JP2012009255A - Sulfide based solid electrolyte battery - Google Patents

Sulfide based solid electrolyte battery Download PDF

Info

Publication number
JP2012009255A
JP2012009255A JP2010143771A JP2010143771A JP2012009255A JP 2012009255 A JP2012009255 A JP 2012009255A JP 2010143771 A JP2010143771 A JP 2010143771A JP 2010143771 A JP2010143771 A JP 2010143771A JP 2012009255 A JP2012009255 A JP 2012009255A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfide
based solid
positive electrode
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010143771A
Other languages
Japanese (ja)
Inventor
Shigeki Hama
重規 濱
Takamasa Otomo
崇督 大友
Yuki Kato
祐樹 加藤
Koji Kawamoto
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010143771A priority Critical patent/JP2012009255A/en
Publication of JP2012009255A publication Critical patent/JP2012009255A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sulfide based solid electrolyte battery in which generation of hydrogen sulfide can be minimized.SOLUTION: In the solid electrolyte battery comprising a positive electrode, a negative electrode, and a sulfide based solid electrolyte layer interposed between the positive electrode and the negative electrode, outer periphery of the sulfide based solid electrolyte layer is coated, at least partially, with a water repellent coat containing a water repellent. When the sulfide based solid electrolyte layer touches moisture and deliquesces, the deliquesced sulfide based solid electrolyte can be brought to the surface of the water repellent coat on the side opposite from the sulfide based solid electrolyte layer.

Description

本発明は、硫化水素の発生を抑制できる硫化物系固体電解質電池に関する。   The present invention relates to a sulfide-based solid electrolyte battery that can suppress generation of hydrogen sulfide.

近年、パソコン、ビデオカメラ、携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界においても、電気自動車やハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。各種二次電池の中でも、エネルギー密度と出力が高いことから、リチウムイオン電池が注目されている。   In recent years, with the rapid spread of information-related equipment such as personal computers, video cameras, and mobile phones, and communication equipment, development of batteries that are used as power sources has been regarded as important. Also in the automobile industry, development of high-power and high-capacity batteries for electric vehicles and hybrid vehicles is in progress. Among various secondary batteries, lithium ion batteries are attracting attention because of their high energy density and output.

リチウムイオン電池の中でも、電解質を固体電解質とし、電池を全固体化したリチウムイオン電池は、電池内に可燃性の有機溶媒を用いないため、安全かつ装置の簡素化が図れ、製造コストや生産性に優れると考えられている。このような固体電解質に用いられる固体電解質材料として、硫化物系固体電解質が知られている。
しかしながら、硫化物系固体電解質材料は水分と反応しやすい性質を持つため、硫化物系固体電解質材料を用いた電池においては硫化水素の発生による劣化が起こりやすく、電池の寿命が短いという課題があった。
Among lithium-ion batteries, lithium-ion batteries that use a solid electrolyte as the electrolyte and are fully solidified do not use a flammable organic solvent in the battery. It is considered excellent. A sulfide-based solid electrolyte is known as a solid electrolyte material used for such a solid electrolyte.
However, since sulfide-based solid electrolyte materials easily react with moisture, batteries using sulfide-based solid electrolyte materials are prone to deterioration due to generation of hydrogen sulfide, and there is a problem that the battery life is short. It was.

特許文献1には、10Wm−1−1以上の熱伝導率を有し、且つ、撥水性を有するフィラーを含有する保護膜によって、発電要素が被覆されている固体電池が開示されており、前記フィラーが撥水性を有することにより、前記保護膜の耐透湿性が向上する旨が記載されている。 Patent Document 1 discloses a solid battery in which a power generation element is coated with a protective film having a thermal conductivity of 10 Wm −1 K −1 or more and containing a filler having water repellency, It is described that when the filler has water repellency, the moisture permeability of the protective film is improved.

特開2006−351326号公報JP 2006-351326 A

しかしながら、特許文献1に記載の保護膜は、水分の通過を防止する効果はあるものの、発電要素が潮解性を有する硫化物系固体電解質を含んでいる場合は、水分が発電要素内部に侵入した際に、前記電解質が侵入した水分と反応して潮解し、硫化水素を発生し、さらに、電解質の潮解物が発電要素内部に侵入し、電解質と水との反応を連続的に進行させて、硫化水素を発生させるため、発電要素内部の劣化が進んでしまうという問題点がある。
本発明は、上記実状を鑑みて成し遂げられたものであり、硫化水素の発生を抑制できる硫化物系固体電解質電池を提供することを目的とする。
However, although the protective film described in Patent Document 1 has an effect of preventing passage of moisture, when the power generation element includes a sulfide-based solid electrolyte having deliquescence, moisture has penetrated into the power generation element. At the time, the electrolyte reacts with moisture that has penetrated to deliquesce, to generate hydrogen sulfide, and further, the electrolyte deliquess penetrates into the power generation element, and the reaction between the electrolyte and water proceeds continuously, Since hydrogen sulfide is generated, there is a problem that deterioration inside the power generation element proceeds.
The present invention has been accomplished in view of the above circumstances, and an object thereof is to provide a sulfide-based solid electrolyte battery capable of suppressing the generation of hydrogen sulfide.

本発明の硫化物系固体電解質電池は、少なくとも、正極と、負極と、当該正極及び当該負極との間に介在する硫化物系固体電解質層とを備える固体電解質電池であって、前記硫化物系固体電解質層の外周の少なくとも一部が、撥水剤を含有する撥水コートで被覆されており、前記硫化物系固体電解質層が水分と接触し潮解した際に、潮解した硫化物系固体電解質が、前記硫化物系固体電解質層と反対側の前記撥水コート表面に出されることができることを特徴とする。   The sulfide-based solid electrolyte battery of the present invention is a solid electrolyte battery comprising at least a positive electrode, a negative electrode, and a sulfide-based solid electrolyte layer interposed between the positive electrode and the negative electrode. At least a part of the outer periphery of the solid electrolyte layer is covered with a water-repellent coat containing a water repellent, and when the sulfide-based solid electrolyte layer comes into contact with moisture and is liquefied, the liquefied sulfide-based solid electrolyte Is characterized in that it can be put out on the surface of the water-repellent coat opposite to the sulfide-based solid electrolyte layer.

本発明の硫化物系固体電解質電池は、前記撥水コートに対する水の接触角が70°以上であることが好ましい。   In the sulfide-based solid electrolyte battery of the present invention, the contact angle of water with respect to the water-repellent coat is preferably 70 ° or more.

本発明の硫化物系固体電解質電池は、前記撥水剤が、フッ素樹脂含有撥水剤、フルオロアルキル基含有シラン化合物、及びジメチルシリコーン系撥水剤よりなる群から選ばれる撥水剤であることが好ましい。   In the sulfide-based solid electrolyte battery of the present invention, the water repellent is a water repellent selected from the group consisting of a fluororesin-containing water repellent, a fluoroalkyl group-containing silane compound, and a dimethyl silicone-based water repellent. Is preferred.

本発明の硫化物系固体電解質電池は、前記硫化物系固体電解質が、LiS−SiS系、LiS−P系、LiS−GeS系、及びLiS−B系よりなる群から選ばれる硫化物系固体電解質であることが好ましい。 In the sulfide-based solid electrolyte battery of the present invention, the sulfide-based solid electrolyte may be Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , Li 2 S—GeS 2 , and Li 2 S—. A sulfide-based solid electrolyte selected from the group consisting of B 2 S 3 systems is preferred.

本発明によれば、硫化物系固体電解質層の外周の少なくとも一部を、撥水剤を含有する撥水コートで被覆することにより、外部環境から硫化物系固体電解質層への水分の通過を防ぎ、また、硫化物系固体電解質層が水分に接触し潮解した際には、潮解した硫化物系固体電解質が前記固体電解質層と反対側の前記撥水コート表面に追い出され、当該硫化物系固体電解質層と水分との反応及び当該反応による硫化水素の発生を抑制することができる。
したがって、本発明の硫化物系固体電解質電池は、前記硫化物系固体電解質層の潮解を表面のみで抑制し、潮解した硫化物系固体電解質が硫化物系固体電解質層に侵入することを防ぎ、当該潮解物の侵入による硫化物系固体電解質層と水との連続的反応による硫化水素の発生を止め、前記硫化物系固体電解質層内部の劣化が進行することを防ぐ。
According to the present invention, at least part of the outer periphery of the sulfide-based solid electrolyte layer is covered with a water-repellent coat containing a water-repellent agent, thereby allowing moisture to pass from the external environment to the sulfide-based solid electrolyte layer. In addition, when the sulfide-based solid electrolyte layer comes into contact with moisture and is liquefied, the liquefied sulfide-based solid electrolyte is expelled to the surface of the water-repellent coating opposite to the solid electrolyte layer, and the sulfide-based solid electrolyte layer Reaction between the solid electrolyte layer and moisture and generation of hydrogen sulfide due to the reaction can be suppressed.
Therefore, the sulfide-based solid electrolyte battery of the present invention suppresses the deliquescence of the sulfide-based solid electrolyte layer only on the surface, prevents the liquefied sulfide-based solid electrolyte from entering the sulfide-based solid electrolyte layer, Generation of hydrogen sulfide due to continuous reaction between the sulfide-based solid electrolyte layer and water due to the intrusion of the deliquesce product is stopped, and deterioration of the inside of the sulfide-based solid electrolyte layer is prevented from proceeding.

(a)撥水コートで被覆されていない硫化物固体電解質層が水分に触れた時の様子を概念的に説明する図であり、(b)撥水コートで被覆されている硫化物固体電解質層が水分に触れた時の様子を概念的に説明する図である。(A) It is a figure explaining notionally a mode when the sulfide solid electrolyte layer which is not coat | covered with the water repellent coat touches moisture, (b) The sulfide solid electrolyte layer coat | covered with the water repellent coat It is a figure which illustrates notionally a state when water touches moisture. (a)本発明に係る硫化物系固体電解質層の外周に撥水コートを設ける構成を模式的に示す図であり、(b)本発明に係る発電要素の外周に撥水コートを設ける構成を模式的に示す図である。(A) It is a figure which shows typically the structure which provides a water-repellent coat in the outer periphery of the sulfide type solid electrolyte layer which concerns on this invention, (b) The structure which provides a water-repellent coat in the outer periphery of the electric power generation element which concerns on this invention It is a figure shown typically. 本発明に係る硫化物系固体電解質電池が有する積層構造の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。It is a figure which shows an example of the laminated structure which the sulfide type solid electrolyte battery which concerns on this invention has, Comprising: It is the figure which showed typically the cross section cut | disconnected in the lamination direction. 実施例1、比較例1および比較例2で得られた硫化物系固体電解質層の大気暴露後300秒における硫化水素発生量を示す棒グラフである。3 is a bar graph showing the amount of hydrogen sulfide generated in 300 seconds after exposure of the sulfide-based solid electrolyte layer obtained in Example 1, Comparative Example 1 and Comparative Example 2 to the atmosphere. 比較例3および比較例4で得られた硫化物系固体電解質層の大気暴露後300秒における硫化水素発生量を示す棒グラフである。7 is a bar graph showing the amount of hydrogen sulfide generated in 300 seconds after exposure of the sulfide-based solid electrolyte layer obtained in Comparative Example 3 and Comparative Example 4 to the atmosphere.

本発明の硫化物系固体電解質電池は、少なくとも、正極と、負極と、当該正極及び当該負極との間に介在する硫化物系固体電解質層とを備える固体電解質電池であって、前記硫化物系固体電解質層の外周の少なくとも一部が、撥水剤を含有する撥水コートで被覆されている。図1(a)に示すように、撥水コートで被覆されていない硫化物系固体電解質層(以下、単に「電解質層」と称することがある。)は、大気中の水分と反応して潮解し、硫化水素を発生する。さらに、潮解した電解質は、電解質層内部に侵入して電解質層と水との反応を連続的に進行させ、硫化水素を発生させるため、撥水コートで被覆されていない電解質層では、電解質層の内部まで劣化が進んでしまう。一方、本発明に係る硫化物系固体電解質電池は、図1(b)に示すように、硫化物系固体電解質層の外周の少なくとも一部が撥水コートで被覆されているため、外部環境から電解質層への水分の通過を防ぎ、さらに、電解質層が水分に接触し潮解した際には、潮解した電解質は電解質層の表面上に局在している間に撥水コートの外側に追い出される。従って、電解質層の外周が撥水コートで被覆されている場合は、電解質の潮解物が電解質層の内部へと侵入することを防ぎ、当該潮解物の侵入による電解質層と水との連続的反応による硫化水素の発生を止め、電解質層内部の劣化が進行することを防ぐ。   The sulfide-based solid electrolyte battery of the present invention is a solid electrolyte battery comprising at least a positive electrode, a negative electrode, and a sulfide-based solid electrolyte layer interposed between the positive electrode and the negative electrode. At least a part of the outer periphery of the solid electrolyte layer is covered with a water repellent coat containing a water repellent. As shown in FIG. 1 (a), a sulfide-based solid electrolyte layer not covered with a water-repellent coat (hereinafter sometimes simply referred to as “electrolyte layer”) reacts with moisture in the atmosphere to deliquesce. And hydrogen sulfide is generated. Furthermore, since the deliquescent electrolyte penetrates into the electrolyte layer and causes the reaction between the electrolyte layer and water to proceed continuously to generate hydrogen sulfide, in the electrolyte layer not covered with the water-repellent coat, Deterioration progresses to the inside. On the other hand, in the sulfide-based solid electrolyte battery according to the present invention, as shown in FIG. 1B, at least a part of the outer periphery of the sulfide-based solid electrolyte layer is covered with a water-repellent coat. Prevents the passage of moisture to the electrolyte layer. Furthermore, when the electrolyte layer comes into contact with moisture and is liquefied, the deliquescent electrolyte is expelled to the outside of the water-repellent coat while being localized on the surface of the electrolyte layer. . Therefore, when the outer periphery of the electrolyte layer is covered with a water-repellent coat, the electrolyte deliquescence is prevented from entering the inside of the electrolyte layer, and the continuous reaction between the electrolyte layer and water due to the intrusion of the deliquescence. Stops the generation of hydrogen sulfide due to, and prevents the deterioration inside the electrolyte layer from proceeding.

本発明に係る硫化物系固体電解質電池の典型例は、硫化物固体電解質層の外周表面に直接撥水コートを設けるという構成をとる(図2(a))。また、本発明に係る硫化物系固体電解質電池の他の典型例として、硫化物固体電解質層及び電極を含む発電要素の外周表面に撥水コートを設けるという構成をとることもできる(図2(b))。
中でも、撥水コートによる効果がより顕著に得られる点から、図2(a)に示すように硫化物固体電解質層の外周表面に直接撥水コートを設ける構成をとることが好ましい。
なお、本発明では、硫化物系固体電解質層の外周の少なくとも一部を撥水コートで被覆すればよいが、水分の通過を防止する効果及び潮解した電解質を追い出す効果がより優れる点から、図2(a)及び図2(b)に示すように、硫化物系固体電解質層の外周のすべてを撥水コートで被覆することが好ましい。
A typical example of the sulfide-based solid electrolyte battery according to the present invention has a configuration in which a water-repellent coat is directly provided on the outer peripheral surface of the sulfide solid-electrolyte layer (FIG. 2A). Further, as another typical example of the sulfide-based solid electrolyte battery according to the present invention, a configuration in which a water-repellent coating is provided on the outer peripheral surface of the power generation element including the sulfide solid-electrolyte layer and the electrodes can be taken (FIG. 2 ( b)).
Among these, from the viewpoint that the effect of the water repellent coat can be obtained more remarkably, it is preferable to take a configuration in which the water repellent coat is directly provided on the outer peripheral surface of the sulfide solid electrolyte layer as shown in FIG.
In the present invention, it is only necessary to cover at least a part of the outer periphery of the sulfide-based solid electrolyte layer with a water-repellent coat, but the effect of preventing the passage of moisture and the effect of expelling the deliquescent electrolyte are more excellent. As shown in FIG. 2 (a) and FIG. 2 (b), it is preferable to cover the entire outer periphery of the sulfide-based solid electrolyte layer with a water-repellent coat.

本発明に用いられる硫化物系固体電解質は、硫黄成分を含有し、イオン伝導性を有するものであり、且つ、空気中の水分と反応して潮解し、硫化水素を発生させるものであることが好ましい。
このような硫化物系固体電解質としては、LiS−SiS系、LiS−P系、LiS−GeS系、及びLiS−B系よりなる群から選ばれる硫化物系固体電解質を用いることができる。具体的には、LiS−P、LiS−P、LiS−P−P、LiS−SiS、LiI−LiS−P、LiI−LiS−SiS−P、LiS−SiS−LiSiO、LiS−SiS−LiPO、LiS−GeS、LiPS−LiGeS、LiGe0.250.75、LiS−B、Li3.40.6Si0.4、Li3.250.25Ge0.76、Li4−xGe1−x、Li11等を例示することができる。これらの硫化物系固体電解質の中でもLiS−Pが好ましい。イオン伝導度が高い固体電解質膜を得ることができるからである。
The sulfide-based solid electrolyte used in the present invention contains a sulfur component, has ionic conductivity, and dehydrates by reacting with moisture in the air to generate hydrogen sulfide. preferable.
Such sulfide-based solid electrolytes include a group consisting of Li 2 S—SiS 2 system, Li 2 S—P 2 S 5 system, Li 2 S—GeS 2 system, and Li 2 S—B 2 S 3 system. A sulfide-based solid electrolyte selected from can be used. Specifically, Li 2 S-P 2 S 5, Li 2 S-P 2 S 3, Li 2 S-P 2 S 3 -P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S- P 2 S 5, LiI-Li 2 S-SiS 2 -P 2 S 5, Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-GeS 2, Li 3 PS 4 -Li 4 GeS 4 , LiGe 0.25 P 0.75 S 4, Li 2 S-B 2 S 3, Li 3.4 P 0.6 Si 0.4 S 4, Li 3.25 P Examples include 0.25 Ge 0.76 S 4 , Li 4-x Ge 1-x P x S 4 , Li 7 P 3 S 11, and the like. Among these sulfide-based solid electrolytes, Li 2 S—P 2 S 5 is preferable. This is because a solid electrolyte membrane having high ionic conductivity can be obtained.

前記硫化物系固体電解質は、例えば、五硫化二リン(P)、硫化ケイ素(SiS)、硫化ゲルマニウム(GeS)、硫化ホウ素(B)等の硫黄化合物と、硫化リチウム(LiS)とを、所定の仕込み比で混合したガラス原料混合物に対して、メカニカルミリング処理又は融液急冷処理を行うことでガラス化し、硫化物系固体電解質粉末として得ることができる。製造工程の簡略化の観点から、ガラス化処理の方法としては、メカニカルミリング処理が好ましい。なお、融液急冷法は、一般的なガラス合成方法であり、硫化物系固体電解質粉末の合成方法として採用する場合にも、一般的な方法に準じることができる。 Examples of the sulfide-based solid electrolyte include sulfur compounds such as diphosphorus pentasulfide (P 2 S 5 ), silicon sulfide (SiS 2 ), germanium sulfide (GeS 2 ), and boron sulfide (B 2 S 3 ), and sulfide. A glass raw material mixture obtained by mixing lithium (Li 2 S) at a predetermined charging ratio is vitrified by performing a mechanical milling process or a melt quenching process to obtain a sulfide-based solid electrolyte powder. From the viewpoint of simplification of the manufacturing process, mechanical milling is preferred as the vitrification method. The melt quenching method is a general glass synthesis method, and can also be applied to a general method when employed as a synthesis method of sulfide-based solid electrolyte powder.

なお、前記硫化物系固体電解質は、硫化物系固体電解質層だけでなく、正極及び/又は負極に含有されていてもよい。   The sulfide-based solid electrolyte may be contained not only in the sulfide-based solid electrolyte layer but also in the positive electrode and / or the negative electrode.

本発明に用いられる撥水剤は、フッ素樹脂含有撥水剤、フルオロアルキル基含有シラン化合物、及びジメチルシリコーン系撥水剤よりなる群から選ばれる撥水剤であることが好ましい。
フッ素樹脂含有撥水剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等が挙げられる。
フルオロアルキル基含有シラン化合物としては、例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等が挙げられる。
ジメチルシリコーン系撥水剤としては、例えば、ジメチルシリコーンオイル等が挙げられる。
これらの中でも、撥水性に優れ、反応性が低いことから、フッ素樹脂含有撥水剤が好ましい。
また、前記撥水剤としては、これらの中の1種類を単独で用いることもできるし、異なる2種類以上を混合して用いることもできる。
The water repellent used in the present invention is preferably a water repellent selected from the group consisting of a fluororesin-containing water repellent, a fluoroalkyl group-containing silane compound, and a dimethyl silicone-based water repellent.
Examples of the fluororesin-containing water repellent include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and the like.
Examples of the fluoroalkyl group-containing silane compound include (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, and the like.
Examples of the dimethyl silicone water repellent include dimethyl silicone oil.
Among these, a fluororesin-containing water repellent is preferable because of excellent water repellency and low reactivity.
In addition, as the water repellent, one of these can be used alone, or two or more different types can be mixed and used.

撥水コートの形成方法は、特に限定されないが、前記撥水剤を溶剤に溶解させ、硫化物系固体電解質層の外周に例えばスピンコーターを用いてに均一な厚さに塗布した後、前記溶剤を乾燥させる方法等が挙げられる。   The method for forming the water repellent coat is not particularly limited, but the solvent is prepared by dissolving the water repellent in a solvent and applying the solution to the outer periphery of the sulfide-based solid electrolyte layer to a uniform thickness using, for example, a spin coater. The method of drying is mentioned.

撥水剤を溶解させる溶剤としては、特に限定されないが、前記撥水剤に良好な溶解性を示し、常温で揮発性を有する溶剤であることが好ましく、例えば、フッ素系溶媒等が挙げられる。フッ素系溶媒は、電解質との反応性が低い点においても、撥水剤を溶解させる溶剤として好ましい。   The solvent for dissolving the water repellent is not particularly limited, but is preferably a solvent that exhibits good solubility in the water repellent and is volatile at room temperature, and examples thereof include a fluorine-based solvent. A fluorine-based solvent is also preferable as a solvent for dissolving the water repellent agent in view of low reactivity with the electrolyte.

また、撥水剤として、予め溶剤に溶解されている、住友スリーエム(株)製のEGC−1700、EGC−1720等を用いることもできる。   Moreover, EGC-1700, EGC-1720, etc. by Sumitomo 3M Co., Ltd. previously dissolved in a solvent can be used as the water repellent.

撥水コートの厚さは、特に限定されないが、0.1nm〜10μmであることが好ましく、特に1nm〜1μmあることが好ましい。厚さが前記範囲であることにより、撥水性に優れ、電解質の潮解物を除去できる。   The thickness of the water repellent coat is not particularly limited, but is preferably 0.1 nm to 10 μm, and particularly preferably 1 nm to 1 μm. When the thickness is within the above range, the water repellency is excellent and the deliquescent electrolyte can be removed.

撥水剤を含有する撥水コートに対する水の接触角は、70°以上であることが好ましい。撥水コートに対する水の接触角が70℃未満であると、撥水コート表面の撥水性が不十分であり、潮解した電解質を撥水コートの外側に十分にはじき出すことができない。
なお、前記撥水コートに対する水の接触角は、例えば、JIS R 3257(1999)に準拠して測定することができる。
The contact angle of water with respect to the water repellent coat containing a water repellent is preferably 70 ° or more. When the contact angle of water with respect to the water repellent coat is less than 70 ° C., the water repellency of the water repellent coat surface is insufficient, and the deliquescent electrolyte cannot be sufficiently ejected to the outside of the water repellent coat.
In addition, the contact angle of water with respect to the water-repellent coat can be measured based on, for example, JIS R 3257 (1999).

図3は本発明に係る硫化物系固体電解質電池の積層構造の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、本発明に係る硫化物系固体電解質電池は、必ずしもこの例のみに限定されるものではない。
図3に示す硫化物系固体電解質電池10は、正極活物質層2及び正極集電体4を備える正極6と、負極活物質層3及び負極集電体5を備える負極7と、前記正極6及び前記負極7に挟持される電解質層1と、電解質層1の外周を被覆する撥水コート8を有する。
以下、本発明に係る硫化物系固体電解質電池の構成要素である、正極及び負極、電解質層、並びにその他の構成要素(セパレータ等)について、項を分けて説明する。
FIG. 3 is a view showing an example of a laminated structure of a sulfide-based solid electrolyte battery according to the present invention, and is a view schematically showing a cross section cut in the lamination direction. The sulfide-based solid electrolyte battery according to the present invention is not necessarily limited to this example.
A sulfide-based solid electrolyte battery 10 shown in FIG. 3 includes a positive electrode 6 including a positive electrode active material layer 2 and a positive electrode current collector 4, a negative electrode 7 including a negative electrode active material layer 3 and a negative electrode current collector 5, and the positive electrode 6. And an electrolyte layer 1 sandwiched between the negative electrodes 7 and a water-repellent coat 8 that covers the outer periphery of the electrolyte layer 1.
Hereinafter, the positive electrode and the negative electrode, the electrolyte layer, and other components (separator and the like), which are components of the sulfide-based solid electrolyte battery according to the present invention, will be described separately.

(正極)
本発明に用いられる正極は、正極活物質を含有する正極活物質層を備え、好ましくは正極集電体、及び、当該正極集電体に直接的に接続した正極リードを備える。
前記正極活物質層は正極活物質の他に、必要に応じて電解質、導電化材および結着材の少なくとも一つを含有していても良い。前記電解質は、特に本発明においては、上述した硫化物固体電解質であることが好ましい。硫化水素発生量の極めて少ない固体電解質電池を得ることができるからである。
(Positive electrode)
The positive electrode used in the present invention includes a positive electrode active material layer containing a positive electrode active material, and preferably includes a positive electrode current collector and a positive electrode lead directly connected to the positive electrode current collector.
In addition to the positive electrode active material, the positive electrode active material layer may contain at least one of an electrolyte, a conductive material, and a binder as necessary. In particular, in the present invention, the electrolyte is preferably the sulfide solid electrolyte described above. This is because a solid electrolyte battery with an extremely small amount of hydrogen sulfide generation can be obtained.

本発明に用いられる正極活物質としては、具体的には、LiCoO、LiCoPO、LiNi1/3Mn1/3Co1/3、LiNiPO、LiMnPO、LiNiO、LiMn、LiMnO、LiCoMnO、LiNiMn、LiFe(POLiFePO4、LiVO、Li(PO、LiCrO等を挙げることができる。 Specific examples of the positive electrode active material used in the present invention include LiCoO 2 , LiCoPO 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNiPO 4 , LiMnPO 4 , LiNiO 2 , LiMn 2 O 4. , LiMnO 2 , LiCoMnO 4 , Li 2 NiMn 3 O 8 , Li 3 Fe 2 (PO 4 ) 3 LiFePO 4 , LiVO 2 , Li 3 V 2 (PO 4 ) 3 , LiCrO 2 and the like.

正極活物質は、特に限定されないが、粉末状であることが好ましく、その平均粒径としては、例えば1μm〜50μmの範囲内であることが好ましい。正極活物質の平均粒径が小さすぎると、取り扱い性が悪くなる可能性があり、正極活物質の平均粒径が大きすぎると、平坦な正極活物質層を得るのが困難になる場合があるからである。なお、正極活物質の平均粒径は、例えば走査型電子顕微鏡(SEM)により観察される活物質担体の粒径を測定して、平均することにより求めることができる。   The positive electrode active material is not particularly limited, but is preferably in the form of powder, and the average particle size is preferably in the range of 1 μm to 50 μm, for example. If the average particle size of the positive electrode active material is too small, the handleability may be deteriorated. If the average particle size of the positive electrode active material is too large, it may be difficult to obtain a flat positive electrode active material layer. Because. The average particle diameter of the positive electrode active material can be determined by measuring and averaging the particle diameter of the active material carrier observed with, for example, a scanning electron microscope (SEM).

前記正極活物質層はさらに電解質を含んでいてもよい。前記電解質としては、上述した硫化物系固体電解質を用いることが好ましい。その他には、酸化物系固体電解質等を用いることもできる。
酸化物系固体電解質としては、具体的には、LiPON(リン酸リチウムオキシナイトライド)、Li1.3Al0.3Ti0.7(PO、La0.51Li0.34TiO0.74、LiPO、LiSiO、LiSiO、Li0.5La0.5TiO、Li1.5Al0.5Ge1.5(PO等を例示することができる。
また、正極活物質層を形成した後は、電極密度を向上させるために、正極活物質層をプレスしても良い。
正極活物質層における電解質の含有量は、通常10質量%〜70質量%の範囲内である。
The positive electrode active material layer may further contain an electrolyte. As the electrolyte, it is preferable to use the above-described sulfide-based solid electrolyte. In addition, an oxide-based solid electrolyte or the like can also be used.
Specifically, as the oxide-based solid electrolyte, LiPON (lithium phosphate oxynitride), Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 , La 0.51 Li 0.34 TiO Examples include 0.74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 , Li 0.5 La 0.5 TiO 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and the like. can do.
In addition, after the positive electrode active material layer is formed, the positive electrode active material layer may be pressed in order to improve the electrode density.
The content of the electrolyte in the positive electrode active material layer is usually in the range of 10% by mass to 70% by mass.

前記正極活物質層はさらに導電化材を含んでいてもよい。これにより、正極活物質層の導電性を向上させることができる。
前記正極活物質層が有する導電化材としては、正極活物質層の導電性を向上させることができれば特に限定されるものではないが、例えばカーボンブラック、グラファイト、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンファイバー、メソポーラスカーボン等のカーボン材料等を挙げることができる。また、正極活物質層における導電化材の含有量は、導電化材の種類によって異なるものであるが、通常1質量%〜10質量%の範囲内である。
The positive electrode active material layer may further contain a conductive material. Thereby, the electroconductivity of a positive electrode active material layer can be improved.
The conductive material included in the positive electrode active material layer is not particularly limited as long as the conductivity of the positive electrode active material layer can be improved. For example, carbon black, graphite, acetylene black, ketjen black, carbon nanotube And carbon materials such as carbon fiber and mesoporous carbon. Moreover, although content of the electrically conductive material in a positive electrode active material layer changes with kinds of electrically conductive material, it is in the range of 1 mass%-10 mass% normally.

前記正極活物質層はさらに結着材を含んでいてもよい。前記結着材としては、例えばポリビニリデンフロライド(PVDF)、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。また、正極活物質層における結着材の含有量は、正極活物質等を固定化できる程度の量であれば良く、より少ないことが好ましい。結着材の含有量は、硫化物系固体電解質電池の用途等に応じて、適宜選択することが好ましいが、通常1質量%〜10質量%の範囲内である。   The positive electrode active material layer may further contain a binder. Examples of the binder include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). Further, the content of the binder in the positive electrode active material layer may be an amount that can fix the positive electrode active material or the like, and is preferably smaller. The content of the binder is preferably selected as appropriate according to the use of the sulfide-based solid electrolyte battery, but is usually in the range of 1% by mass to 10% by mass.

本発明に用いられる正極活物質層の厚さは、目的とする硫化物系固体電解質電池の用途等により異なるものであるが、5μm〜250μmの範囲内であることが好ましく、とくに20μm〜200μmの範囲内であることが好ましい。   The thickness of the positive electrode active material layer used in the present invention varies depending on the intended use of the sulfide-based solid electrolyte battery, but is preferably in the range of 5 μm to 250 μm, particularly 20 μm to 200 μm. It is preferable to be within the range.

本発明に用いられる正極集電体は、上記の正極活物質層の集電を行う機能を有するものであれば特に限定されない。したがって、正極活物質層に直接電気的に接続している必要は必ずしもなく、正極活物質層に間接的に接続しているものであっても、正極活物質層からの集電の機能を果たし、充放電経路を構成する導電体であれば、本発明でいう「正極集電体」に含まれる。
正極集電体の材料としては、例えばアルミニウム、SUS、ニッケル、鉄およびチタン等を挙げることができ、中でもアルミニウムおよびSUSが好ましい。また、正極集電体の形状としては、例えば、箔状、板状、メッシュ状等を挙げることができ、中でも箔状が好ましい。
The positive electrode current collector used in the present invention is not particularly limited as long as it has a function of collecting the positive electrode active material layer. Therefore, it is not always necessary to be directly electrically connected to the positive electrode active material layer, and even if it is indirectly connected to the positive electrode active material layer, it performs the function of collecting current from the positive electrode active material layer. Any conductor that constitutes the charge / discharge path is included in the “positive electrode current collector” in the present invention.
Examples of the material for the positive electrode current collector include aluminum, SUS, nickel, iron, and titanium. Of these, aluminum and SUS are preferable. Moreover, as a shape of a positive electrode electrical power collector, foil shape, plate shape, mesh shape etc. can be mentioned, for example, Foil shape is preferable.

(負極)
本発明に用いられる負極は、負極活物質を含有する負極活物質層を備え、好ましくは負極集電体、及び、当該負極集電体に直接的に接続した負極リードを備える。
前記負極活物質層は負極活物質の他に、必要に応じて電解質、導電化材および結着材の少なくとも一つを含有していても良い。前記電解質は、特に本発明においては、上述した硫化物固体電解質であることが好ましい。硫化水素発生量の極めて少ない固体電解質電池を得ることができるからである。
(Negative electrode)
The negative electrode used in the present invention includes a negative electrode active material layer containing a negative electrode active material, and preferably includes a negative electrode current collector and a negative electrode lead directly connected to the negative electrode current collector.
In addition to the negative electrode active material, the negative electrode active material layer may contain at least one of an electrolyte, a conductive material, and a binder as necessary. In particular, in the present invention, the electrolyte is preferably the sulfide solid electrolyte described above. This is because a solid electrolyte battery with an extremely small amount of hydrogen sulfide generation can be obtained.

負極活物質層に用いられる負極活物質としては、金属イオンを吸蔵・放出可能なものであれば特に限定されるものではない。金属イオンとしてリチウムイオンを用いる場合には、例えば、金属リチウム、リチウム合金、金属酸化物、金属硫化物、金属窒化物、およびグラファイト等の炭素材料等を挙げることができる。また、負極活物質は、粉末状であっても良く、薄膜状であっても良い。   The negative electrode active material used for the negative electrode active material layer is not particularly limited as long as it can absorb and release metal ions. When lithium ions are used as the metal ions, for example, metal materials such as lithium metal, lithium alloy, metal oxide, metal sulfide, metal nitride, and graphite can be used. The negative electrode active material may be in the form of a powder or a thin film.

負極活物質層はさらに電解質、導電化材および結着材等を含有していても良い。負極活物質層に含まれる電解質、導電化材および結着材は、上述した正極活物質中に用いることができるものと同様のものを用いることができる。
また、負極活物質層の膜厚としては、特に限定されるものではないが、5μm〜150μmの範囲内であることが好ましく、特に10μm〜80μmの範囲内であることが好ましい。
The negative electrode active material layer may further contain an electrolyte, a conductive material, a binder, and the like. As the electrolyte, the conductive material, and the binder contained in the negative electrode active material layer, the same materials that can be used in the positive electrode active material described above can be used.
The film thickness of the negative electrode active material layer is not particularly limited, but is preferably in the range of 5 μm to 150 μm, and particularly preferably in the range of 10 μm to 80 μm.

負極集電体の材料及び形状としては、上述した正極集電体の材料及び形状と同様のものを採用することができる。   As the material and shape of the negative electrode current collector, the same materials and shapes as those of the positive electrode current collector described above can be employed.

(電解質層)
本発明に用いられる電解質層は、上述した正極活物質及び負極活物質の間で金属イオン交換を行う。前記電解質層中に用いることができる電解質としては、上述した硫化物系固体電解質を用いる。電解質層の形成方法としては、特に限定されないが、例えば、前記硫化物系固体電解質粉末を圧縮成形する方法等を挙げることができる。
電解質層の厚さは、特に限定されないが、例えば1μm〜500μmの範囲内であることが好ましく、特に10μm〜100μmの範囲内であることが好ましい。
また、電解質層の外周は、上述した撥水コートで被覆されることが好ましい。
(Electrolyte layer)
The electrolyte layer used in the present invention performs metal ion exchange between the positive electrode active material and the negative electrode active material described above. As the electrolyte that can be used in the electrolyte layer, the above-described sulfide-based solid electrolyte is used. The method for forming the electrolyte layer is not particularly limited, and examples thereof include a method for compression-molding the sulfide solid electrolyte powder.
The thickness of the electrolyte layer is not particularly limited, but is preferably in the range of 1 μm to 500 μm, for example, and particularly preferably in the range of 10 μm to 100 μm.
Moreover, it is preferable that the outer periphery of the electrolyte layer is covered with the water repellent coat described above.

(その他の構成要素)
その他の構成要素として、セパレータを硫化物系固体電解質電池に用いることができる。セパレータは、上述した正極集電体及び上記負極集電体の間に配置されるものであり、通常、正極活物質層と負極活物質層との接触を防止し、電解質層を保持する機能を有する。さらに、上記セパレータは、上記セパレータの材料としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロースおよびポリアミド等の樹脂を挙げることができ、中でもポリエチレンおよびポリプロピレンが好ましい。また、上記セパレータは、単層構造であっても良く、複層構造であっても良い。複層構造のセパレータとしては、例えばPE/PPの2層構造のセパレータ、PP/PE/PPの3層構造のセパレータ等を挙げることができる。さらに、本発明においては、上記セパレータが、樹脂不織布、ガラス繊維不織布等の不織布等であっても良い。また、上記セパレータの膜厚は、特に限定されるものではなく、一般的な硫化物系固体電解質電池に用いられるセパレータの膜厚と同様である。
また、その他の構成要素として、硫化物系固体電解質電池を収納する電池ケースを用いることもできる。電池ケースの形状としては、上述した正極、負極、電解質層等を収納できるものであれば特に限定されるものではないが、具体的には、円筒型、角型、コイン型、ラミネート型等を挙げることができる。
(Other components)
As another component, a separator can be used for a sulfide-based solid electrolyte battery. The separator is disposed between the positive electrode current collector and the negative electrode current collector described above, and usually has a function of preventing the contact between the positive electrode active material layer and the negative electrode active material layer and holding the electrolyte layer. Have. Furthermore, as for the separator, examples of the material of the separator include resins such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Among these, polyethylene and polypropylene are preferable. The separator may have a single layer structure or a multilayer structure. Examples of the separator having a multilayer structure include a separator having a two-layer structure of PE / PP and a separator having a three-layer structure of PP / PE / PP. Furthermore, in the present invention, the separator may be a nonwoven fabric such as a resin nonwoven fabric or a glass fiber nonwoven fabric. Moreover, the film thickness of the said separator is not specifically limited, It is the same as the film thickness of the separator used for a general sulfide type solid electrolyte battery.
Moreover, the battery case which accommodates a sulfide type solid electrolyte battery can also be used as another component. The shape of the battery case is not particularly limited as long as it can accommodate the above-described positive electrode, negative electrode, electrolyte layer, and the like. Specifically, a cylindrical shape, a square shape, a coin shape, a laminate shape, etc. Can be mentioned.

本発明の硫化物系固体電解質電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。   The sulfide-based solid electrolyte battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.

本発明の硫化物系固体電解質電池の製造方法は、上述した硫化物系固体電解質電池を得ることができる方法であれば特に限定されるものではない。本発明の硫化物系固体電解質電池は、例えば、撥水コートで被覆された電解質層を用いて、一般的な固体電解質電池の製造方法を行うことによって得られる。具体的には、正極集電体を構成する材料、正極活物質層を構成する材料、撥水コートで被覆された電解質層、負極活物質層を構成する材料、および負極集電体を構成する材料を順次プレスすることにより発電要素を作製し、当該発電要素を電池ケースの内部に収納し、電池ケースをかしめる方法等を挙げることができる。また、本発明においては、前記硫化物系固体電解質を含有し、表面に前記撥水コートを有することを特徴とする、正極、負極および電解質層をそれぞれ提供することもできる。   The method for producing the sulfide-based solid electrolyte battery of the present invention is not particularly limited as long as it is a method capable of obtaining the sulfide-based solid electrolyte battery described above. The sulfide-based solid electrolyte battery of the present invention can be obtained, for example, by performing a general method for producing a solid electrolyte battery using an electrolyte layer covered with a water-repellent coat. Specifically, the material constituting the positive electrode current collector, the material constituting the positive electrode active material layer, the electrolyte layer covered with the water repellent coating, the material constituting the negative electrode active material layer, and the negative electrode current collector are constituted. A method of producing a power generation element by sequentially pressing the materials, housing the power generation element inside the battery case, and caulking the battery case can be exemplified. Moreover, in this invention, the positive electrode, the negative electrode, and the electrolyte layer which each contain the said sulfide type solid electrolyte and have the said water-repellent coat on the surface can also be provided.

また、前記硫化物系固体電解質は、電解質層のみだけでなく、正極及び/又は負極に含まれていてもよく、特に正極の場合は正極活物質層に、負極の場合は負極活物質層に前記硫化物系固体電解質が含まれていることが好ましい。
なお、正極及び/又は負極に硫化物系固体電解質が含まれている場合は、電解質層の外周だけでなく、前記硫化物系固体電解質含有した正極及び/又は負極の外周も、撥水コートで被覆されていることが好ましい。
The sulfide-based solid electrolyte may be contained not only in the electrolyte layer but also in the positive electrode and / or the negative electrode, particularly in the case of the positive electrode in the positive electrode active material layer and in the case of the negative electrode in the negative electrode active material layer. It is preferable that the sulfide-based solid electrolyte is included.
In addition, when the positive electrode and / or the negative electrode contains a sulfide-based solid electrolyte, not only the outer periphery of the electrolyte layer but also the outer periphery of the positive electrode and / or the negative electrode containing the sulfide-based solid electrolyte is a water repellent coating. It is preferably coated.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

以下、断りのない限り、作業は全てArガス充填グローブボックス内で実施し、使用した溶媒類及び分散剤類は、全てモレキュラーシーブにより48時間、静置脱水を行い、使用した器具及びサンプルは、全て使用前にアセトンにより複数回脱脂した後、120℃で24時間、真空乾燥を行った。   Hereinafter, unless otherwise noted, all operations are carried out in an Ar gas filled glove box, and all solvents and dispersants used are subjected to static dehydration for 48 hours using molecular sieves. All were degreased several times with acetone before use and then vacuum dried at 120 ° C. for 24 hours.

[実施例1]
硫化物系固体電解質の出発原料として、硫化リチウム(LiS)と五硫化リン(P)とを用いた。これらの粉末をLiS:P=75:25のモル比となるように秤量し、メノウ乳鉢で混合した後、遊星ボールミル(ジルコニア製45ml容器、ジルコニアボールφ=10mm×10)により、回転速度370rpmで、40時間メカニカルミリングし、その内100mgを1cmの面積のペレット成型機を用いて、5.1ton/cmの圧力でペレット成型した。ペレット成型した硫化物系固体電解質の表面にEGC−1700(住友スリーエム(株)製)をコーティングし、露点−70℃のArガス充填グローブボックス内で1時間乾燥させることにより、実施例1の硫化物系固体電解質層を作製した。
[Example 1]
Lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) were used as starting materials for the sulfide-based solid electrolyte. These powders were weighed to a molar ratio of Li 2 S: P 2 S 5 = 75: 25, mixed in an agate mortar, and then planetary ball mill (45 ml container made of zirconia, zirconia balls φ = 10 mm × 10). , at a rotational speed 370 rpm, for 40 hours mechanical milling, the inner 100mg the pellets molding machine of an area of 1 cm 2, and pelletized at a pressure of 5.1ton / cm 2. The surface of the pelleted sulfide-based solid electrolyte was coated with EGC-1700 (manufactured by Sumitomo 3M Limited) and dried in an Ar gas filled glove box with a dew point of -70 ° C. for 1 hour, whereby the sulfide of Example 1 A physical solid electrolyte layer was prepared.

[比較例1]
表面にEGC−1700をコーティングしなかった点以外は、実施例1と同様に硫化物系固体電解質層を作製した。
[Comparative Example 1]
A sulfide-based solid electrolyte layer was produced in the same manner as in Example 1 except that the surface was not coated with EGC-1700.

[比較例2]
表面にEGC−1700をコーティングする代わりに、表面にヘプタン(関東化学(株)製、脱水ヘプタン)を塗布した点以外は、実施例1と同様に硫化物系固体電解質層を作製した。
[Comparative Example 2]
Instead of coating the surface with EGC-1700, a sulfide-based solid electrolyte layer was produced in the same manner as in Example 1 except that heptane (manufactured by Kanto Chemical Co., Ltd., dehydrated heptane) was applied to the surface.

[比較例3]
硫化物系固体電解質の出発材料として、硫化リチウム(LiS)と三硫化二アルミニウム(Al)とを用いた。これらの粉末をLiS:Al=75:25のモル比となるように秤量し、メノウ乳鉢で混合した後、遊星ボールミル(ジルコニア製45ml容器、ジルコニアボールφ=10mm×10)により、回転速度370rpmで、40時間メカニカルミリングし、その内100mgを1cmの面積のペレット成型機を用いて、5.1ton/cmの圧力でペレット成型した。ペレット成型した硫化物系固体電解質の表面にEGC−1700(住友スリーエム(株)製)をコーティングし、露点−70℃のArガス充填グローブボックス内で1時間乾燥させることにより、比較例3の硫化物系固体電解質層を作製した。
[Comparative Example 3]
Lithium sulfide (Li 2 S) and dialuminum trisulfide (Al 2 S 3 ) were used as starting materials for the sulfide-based solid electrolyte. These powders were weighed so as to have a molar ratio of Li 2 S: Al 2 S 3 = 75: 25, mixed in an agate mortar, and then planetary ball mill (45 ml container made of zirconia, zirconia balls φ = 10 mm × 10). , at a rotational speed 370 rpm, for 40 hours mechanical milling, the inner 100mg the pellets molding machine of an area of 1 cm 2, and pelletized at a pressure of 5.1ton / cm 2. The surface of the pelleted sulfide-based solid electrolyte was coated with EGC-1700 (manufactured by Sumitomo 3M Co., Ltd.) and dried in an Ar gas-filled glove box with a dew point of -70 ° C. for 1 hour. A physical solid electrolyte layer was prepared.

[比較例4]
表面にEGC−1700をコーティングしなかった点以外は、比較例3と同様に硫化物系固体電解質層を作製した。
[Comparative Example 4]
A sulfide-based solid electrolyte layer was prepared in the same manner as in Comparative Example 3 except that the surface was not coated with EGC-1700.

[評価]
各実施例及び比較例で得られた硫化物系固体電解質層を1755ccのデシケーターに入れ、硫化水素センサー(理研計器(株)製、GX−2009)により硫化水素発生量を測定した。測定は、温度25℃及び湿度50%の空気雰囲気下で行った。
[Evaluation]
The sulfide-based solid electrolyte layer obtained in each Example and Comparative Example was placed in a 1755 cc desiccator, and the amount of hydrogen sulfide generated was measured by a hydrogen sulfide sensor (manufactured by Riken Keiki Co., Ltd., GX-2009). The measurement was performed in an air atmosphere at a temperature of 25 ° C. and a humidity of 50%.

図3に、実施例1、比較例1及び比較例2で得られた硫化物系固体電解質層を空気雰囲気下にした後(大気暴露後)300秒における硫化水素発生量を示し、図4に、比較例2及び比較例3で得られた硫化物系固体電解質層を大気暴露後300秒における硫化水素発生量を示す。
実施例1、比較例1及び比較例2では、硫化物系固体電解質の出発原料として、潮解性を有する75LiS25Pを用いており、表面を撥水コートしなかった比較例1の硫化物系固体電解質層、及び撥水成分のないヘプタン溶媒で表面を濡らした比較例2の硫化物系固体電解質層は、EGC−1700を用いて表面を撥水コートした実施例1の硫化物系固体電解質層に比べて、大気暴露後300秒の硫化水素発生量が1.4倍であった。これは、実施例1では、大気中の水分と反応して潮解した硫化物系固体電解質が撥水コートにより硫化物系固体電解質層の外に追い出されたため、当該潮解物が電解質層内部に侵入せず、電解質層と水分との連続的反応による硫化水素発生が抑えられたためと考えられる。
一方、比較例3及び比較例4では、硫化物系固体電解質の出発原料として、潮解性のない75LiS25Alを用いており、EGC−1700を用いて表面を撥水コートした比較例3の硫化物系固体電解質と、撥水コートをしなかった比較例4の硫化物系固体電解質とで、大気暴露後300秒の硫化水素発生量の差は、各硫化水素発生量全体の0.1%の量であり、有意差はなかった。
従って、本発明の硫化物系固体電解質電池は、硫化物系固体電解質層の外周が撥水コートで被覆されていることにより、大気中の水分と反応して潮解した硫化物系固体電解質を撥水コートの外に追い出し、硫化物系固体電解質層と水分との反応及び当該反応による硫化水素発生を抑えることができる。
FIG. 3 shows the amount of hydrogen sulfide generated in 300 seconds after the sulfide-based solid electrolyte layer obtained in Example 1, Comparative Example 1 and Comparative Example 2 was placed in an air atmosphere (after exposure to the atmosphere). The hydrogen sulfide generation amount in 300 seconds after exposure of the sulfide-based solid electrolyte layer obtained in Comparative Example 2 and Comparative Example 3 to the atmosphere is shown.
In Example 1, Comparative Example 1 and Comparative Example 2, 75Li 2 S25P 2 S 5 having deliquescent properties was used as a starting material for the sulfide-based solid electrolyte, and the surface of Comparative Example 1 was not subjected to water-repellent coating. The sulfide-based solid electrolyte layer and the sulfide-based solid electrolyte layer of Comparative Example 2 wetted with a heptane solvent having no water-repellent component were the sulfide of Example 1 whose surface was water-repellent coated using EGC-1700. Compared with the system solid electrolyte layer, the amount of hydrogen sulfide generated in 300 seconds after exposure to the atmosphere was 1.4 times. This is because, in Example 1, the sulfide-based solid electrolyte deliquescent by reacting with moisture in the atmosphere was driven out of the sulfide-based solid electrolyte layer by the water-repellent coating, so that the liquefied material entered the electrolyte layer. This is probably because hydrogen sulfide generation due to the continuous reaction between the electrolyte layer and moisture was suppressed.
On the other hand, in Comparative Example 3 and Comparative Example 4, 75Li 2 S25Al 2 S 3 having no deliquescence was used as a starting material for the sulfide-based solid electrolyte, and the surface was water-repellent coated using EGC-1700. 3 and the sulfide solid electrolyte of Comparative Example 4 that was not coated with water repellent coating, the difference in the amount of hydrogen sulfide generated in 300 seconds after exposure to the atmosphere was 0% of the total amount of hydrogen sulfide generated. The amount was 1% and there was no significant difference.
Therefore, the sulfide-based solid electrolyte battery of the present invention repels a sulfide-based solid electrolyte that has been deliquescent by reacting with moisture in the atmosphere because the outer periphery of the sulfide-based solid electrolyte layer is coated with a water-repellent coating. It is expelled out of the water coat, and the reaction between the sulfide solid electrolyte layer and moisture and the generation of hydrogen sulfide due to the reaction can be suppressed.

1 電解質層
2 正極活物質層
3 負極活物質層
4 正極集電体
5 負極集電体
6 正極
7 負極
8 撥水コート
10 硫化物系固体電解質電池
DESCRIPTION OF SYMBOLS 1 Electrolyte layer 2 Positive electrode active material layer 3 Negative electrode active material layer 4 Positive electrode collector 5 Negative electrode collector 6 Positive electrode 7 Negative electrode 8 Water repellent coating 10 Sulfide-based solid electrolyte battery

Claims (4)

少なくとも、正極と、負極と、当該正極及び当該負極との間に介在する硫化物系固体電解質層とを備える固体電解質電池であって、
前記硫化物系固体電解質層の外周の少なくとも一部が、撥水剤を含有する撥水コートで被覆されており、
前記硫化物系固体電解質層が水分と接触し潮解した際に、潮解した硫化物系固体電解質が、前記硫化物系固体電解質層と反対側の前記撥水コート表面に出されることができることを特徴とする、硫化物系固体電解質電池。
A solid electrolyte battery comprising at least a positive electrode, a negative electrode, and a sulfide-based solid electrolyte layer interposed between the positive electrode and the negative electrode;
At least a part of the outer periphery of the sulfide-based solid electrolyte layer is covered with a water repellent coat containing a water repellent,
When the sulfide-based solid electrolyte layer comes into contact with moisture and is liquefied, the liquefied sulfide-based solid electrolyte can be put out on the surface of the water-repellent coat opposite to the sulfide-based solid electrolyte layer. A sulfide-based solid electrolyte battery.
前記撥水コートに対する水の接触角が70°以上である、請求項1に記載の硫化物系固体電解質電池。   The sulfide-based solid electrolyte battery according to claim 1, wherein a contact angle of water with respect to the water repellent coat is 70 ° or more. 前記撥水剤が、フッ素樹脂含有撥水剤、フルオロアルキル基含有シラン化合物、及びジメチルシリコーン系撥水剤よりなる群から選ばれる撥水剤である、請求項1又は2に記載の硫化物系固体電解質電池。   The sulfide system according to claim 1 or 2, wherein the water repellent is a water repellent selected from the group consisting of a fluororesin-containing water repellent, a fluoroalkyl group-containing silane compound, and a dimethyl silicone water repellent. Solid electrolyte battery. 前記硫化物系固体電解質が、LiS−SiS系、LiS−P系、LiS−GeS系、及びLiS−B系よりなる群から選ばれる硫化物系固体電解質である、請求項1乃至3のいずれか一項に記載の硫化物系固体電解質電池。 The sulfide-based solid electrolyte is selected from the group consisting of Li 2 S—SiS 2 system, Li 2 S—P 2 S 5 system, Li 2 S—GeS 2 system, and Li 2 S—B 2 S 3 system. The sulfide-based solid electrolyte battery according to any one of claims 1 to 3, which is a sulfide-based solid electrolyte.
JP2010143771A 2010-06-24 2010-06-24 Sulfide based solid electrolyte battery Pending JP2012009255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143771A JP2012009255A (en) 2010-06-24 2010-06-24 Sulfide based solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143771A JP2012009255A (en) 2010-06-24 2010-06-24 Sulfide based solid electrolyte battery

Publications (1)

Publication Number Publication Date
JP2012009255A true JP2012009255A (en) 2012-01-12

Family

ID=45539579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143771A Pending JP2012009255A (en) 2010-06-24 2010-06-24 Sulfide based solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP2012009255A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216217A (en) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 Manufacturing method of sulfide all-solid battery
JP2015220099A (en) * 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery
WO2018181288A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery and package
JP2018160443A (en) * 2017-03-21 2018-10-11 株式会社東芝 Separator, secondary battery, battery pack, and vehicle
US10326162B2 (en) 2017-06-02 2019-06-18 Samsung Electronics Co., Ltd. Composite solid electrolyte comprising silane compound and lithium battery comprising the composite solid electrolyte
WO2020095996A1 (en) * 2018-11-08 2020-05-14 ダイキン工業株式会社 Coated particles, positive electrode, negative electrode, all-solid-state battery, and coating composition for sulfide-based all-solid-state batteries
EP4047676A4 (en) * 2019-10-15 2024-04-03 Attaccato Llc Electrode for non-aqueous electrolyte power storage device, non-aqueous electrolyte power storage device, and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335133A (en) * 2003-04-30 2004-11-25 Matsushita Electric Ind Co Ltd Solid state battery
JP2005209585A (en) * 2004-01-26 2005-08-04 Toshiba Corp Battery
JP2006351326A (en) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd Solid battery
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2009032539A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
JP2009117168A (en) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd All solid battery, and manufacturing method thereof
JP2009187892A (en) * 2008-02-08 2009-08-20 Toyota Motor Corp Solid-type battery
JP2010033732A (en) * 2008-07-25 2010-02-12 Idemitsu Kosan Co Ltd Coated solid electrolyte for lithium battery, and all-solid secondary battery using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335133A (en) * 2003-04-30 2004-11-25 Matsushita Electric Ind Co Ltd Solid state battery
JP2005209585A (en) * 2004-01-26 2005-08-04 Toshiba Corp Battery
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2006351326A (en) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd Solid battery
JP2009032539A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
JP2009117168A (en) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd All solid battery, and manufacturing method thereof
JP2009187892A (en) * 2008-02-08 2009-08-20 Toyota Motor Corp Solid-type battery
JP2010033732A (en) * 2008-07-25 2010-02-12 Idemitsu Kosan Co Ltd Coated solid electrolyte for lithium battery, and all-solid secondary battery using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216217A (en) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 Manufacturing method of sulfide all-solid battery
JP2015220099A (en) * 2014-05-19 2015-12-07 Tdk株式会社 All-solid lithium ion secondary battery
JP2018160443A (en) * 2017-03-21 2018-10-11 株式会社東芝 Separator, secondary battery, battery pack, and vehicle
JP7056647B2 (en) 2017-03-28 2022-04-19 Tdk株式会社 All-solid-state lithium-ion secondary battery and mount
WO2018181288A1 (en) * 2017-03-28 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery and package
CN110521050A (en) * 2017-03-28 2019-11-29 Tdk株式会社 All-solid-state lithium-ion secondary battery and fixing body
JPWO2018181288A1 (en) * 2017-03-28 2020-02-06 Tdk株式会社 All-solid lithium-ion secondary battery and package
CN110521050B (en) * 2017-03-28 2023-07-28 Tdk株式会社 All-solid lithium ion secondary battery and mounting body
US11588173B2 (en) 2017-03-28 2023-02-21 Tdk Corporation All-solid-state lithium ion secondary battery having fluorine and carbon-containing liquid repellent film and mounted body
US10326162B2 (en) 2017-06-02 2019-06-18 Samsung Electronics Co., Ltd. Composite solid electrolyte comprising silane compound and lithium battery comprising the composite solid electrolyte
CN112969730A (en) * 2018-11-08 2021-06-15 大金工业株式会社 Coated particle, positive electrode, negative electrode, all-solid-state battery, and coating composition for sulfide-based all-solid-state battery
JPWO2020095996A1 (en) * 2018-11-08 2021-10-07 ダイキン工業株式会社 Coating composition for coating particles, positive electrode, negative electrode, all-solid-state battery, and sulfide-based all-solid-state battery
CN112969730B (en) * 2018-11-08 2023-02-28 大金工业株式会社 Coated particle, positive electrode, negative electrode, all-solid-state battery, and coating composition for sulfide-based all-solid-state battery
JP7239846B2 (en) 2018-11-08 2023-03-15 ダイキン工業株式会社 Coated particles, positive electrode, negative electrode, all-solid battery, and coating composition for sulfide-based all-solid battery
WO2020095996A1 (en) * 2018-11-08 2020-05-14 ダイキン工業株式会社 Coated particles, positive electrode, negative electrode, all-solid-state battery, and coating composition for sulfide-based all-solid-state batteries
EP4047676A4 (en) * 2019-10-15 2024-04-03 Attaccato Llc Electrode for non-aqueous electrolyte power storage device, non-aqueous electrolyte power storage device, and method for producing same

Similar Documents

Publication Publication Date Title
CN107615553B (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, and electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US20210376379A1 (en) Sulfide-based solid electrolyte, method for producing the sulfide-based solid electrolyte, and method for producing all-solid-state battery
US11909034B2 (en) All-solid state secondary battery and method of manufacturing the same
KR101726504B1 (en) Cathode active material for lithium battery, lithium battery, and method for producing cathode active material for lithium battery
US9843043B2 (en) Lithium ion batteries including stabilized lithium composite particles
JP2012009255A (en) Sulfide based solid electrolyte battery
KR101928143B1 (en) All solid state battery
EP3576190B1 (en) Cathode, all-solid-state battery and methods for producing them
KR20160127652A (en) Negative electrode active material and all solid-state secondary battery
JP2011165650A (en) Sulfide-based solid electrolyte battery
TW201212351A (en) Thermoelectric generator
US11539071B2 (en) Sulfide-impregnated solid-state battery
CN111566849B (en) Electrode sheet for all-solid-state secondary battery, and method for producing both
JP2013033655A (en) All-solid battery, and method for manufacturing all-solid battery
WO2018123330A1 (en) Negative electrode active material and method for manufacturing same, negative electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US20220166002A1 (en) Cathode, all-solid-state battery and methods for producing them
CN111095660A (en) All-solid-state secondary battery, exterior material for all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
JP6665343B2 (en) Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material membrane for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for manufacturing all-solid secondary battery
CA3173433A1 (en) New lithium rare-earth halides
JP2014157666A (en) Lithium battery system
CN110998928B (en) Negative electrode active material and method for producing same
Miyazaki et al. Charge–discharge performances of Li–S battery using NaI–NaBH4–LiI solid electrolyte
JP2017098181A (en) All-solid-state battery
CN111063886A (en) Sulfide all-solid-state battery
JP7347679B2 (en) Positive electrode active materials for secondary batteries, positive electrodes for secondary batteries, and secondary batteries

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617