデン系樹脂が挙げられる。ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンのモノマーを1種類で重合した単独重合体(PVDF)が好ましく用いられる。また、ポリフッ化ビニリデン系樹脂は、フッ化ビニリデンと共重合可能なビニル系単量体との共重合体であってもよい。フッ化ビニリデンと共重合可能なビニル系単量体としては、ヘキサフルオロプロピレン、テトラフルオロエチレンおよび三塩化フッ化エチレン等が例示される。さらに、上記単独重合体及び共重合体の2種類以上を混合したものであってもよい。ポリフッ化ビニリデン系樹脂に代えて、ポリアクリロニトリル、ポリアミドイミド等の樹脂材料を用いることもできる。   The material constituting the water-repellent resin film disclosed herein is not particularly limited and can be widely used. Among them, a material having relatively high lithium ion conductivity is preferable. A preferred example is a polyvinylidene fluoride resin. As the polyvinylidene fluoride resin, a homopolymer (PVDF) obtained by polymerizing one kind of vinylidene fluoride monomer is preferably used. The polyvinylidene fluoride resin may be a copolymer of a vinyl monomer copolymerizable with vinylidene fluoride. Examples of vinyl monomers copolymerizable with vinylidene fluoride include hexafluoropropylene, tetrafluoroethylene, and ethylene trichloride fluoride. Further, a mixture of two or more of the above homopolymers and copolymers may be used. Instead of the polyvinylidene fluoride resin, resin materials such as polyacrylonitrile and polyamideimide can be used.

続いて、正極活物質粒子を撥水性樹脂で被覆する方法について説明する。上記撥水性樹脂被膜付き正極活物質粒子は、正極活物質粒子と撥水性樹脂とを適当な溶媒に分散混合したスラリー状(ペースト状またはインク状を含む。以下同じ。)の混合物を作製し、これを適当な温度で乾燥することにより得ることができる。上記スラリー状混合物の混練は、例えばプラネタリーミキサー等を使用して行うことができる。   Next, a method for coating the positive electrode active material particles with a water repellent resin will be described. The positive electrode active material particles with a water-repellent resin coating are prepared as a slurry-like mixture (including paste or ink, the same applies hereinafter) in which positive electrode active material particles and water-repellent resin are dispersed and mixed in an appropriate solvent. This can be obtained by drying at an appropriate temperature. The kneading of the slurry mixture can be performed using, for example, a planetary mixer.

上記スラリー状混合物に用いられる溶媒としては、N‐メチルピロリドン(NMP)、ピロリドン、メチルエチルケトン、メチルイソブチルケトン、シクサヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、等の有機系溶剤またはこれらの2種以上の組み合わせが挙げられる。あるいは、水または水を主体とする混合溶媒であってもよい。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。スラリー状混合物における溶媒の含有率は特に限定されないが、スラリー全体の30〜80質量%程度が好ましい。   Examples of the solvent used in the slurry mixture include organic solvents such as N-methylpyrrolidone (NMP), pyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, ixahexanone, toluene, dimethylformamide, and dimethylacetamide, or two or more thereof. The combination of is mentioned. Alternatively, water or a mixed solvent mainly composed of water may be used. As a solvent other than water constituting such a mixed solvent, one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used. Although the content rate of the solvent in a slurry-like mixture is not specifically limited, About 30-80 mass% of the whole slurry is preferable.

ここで前述のとおり、ここで開示される撥水性樹脂被膜付き正極活物質粒子は、正極活物質粒子の平均粒径をA[μm]、その質量をB[g]とし、撥水性樹脂被膜の質量をC[g]、該撥水性樹脂の結晶化度をD[%]としたとき、3.0≦A×(C/B)×D≦10.0の関係式を満足するものであり得る。   Here, as described above, the positive electrode active material particles with a water-repellent resin coating disclosed herein have an average particle diameter of the positive electrode active material particles of A [μm] and a mass of B [g]. When the mass is C [g] and the crystallinity of the water-repellent resin is D [%], the relational expression of 3.0 ≦ A × (C / B) × D ≦ 10.0 is satisfied. obtain.

上述した関係式のうち、正極活物質粒子の平均粒径(A)は、スラリー状混合物に添加する正極活物質粒子の平均粒径を変えることによって調整することができる。すなわち、スラリー状混合物に添加する正極活物質粒子の平均粒径を適切に選択することによって、撥水性樹脂により被覆されている正極活物質粒子の平均粒径(A)をここに開示される好適な範囲に調整することができる。好ましくは、平均粒径が4μm〜8μm程度の微粒子形態の正極活物質粉末を添加してスラリー状混合物を作製するとよい。なお、ここでの平均粒径はメジアン径(d50)をいい、市販されている種々のレーザー回折/散乱法に基づく粒度分布測定装置によって容易に測定することができる。   Among the above-described relational expressions, the average particle diameter (A) of the positive electrode active material particles can be adjusted by changing the average particle diameter of the positive electrode active material particles added to the slurry mixture. That is, the average particle diameter (A) of the positive electrode active material particles coated with the water repellent resin is appropriately disclosed by appropriately selecting the average particle diameter of the positive electrode active material particles added to the slurry mixture. Can be adjusted within a wide range. Preferably, a positive electrode active material powder in the form of fine particles having an average particle diameter of about 4 μm to 8 μm is added to prepare a slurry mixture. Here, the average particle diameter refers to the median diameter (d50), and can be easily measured by a particle size distribution measuring apparatus based on various commercially available laser diffraction / scattering methods.

また上述した関係式のうち、撥水性樹脂被膜と正極活物質粒子との質量比(C/B)は、スラリー状混合物に添加する撥水性樹脂の配合量(撥水性樹脂/正極活物質粒子の配合比)を変えることによって調整することができる。一般にスラリー状混合物に添加する撥水性樹脂の配合量(撥水性樹脂/正極活物質粒子の配合比)が増えるほど、撥水性樹脂被膜と正極活物質粒子との質量比(C/B)が増大する。したがって、スラリー状混合物に添加する撥水性樹脂の配合量(撥水性樹脂と正極活物質粒子との配合比)を適切に選択することによって、撥水性樹脂被膜と正極活物質粒子との質量比(C/B)をここに開示される好適な範囲に調整することができる。好ましくは、撥水性樹脂被膜と正極活物質粒子との質量比(C/B)が0.01〜0.04となるように、撥水性樹脂の配合量(撥水性樹脂/正極活物質粒子の配合比)を適切に選択してスラリー状混合物を作製するとよい。なお、撥水性樹脂被膜と正極活物質粒子との質量比(C/B)は、例えば、撥水性樹脂被膜を加熱分解したときの熱重量分析(TGA)に基づく質量減少率から容易に把握することができる。   In the relational expression described above, the mass ratio (C / B) between the water-repellent resin coating and the positive electrode active material particles is the blending amount of the water-repellent resin (water repellent resin / positive electrode active material particles) added to the slurry mixture. It can be adjusted by changing the blending ratio. Generally, as the blending amount of the water repellent resin added to the slurry mixture (mixing ratio of the water repellent resin / positive electrode active material particles) increases, the mass ratio (C / B) between the water repellent resin coating and the positive electrode active material particles increases. To do. Therefore, by appropriately selecting the blending amount of the water-repellent resin (mixing ratio of the water-repellent resin and the positive electrode active material particles) to be added to the slurry mixture, the mass ratio of the water-repellent resin film and the positive electrode active material particles ( C / B) can be adjusted to the preferred range disclosed herein. Preferably, the blended amount of water repellent resin (water repellent resin / positive electrode active material particles) so that the mass ratio (C / B) between the water repellent resin coating and the positive electrode active material particles is 0.01 to 0.04. A slurry-like mixture may be prepared by appropriately selecting a blending ratio). The mass ratio (C / B) between the water-repellent resin coating and the positive electrode active material particles can be easily grasped from, for example, the mass reduction rate based on thermogravimetric analysis (TGA) when the water-repellent resin coating is thermally decomposed. be able to.

また上述した関係式のうち、撥水性樹脂の結晶化度(D)は、スラリー状混合物を乾燥するときの乾燥条件(乾燥温度や乾燥時間等)を変えることによって調整することができる。すなわち、スラリー状混合物の乾燥条件(乾燥温度や乾燥時間等)は撥水性樹脂の結晶化度(D)を制御するという観点から一つの重要なファクターである。スラリー状混合物の乾燥条件(乾燥温度や乾燥時間等)を適切に選択することによって、撥水性樹脂の結晶化度(D)をここに開示される好適な範囲に調整することができる。好ましくは、スラリー状混合物の乾燥温度を110℃〜160℃(より好ましくは140℃〜160℃)の範囲内に決定するとよい。これにより、スラリー状混合物を乾燥した際に撥水性樹脂の結晶化度(D)が40%〜70%(より好ましくは40%〜65%)となる撥水性樹脂被膜付き正極活物質粒子を形成することができる。なお、撥水性樹脂の結晶化度(D)は、例えば、市販されている示差熱走査熱量測定(DSC)装置による融解熱測定によって容易に把握することができる。
上記のような乾燥処理により得られた乾燥凝集物を、好ましくは冷却後、乳鉢等で軽く粉砕することによって、撥水性樹脂被膜付き正極活物質粒子を得ることができる。
Of the above-described relational expressions, the crystallinity (D) of the water-repellent resin can be adjusted by changing the drying conditions (drying temperature, drying time, etc.) when the slurry-like mixture is dried. That is, the drying conditions (drying temperature, drying time, etc.) of the slurry mixture are one important factor from the viewpoint of controlling the crystallinity (D) of the water-repellent resin. By appropriately selecting the drying conditions (drying temperature, drying time, etc.) of the slurry-like mixture, the crystallinity (D) of the water-repellent resin can be adjusted to a suitable range disclosed herein. Preferably, the drying temperature of the slurry-like mixture may be determined within the range of 110 ° C to 160 ° C (more preferably 140 ° C to 160 ° C). Thereby, when the slurry-like mixture is dried, positive electrode active material particles with a water-repellent resin film are formed so that the crystallinity (D) of the water-repellent resin is 40% to 70% (more preferably 40% to 65%). can do. The crystallinity (D) of the water repellent resin can be easily grasped by, for example, measurement of heat of fusion using a commercially available differential thermal scanning calorimetry (DSC) apparatus.
The dried agglomerates obtained by the drying treatment as described above are preferably cooled and then lightly pulverized in a mortar or the like to obtain positive electrode active material particles with a water-repellent resin coating.

なお、ここに開示される技術によると、上記3.0≦A×(C/B)×D≦10.0の関係式を満たすように調製された撥水性樹脂被膜付き正極活物質粒子を含む正極を備えるリチウム二次電池を製造する方法が提供され得る。
その製造方法は、上記3.0≦A×(C/B)×D≦10.0の関係式を満たすように調製された撥水性樹脂被膜付き正極活物質粒子を形成すること;および、
上記撥水性樹脂被膜付き正極活物質粒子を含む正極を用いてリチウム二次電池を構築すること;
を包含する。
In addition, according to the technique disclosed here, the positive electrode active material particles with a water-repellent resin coating prepared so as to satisfy the relational expression of 3.0 ≦ A × (C / B) × D ≦ 10.0 are included. A method for manufacturing a lithium secondary battery including a positive electrode may be provided.
The manufacturing method includes forming positive electrode active material particles with a water-repellent resin coating prepared so as to satisfy the relational expression of 3.0 ≦ A × (C / B) × D ≦ 10.0; and
Constructing a lithium secondary battery using a positive electrode containing the positive electrode active material particles with the water-repellent resin coating;
Is included.

ここで、上記3.0≦A×(C/B)×D≦10.0の関係式を満たすように調製された撥水性樹脂被膜付き正極活物質粒子は、スラリー状混合物に添加する正極活物質粒子の平均粒径(メジアン径:d50)、スラリー状混合物に添加する撥水性樹脂の配合量(撥水性樹脂/正極活物質粒子の配合比)、スラリー状混合物を乾燥するときの乾燥条件(乾燥温度など)のうちの少なくとも何れかを上記適切な範囲が実現されるように設定し、その設定された条件に沿って撥水性樹脂被膜付き正極活物質粒子を形成することにより得られる。   Here, the positive electrode active material particles with a water-repellent resin film prepared so as to satisfy the relational expression of 3.0 ≦ A × (C / B) × D ≦ 10.0 are positive electrode active materials added to the slurry mixture. Average particle diameter (median diameter: d50) of material particles, blending amount of water repellent resin added to slurry mixture (mixing ratio of water repellent resin / positive electrode active material particles), drying conditions for drying slurry mixture ( At least one of the drying temperature and the like is set so that the appropriate range is realized, and the positive electrode active material particles with a water-repellent resin coating are formed according to the set conditions.

したがって、ここに開示される事項には、上記3.0≦A×(C/B)×D≦10.0の関係式を満たすように調製された撥水性樹脂被膜付き正極活物質粒子を含む正極を備えるリチウム二次電池を製造する方法であって、スラリー状混合物に添加する正極活物質粒子の平均粒径(メジアン径:d50)、スラリー状混合物に添加する撥水性樹脂の配合量(撥水性樹脂/正極活物質粒子の配合比)、スラリー状混合物を乾燥するときの乾燥条件(乾燥温度など)のうちの少なくとも何れかを上記適切な範囲が実現されるように設定することと、その設定された条件に沿って撥水性樹脂被膜付き正極活物質粒子を形成することと、を包含するリチウム二次電池製造方法が含まれる。   Accordingly, the matters disclosed herein include positive electrode active material particles with a water-repellent resin coating prepared so as to satisfy the relational expression of 3.0 ≦ A × (C / B) × D ≦ 10.0. A method for producing a lithium secondary battery including a positive electrode, comprising: an average particle diameter (median diameter: d50) of positive electrode active material particles added to a slurry mixture; and a blending amount of a water repellent resin added to the slurry mixture (repellency). Setting ratio of aqueous resin / positive electrode active material particles) and / or drying conditions (drying temperature, etc.) for drying the slurry mixture so that the appropriate range is realized, Forming a positive electrode active material particle with a water-repellent resin coating in accordance with the set conditions.

ここに開示される撥水性樹脂被膜付き正極活物質粒子は、3.0≦A×(C/B)×D≦10.0の関係式を満足し、撥水性樹脂被膜の厚みと撥水性樹脂の結晶化度とが適度なバランスで調整されているので、良好なリチウムイオン透過性を備え、且つ、水分やCOの透過を好ましく抑制できる。このことから、ここで開示される撥水性樹脂被膜付き正極活物質粒子は、リチウム二次電池(典型的にはリチウムイオン電池)の正極活物質として好適に使用することができる。 The positive electrode active material particles with a water-repellent resin film disclosed herein satisfy the relational expression 3.0 ≦ A × (C / B) × D ≦ 10.0, and the thickness of the water-repellent resin film and the water-repellent resin Therefore, the lithium ion permeability is good, and the permeation of moisture and CO 2 can be preferably suppressed. From this, the positive electrode active material particle with a water-repellent resin film disclosed here can be suitably used as a positive electrode active material of a lithium secondary battery (typically a lithium ion battery).

そして、ここで開示される撥水性樹脂被膜付き正極活物質粒子を使用する以外は、従来と同様の材料とプロセスを採用してリチウム二次電池を構築することができる。   A lithium secondary battery can be constructed by adopting the same materials and processes as in the prior art except that the positive electrode active material particles with a water-repellent resin coating disclosed herein are used.

例えば、ここで開示される撥水性樹脂被膜付き正極活物質粒子から成る粉末に、導電材としてアセチレンブラック、ケッチェンブラック等のカーボンブラックやその他(グラファイト等)の粉末状カーボン材料を混合することができる。また、正極活物質と導電材の他に、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等の結着材(バインダ)を添加することができる。これらを適当な分散媒体に分散させて混練することによって、ペースト状(スラリー状またはインク状を含む。以下同じ。)の正極活物質層形成用組成物(以下、「正極活物質層形成用ペースト」という場合がある。)を調製することができる。このペーストを、好ましくはアルミニウムまたはアルミニウムを主成分とする合金から構成される正極集電体上に適当量塗布しさらに乾燥ならびにプレスすることによって、リチウム二次電池用正極を作製することができる。   For example, carbon black such as acetylene black or ketjen black or other (graphite or the like) powdered carbon material may be mixed as a conductive material with the powder composed of the positive electrode active material particles with a water-repellent resin coating disclosed herein. it can. In addition to the positive electrode active material and the conductive material, a binder (binder) such as polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC) is added. be able to. By dispersing these in a suitable dispersion medium and kneading, the composition for forming a positive electrode active material layer (hereinafter referred to as “positive electrode active material layer forming paste”) is in the form of a paste (including slurry or ink. The same shall apply hereinafter). Can be prepared.). An appropriate amount of this paste is preferably applied onto a positive electrode current collector made of aluminum or an alloy containing aluminum as a main component, and further dried and pressed, whereby a positive electrode for a lithium secondary battery can be produced.

他方、対極となるリチウム二次電池用負極は、従来と同様の手法により作製することができる。例えば負極活物質としては、リチウムイオンを吸蔵且つ放出可能な材料であればよい。典型例として黒鉛(グラファイト)等から成る粉末状の炭素材料が挙げられる。特に黒鉛粒子は、粒径が小さく単位体積当たりの表面積が大きいことからより急速充放電(例えば高出力放電)に適した負極活物質となり得る。   On the other hand, the negative electrode for a lithium secondary battery serving as a counter electrode can be produced by a method similar to the conventional one. For example, the negative electrode active material may be any material that can occlude and release lithium ions. A typical example is a powdery carbon material made of graphite or the like. In particular, graphite particles can be a negative electrode active material that is more suitable for rapid charge / discharge (for example, high-power discharge) because of its small particle size and large surface area per unit volume.

そして正極と同様、かかる粉末状材料を適当な結着材(バインダ)とともに適当な分散媒体に分散させて混練することによって、ペースト状の負極活物質層形成用組成物(以下、「負極活物質層形成用ペースト」という場合がある。)を調製することができる。このペーストを、好ましくは銅やニッケル或いはそれらの合金から構成される負極集電体上に適当量塗布しさらに乾燥ならびにプレスすることによって、リチウム二次電池用負極を作製することができる。   As in the case of the positive electrode, the powdery material is dispersed in a suitable dispersion medium together with a suitable binder (binder) and kneaded to obtain a paste-like composition for forming a negative electrode active material layer (hereinafter referred to as “negative electrode active material”). May be referred to as “layer forming paste”). An appropriate amount of this paste is preferably applied onto a negative electrode current collector composed of copper, nickel, or an alloy thereof, and further dried and pressed, whereby a negative electrode for a lithium secondary battery can be produced.

本構成の撥水性樹脂被膜付き正極活物質粒子を用いるリチウム二次電池において、従来と同様のセパレータを使用することができる。例えばポリオレフィン樹脂から成る多孔質のシート(多孔質フィルム)等を使用することができる。   In the lithium secondary battery using the positive electrode active material particles with the water-repellent resin film of this configuration, the same separator as the conventional one can be used. For example, a porous sheet (porous film) made of a polyolefin resin can be used.

また、電解質としては従来からリチウム二次電池に用いられる非水系の電解質(典型的には電解液)と同様のものを特に限定なく使用することができる。典型的には、適当な非水溶媒に支持塩を含有させた組成である。上記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種又は二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等から選択される一種または二種以上のリチウム化合物(リチウム塩)を用いることができる。 Further, as the electrolyte, the same electrolyte as a non-aqueous electrolyte (typically, an electrolytic solution) conventionally used for a lithium secondary battery can be used without any particular limitation. Typically, the composition includes a supporting salt in a suitable nonaqueous solvent. Examples of the non-aqueous solvent include one or two selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. More than seeds can be used. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , 1 type, or 2 or more types of lithium compounds (lithium salt) selected from LiI etc. can be used.

また、ここで開示されるリチウムニッケルコバルトマンガン複合酸化物を正極活物質として採用される限りにおいて、構築されるリチウム二次電池の形状(外形やサイズ)には特に制限はない。外装がラミネートフィルム等で構成される薄型シートタイプであってもよく、電池外装ケースが円筒形状や直方体形状の電池でもよく、或いは小型のボタン形状であってもよい。   Moreover, as long as the lithium nickel cobalt manganese composite oxide disclosed here is adopted as the positive electrode active material, the shape (outer shape and size) of the lithium secondary battery to be constructed is not particularly limited. The outer package may be a thin sheet type constituted by a laminate film or the like, and the battery outer case may be a cylindrical or cuboid battery, or may be a small button shape.

以下、捲回電極体を備えるリチウム二次電池を例にしてここで開示される撥水性樹脂被膜付き正極活物質粒子の使用態様につき、図3に示す模式図を参照しつつ説明するが、本発明をかかる実施形態に限定することを意図したものではない。   Hereinafter, the usage mode of the positive electrode active material particles with a water-repellent resin film disclosed herein will be described with reference to a schematic diagram shown in FIG. 3, using a lithium secondary battery including a wound electrode body as an example. It is not intended that the invention be limited to such embodiments.

図示するように、本実施形態に係るリチウム二次電池100は、金属製(樹脂製又はラミネートフィルム製も好適である。)のケース82を備える。このケース(外容器)82は、上端が開放された扁平な直方体状のケース本体84と、その開口部を塞ぐ蓋体86とを備える。ケース82の上面(すなわち蓋体86)には、電極体80の正極70と電気的に接続する正極端子72および該電極体の負極50と電気的に接続する負極端子74が設けられている。ケース82の内部には、例えば長尺シート状の正極(正極シート)70および長尺シート状の負極(負極シート)50を計二枚の長尺シート状セパレータ(セパレータシート)76とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体80が収容される。   As shown in the drawing, the lithium secondary battery 100 according to the present embodiment includes a case 82 made of metal (a resin or a laminate film is also suitable). The case (outer container) 82 includes a flat cuboid case main body 84 having an open upper end, and a lid 86 that closes the opening. On the upper surface of the case 82 (that is, the lid body 86), a positive electrode terminal 72 that is electrically connected to the positive electrode 70 of the electrode body 80 and a negative electrode terminal 74 that is electrically connected to the negative electrode 50 of the electrode body are provided. In the case 82, for example, a long sheet-like positive electrode (positive electrode sheet) 70 and a long sheet-like negative electrode (negative electrode sheet) 50 are laminated together with a total of two long sheet-like separators (separator sheets) 76. A flat wound electrode body 80 produced by winding and then crushing the resulting wound body from the side direction and kidnapping is housed.

負極シート50は、長尺シート状の負極集電体の両面に負極活物質を主成分とする負極活物質層が設けられた構成を有する。また、正極シート70も負極シートと同様に、長尺シート状の正極集電体の両面に正極活物質を主成分とする正極合材層が設けられた構成を有する。これらの電極シート50、70の幅方向の一端には、いずれの面にも上記電極合材層が設けられていない電極合材層非形成部分が形成されている。   The negative electrode sheet 50 has a configuration in which a negative electrode active material layer mainly composed of a negative electrode active material is provided on both surfaces of a long sheet-like negative electrode current collector. Similarly to the negative electrode sheet, the positive electrode sheet 70 has a configuration in which a positive electrode mixture layer mainly composed of a positive electrode active material is provided on both surfaces of a long sheet-like positive electrode current collector. At one end of these electrode sheets 50 and 70 in the width direction, an electrode mixture layer non-formed portion where the electrode mixture layer is not provided on any surface is formed.

上記積層の際には、正極シート70の正極合材層非形成部分と負極シート50の負極合材層非形成部分とがセパレータシート76の幅方向の両側からそれぞれはみ出すように、正極シート70と負極シート50とを幅方向にややずらして重ね合わせる。その結果、捲回電極体80の捲回方向に対する横方向において、正極シート70および負極シート50の電極合材層非形成部分がそれぞれ捲回コア部分(すなわち正極シート70の正極合材層形成部分と負極シート50の負極活物質層形成部分と二枚のセパレータシート76とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極合材層の非形成部分)70Aおよび負極側はみ出し部分(すなわち負極活物質層の非形成部分)50Aには、正極リード端子78および負極リード端子79がそれぞれ付設されており、上述の正極端子72および負極端子74とそれぞれ電気的に接続される。   In the above lamination, the positive electrode sheet 70 and the negative electrode mixture layer non-formed portion of the positive electrode sheet 70 and the negative electrode mixture layer non-formed portion of the negative electrode sheet 50 protrude from both sides of the separator sheet 76 in the width direction. The negative electrode sheet 50 is overlaid with a slight shift in the width direction. As a result, in the lateral direction with respect to the winding direction of the wound electrode body 80, the electrode mixture layer non-formed portions of the positive electrode sheet 70 and the negative electrode sheet 50 are respectively wound core portions (that is, the positive electrode mixture layer forming portion of the positive electrode sheet 70). And a portion where the negative electrode active material layer forming portion of the negative electrode sheet 50 and the two separator sheets 76 are wound tightly). A positive electrode lead terminal 78 and a negative electrode lead terminal 79 are respectively attached to the protruding portion (that is, the non-forming portion of the positive electrode mixture layer) 70A and the protruding portion (that is, the non-forming portion of the negative electrode active material layer) 50A. Are electrically connected to the positive terminal 72 and the negative terminal 74 described above.

そして、ケース本体84の上端開口部から該本体84内に捲回電極体80を収容するとともに適当な電解質を含む電解液をケース本体84内に配置(注液)する。その後、上記開口部を蓋体86との溶接等により封止し、本実施形態に係るリチウム二次電池100の組み立てが完成する。ケース82の封止プロセスや電解質の配置(注液)プロセスは、従来のリチウム二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。このようにして本実施形態に係るリチウム二次電池100の構築が完成する。   Then, the wound electrode body 80 is accommodated in the main body 84 from the upper end opening of the case main body 84 and an electrolytic solution containing an appropriate electrolyte is disposed (injected) in the case main body 84. Thereafter, the opening is sealed by welding or the like with the lid 86, and the assembly of the lithium secondary battery 100 according to the present embodiment is completed. The sealing process of the case 82 and the process of placing (injecting) the electrolyte may be the same as those used in the production of a conventional lithium secondary battery, and do not characterize the present invention. In this way, the construction of the lithium secondary battery 100 according to this embodiment is completed.

以下、本発明に関する試験例を説明するが、本発明を以下の試験例に示すものに限定することを意図したものではない。   Hereinafter, although the test example regarding this invention is demonstrated, it is not intending to limit this invention to what is shown to the following test examples.

<試験例1:PVDF被膜付き正極活物質粒子の作製>
正極活物質としてのLi1.05Ni0.8Co0.15Al0.05(以下、LNOと略省する。)粉末と撥水性樹脂としてのポリフッ化ビニリデン(PVDF)とをN−メチルピロリドン(NMP)中でプラネタリーミキサーにより混合して、スラリー状混合物(固形分濃度約10質量%)を調製した。そして該スラリー状混合物を減圧雰囲気下において所定温度で乾燥した。かかる乾燥後、乾燥凝集物を乳鉢で軽く粉砕することにより、PVDF被膜付き正極活物質粉末を得た。
<Test Example 1: Production of positive electrode active material particles with PVDF coating>
Li 1.05 Ni 0.8 Co 0.15 Al 0.05 O 2 (hereinafter abbreviated as LNO) as a positive electrode active material and polyvinylidene fluoride (PVDF) as a water repellent resin are N- A slurry mixture (solid content concentration of about 10% by mass) was prepared by mixing in methylpyrrolidone (NMP) with a planetary mixer. The slurry mixture was dried at a predetermined temperature in a reduced pressure atmosphere. After the drying, the dried aggregate was lightly pulverized in a mortar to obtain a positive electrode active material powder with a PVDF coating.

なお、本試験では、レーザー回折/散乱法に基づく平均粒径(A)が4μm、6μm、8μmのいずれかとなる3種類のLNO粉末を用いて上記手法によりPVDF被膜付き正極活物質粉末を作製した。また、PVDF粉末:LNO粉末の配合比が1:100、1:50、3:100、1:25のいずれかとなる様に、PVDF粉末の配合量を異ならせつつ、上記手法によりPVDF被膜付き正極活物質粉末を作製した。さらに、スラリー状混合物の乾燥温度を110℃〜160℃の温度域のいずれかに設定して上記手法によりPVDF被膜付き正極活物質粉末を作製した。   In this test, a positive electrode active material powder with a PVDF coating was prepared by the above method using three types of LNO powders having an average particle diameter (A) based on the laser diffraction / scattering method of 4 μm, 6 μm, or 8 μm. . Moreover, the positive electrode with a PVDF film by the said method, varying the compounding quantity of PVDF powder so that the compounding ratio of PVDF powder: LNO powder may be either 1: 100, 1:50, 3: 100, 1:25. An active material powder was prepared. Furthermore, the drying temperature of the slurry-like mixture was set to any one of a temperature range of 110 ° C. to 160 ° C., and a positive electrode active material powder with a PVDF coating was produced by the above method.

<試験例2:質量比(C/B)及び結晶化度(D)の算出>
上記試験例1で作製した各種のPVDF被膜付き正極活物質粉末について熱重量分析(TGA)を行い、PVDF被膜と正極活物質粉末との質量比(C/B)を調べた。具体的には図3に示すように、PVDF被膜付き正極活物質粉末を室温から500℃まで加熱してPVDF被膜を分解除去したときの質量減少率からPVDF被膜と正極活物質粉末との実際の質量比(C/B)を算出した。
<Test Example 2: Calculation of mass ratio (C / B) and crystallinity (D)>
Thermogravimetric analysis (TGA) was performed on the various positive electrode active material powders with PVDF coating prepared in Test Example 1 above, and the mass ratio (C / B) between the PVDF coating and the positive electrode active material powder was examined. Specifically, as shown in FIG. 3, the actual PVDF film and the positive electrode active material powder were obtained from the mass reduction rate when the PVDF film-coated positive electrode active material powder was heated from room temperature to 500 ° C. to decompose and remove the PVDF film. The mass ratio (C / B) was calculated.

また、上記試験例1で作製した各種のPVDF被膜付き正極活物質粉末について示差熱走査熱量測定(DSC)を行い、PVDFの結晶化度(D)を調べた。具体的には図4に示すように、PVDF被膜付き正極活物質粉末を加熱したときの160℃付近の融解吸熱ピーク(図中の斜線部分)から融解熱量ΔHを求め、この融解熱量ΔHと、理論的に算出されるPVDFの完全結晶の融解熱量ΔHとから結晶化度D=[ΔH/ΔH]×100を算出した。結果を表1〜表3に示す。ここで、A:正極活物質粉末の平均粒径(μm)、C/B:PVDF被膜と正極活物質粉末との質量比、Y=A×(C/B)の値、T:乾燥温度(℃)、D:PVDFの結晶化度(%)、X=A×(C/B)×Dの値である。 Moreover, the differential thermal scanning calorimetry (DSC) was performed about the various positive electrode active material powder with a PVDF film produced in the said Experiment 1, and the crystallinity (D) of PVDF was investigated. Specifically, as shown in FIG. 4, the heat of fusion ΔH is determined from the melting endothermic peak (shaded portion in the figure) near 160 ° C. when the PVDF-coated positive electrode active material powder is heated, and the heat of fusion ΔH, The degree of crystallinity D = [ΔH / ΔH 1 ] × 100 was calculated from the theoretically calculated heat of fusion ΔH 1 of the complete PVDF crystal. The results are shown in Tables 1 to 3. Here, A: average particle diameter (μm) of positive electrode active material powder, C / B: mass ratio of PVDF coating to positive electrode active material powder, Y = A × (C / B) value, T: drying temperature ( C), D: PVDF crystallinity (%), X = A × (C / B) × D.

Figure 2012009401
Figure 2012009401

Figure 2012009401
Figure 2012009401

Figure 2012009401
Figure 2012009401

<試験例3:LiCO発生量の測定>
上記試験例1で作製した各種のPVDF被膜付き正極活物質粉末を水中に浸漬し、正極活物質粉末と水とCOとの反応により生じたLiCOの発生量を測定した。具体的には、PVDF被膜付き正極活物質粉末のPVDF被膜を除く正極活物質粉末のみの質量が1gとなる量を水100gに投入した。そして、10分間攪拌した後、濾過して正極活物質粉末を取り除き、得られた濾液にBaClを添加してLiCOをBaCOとして沈殿させた。その後、1Mの塩酸で中和滴定(BaCO+2HCl→BaCl+HO+CO)を行い、正極活物質粉末と水との反応により生じたLiCO量を測定した。結果を図5と表1〜表3に示す。図5のグラフの横軸は供試したPVDF被膜付き正極活物質粉末のX=A×(C/B)×Dの値であり、右側の縦軸が正極活物質粉末の単位質量(グラム)あたりのLiCOの発生量の割合(wt%)である。LiCO発生量の割合(wt%)が小さいほど、正極活物質粉末と水とCOとの反応が抑制されていると云える。
<Test Example 3: Measurement of Li 2 CO 3 generation amount>
Various positive electrode active material powders with PVDF coating produced in Test Example 1 were immersed in water, and the amount of Li 2 CO 3 generated by the reaction of the positive electrode active material powder, water, and CO 2 was measured. Specifically, an amount of 1 g of the positive electrode active material powder excluding the PVDF film of the positive electrode active material powder with a PVDF film was added to 100 g of water. After stirring for 10 minutes, filtered to remove the positive electrode active material powder, to precipitate Li 2 CO 3 was added to BaCl 2 to the filtrate obtained as BaCO 3. Thereafter, neutralization titration (BaCO 3 + 2HCl → BaCl 2 + H 2 O + CO 2 ) was performed with 1M hydrochloric acid, and the amount of Li 2 CO 3 generated by the reaction between the positive electrode active material powder and water was measured. The results are shown in FIG. 5 and Tables 1 to 3. The horizontal axis of the graph of FIG. 5 is a value of X = A × (C / B) × D of the tested positive electrode active material powder with a PVDF coating, and the right vertical axis is the unit mass (gram) of the positive electrode active material powder. It is a ratio (wt%) of the amount of generated Li 2 CO 3 per unit. It can be said that the smaller the proportion (wt%) of Li 2 CO 3 generated, the more the reaction between the positive electrode active material powder, water and CO 2 is suppressed.

図5に示すグラフから明らかなように、X=A×(C/B)×Dの値が3.0を下回るとLiCO発生量の割合が大幅に増加した。これに対し、Xの値が3.0以上になるとLiCO発生量の割合が0.22wt%以下に抑えられた。 As apparent from the graph shown in FIG. 5, when the value of X = A × (C / B) × D was less than 3.0, the ratio of the amount of Li 2 CO 3 generated significantly increased. On the other hand, when the value of X was 3.0 or more, the ratio of the amount of Li 2 CO 3 generated was suppressed to 0.22 wt% or less.

<試験例4:反応抵抗(Rct)の測定>
上記試験例1で作製した各種のPVDF被膜付き正極活物質粉末を使用し、試験用リチウム二次電池を構築した。そして、各試験用電池について交流インピーダンス測定を行い、それら電池の反応抵抗を評価した。なお、試験用リチウムイオン電池は、以下のようにして構築した。
<Test Example 4: Measurement of reaction resistance (Rct)>
Using the various positive electrode active material powders with PVDF coating produced in Test Example 1, test lithium secondary batteries were constructed. And the alternating current impedance measurement was performed about each battery for a test, and the reaction resistance of those batteries was evaluated. The test lithium ion battery was constructed as follows.

まず、PVDF被膜付き正極活物質粉末と、導電材としてのアセチレンブラックと、結着材としてのPVDF粉末とを、それらの材料の質量比が96:3:1となるようにN−メチルピロリドン(NMP)に分散させ、正極活物質層形成用ペーストを調製した。このペーストを正極集電体(厚さ20μm程度のアルミニウム箔)に塗布およびプレスしてNMPを揮発させ、正極集電体の両面に厚さが概ね100μmの正極活物質層が形成された正極シートを作製した。   First, a positive electrode active material powder with a PVDF coating, acetylene black as a conductive material, and PVDF powder as a binder are N-methylpyrrolidone (96: 3: 1) so that the mass ratio of these materials is 96: 3: 1. NMP) to prepare a positive electrode active material layer forming paste. This paste is applied to a positive electrode current collector (aluminum foil having a thickness of about 20 μm) and pressed to volatilize NMP, so that a positive electrode active material layer having a thickness of about 100 μm is formed on both surfaces of the positive electrode current collector Was made.

一方、負極活物質としての鱗片状グラファイトと、結着材としてのスチレンブタジエンラバー(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、それらの材料の質量比が98:1:1となるように水中に分散させ、負極活物質層形成用ペーストを調製した。このペーストを負極集電体(厚さ15μm程度の銅箔)に塗布およびプレスして水を揮発させ、負極集電体の片面に厚さが概ね100μmの負極活物質層が形成された負極シートを作製した。   On the other hand, flaky graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethylcellulose (CMC) as a thickener have a mass ratio of 98: 1: 1. Thus, a negative electrode active material layer forming paste was prepared by dispersing in water. The paste is applied to a negative electrode current collector (copper foil having a thickness of about 15 μm) and pressed to volatilize water, and a negative electrode sheet in which a negative electrode active material layer having a thickness of about 100 μm is formed on one surface of the negative electrode current collector Was made.

次いで、正極シートの正極活物質層を3cm×4cmに打ち抜いて、正極を作製した。また、負極シートの負極活物質層を3cm×4cmに打ち抜いて、負極を作製した。正極にアルミリードを取り付け、負極にニッケルリードを取り付け、それらをセパレータ(多孔質ポリエチレンシートを使用した。)を介して対向配置し、非水電解液とともにラミネート袋に挿入して、図6に示すラミネートセル60を構築した。図6中、符号61は正極を、符号62は負極を、符号63は電解液の含浸したセパレータを、符号64はラミネート袋をそれぞれ示す。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。また、参考のために、PVDFで被覆していない正極活物質粉末(PVDF被膜なし正極活物質粉末)を用いてリチウム二次電池を構築した。PVDF被膜なし正極活物質粉末を用いたこと以外は上記と同様の手法によりリチウム二次電池を構築した。 Next, the positive electrode active material layer of the positive electrode sheet was punched out to 3 cm × 4 cm to produce a positive electrode. Moreover, the negative electrode active material layer of the negative electrode sheet was punched out to 3 cm × 4 cm to produce a negative electrode. An aluminum lead is attached to the positive electrode, a nickel lead is attached to the negative electrode, they are arranged facing each other through a separator (a porous polyethylene sheet is used), and inserted into a laminate bag together with a non-aqueous electrolyte, as shown in FIG. A laminate cell 60 was constructed. In FIG. 6, reference numeral 61 indicates a positive electrode, reference numeral 62 indicates a negative electrode, reference numeral 63 indicates a separator impregnated with an electrolytic solution, and reference numeral 64 indicates a laminate bag. In addition, as a non-aqueous electrolytic solution, LiPF 6 as a supporting salt is approximately mixed with a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3. The one contained at a concentration of 1 mol / liter was used. For reference, a lithium secondary battery was constructed using a positive electrode active material powder not coated with PVDF (a positive electrode active material powder without a PVDF film). A lithium secondary battery was constructed in the same manner as described above except that a positive electrode active material powder without a PVDF coating was used.

このようにして作製したリチウム二次電池の交流インピーダンスを−15℃で測定し、それらの反応抵抗(Rct)を評価した。交流インピーダンスの測定条件については、交流印加電圧10mV、周波数範囲0.001Hz〜100000Hzとした。その結果を図5のグラフと表1〜表3に示す。図5のグラフの横軸は供試したPVDF被膜付き正極活物質粉末のX=A×(C/B)×Dの値であり、左側の縦軸が反応抵抗(Rct)比である。この反応抵抗(Rct)比は、PVDF被膜なし正極活物質粉末を用いて構築したリチウム二次電池の反応抵抗値を1としたときの比である。   The alternating current impedance of the lithium secondary batteries thus produced was measured at −15 ° C., and their reaction resistance (Rct) was evaluated. The AC impedance measurement conditions were an AC applied voltage of 10 mV and a frequency range of 0.001 Hz to 100,000 Hz. The results are shown in the graph of FIG. The horizontal axis of the graph of FIG. 5 is a value of X = A × (C / B) × D of the tested positive electrode active material powder with a PVDF coating, and the left vertical axis is the reaction resistance (Rct) ratio. This reaction resistance (Rct) ratio is a ratio when the reaction resistance value of a lithium secondary battery constructed using a positive electrode active material powder without a PVDF film is 1.

図5と表1〜表3から明らかなように、X=A×(C/B)×Dの値が10.0を上回るリチウム二次電池については反応抵抗比が大幅に増大した。また、Xの値が3.0を下回るリチウム二次電池についても反応抵抗比が大幅に増大した。   As is clear from FIG. 5 and Tables 1 to 3, the reaction resistance ratio of the lithium secondary battery having a value of X = A × (C / B) × D exceeding 10.0 was greatly increased. In addition, the reaction resistance ratio of the lithium secondary battery having an X value of less than 3.0 was greatly increased.

これに対し、3.0≦X≦10.0の関係式を満たすリチウム二次電池については反応抵抗比が1.1以下とより低く抑えられていた。特に3.0≦X≦10.0を満たし、かつ0.05≦Y≦0.20が成立するリチウム二次電池では、1.08以下という極めて低い反応抵抗比が実現でき、電池性能が好ましく改善されることが確かめられた。   On the other hand, the reaction resistance ratio of the lithium secondary battery satisfying the relational expression of 3.0 ≦ X ≦ 10.0 was suppressed to 1.1 or lower. Particularly in a lithium secondary battery that satisfies 3.0 ≦ X ≦ 10.0 and satisfies 0.05 ≦ Y ≦ 0.20, an extremely low reaction resistance ratio of 1.08 or less can be realized, and the battery performance is favorable. It was confirmed that it improved.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

ここに開示されるいずれかのリチウム二次電池は、上記したように電池の反応抵抗を低下させることができるため、特にハイレート充放電が要求される車両に搭載される電池として適した性能を備える。したがって本発明によると、図7に示すように、ここに開示されるいずれかのリチウム二次電池100(複数のリチウム二次電池が接続された組電池の形態であり得る。)を備える車両1が提供される。特に、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。   Since any of the lithium secondary batteries disclosed herein can reduce the reaction resistance of the battery as described above, the lithium secondary battery has a performance suitable as a battery mounted on a vehicle that requires high-rate charge / discharge. . Therefore, according to the present invention, as shown in FIG. 7, a vehicle 1 provided with any of the lithium secondary batteries 100 disclosed herein (which may be in the form of an assembled battery to which a plurality of lithium secondary batteries are connected). Is provided. In particular, a vehicle (for example, an automobile) including the lithium secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.

1 車両
10 正極活物質粒子
12 撥水性樹脂被膜
50 負極
50 負極シート
60 ラミネートセル
70 正極シート
72 正極端子
74 負極端子
76 セパレータシート
78 正極リード端子
79 負極リード端子
80 捲回電極体
82 ケース
84 ケース本体
86 蓋体
100 リチウム二次電池
DESCRIPTION OF SYMBOLS 1 Vehicle 10 Positive electrode active material particle 12 Water repellent resin film 50 Negative electrode 50 Negative electrode sheet 60 Laminating cell 70 Positive electrode sheet 72 Positive electrode terminal 74 Negative electrode terminal 76 Separator sheet 78 Positive electrode lead terminal 79 Negative electrode lead terminal 80 Winding electrode body 82 Case 84 Case main body 86 Lid 100 Lithium Secondary Battery

Claims (9)

正極活物質粒子を含む正極を備えるリチウム二次電池であって、
前記正極活物質粒子は、その表面が撥水性樹脂により被覆されており、
ここで、前記撥水性樹脂により被覆されている正極活物質粒子の平均粒径(メジアン径:d50)をA[μm]、その質量をB[g]とし、かつ、
該正極活物質粒子を被覆している撥水性樹脂被膜の質量をC[g]、該撥水性樹脂の結晶化度をD[%]としたとき、3.0≦A×(C/B)×D≦10.0なる関係式を満たすことを特徴とする、リチウム二次電池。
A lithium secondary battery including a positive electrode including positive electrode active material particles,
The positive electrode active material particles have a surface coated with a water-repellent resin,
Here, the average particle diameter (median diameter: d50) of the positive electrode active material particles coated with the water repellent resin is A [μm], the mass thereof is B [g], and
When the mass of the water repellent resin film covering the positive electrode active material particles is C [g] and the crystallinity of the water repellent resin is D [%], 3.0 ≦ A × (C / B) A lithium secondary battery satisfying a relational expression of × D ≦ 10.0.
前記平均粒径Aと前記質量B、Cとの間に、関係式0.05≦A×(C/B)≦0.20が成立する、請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein a relational expression of 0.05 ≦ A × (C / B) ≦ 0.20 is established between the average particle diameter A and the masses B and C. 3. 前記正極活物質粒子は、一般式Li1+x(NiCoMn1−y−z−γγ)O(但し、0≦x≦0.2、0.3≦y≦1.0、0≦z≦0.5、0≦γ≦0.2、0.3≦y+z+γ≦1、MはF、B、Al、W、Mo、Cr、Ta、Nb、V、Zr、Ti、Yからなる群から選ばれる少なくとも1種の元素である。)で示されるリチウムニッケル複合酸化物である、請求項1または2に記載のリチウム二次電池。 The positive electrode active material particles have a general formula Li 1 + x (Ni y Co z Mn 1-yz-γ M γ ) O 2 (where 0 ≦ x ≦ 0.2, 0.3 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.5, 0 ≦ γ ≦ 0.2, 0.3 ≦ y + z + γ ≦ 1, M is from F, B, Al, W, Mo, Cr, Ta, Nb, V, Zr, Ti, Y 3. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is a lithium nickel composite oxide. 前記一般式中、yが0.5≦y≦1.0であり、0.5≦y+z+γ≦1である、請求項3に記載のリチウム二次電池。   The lithium secondary battery according to claim 3, wherein y is 0.5 ≦ y ≦ 1.0 and 0.5 ≦ y + z + γ ≦ 1 in the general formula. 前記撥水性樹脂は、ポリフッ化ビニリデン系樹脂である、請求項1から4の何れか一つに記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the water repellent resin is a polyvinylidene fluoride resin. 前記正極活物質粒子の平均粒径Aが4μm〜8μmである、請求項1から5の何れか一つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 5, wherein an average particle diameter A of the positive electrode active material particles is 4 µm to 8 µm. 前記撥水性樹脂被膜と前記正極活物質粒子との質量比(C/B)が0.01〜0.04である、請求項1から6の何れか一つに記載のリチウム二次電池。   7. The lithium secondary battery according to claim 1, wherein a mass ratio (C / B) between the water-repellent resin film and the positive electrode active material particles is 0.01 to 0.04. 前記撥水性樹脂の結晶化度Dが40%〜70%である、請求項1から7の何れか一つに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 7, wherein a crystallinity D of the water repellent resin is 40% to 70%. 請求項1から8のいずれかに記載のリチウム二次電池を備える車両。   A vehicle comprising the lithium secondary battery according to claim 1.
JP2010146886A 2010-06-28 2010-06-28 Lithium secondary battery Active JP5472743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146886A JP5472743B2 (en) 2010-06-28 2010-06-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146886A JP5472743B2 (en) 2010-06-28 2010-06-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2012009401A true JP2012009401A (en) 2012-01-12
JP5472743B2 JP5472743B2 (en) 2014-04-16

Family

ID=45539704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146886A Active JP5472743B2 (en) 2010-06-28 2010-06-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5472743B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157831A1 (en) * 2012-04-17 2013-10-24 주식회사 엘지화학 Electrode active material having low moisture retention and lithium secondary battery comprising same
JP2014093139A (en) * 2012-11-01 2014-05-19 Hitachi Ltd Nonaqueous secondary battery
WO2024087872A1 (en) * 2022-10-24 2024-05-02 天津巴莫科技有限责任公司 Ternary positive electrode material, and preparation method therefor and use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219197A (en) * 1996-02-09 1997-08-19 Japan Storage Battery Co Ltd Electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the electrode
JP2001143755A (en) * 1999-11-12 2001-05-25 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary cell
JP2001146427A (en) * 1999-09-25 2001-05-29 Merck Patent Gmbh Coated lithium-mixed oxide particle and use thereof
JP2001319656A (en) * 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd Active material powder for lithium ion battery and electrode for the same, and their manufacturing methods and lithium ion battery
JP2002358964A (en) * 2001-03-26 2002-12-13 Japan Storage Battery Co Ltd Manufacturing method of lithium nickelate having porous polymer on particle surface and non-aqueous electrolyte secondary battery using the same
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
JP2010114030A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Method for manufacturing electrode plate
JP2011511402A (en) * 2008-02-04 2011-04-07 ティアックス エルエルシー Method for improving environmental stability of cathode material of lithium battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219197A (en) * 1996-02-09 1997-08-19 Japan Storage Battery Co Ltd Electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the electrode
JP2001146427A (en) * 1999-09-25 2001-05-29 Merck Patent Gmbh Coated lithium-mixed oxide particle and use thereof
JP2001143755A (en) * 1999-11-12 2001-05-25 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary cell
JP2001319656A (en) * 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd Active material powder for lithium ion battery and electrode for the same, and their manufacturing methods and lithium ion battery
JP2002358964A (en) * 2001-03-26 2002-12-13 Japan Storage Battery Co Ltd Manufacturing method of lithium nickelate having porous polymer on particle surface and non-aqueous electrolyte secondary battery using the same
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
JP2011511402A (en) * 2008-02-04 2011-04-07 ティアックス エルエルシー Method for improving environmental stability of cathode material of lithium battery
JP2010114030A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Method for manufacturing electrode plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157831A1 (en) * 2012-04-17 2013-10-24 주식회사 엘지화학 Electrode active material having low moisture retention and lithium secondary battery comprising same
US9960412B2 (en) 2012-04-17 2018-05-01 Lg Chem, Ltd. Electrode active material with low moisture retention and lithium secondary battery including the same
JP2014093139A (en) * 2012-11-01 2014-05-19 Hitachi Ltd Nonaqueous secondary battery
WO2024087872A1 (en) * 2022-10-24 2024-05-02 天津巴莫科技有限责任公司 Ternary positive electrode material, and preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP5472743B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
JP5614600B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6160602B2 (en) Lithium ion secondary battery
JP6011888B2 (en) Non-aqueous electrolyte secondary battery
WO2011036759A1 (en) Lithium secondary battery and process for producing same
JP5512056B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5696904B2 (en) Lithium ion secondary battery and manufacturing method thereof
US11967700B2 (en) Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle and a rock salt layer
JP2006294482A (en) Lithium ion secondary battery
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
WO2013073231A1 (en) Lithium ion secondary battery and method for manufacturing same
JP2007080583A (en) Electrode for secondary battery, and secondary battery
JP5605614B2 (en) Method for manufacturing lithium secondary battery
JP5017010B2 (en) Lithium secondary battery
JP5472743B2 (en) Lithium secondary battery
WO2020059145A1 (en) Non-aqueous electrolyte battery and battery pack
CN112689916A (en) Electric storage element
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
US10211456B2 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP2016035937A (en) Nonaqueous electrolyte secondary battery
CN114597356A (en) Coated active material and nonaqueous electrolyte secondary battery using the same
JP2022114665A (en) Positive electrode active material layer forming material and non-aqueous electrolyte secondary battery using positive electrode active material layer forming material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R151 Written notification of patent or utility model registration

Ref document number: 5472743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250