JP2012008038A - Method for analyzing fuel oil - Google Patents

Method for analyzing fuel oil Download PDF

Info

Publication number
JP2012008038A
JP2012008038A JP2010144999A JP2010144999A JP2012008038A JP 2012008038 A JP2012008038 A JP 2012008038A JP 2010144999 A JP2010144999 A JP 2010144999A JP 2010144999 A JP2010144999 A JP 2010144999A JP 2012008038 A JP2012008038 A JP 2012008038A
Authority
JP
Japan
Prior art keywords
fuel oil
butyl ether
tert
ethyl
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010144999A
Other languages
Japanese (ja)
Other versions
JP5461322B2 (en
Inventor
Reiko Kudo
麗子 工藤
Hisaaki Iwatani
久明 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010144999A priority Critical patent/JP5461322B2/en
Publication of JP2012008038A publication Critical patent/JP2012008038A/en
Application granted granted Critical
Publication of JP5461322B2 publication Critical patent/JP5461322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for analyzing fuel oil capable of promptly measuring content of ethyl tert-butyl ether by percentage in the fuel oil.SOLUTION: The method for analyzing the fuel oil has a step of calculating the content of ethyl tert-butyl ether by percentage in the fuel oil based on peak intensity of an absorption band to be attributed to ethyl tert-butyl ether in an infrared absorption spectrum of the fuel oil.

Description

本発明は、燃料油の分析方法に関する。   The present invention relates to a method for analyzing fuel oil.

日本国内では、ガソリン等の石油製品におけるエチル−tert−ブチルエーテル(ETBE)の含有割合について、揮発油等の品質の確保等に関する法律(品確法)に基づく強制規格が定められており、当該規格を満たさない石油製品を販売することは認められていない。   In Japan, compulsory standards have been established for the content ratio of ethyl-tert-butyl ether (ETBE) in petroleum products such as gasoline, based on the law on ensuring the quality of volatile oil, etc. (Product Quality Act). It is not permitted to sell petroleum products that do not meet.

従来、石油製品中のエチル−tert−ブチルエーテルの定量分析法としては、ガスクロマトグラフによる測定法が知られている(例えば、非特許文献1及び非特許文献2)。   Conventionally, as a quantitative analysis method of ethyl-tert-butyl ether in petroleum products, a measurement method using a gas chromatograph is known (for example, Non-Patent Document 1 and Non-Patent Document 2).

JISハンドブック 25 石油 2007,1428〜1463頁(JIS K2536−2)JIS Handbook 25 Petroleum 2007, pages 1428 to 1463 (JIS K2536-2) JISハンドブック 25 石油 2007,1491〜1496頁(JIS K2536−6)JIS Handbook 25 Petroleum 2007, 1491-1496 (JIS K2536-6)

しかしながら、非特許文献1及び非特許文献2に記載の測定法は、操作が煩雑であり、分析に長時間を要する。そのため、多くの燃料油サンプルにおけるエチル−tert−ブチルエーテルの含有割合を、短時間で測定することが可能な分析方法が求められている。   However, the measurement methods described in Non-Patent Document 1 and Non-Patent Document 2 are complicated in operation and require a long time for analysis. Therefore, there is a demand for an analytical method that can measure the content ratio of ethyl-tert-butyl ether in many fuel oil samples in a short time.

そこで、本発明は、燃料油中のエチル−tert−ブチルエーテルの含有割合を迅速、かつ簡便に測定することが可能な燃料油の分析方法を提供することを目的とする。   Then, an object of this invention is to provide the analysis method of the fuel oil which can measure the content rate of the ethyl tert- butyl ether in a fuel oil rapidly and simply.

すなわち本発明は、燃料油の赤外吸収スペクトルにおける、エチル−tert−ブチルエーテルに帰属される吸収帯のピーク強度に基づき、上記燃料油中のエチル−tert−ブチルエーテルの含有割合を求める工程を有する、燃料油の分析方法を提供する。   That is, the present invention includes a step of determining the content ratio of ethyl-tert-butyl ether in the fuel oil based on the peak intensity of the absorption band attributed to ethyl-tert-butyl ether in the infrared absorption spectrum of the fuel oil. A method for analyzing fuel oil is provided.

本発明に係る燃料油の分析方法によれば、赤外吸収スペクトルにおけるピーク強度を用いていることから、迅速かつ簡便に燃料油中のエチル−tert−ブチルエーテルの含有割合を測定することができる。   According to the fuel oil analysis method of the present invention, since the peak intensity in the infrared absorption spectrum is used, the content ratio of ethyl-tert-butyl ether in the fuel oil can be measured quickly and easily.

本発明において、上記赤外吸収スペクトルが示されたチャートの横軸Xを吸収波長、縦軸Yを吸光度とし、上記吸収帯における吸光度の最大値を与える点をA(X,Y)とし、上記吸収帯の両端の谷の極小点をそれぞれA(X,Y)及びA(X,Y)とするとき、上記ピーク強度は、上記Aと上記Aとを結ぶ基準線Y=[(Y−Y)/(X−X)]X−[(X−X)/(X−X)]と直線X=Xとの交点から上記Aまでの距離{Y−[(X−X)Y−(X−X)Y]/(X−X)}であることが好ましい。 In the present invention, the horizontal axis X of the chart showing the infrared absorption spectrum is the absorption wavelength, the vertical axis Y is the absorbance, and the point giving the maximum value of the absorbance in the absorption band is A 1 (X 1 , Y 1 ). and then, when a local minimum point of the valley of the both ends of the absorption bands, respectively a 2 (X 2, Y 2 ) and a 3 (X 3, Y 3 ), the peak intensity, and the a 2 and the a 3 the reference line Y = connecting [(Y 3 -Y 2) / (X 3 -X 2)] X - [(X 3 Y 2 -X 2 Y 3) / (X 3 -X 2)] and the linear X = It is a distance {Y 1 − [(X 1 −X 2 ) Y 3 − (X 1 −X 3 ) Y 2 ] / (X 3 −X 2 )} from the intersection with X 1 to the above A 1. preferable.

このようなピーク強度に基づき燃料油を分析することにより、より高精度に、再現性良く燃料油中のエチル−tert−ブチルエーテルの含有割合を測定することができる。   By analyzing the fuel oil based on such peak intensity, the content ratio of ethyl-tert-butyl ether in the fuel oil can be measured with higher accuracy and good reproducibility.

また、本発明において、上記吸収帯は、上記吸収帯における吸光度の最大値を与える点が1180〜1225cm−1の領域にある吸収帯であることが好ましい。 In the present invention, the absorption band is preferably an absorption band in which the point giving the maximum absorbance in the absorption band is in the region of 1180 to 1225 cm −1 .

このような吸収帯のピーク強度に基づき燃料油を分析することにより、燃料油中のエチル−tert−ブチルエーテルの含有割合が極めて少ない場合であっても、高精度にその含有割合を測定することができる。   By analyzing the fuel oil based on the peak intensity of such an absorption band, even if the content ratio of ethyl-tert-butyl ether in the fuel oil is extremely small, the content ratio can be measured with high accuracy. it can.

さらに、本発明において、上記工程は、予め得られている上記ピーク強度とエチル−tert−ブチルエーテルの含有割合との相関に基づいて、上記燃料油中のエチル−tert−ブチルエーテルの含有割合を求める工程であることが好ましい。   Furthermore, in this invention, the said process is a process of calculating | requiring the content rate of the ethyl tert- butyl ether in the said fuel oil based on the correlation with the said peak intensity | strength obtained previously and the content rate of ethyl-tert- butyl ether. It is preferable that

このような分析方法においては、予め得られている相関に基づいて分析を行うことにより、複数の燃料油を、迅速かつ簡便に分析することができる。   In such an analysis method, a plurality of fuel oils can be analyzed quickly and easily by performing an analysis based on a correlation obtained in advance.

本発明によれば、燃料油中のエチル−tert−ブチルエーテルの含有割合を迅速、かつ簡便に測定することが可能な燃料油の分析方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the analysis method of the fuel oil which can measure the content rate of the ethyl tert- butyl ether in a fuel oil rapidly and simply is provided.

燃料油の赤外吸収スペクトルが示されたチャートを示す模式図である。It is a schematic diagram which shows the chart in which the infrared absorption spectrum of the fuel oil was shown. 実施例の測定サンプルにおいて測定された赤外吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum measured in the measurement sample of an Example. 実施例1で作成された検量線を示す図である。2 is a diagram showing a calibration curve created in Example 1. FIG. 実施例2で作成された検量線を示す図である。6 is a diagram showing a calibration curve created in Example 2. FIG. 実施例3で作成された検量線を示す図である。FIG. 6 is a diagram showing a calibration curve created in Example 3.

本発明に係る燃料油の分析方法の好適な実施形態について以下に説明する。   A preferred embodiment of the fuel oil analysis method according to the present invention will be described below.

本実施形態に係る燃料油の分析方法は、燃料油の赤外吸収スペクトルにおける、エチル−tert−ブチルエーテルに帰属される吸収帯のピーク強度に基づき、燃料油中のエチル−tert−ブチルエーテルの含有割合を求める工程を有する。   The fuel oil analysis method according to this embodiment is based on the peak intensity of the absorption band attributed to ethyl-tert-butyl ether in the infrared absorption spectrum of the fuel oil, and the content ratio of ethyl-tert-butyl ether in the fuel oil. The process which calculates | requires.

本実施形態に係る分析方法により分析される燃料油としては、原油又はその混合物に対して、蒸留、分解、改質、その他の精製処理等を適宜行うことによって得られる留分又は残渣が挙げられる。より具体的には、自動車エンジン用ガソリン、農業用内燃機関用ガソリン、林業用内燃機関用ガソリン等に代表されるガソリン留分;燃料用ナフサ等に代表されるナフサ留分(軽質ナフサ、重質ナフサ、ホールレンジナフサ等);ジェット燃料、航空ガソリン等に代表されるジェット燃料留分;冷暖房用灯油、厨房用灯油、石油発動機用灯油、工業燃料用灯油等に代表される灯油留分;自動車ディーゼルエンジン用軽油、加熱燃料用軽油等に代表される軽油留分;ボイラー用重油、ビル暖房用重油、船舶ディーゼルエンジン用重油、窯業用重油等に代表される重油留分(A重油、B重油、C重油等);及びこれらの混合物等が挙げられる。   Examples of the fuel oil analyzed by the analysis method according to the present embodiment include fractions or residues obtained by appropriately performing distillation, decomposition, reforming, and other refining treatments on crude oil or a mixture thereof. . More specifically, gasoline fractions represented by gasoline for automobile engines, gasoline for agricultural internal combustion engines, gasoline for forestry internal combustion engines, etc .; naphtha fractions represented by naphtha for fuel (light naphtha, heavy Naphtha, hall range naphtha, etc.); jet fuel fractions typified by jet fuel, aviation gasoline, etc .; kerosene fractions typified by kerosene for air conditioning, kitchen kerosene, kerosene for oil engines, kerosene for industrial fuels, etc .; Gas oil fraction represented by diesel oil for automobile diesel engines, diesel oil for heating fuel, etc .; heavy oil fraction represented by heavy oil for boilers, heavy oil for building heating, heavy oil for marine diesel engines, heavy oil for ceramics, etc. (A heavy oil, B Heavy oil, C heavy oil, etc.); and mixtures thereof.

本実施形態に係る燃料油の分析方法は、上述した各種の燃料油及びそれらの混合物の何れも分析可能であるが、特に、ガソリンを含有する燃料油を分析することに優れる。ここでガソリンとしては、JISK2202「自動車ガソリン」で規定される1号ガソリンや2号ガソリン、バイオガソリン等が挙げられる。   The fuel oil analysis method according to this embodiment can analyze any of the above-described various fuel oils and mixtures thereof, and is particularly excellent in analyzing fuel oil containing gasoline. Examples of gasoline include No. 1 gasoline, No. 2 gasoline, biogasoline and the like defined by JISK2202 “Automobile gasoline”.

燃料油の赤外吸収スペクトルは、フーリエ変換赤外分光法により得られた赤外吸収スペクトルであることが好ましい。このような赤外吸収スペクトルは、公知のフーリエ変換赤外分光光度計(フーリエ変換赤外分光分析装置、FT−IR装置ともいう。)を用いて得ることができ、フーリエ変換赤外分光光度計としては、例えば、Mattson ATI Genesis II FTIR(Mattson社製)等を用いることができる。   The infrared absorption spectrum of the fuel oil is preferably an infrared absorption spectrum obtained by Fourier transform infrared spectroscopy. Such an infrared absorption spectrum can be obtained by using a known Fourier transform infrared spectrophotometer (also referred to as a Fourier transform infrared spectrophotometer or an FT-IR apparatus), and a Fourier transform infrared spectrophotometer. For example, Mattson ATI Genesis II FTIR (manufactured by Mattson) or the like can be used.

燃料油の赤外吸収スペクトルは、フーリエ変換赤外分光光度計等により、迅速かつ簡便に得ることができる。そのため、本実施形態に係る燃料油の分析方法によれば、迅速かつ簡便に燃料油中のエチル−tert−ブチルエーテルの含有割合を求めることができる。   The infrared absorption spectrum of the fuel oil can be obtained quickly and easily with a Fourier transform infrared spectrophotometer or the like. Therefore, according to the fuel oil analysis method according to the present embodiment, the content ratio of ethyl-tert-butyl ether in the fuel oil can be obtained quickly and easily.

本実施形態に係る燃料油の分析方法は、赤外吸収スペクトルを測定できる環境下であれば簡便に実施することができるため、精密機器の導入が困難な製造現場等における一次スクリーニング手段や品質管理手段として好適である。   The fuel oil analysis method according to the present embodiment can be easily carried out in an environment where an infrared absorption spectrum can be measured. Therefore, primary screening means and quality control in a production site where introduction of precision equipment is difficult is possible. It is suitable as a means.

また、本実施形態に係る燃料油の分析方法は、エチル−tert−ブチルエーテルの含有割合が少ない燃料油を、精度良く分析することに優れる。したがって、分析対象となる燃料油は、エチル−tert−ブチルエーテルの含有割合が15容量%以下であることが好ましく、12容量%以下であることがより好ましく、10容量%以下であることがさらに好ましい。   Moreover, the fuel oil analysis method according to the present embodiment is excellent in accurately analyzing a fuel oil having a small content of ethyl-tert-butyl ether. Therefore, the fuel oil to be analyzed preferably has an ethyl-tert-butyl ether content of 15% by volume or less, more preferably 12% by volume or less, and even more preferably 10% by volume or less. .

エチル−tert−ブチルエーテルに帰属される吸収帯としては、1180〜1225cm−1の領域において最大の吸光度を与える吸収帯(以下、「第1吸収帯」と称する。)、1140〜1100cm−1の領域において最大の吸光度を与える吸収帯(以下、「第2吸収帯」と称する。)、1100〜1055cm−1の領域において最大の吸光度を与える吸収帯(以下、「第3吸収帯」)が挙げられる。 As an absorption band attributed to ethyl-tert-butyl ether, an absorption band giving the maximum absorbance in a region of 1180 to 1225 cm −1 (hereinafter referred to as “first absorption band”), a region of 1140 to 1100 cm −1 . An absorption band giving the maximum absorbance in the following (hereinafter referred to as “second absorption band”) and an absorption band giving the maximum absorbance in the region of 1100 to 1055 cm −1 (hereinafter referred to as “third absorption band”). .

これらの吸収帯のうち、いずれの吸収帯のピーク強度に基づいて分析を行ってもよいが、燃料油中のエチル−tert−ブチルエーテルの含有割合を高精度に測定できることから、第1吸収帯のピーク強度に基づいて分析を行うことがより好ましい。第2吸収帯又は第3吸収帯のピーク強度に基づいて分析を行うと、燃料油中の芳香族炭化水素の含有割合が多い場合において、芳香族炭化水素由来の吸収スペクトルの影響を受け、精度よく燃料油中のエチル−tert−ブチルエーテルの含有割合を測定できない場合がある。   Of these absorption bands, analysis may be performed based on the peak intensity of any of the absorption bands. However, since the content of ethyl-tert-butyl ether in the fuel oil can be measured with high accuracy, More preferably, the analysis is performed based on the peak intensity. When the analysis is performed based on the peak intensity of the second absorption band or the third absorption band, the accuracy is affected by the absorption spectrum derived from the aromatic hydrocarbon when the content ratio of the aromatic hydrocarbon in the fuel oil is large. Often, the content ratio of ethyl-tert-butyl ether in fuel oil cannot be measured.

本実施形態に係る燃料油の製造方法では、例えば、予め得られているピーク強度とエチル−tert−ブチルエーテルの含有割合との相関に基づいて、上記燃料油中のエチル−tert−ブチルエーテルの含有割合を求めることができる。   In the method for producing fuel oil according to this embodiment, for example, based on the correlation between the peak intensity obtained in advance and the content ratio of ethyl-tert-butyl ether, the content ratio of ethyl-tert-butyl ether in the fuel oil Can be requested.

上記相関の具体例としては、検量線が挙げられる。検量線は、例えば、エチル−tert−ブチルエーテルの含有割合が異なる複数のサンプルについて、それぞれの赤外吸収スペクトルにおけるエチル−tert−ブチルエーテルに帰属される吸収帯のピーク強度を測定して、エチル−tert−ブチルエーテルの含有割合に対するピーク強度をプロットすることにより作成することができる。   A specific example of the correlation is a calibration curve. The calibration curve is obtained by measuring the peak intensity of the absorption band attributed to ethyl-tert-butyl ether in each infrared absorption spectrum for a plurality of samples having different ethyl-tert-butyl ether content ratios, for example, -It can be created by plotting the peak intensity against the butyl ether content.

このように作成された検量線によれば、分析対象である燃料油について求められたピーク強度を、当該検量線に当てはめることにより、迅速かつ簡便にエチル−tert−ブチルエーテルの含有割合を求めることができる。また、複数の燃料油について、同一の検量線を用いて、迅速かつ簡便に分析を行うことができる。   According to the calibration curve created in this way, the content ratio of ethyl-tert-butyl ether can be quickly and easily determined by applying the peak intensity determined for the fuel oil to be analyzed to the calibration curve. it can. In addition, a plurality of fuel oils can be analyzed quickly and easily using the same calibration curve.

「吸収帯のピーク強度」としては、当該吸収帯における吸光度に関連して赤外吸収スペクトルから算出され得る値を適宜選択することができ、例えば、下記式(1)で表される値とすることができる。
I=a−a (1)
[式中、Iは吸収帯のピーク強度を示し、aは吸収帯における最大の吸光度を示し、aは吸収帯における最大の吸光度を与えるピーク位置において、吸収帯の両側の谷の極小点である2点を結んでなる基準線が与える吸光度を示す。]
As the “peak intensity of the absorption band”, a value that can be calculated from the infrared absorption spectrum in relation to the absorbance in the absorption band can be appropriately selected. For example, the value represented by the following formula (1) is used. be able to.
I = a 1 −a 2 (1)
[Wherein, I represents the peak intensity of the absorption band, a 1 represents the maximum absorbance in the absorption band, and a 2 represents the minimum points of the valleys on both sides of the absorption band at the peak position giving the maximum absorbance in the absorption band. The absorbance given by the reference line connecting the two points is shown. ]

このようなピーク強度に基づき燃料油を分析することにより、より高精度に、再現性良く燃料油中のエチル−tert−ブチルエーテルの含有割合を測定することができる。   By analyzing the fuel oil based on such peak intensity, the content ratio of ethyl-tert-butyl ether in the fuel oil can be measured with higher accuracy and good reproducibility.

図1は、燃料油の赤外線スペクトルが示されたチャートを示す図である。図1に示される赤外吸収スペクトル1において、第1吸収帯10、第2吸収帯20及び第3吸収帯30が、エチル−tert−ブチルエーテルに帰属される吸収帯である。   FIG. 1 is a chart showing an infrared spectrum of fuel oil. In the infrared absorption spectrum 1 shown in FIG. 1, the first absorption band 10, the second absorption band 20, and the third absorption band 30 are absorption bands attributed to ethyl-tert-butyl ether.

ここで、第1吸収帯10を例にとり説明すると、第1吸収帯10は、ピークトップ11で最大の吸光度aを示す。また、第1吸収帯10の両側には、谷13及び谷15があり、谷13は、極小点14を有し、谷15は、極小点16を有する。また、極小点14及び極小点16を結んでなる基準線17は、第1吸収帯10のピークトップ11のピーク位置と同位置ある点12において、吸光度aを与える。そして、第1吸収帯10のピーク強度Iは、吸光度aから吸光度aを減じた値として算出される。 Here, the first absorption band 10 will be described as an example. The first absorption band 10 exhibits the maximum absorbance a 1 at the peak top 11. Further, on both sides of the first absorption band 10, there are a valley 13 and a valley 15, the valley 13 has a minimum point 14, and the valley 15 has a minimum point 16. The reference line 17 connecting the minimum point 14 and the minimum point 16 gives the absorbance a 2 at the point 12 that is at the same position as the peak position of the peak top 11 of the first absorption band 10. The peak intensity I of the first absorption band 10 is calculated as a value obtained by subtracting the absorbance a 2 from the absorbance a 1 .

このようにして算出されたピーク強度は、例えば、上述のように予め得られている相関に基づき解析され、エチル−tert−ブチルエーテルの含有割合が求められる。   The peak intensity calculated in this manner is analyzed based on the correlation obtained in advance as described above, for example, and the content ratio of ethyl-tert-butyl ether is obtained.

また、上記のピーク強度は、以下のように説明することもできる。   Moreover, said peak intensity can also be demonstrated as follows.

すなわち、燃料油の赤外吸収スペクトルが示されたチャートの横軸Xを吸収波長、縦軸Yを吸光度とし、吸収帯における吸光度の最大値を与える点をA(X,Y)とし、吸収帯の両端の谷の極小点をそれぞれA(X,Y)及びA(X,Y)とするとき、ピーク強度は、AとAとを結ぶ基準線Y=[(Y−Y)/(X−X)]X+[(X−X)/(X−X)]と直線X=Xとの交点からAまでの距離{Y−[(X−X)Y−(X−X)Y]/(X−X)}である。 That is, the horizontal axis X of the chart showing the infrared absorption spectrum of the fuel oil is the absorption wavelength, the vertical axis Y is the absorbance, and the point giving the maximum absorbance in the absorption band is A 1 (X 1 , Y 1 ). , When the minimum points of the valleys at both ends of the absorption band are respectively A 2 (X 2 , Y 2 ) and A 3 (X 3 , Y 3 ), the peak intensity is the reference line Y connecting A 2 and A 3 = [(Y 3 −Y 2 ) / (X 3 −X 2 )] X + [(X 3 Y 2 −X 2 Y 3 ) / (X 3 −X 2 )] from the intersection of the straight line X = X 1 The distance to A 1 is {Y 1 − [(X 1 −X 2 ) Y 3 − (X 1 −X 3 ) Y 2 ] / (X 3 −X 2 )}.

ここで、図1を参照して、第1吸収帯10を例にとり説明すると、第1吸収帯10における吸光度の最大値を与える点11が、点Aである。また、第1吸収帯10の両側にある谷13及び15の極小点14及び16が、それぞれ点A及びAである。そして、点Aと点Aとを結ぶ基準線17と直線X=Xとの交点が、点12である。吸光度Iは、点12から点11までの距離として表すことができる。 Here, referring to FIG. 1, taking the first absorption band 10 as an example, a point 11 giving the maximum value of absorbance in the first absorption band 10 is a point A 1 . Further, the minimum points 14 and 16 of the valleys 13 and 15 on both sides of the first absorption band 10 are points A 2 and A 3 , respectively. The intersection of the reference line 17 connecting the point A 2 and the point A 3 and the straight line X = X 1 is the point 12. Absorbance I can be expressed as the distance from point 12 to point 11.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明の特徴の一つは、燃料油において、赤外吸収スペクトルのピーク強度に基づいて分析するとエチル−tert−ブチルエーテルの含有割合を迅速に求めることができることを見出した点にある。したがって、例えば、上記実施形態では、燃料油の分析方法として説明したが、本発明は燃料油に含まれるエチル−tert−ブチルエーテルの定量方法であってもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. One of the features of the present invention is that it has been found that the content of ethyl-tert-butyl ether can be quickly determined by analyzing the fuel oil based on the peak intensity of the infrared absorption spectrum. Therefore, for example, in the above embodiment, the method for analyzing fuel oil has been described. However, the present invention may be a method for quantifying ethyl-tert-butyl ether contained in fuel oil.

また、本実施形態に係る分析方法は、エチル−tert−ブチルエーテルを含む燃料油のみならず、エチル−tert−ブチルエーテルを含有しない燃料油に対しても適用可能であることはいうまでもない。この場合、本実施形態に係る分析方法を行うことによって、燃料油がエチル−tert−ブチルエーテルを含有しないことを確認することができる。   Further, it goes without saying that the analysis method according to the present embodiment is applicable not only to fuel oil containing ethyl-tert-butyl ether but also to fuel oil not containing ethyl-tert-butyl ether. In this case, it can be confirmed that the fuel oil does not contain ethyl-tert-butyl ether by performing the analysis method according to the present embodiment.

以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to an Example.

(実施例1)
[1−1:検量線の作成]
エチル−tert−ブチルエーテルを含有しない燃料油(燃料油としては、市販のレギュラーガソリンを用いた。)とエチル−tert−ブチルエーテルとを用いて、エチル−tert−ブチルエーテルの含有割合がそれぞれ0容量%、1.9容量%、4.8容量%、9.6容量%である4つの測定サンプルを調製した。
Example 1
[1-1: Creation of calibration curve]
Using a fuel oil not containing ethyl-tert-butyl ether (commercial regular gasoline was used as the fuel oil) and ethyl-tert-butyl ether, the content ratio of ethyl-tert-butyl ether was 0% by volume, Four measurement samples were prepared that were 1.9% by volume, 4.8% by volume, and 9.6% by volume.

各測定サンプルについて、FT−IR装置として、「Mattson ATI Genesis II FTIR」(Mattson社製)を使用し、下記の測定条件でIR測定を行うとともに、ピーク強度Iを求めた。なお、各測定サンプルにおいて測定された赤外吸収スペクトルは図2に示すとおりであった。 For each measurement sample, “Mattson ATI Genesis II FTIR” (manufactured by Mattson) was used as an FT-IR apparatus, and IR measurement was performed under the following measurement conditions, and a peak intensity I 1 was obtained. In addition, the infrared absorption spectrum measured in each measurement sample was as shown in FIG.

(測定条件)
積算回数 : 32回
分解能 : 4cm−1
セル : 光路長0.1mm KBr固定セル
(測定手順)
1.装置内部を窒素ガスで置換し、バックグラウンドを測定した(セル不使用)。
2.試料用の固定セルに、測定サンプルを注入し、測定を行った。
3.横軸に波数、縦軸に吸光度をとり、波数1500cm−1〜900cm−1の領域が含まれるように、赤外吸収スペクトルを表示した。
4.赤外吸収スペクトル上のエチル−tert−ブチルエーテルに帰属される吸収帯のうち、1180〜1225cm−1の領域において最大の吸光度aを与える吸収帯(第1吸収帯)について、当該吸収帯の両側の谷の極小点である2点を結び、基準線を作成した。
5.第1吸収帯の最大の吸光度を与える点から降ろした垂線と基準線との交点における吸光度aを求めた。
6.下記式(1)により、第1吸収帯におけるピーク強度Iを算出した。なお、ピーク強度Iは、JIS Z 8401の規定によって小数点以下第3位までの数値とした。
=a−a (1)
(Measurement condition)
Integration count: 32 times Resolution: 4 cm -1
Cell: Optical path length 0.1 mm KBr fixed cell (measurement procedure)
1. The inside of the apparatus was replaced with nitrogen gas, and the background was measured (cell not used).
2. A measurement sample was injected into a fixed cell for a sample, and measurement was performed.
3. Taking the absorbance on the horizontal axis the wave number and the vertical axis, to contain the wave number region of 1500cm -1 ~900cm -1, displaying the infrared absorption spectrum.
4). Among the absorption bands attributed to ethyl-tert-butyl ether on the infrared absorption spectrum, the absorption band (first absorption band) that gives the maximum absorbance a 1 in the region of 1180 to 1225 cm −1 , on both sides of the absorption band A reference line was created by connecting two minimum points of the valley.
5. It was determined absorbance a 2 at the intersection with the largest perpendicular to the reference line down from the viewpoint of giving an absorbance of the first absorption band.
6). The peak intensity I 1 in the first absorption band was calculated by the following formula (1). The peak intensity I is a numerical value up to the third decimal place according to JIS Z 8401.
I 1 = a 1 −a 2 (1)

各測定サンプルについて得られたピーク強度Iと、各測定サンプルにおけるエチル−tert−ブチルエーテルの含有割合とから、検量線を作成した。作成した検量線を図3に示す。 A calibration curve was prepared from the peak intensity I 1 obtained for each measurement sample and the content ratio of ethyl-tert-butyl ether in each measurement sample. The prepared calibration curve is shown in FIG.

[1−2:燃料油の測定]
燃料油サンプル1〜5について、上記測定条件にて上記測定手順と同様にして、ピーク強度Iを算出し、得られたピーク強度Iと検量線からエチル−tert−ブチルエーテルの含有割合を求めた。得られたピーク強度Iと含有割合は、下記表1に示すとおりであった。
[1-2: Measurement of fuel oil]
For the fuel oil samples 1 to 5, the peak intensity I 1 is calculated in the same manner as the above measurement procedure under the above measurement conditions, and the content ratio of ethyl-tert-butyl ether is obtained from the obtained peak intensity I 1 and the calibration curve. It was. The obtained peak intensity I 1 and the content ratio were as shown in Table 1 below.

なお、燃料油サンプルは市販のハイオクガソリン又はレギュラーガソリンにエチル−tert−ブチルエーテル(純度:95.54%、密度:0.74g/cm)を添加して調整した。燃料油サンプル1は、石油会社Aの市販ハイオクガソリン(1.1516g)にエチル−tert−ブチルエーテル(0.1233g)を添加して調整したサンプル(エチル−tert−ブチルエーテル濃度:9.34容量%)であり、燃料油サンプル2は、石油会社Bの市販ハイオクガソリン(0.8756g)にエチル−tert−ブチルエーテル(0.0706g)を添加して調整したサンプル(エチル−tert−ブチルエーテル濃度:7.28容量%)であり、燃料油サンプル3は、石油会社Cの市販レギュラーガソリン(1.0707g)にエチル−tert−ブチルエーテル(0.0528g)を添加して調整したサンプル(エチル−tert−ブチルエーテル濃度:4.44容量%)であり、燃料油サンプル4は、石油会社Bの市販レギュラーガソリン(1.0898g)にエチル−tert−ブチルエーテル(0.0182g)を添加して調整したサンプル(エチル−tert−ブチルエーテル濃度:1.56容量%)であり、燃料油サンプル5は、石油会社Dの市販ハイオクガソリン(1.2199g)にエチル−tert−ブチルエーテル(0.0088g)を添加して調整したサンプル(エチル−tert−ブチルエーテル濃度:0.71容量%)である。 The fuel oil sample was prepared by adding ethyl tert-butyl ether (purity: 95.54%, density: 0.74 g / cm 3 ) to commercially available high-octane gasoline or regular gasoline. Fuel oil sample 1 was prepared by adding ethyl tert-butyl ether (0.1233 g) to commercial high-octane gasoline (1.1516 g) of petroleum company A (ethyl-tert-butyl ether concentration: 9.34 vol%) The fuel oil sample 2 was prepared by adding ethyl tert-butyl ether (0.0706 g) to commercially available high-octane gasoline (0.8756 g) of Petroleum Company B (ethyl-tert-butyl ether concentration: 7.28). Fuel oil sample 3 was prepared by adding ethyl-tert-butyl ether (0.0528 g) to commercial regular gasoline (1.0707 g) of petroleum company C (ethyl-tert-butyl ether concentration: 4.44% by volume), and fuel oil sample 4 is an oil company A sample prepared by adding ethyl-tert-butyl ether (0.0182 g) to commercially available regular gasoline (1.0898 g) (ethyl-tert-butyl ether concentration: 1.56% by volume). It is a sample (ethyl-tert-butyl ether concentration: 0.71 vol%) prepared by adding ethyl-tert-butyl ether (0.0088 g) to commercial high-octane gasoline (1.2199 g) of Petroleum Company D.

(実施例2)
[2−1:検量線の作成]
実施例1の測定手順1〜3と同様にして、実施例1と同様の測定サンプルについて各々赤外吸収スペクトルを測定した。
(Example 2)
[2-1: Creation of calibration curve]
In the same manner as in measurement procedures 1 to 3 in Example 1, infrared absorption spectra were measured for the same measurement samples as in Example 1.

次いで、赤外吸収スペクトル上のエチル−tert−ブチルエーテルに帰属される吸収帯のうち、1140〜1100cm−1の領域において最大の吸光度を与える吸収帯(第2吸収帯)について、実施例1の測定手順4〜6と同様にしてそのピーク強度Iを求めた。 Next, among the absorption bands attributed to ethyl-tert-butyl ether on the infrared absorption spectrum, the measurement of Example 1 was performed for the absorption band (second absorption band) that gives the maximum absorbance in the region of 1140 to 1100 cm −1. the peak intensity I 2 was obtained in the same manner as steps 4-6.

各測定サンプルについて得られたピーク強度Iと、各測定サンプルにおけるエチル−tert−ブチルエーテルの含有割合とから、検量線を作成した。作成した検量線を図4に示す。 A calibration curve was created from the peak intensity I 2 obtained for each measurement sample and the content ratio of ethyl-tert-butyl ether in each measurement sample. The prepared calibration curve is shown in FIG.

[2−2:燃料油の測定]
実施例1と同様の燃料油サンプル1〜5について、上記と同様にして、ピーク強度Iを算出し、得られたピーク強度Iと検量線からエチル−tert−ブチルエーテルの含有割合を求めた。得られたピーク強度Iと含有割合は、下記表1に示すとおりであった。
[2-2: Measurement of fuel oil]
For the same fuel oil samples 1 to 5 as in Example 1, the peak intensity I 2 was calculated in the same manner as described above, and the content ratio of ethyl-tert-butyl ether was determined from the obtained peak intensity I 2 and the calibration curve. . The obtained peak intensity I 2 and the content ratio were as shown in Table 1 below.

(実施例3)
[3−1:検量線の作成]
実施例1の測定手順1〜3と同様にして、実施例1と同様の測定サンプルについて各々赤外吸収スペクトルを測定した。
(Example 3)
[3-1: Creation of calibration curve]
In the same manner as in measurement procedures 1 to 3 in Example 1, infrared absorption spectra were measured for the same measurement samples as in Example 1.

次いで、赤外吸収スペクトル上のエチル−tert−ブチルエーテルに帰属される吸収帯のうち、1100〜1055cm−1の領域において最大の吸光度を与える吸収帯(第3吸収帯)について、実施例1の測定手順4〜6と同様にしてそのピーク強度Iを求めた。 Next, for the absorption band (third absorption band) that gives the maximum absorbance in the region of 1100 to 1055 cm −1 among the absorption bands attributed to ethyl-tert-butyl ether on the infrared absorption spectrum, measurement of Example 1 The peak intensity I 3 was determined in the same manner as in procedures 4-6.

各測定サンプルについて得られたピーク強度Iと、各測定サンプルにおけるエチル−tert−ブチルエーテルの含有割合とから、検量線を作成した。作成した検量線を図5に示す。 A calibration curve was created from the peak intensity I 3 obtained for each measurement sample and the content of ethyl-tert-butyl ether in each measurement sample. The prepared calibration curve is shown in FIG.

[3−2:燃料油の測定]
実施例1と同様の燃料油サンプル1〜5について、上記と同様にして、ピーク強度Iを算出し、得られたピーク強度Iと検量線からエチル−tert−ブチルエーテルの含有割合を求めた。得られたピーク強度Iと含有割合は、下記表1に示すとおりであった。
[3-2: Measurement of fuel oil]
For the same fuel oil samples 1 to 5 as in Example 1, the peak intensity I 3 was calculated in the same manner as described above, and the content ratio of ethyl-tert-butyl ether was determined from the obtained peak intensity I 3 and the calibration curve. . The obtained peak intensity I 3 and the content ratio were as shown in Table 1 below.

(参考例1) (Reference Example 1)

実施例1と同様の燃料油サンプル1〜5について、JIS K2536−2に基づいてエチル−tert−ブチルエーテルの含有割合を求めたところ、得られた含有割合は、下記表1に示すとおりであった。   About the fuel oil samples 1-5 similar to Example 1, when the content rate of ethyl-tert- butyl ether was calculated | required based on JISK2536-2, the obtained content rate was as showing in following Table 1. .

Figure 2012008038
Figure 2012008038

表1中、ETBE含有割合とは、エチル−tert−ブチルエーテルの含有割合(容量%)を示す。   In Table 1, the ETBE content ratio indicates the content ratio (volume%) of ethyl-tert-butyl ether.

実施例1〜3と参考例1とを比較すると、実施例1〜3の方法で得られた含有割合の値は、操作が煩雑であり分析に長時間を要する参考例1の方法で得られた含有割合の値と良い一致を示した。以上のことから、本実施形態に係る燃料油の分析方法によって、従来の操作が煩雑であり分析に長時間を要する分析方法で得られる結果と、良い一致を示す分析結果を、迅速に得ることができることが確認された。   When Examples 1 to 3 are compared with Reference Example 1, the content ratio values obtained by the methods of Examples 1 to 3 are obtained by the method of Reference Example 1 which is complicated in operation and requires a long time for analysis. It was in good agreement with the content rate. From the above, the analysis method of the fuel oil according to the present embodiment can quickly obtain the result obtained by the analysis method that requires a long time for analysis and the analysis result that shows a good agreement with the conventional operation. It was confirmed that

(実施例4)
市販のバイオガソリンを測定サンプルとして、実施例1と同様の測定条件及び測定手順で、ピーク強度Iを算出した。そして、得られたピーク強度Iと、実施例1で得られた検量線から、エチル−tert−ブチルエーテルの含有割合を求めた。このとき、得られたピーク強度Iは0.137であり、得られたエチル−tert−ブチルエーテルの含有割合は1.54容量%であった。
Example 4
Using commercially available biogasoline as a measurement sample, the peak intensity I 1 was calculated under the same measurement conditions and measurement procedure as in Example 1. Then, from the obtained peak intensity I 1 and the calibration curve obtained in Example 1, the content ratio of ethyl-tert-butyl ether was determined. At this time, the obtained peak intensity I 1 was 0.137, and the content ratio of obtained ethyl-tert-butyl ether was 1.54% by volume.

(参考例2)
実施例4と同様の測定サンプルについて、JIS K2536−2に基づいてエチル−tert−ブチルエーテルの含有割合を求めたところ、得られた含有割合は2.07容量%であった。
(Reference Example 2)
About the measurement sample similar to Example 4, when the content rate of ethyl-tert- butyl ether was calculated | required based on JISK2536-2, the obtained content rate was 2.07 volume%.

実施例4と参考例2とを比較すると、実施例4の方法で得られた含有割合の値は、操作が煩雑であり分析に長時間を要する参考例1の方法で得られた含有割合の値と良い一致を示した。以上のことから、バイオガソリンを測定対象とした場合にも、本実施形態に係る燃料油の分析方法によって、従来の操作が煩雑であり分析に長時間を要する分析方法で得られる結果と良い一致を示す分析結果を、迅速に得ることができることが確認された。   When Example 4 and Reference Example 2 are compared, the value of the content ratio obtained by the method of Example 4 is that of the content ratio obtained by the method of Reference Example 1 which is complicated in operation and requires a long time for analysis. The value is in good agreement. From the above, even when biogasoline is used as the measurement target, the fuel oil analysis method according to the present embodiment is in good agreement with the result obtained by the analysis method that requires a long time for analysis because the conventional operation is complicated. It was confirmed that an analysis result showing that can be obtained quickly.

Claims (4)

燃料油の赤外吸収スペクトルにおける、エチル−tert−ブチルエーテルに帰属される吸収帯のピーク強度に基づき、前記燃料油中のエチル−tert−ブチルエーテルの含有割合を求める工程を有する、燃料油の分析方法。   A method for analyzing fuel oil, comprising determining a content ratio of ethyl-tert-butyl ether in the fuel oil based on a peak intensity of an absorption band attributed to ethyl-tert-butyl ether in an infrared absorption spectrum of the fuel oil . 前記赤外吸収スペクトルが示されたチャートの横軸Xを吸収波長、縦軸Yを吸光度とし、前記吸収帯における吸光度の最大値を与える点をA(X,Y)とし、前記吸収帯の両端の谷の極小点をそれぞれA(X,Y)及びA(X,Y)とするとき、前記ピーク強度は、前記Aと前記Aとを結ぶ基準線Y=[(Y−Y)/(X−X)]X+[(X−X)/(X−X)]と直線X=Xとの交点から前記Aまでの距離{Y−[(X−X)Y−(X−X)Y]/(X−X)}である、請求項1に記載の燃料油の分析方法。 In the chart showing the infrared absorption spectrum, the horizontal axis X is the absorption wavelength, the vertical axis Y is the absorbance, and the point giving the maximum absorbance in the absorption band is A 1 (X 1 , Y 1 ). When the minimum points of the valleys at both ends of the band are respectively A 2 (X 2 , Y 2 ) and A 3 (X 3 , Y 3 ), the peak intensity is a reference line connecting the A 2 and the A 3 Intersection of Y = [(Y 3 −Y 2 ) / (X 3 −X 2 )] X + [(X 3 Y 2 −X 2 Y 3 ) / (X 3 −X 2 )] and the straight line X = X 1 The distance from A to A 1 is {Y 1 − [(X 1 −X 2 ) Y 3 − (X 1 −X 3 ) Y 2 ] / (X 3 −X 2 )}. Analysis method of fuel oil. 前記吸収帯における吸光度の最大値を与える点が、1180〜1225cm−1の領域にある、請求項1又は2に記載の燃料油の分析方法。 3. The method for analyzing fuel oil according to claim 1, wherein the point giving the maximum absorbance in the absorption band is in a region of 1180 to 1225 cm −1 . 前記工程は、予め得られている前記ピーク強度とエチル−tert−ブチルエーテルの含有割合との相関に基づいて、前記燃料油中のエチル−tert−ブチルエーテルの含有割合を求める工程である、請求項1〜3のいずれか一項に記載の燃料油の分析方法。   The step is a step of obtaining a content ratio of ethyl-tert-butyl ether in the fuel oil based on a correlation between the peak intensity obtained in advance and a content ratio of ethyl-tert-butyl ether. The analysis method of the fuel oil as described in any one of -3.
JP2010144999A 2010-06-25 2010-06-25 Analysis method of fuel oil Expired - Fee Related JP5461322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144999A JP5461322B2 (en) 2010-06-25 2010-06-25 Analysis method of fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144999A JP5461322B2 (en) 2010-06-25 2010-06-25 Analysis method of fuel oil

Publications (2)

Publication Number Publication Date
JP2012008038A true JP2012008038A (en) 2012-01-12
JP5461322B2 JP5461322B2 (en) 2014-04-02

Family

ID=45538746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144999A Expired - Fee Related JP5461322B2 (en) 2010-06-25 2010-06-25 Analysis method of fuel oil

Country Status (1)

Country Link
JP (1) JP5461322B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033878A (en) * 1973-07-25 1975-04-01
JP2000509155A (en) * 1996-04-29 2000-07-18 ペトロメトリックス リミテッド Transmission of spectrum information by optical fiber for communication
JP2006137927A (en) * 2004-10-15 2006-06-01 Nippon Oil Corp Gasoline composition
WO2009138585A1 (en) * 2008-04-24 2009-11-19 Sp3H Method for optimising the operation of a thermal engine by determining the proportion of oxygenated compounds in the fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033878A (en) * 1973-07-25 1975-04-01
JP2000509155A (en) * 1996-04-29 2000-07-18 ペトロメトリックス リミテッド Transmission of spectrum information by optical fiber for communication
JP2006137927A (en) * 2004-10-15 2006-06-01 Nippon Oil Corp Gasoline composition
WO2009138585A1 (en) * 2008-04-24 2009-11-19 Sp3H Method for optimising the operation of a thermal engine by determining the proportion of oxygenated compounds in the fuel
JP2011518984A (en) * 2008-04-24 2011-06-30 エスペートロワアッシュ A method for optimizing the operation of a heat engine by determining the proportion of oxygenates in the fuel.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013019366; Larsen G , et.al.: 'Ethyl tert-Butyl Ether(ETBE) Synthesis on H-Mordenite: Gas-phase Kinetics and DRIFTS Studies' Journal of Catalysis Vol.157, 199512, pp.645-655 *

Also Published As

Publication number Publication date
JP5461322B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
Correia et al. Portable near infrared spectroscopy applied to fuel quality control
US8781757B2 (en) Method and apparatus for determining properties of fuels
US20140229010A1 (en) Method of monitoring and controlling activity involving a fuel composition
US10295521B2 (en) Methods and apparatuses for spectral qualification of fuel properties
US10082807B2 (en) Method of preparing a certified target product from a mixture of components by spectral analysis
Portela et al. Quantification of biodiesel in petroleum diesel by 1H NMR: evaluation of univariate and multivariate approaches
AU603868B2 (en) Method for the direct determination of octane number
De Lira et al. Prediction of properties of diesel/biodiesel blends by infrared spectroscopy and multivariate calibration
JP6783770B2 (en) Characterization of crude oil and its fractions by Fourier transform infrared spectroscopy (FTIR) analysis
Balabin et al. Quantitative measurement of ethanol distribution over Fractions of ethanol− gasoline fuel
de Paulo et al. A PLS regression model using flame spectroscopy emission for determination of octane numbers in gasoline
Hidajat et al. Quality characterisation of crude oils by partial least square calibration of NIR spectral profiles
JP2005512051A (en) A method of analyzing unknowns as a blend of known substances calculated to match specific analytical data and predicting the properties of unknowns based on the calculated blend
CN112782146B (en) Gasoline olefin content analysis method based on Raman spectrum
Kaiser et al. Quality control of gasoline by 1H NMR: aromatics, olefinics, paraffinics, and oxygenated and benzene contents
Insausti et al. Simultaneous determination of quality parameters in biodiesel/diesel blends using synchronous fluorescence and multivariate analysis
Barra et al. FTIR fingerprints associated to a PLS-DA model for rapid detection of smuggled non-compliant diesel marketed in Morocco
Dantas et al. MCR-ALS with correlation constraint and Raman spectroscopy for identification and quantification of biofuels and adulterants in petroleum diesel
US7973926B1 (en) Methods for determining olefin concentrations in olefin-containing fuels
CA2635930C (en) Fourier transform infrared (ftir) chemometric method to determine cetane number of diesel fuels containing fatty acid alkyl ester additives
JP5461322B2 (en) Analysis method of fuel oil
JP6783771B2 (en) Crude oil characterization by near infrared spectroscopy
Klingbeil et al. Temperature-and composition-dependent mid-infrared absorption spectrum of gas-phase gasoline: Model and measurements
Kuptsov et al. Raman spectroscopic investigation of olefins in saturated hydrocarbons and self-tuning model development
CN111650324A (en) Online detection method for hydrocarbon content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees