JP2012007143A - Epoxy resin composition using acylated lignin and method for producing the same - Google Patents

Epoxy resin composition using acylated lignin and method for producing the same Download PDF

Info

Publication number
JP2012007143A
JP2012007143A JP2010278194A JP2010278194A JP2012007143A JP 2012007143 A JP2012007143 A JP 2012007143A JP 2010278194 A JP2010278194 A JP 2010278194A JP 2010278194 A JP2010278194 A JP 2010278194A JP 2012007143 A JP2012007143 A JP 2012007143A
Authority
JP
Japan
Prior art keywords
lignin
epoxy resin
hydroxyl group
solvent
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010278194A
Other languages
Japanese (ja)
Other versions
JP5729589B2 (en
Inventor
Shigeo Hirose
重雄 廣瀬
Kazuhiro Taguchi
和宏 田口
Masao Kunioka
正雄 国岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010278194A priority Critical patent/JP5729589B2/en
Publication of JP2012007143A publication Critical patent/JP2012007143A/en
Application granted granted Critical
Publication of JP5729589B2 publication Critical patent/JP5729589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition to improve utilization efficiency of lignin in the case of producing an epoxy resin composition by using lignin as a hardener and improve heat-resistance and water-resistance of the produced resin composition, and to provide a method for producing the composition.SOLUTION: The epoxy resin composition includes the hardener comprising a solvent-soluble lignin derivative obtained by acylating alcoholic and phenolic hydroxyl groups in the lignin molecule. Application field of lignin to an epoxy resin production technology to use a solvent is extended by solubilizing lignin as the acylated lignin derivative. Since hydroxyl group in the epoxy resin hardened with the hardener is protected with an ester group derived from the acylated lignin, moisture-absorbency of the resin is suppressed and improvement in heat-resistance and water resistance can be expected.

Description

本発明は、リグニン分子中に存在するアルコール性水酸基及びフェノール性水酸基をアシル化した溶剤可溶性リグニン誘導体を硬化剤として用いる、エポキシ樹脂組成物及びその製造方法に関するものである。   The present invention relates to an epoxy resin composition using a solvent-soluble lignin derivative obtained by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group present in a lignin molecule as a curing agent, and a method for producing the same.

フェノール化合物とエポキシ樹脂の反応によってエポキシ樹脂硬化物が得られることが知られている。また、エポキシ樹脂組成物を製造する際に、石油由来のフェノール化合物ではなく、植物由来のリグニンを用いてエポキシ樹脂を製造することが最近報告された(非特許文献1)。
しかし、これにより得られるエポキシ樹脂硬化物は、吸水性が石油由来成分を利用したエポキシ樹脂硬化物と比べて若干高いことが指摘されている。また、リグニンは種々の溶媒に対する可溶性に乏しく、このことにより、エポキシ樹脂製造の条件が限られたものとなっていた。
It is known that a cured epoxy resin can be obtained by a reaction between a phenol compound and an epoxy resin. Moreover, when manufacturing an epoxy resin composition, it was reported recently that an epoxy resin is manufactured not using petroleum-derived phenol compounds but using plant-derived lignin (Non-patent Document 1).
However, it has been pointed out that the cured epoxy resin obtained thereby has a slightly higher water absorption than the cured epoxy resin using petroleum-derived components. In addition, lignin is poorly soluble in various solvents, which limits the conditions for producing epoxy resins.

一方で、エポキシ樹脂の硬化剤として、フェノール化合物の水酸基をエステル化した誘導体(活性エステル誘導体:電子吸引性基を有するフェノールのアシル化物、チオエステル等)を用い、これとエポキシ化合物を反応させることにより、フェノール化合物のアシル基がエポキシ基の開環により生じる水酸基に転移結合した分子構造を有するエポキシ樹脂硬化物を製造する方法が報告されている(中村ら、非特許文献2)。
また、この様な方法によって得られる硬化物は分子中に水酸基を持たないために、その低吸湿性を生かした集積回路の封止用樹脂として利用されつつある(特許文献1)。
On the other hand, by using a derivative obtained by esterifying a hydroxyl group of a phenol compound (active ester derivative: acylated product of phenol having an electron-withdrawing group, thioester, etc.) as an epoxy resin curing agent, and reacting this with an epoxy compound A method for producing a cured epoxy resin product having a molecular structure in which an acyl group of a phenol compound is transferred and bonded to a hydroxyl group generated by ring opening of an epoxy group has been reported (Nakamura et al., Non-Patent Document 2).
Moreover, since the cured product obtained by such a method does not have a hydroxyl group in the molecule, it is being used as a resin for sealing integrated circuits that makes use of its low hygroscopicity (Patent Document 1).

特開2000−327748、「エポキシ樹脂組成物およびその用途」JP 2000-327748, “Epoxy resin composition and use thereof”

岡部義昭ら、「バイオマス由来エポキシ樹脂の銅板積層板への応用(2)」、高分子学会講演集、58,No.2,5433(2009)Yoshiaki Okabe et al., “Application of Biomass-Derived Epoxy Resin to Copper Plate Laminate (2)”, Proceedings of the Society of Polymer Science, 58, No. 2,5433 (2009) S.Nakamura et al.,”Epoxy Resins(Curing Reactions),in Encyclopedia of Polymer Technology”,CRC Press Inc.,1996,p2238-2246S. Nakamura et al., “Epoxy Resins (Curing Reactions), in Encyclopedia of Polymer Technology”, CRC Press Inc., 1996, p2238-2246

本発明は、リグニンを硬化剤として用いてエポキシ樹脂組成物を得る際のリグニンの利用効率を高めることを課題とし、また、得られる樹脂組成物の耐熱性、耐水性を向上させることを課題とする。   An object of the present invention is to increase the utilization efficiency of lignin when obtaining an epoxy resin composition using lignin as a curing agent, and to improve the heat resistance and water resistance of the resulting resin composition. To do.

本発明者は、リグニン分子中のアルコール性およびフェノール性水酸基をアシル化して溶剤に可溶性の誘導体に転換し、これを硬化剤としてエポキシ樹脂組成物を製造することにより、上記課題を解決した。本発明者は、また、当該アシル化リグニンを用いたエポキシ樹脂の硬化反応が、触媒としてトリス(2,4,6−トリメトキシフェニル)ホスフィンまたはトリス(2,6−ジメトキシフェニル)ホスフィンなどのポリアルコキシトリフェニルホスフィンや2-エチル−4−メチル−イミダゾール、2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾールなどの1,2,4位の1つないし3つの位置にアルキル基またはアリール基が置換したイミダゾール化合物を用いることにより、効果的に進行することを見出した。   This inventor solved the said subject by acylating the alcoholic and phenolic hydroxyl group in a lignin molecule | numerator, converting into a derivative soluble in a solvent, and manufacturing an epoxy resin composition using this as a hardening | curing agent. The present inventor has also found that the curing reaction of the epoxy resin using the acylated lignin is a catalyst such as tris (2,4,6-trimethoxyphenyl) phosphine or tris (2,6-dimethoxyphenyl) phosphine. 1 to 3 of the 1,2,4 positions such as alkoxytriphenylphosphine, 2-ethyl-4-methyl-imidazole, 2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, etc. It has been found that the use of an imidazole compound substituted with an alkyl group or an aryl group at the position effectively proceeds.

リグニンの化学的・物理的性質は、リグニンの化学構造・分子量等に依存する。例えばリグニンの溶媒への溶解性は、原料植物の種類、リグニンの単離方法、分子量、分子量分布に依存する。一概にはいえないが、分子量が小さい程、溶媒への溶解性が増大する。
従来、リグニンを樹脂原料とする場合には、有機溶媒への溶解部分、すなわち低分子量分画が用いられ、非溶解部分は未利用のまま放置されてきた。
The chemical and physical properties of lignin depend on the chemical structure and molecular weight of lignin. For example, the solubility of lignin in a solvent depends on the type of raw plant, the lignin isolation method, the molecular weight, and the molecular weight distribution. In general, the smaller the molecular weight, the greater the solubility in the solvent.
Conventionally, when lignin is used as a resin raw material, a portion dissolved in an organic solvent, that is, a low molecular weight fraction has been used, and an undissolved portion has been left unused.

本発明は、リグニン分子中のアルコール性およびフェノール性水酸基をアシル化することにより、非溶解性のリグニンを溶剤に可溶性とし、これをエポキシ樹脂の硬化剤として用いることを特徴とする。
リグニン分子中に存在するアルコール性水酸基及びフェノール性水酸基をエステル化やエーテル化によって誘導体に転換することによって、リグニンが各種の溶剤に可溶となることは、従来から知られている。しかし、アシル化リグニンを高分子材料製造の原料として利用した例は報告されていない。
本発明の、分子中のアルコール性およびフェノール性水酸基をアシル化したリグニンを用いたエポキシ樹脂の硬化反応は、触媒としてトリス(2,4,6−トリメトキシフェニル)ホスフィンまたはトリス(2,6−ジメトキシフェニル)ホスフィンなどのポリアルコキシトリフェニルホスフィンや2-エチル−4−メチル−イミダゾール、2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾールなどの1,2,4位の1つないし3つの位置にアルキル基またはアリール基が置換したイミダゾール化合物を用いることにより、効果的に進行する。
The present invention is characterized in that an insoluble lignin is made soluble in a solvent by acylating alcoholic and phenolic hydroxyl groups in the lignin molecule, and this is used as a curing agent for an epoxy resin.
It is conventionally known that lignin is soluble in various solvents by converting alcoholic and phenolic hydroxyl groups present in the lignin molecule into derivatives by esterification or etherification. However, no example of utilizing acylated lignin as a raw material for producing a polymer material has been reported.
The curing reaction of the epoxy resin using lignin obtained by acylating alcoholic and phenolic hydroxyl groups in the molecule of the present invention is carried out by using tris (2,4,6-trimethoxyphenyl) phosphine or tris (2,6- 1,2,4 such as polyalkoxytriphenylphosphine such as dimethoxyphenyl) phosphine, 2-ethyl-4-methyl-imidazole, 2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole By using an imidazole compound in which an alkyl group or an aryl group is substituted at one to three positions in the position, the process proceeds effectively.

具体的には、本出願は、以下の発明を提供する。
〈1〉リグニン分子中のアルコール性水酸基およびフェノール性水酸基をアシル化した溶媒可溶性リグニン誘導体からなる、エポキシ樹脂硬化剤。
〈2〉リグニン分子中のアルコール性水酸基およびフェノール性水酸基をアシル化した溶媒可溶性リグニン誘導体を用いて、エポキシ樹脂を硬化させる方法。
〈3〉触媒としてポリアルコキシトリフェニルホスフィンまたは1,2,4位の1つないし3つの位置にアルキル基またはアリール基が置換したイミダゾール化合物を用いる、〈2〉の方法。
〈4〉〈2〉または〈3〉の方法により硬化した、エポキシ樹脂硬化物。
〈5〉リグニン分子中のアルコール性水酸基およびフェノール性水酸基をアシル化した溶媒可溶性リグニン誘導体とエポキシ樹脂を含む、エポキシ樹脂組成物。
Specifically, the present application provides the following inventions.
<1> An epoxy resin curing agent comprising a solvent-soluble lignin derivative obtained by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group in a lignin molecule.
<2> A method of curing an epoxy resin using a solvent-soluble lignin derivative obtained by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group in a lignin molecule.
<3> The method according to <2>, wherein polyalkoxytriphenylphosphine or an imidazole compound in which an alkyl group or an aryl group is substituted at one to three positions of 1, 2, and 4 positions is used as a catalyst.
<4> A cured epoxy resin cured by the method of <2> or <3>.
<5> An epoxy resin composition comprising a solvent-soluble lignin derivative obtained by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group in a lignin molecule and an epoxy resin.

本発明により、アルコール性水酸基およびフェノール性水酸基をアシル化することによって、溶剤に可溶となるリグニンとしては、例えば、アルカリリグニン、クラフトリグニン、アシドリシスリグニン、加溶媒分解リグニン、蒸煮爆砕リグニン、糖化残渣リグニン、リグニンスルホン酸塩などが例示されるが、これに限られない。   According to the present invention, lignin that becomes soluble in a solvent by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group includes, for example, alkali lignin, kraft lignin, acidolysis lignin, solvolytic lignin, steamed crushed lignin, saccharification Residue lignin, lignin sulfonate and the like are exemplified, but not limited thereto.

本発明により、リグニンをアシル化リグニン誘導体として可溶化することにより、エポキシ樹脂等の反応性成分と反応させることによって各種の有用な樹脂を製造するための原料として、従来よりもより効率的にリグニンを利用することができ、溶媒を使用するエポキシ樹脂製造技術へのリグニンの応用の幅が広がる。
さらに、これを用いて硬化されたエポキシ樹脂中の水酸基はアシル化リグニンに由来するエステル基で保護されているため、得られる樹脂の水分吸収率が抑えられ、耐熱性の向上や耐水性の向上等が期待できる。
According to the present invention, as a raw material for producing various useful resins by solubilizing lignin as an acylated lignin derivative and reacting with a reactive component such as an epoxy resin, lignin is more efficiently used than before. The range of application of lignin to the epoxy resin manufacturing technology using a solvent is expanded.
Furthermore, since the hydroxyl group in the epoxy resin cured using this is protected with an ester group derived from acylated lignin, the moisture absorption rate of the resulting resin is suppressed, improving heat resistance and water resistance. Etc. can be expected.

以下の実施例を用いて、本発明を、更に詳細に説明する。   The invention is explained in more detail using the following examples.

実施例1
完全アセチル化したアルカリリグニン10重量部、ビスフェノールAジグリシジルエーテル6重量部およびトリス(2,4,6−トリメトキシフェニル)ホスフィン0.1重量部を乾燥テトラヒドロフラン20重量部に溶解し、60℃で、乾燥窒素を流しつつテトラヒドロフランを蒸発除去した。得られた混合物を180℃で2時間硬化させた。得られた硬化物のガラス転移温度(Tg,示差走査熱量測定(DSC),10℃/min)は130.2℃であった。また、熱分解温度(Td,熱重量測定、窒素中、10℃/min、重量減少率1%)は288.2℃であった。硬化前の混合物のFTIRスペクトルには、1763cm−1(フェノールのエステル)、1730cm−1(アルコールのエステル)、および907cm−1(エポキシ基)に帰属されるピークが存在した。硬化後の試料のFTIRスペクトルには、1730cm−1(アルコールのエステル)のみが観察され、1763cm−1(フェノールのエステル)、および907cm−1(エポキシ基)に由来するピークは観察されなかった。この結果から、アセチル基が硬化反応によって第2アルコールに転移結合したことが確認された。また、KCl飽和水溶液で調湿したデシケーター中に試料を重量が恒値となるまで20℃で静置して、測定した吸水率は0.65%であった。
表1にアセチル化アルカリリグニンの溶剤への溶解性の例を示す。
Example 1
10 parts by weight of fully acetylated alkali lignin, 6 parts by weight of bisphenol A diglycidyl ether and 0.1 part by weight of tris (2,4,6-trimethoxyphenyl) phosphine were dissolved in 20 parts by weight of dry tetrahydrofuran, and The tetrahydrofuran was removed by evaporation while flowing dry nitrogen. The resulting mixture was cured at 180 ° C. for 2 hours. The obtained cured product had a glass transition temperature (Tg, differential scanning calorimetry (DSC), 10 ° C / min) of 130.2 ° C. The thermal decomposition temperature (Td, thermogravimetric measurement, in nitrogen, 10 ° C./min, weight reduction rate 1%) was 288.2 ° C. The FTIR spectra of the mixture before curing, 1763cm -1 (ester phenol), 1730 cm -1 (ester alcohols), and 907cm -1 peak attributed to the (epoxy groups) was present. In the FTIR spectrum of the cured sample, only 1730 cm −1 (alcohol ester) was observed, and no peaks derived from 1763 cm −1 (phenol ester) and 907 cm −1 (epoxy group) were observed. From this result, it was confirmed that the acetyl group was transferred and bonded to the secondary alcohol by the curing reaction. The sample was allowed to stand at 20 ° C. in a desiccator conditioned with a saturated aqueous solution of KCl until the weight reached a constant value, and the measured water absorption was 0.65%.
Table 1 shows an example of solubility of acetylated alkali lignin in a solvent.

実施例2
完全アセチル化したアシドリシスリグニン10重量部、ビスフェノールAジグリシジルエーテル7.2重量部およびトリス(2,4,6−トリメトキシフェニル)ホスフィン0.1重量部を乾燥テトラヒドロフラン20重量部に溶解し、60℃で、乾燥窒素を流しつつテトラヒドロフランを蒸発除去した。得られた混合物を180℃で2時間硬化させた。得られた硬化物のガラス転移温度(Tg,示差走査熱量測定(DSC),10℃/min)は60.7℃であった。また、熱分解温度(Td,熱重量測定、窒素中、10℃/min、重量減少率1%)は286.2℃であった。硬化前の混合物のFTIRスペクトルには、1763cm−1(フェノールのエステル)、1730cm−1(アルコールのエステル)、および907cm−1(エポキシ基)に帰属されるピークが存在した。硬化後の試料のFTIRスペクトルには、1730cm−1(アルコールのエステル)のみが観察され、1763cm−1(フェノールのエステル)、および907cm−1(エポキシ基)に由来するピークは観察されなかった。この結果から、アセチル基が硬化反応によって第2アルコールに転移結合したことが確認された。また、KCl飽和水溶液で調湿したデシケーター中に試料を重量が恒値となるまで20℃で静置して、測定した吸水率は0.76%であった。
表2にアセチル化アシドリシスリグニンの溶剤への溶解性の例を示す。
Example 2
10 parts by weight of fully acetylated acidolysis lignin, 7.2 parts by weight of bisphenol A diglycidyl ether and 0.1 part by weight of tris (2,4,6-trimethoxyphenyl) phosphine are dissolved in 20 parts by weight of dry tetrahydrofuran, Tetrahydrofuran was removed by evaporation at 60 ° C. while flowing dry nitrogen. The resulting mixture was cured at 180 ° C. for 2 hours. The obtained cured product had a glass transition temperature (Tg, differential scanning calorimetry (DSC), 10 ° C./min) of 60.7 ° C. The thermal decomposition temperature (Td, thermogravimetric measurement, in nitrogen, 10 ° C./min, weight reduction rate 1%) was 286.2 ° C. The FTIR spectra of the mixture before curing, 1763cm -1 (ester phenol), 1730 cm -1 (ester alcohols), and 907cm -1 peak attributed to the (epoxy groups) was present. In the FTIR spectrum of the cured sample, only 1730 cm −1 (alcohol ester) was observed, and no peaks derived from 1763 cm −1 (phenol ester) and 907 cm −1 (epoxy group) were observed. From this result, it was confirmed that the acetyl group was transferred and bonded to the secondary alcohol by the curing reaction. The sample was allowed to stand at 20 ° C. in a desiccator conditioned with a saturated aqueous solution of KCl until the weight reached a constant value, and the measured water absorption was 0.76%.
Table 2 shows an example of the solubility of acetylated acidolysis lignin in a solvent.

実施例3
完全アセチル化したアシドリシスリグニン10重量部、ビスフェノールAジグリシジルエーテル7.2重量部および2−エチル-4−メチル−イミダゾール0.1重量部を乾燥テトラヒドロフラン20重量部に溶解し、60℃で、乾燥窒素を流しつつテトラヒドロフランを蒸発除去した。得られた混合物を150℃で2時間硬化させた。得られた硬化物のガラス転移温度(Tg,示差走査熱量測定(DSC),10℃/min)は91,6℃であった。また、熱分解温度(Td,熱重量測定、窒素中、10℃/min、重量減少率1%)は286.2℃であった。硬化前の混合物のFTIRスペクトルには、1763cm−1(フェノールのエステル)、1730cm−1(アルコールのエステル)、および907cm−1(エポキシ基)に帰属されるピークが存在した。硬化後の試料のFTIRスペクトルには、1730cm−1(アルコールのエステル)のみが観察され、1763cm−1(フェノールのエステル)、および907cm−1(エポキシ基)に由来するピークは観察されなかった。この結果から、アセチル基が硬化反応によって第2アルコールに転移結合したことが確認された。また、KCl飽和水溶液で調湿したデシケーター中に試料を重量が恒値となるまで20℃で静置して、測定した吸水率は0.65%であった。
Example 3
10 parts by weight of fully acetylated acidolysis lignin, 7.2 parts by weight of bisphenol A diglycidyl ether and 0.1 part by weight of 2-ethyl-4-methyl-imidazole are dissolved in 20 parts by weight of dry tetrahydrofuran, and at 60 ° C., Tetrahydrofuran was removed by evaporation while flowing dry nitrogen. The resulting mixture was cured at 150 ° C. for 2 hours. The obtained cured product had a glass transition temperature (Tg, differential scanning calorimetry (DSC), 10 ° C / min) of 91,6 ° C. The thermal decomposition temperature (Td, thermogravimetric measurement, in nitrogen, 10 ° C./min, weight reduction rate 1%) was 286.2 ° C. The FTIR spectra of the mixture before curing, 1763cm -1 (ester phenol), 1730 cm -1 (ester alcohols), and 907cm -1 peak attributed to the (epoxy groups) was present. In the FTIR spectrum of the cured sample, only 1730 cm −1 (alcohol ester) was observed, and no peaks derived from 1763 cm −1 (phenol ester) and 907 cm −1 (epoxy group) were observed. From this result, it was confirmed that the acetyl group was transferred and bonded to the secondary alcohol by the curing reaction. The sample was allowed to stand at 20 ° C. in a desiccator conditioned with a saturated aqueous solution of KCl until the weight reached a constant value, and the measured water absorption was 0.65%.

Claims (5)

リグニン分子中のアルコール性水酸基およびフェノール性水酸基をアシル化した溶媒可溶性リグニン誘導体からなる、エポキシ樹脂硬化剤。   An epoxy resin curing agent comprising a solvent-soluble lignin derivative obtained by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group in a lignin molecule. リグニン分子中のアルコール性水酸基およびフェノール性水酸基をアシル化した溶媒可溶性リグニン誘導体を用いて、エポキシ樹脂を硬化させる方法。   A method of curing an epoxy resin using a solvent-soluble lignin derivative obtained by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group in a lignin molecule. 触媒としてポリアルコキシトリフェニルホスフィンまたは1,2,4位の1つないし3つの位置にアルキル基またはアリール基が置換したイミダゾール化合物を用いる、請求項2に記載の方法。   The method according to claim 2, wherein polyalkoxytriphenylphosphine or an imidazole compound substituted with an alkyl group or an aryl group at one to three positions of 1, 2, 4 positions is used as a catalyst. 請求項2または3に記載の方法により硬化した、エポキシ樹脂硬化物。   A cured epoxy resin cured by the method according to claim 2. リグニン分子中のアルコール性水酸基およびフェノール性水酸基をアシル化した溶媒可溶性リグニン誘導体とエポキシ樹脂を含む、エポキシ樹脂組成物。   An epoxy resin composition comprising a solvent-soluble lignin derivative obtained by acylating an alcoholic hydroxyl group and a phenolic hydroxyl group in a lignin molecule and an epoxy resin.
JP2010278194A 2010-05-28 2010-12-14 Epoxy resin composition using acylated lignin and method for producing the same Active JP5729589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278194A JP5729589B2 (en) 2010-05-28 2010-12-14 Epoxy resin composition using acylated lignin and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010122193 2010-05-28
JP2010122193 2010-05-28
JP2010278194A JP5729589B2 (en) 2010-05-28 2010-12-14 Epoxy resin composition using acylated lignin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012007143A true JP2012007143A (en) 2012-01-12
JP5729589B2 JP5729589B2 (en) 2015-06-03

Family

ID=45538037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278194A Active JP5729589B2 (en) 2010-05-28 2010-12-14 Epoxy resin composition using acylated lignin and method for producing the same

Country Status (1)

Country Link
JP (1) JP5729589B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069373A1 (en) * 2011-11-07 2013-05-16 出光興産株式会社 Thermoplastic resin composition and molded body
JP2017503065A (en) * 2013-12-16 2017-01-26 レン フューエル ケイ2ビー アクチエボラグRen Fuel K2B AB A composition comprising an ester of lignin and an oil or fatty acid
CN112094611A (en) * 2020-09-25 2020-12-18 大连工业大学 Low-temperature-resistant lignin-based epoxy resin adhesive and preparation method thereof
CN112126391A (en) * 2020-09-25 2020-12-25 大连工业大学 Waterproof lignin-based epoxy resin adhesive and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099544A1 (en) * 2010-02-10 2011-08-18 日立化成工業株式会社 Resin composition, molded body and composite molded body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099544A1 (en) * 2010-02-10 2011-08-18 日立化成工業株式会社 Resin composition, molded body and composite molded body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069373A1 (en) * 2011-11-07 2013-05-16 出光興産株式会社 Thermoplastic resin composition and molded body
JP2017503065A (en) * 2013-12-16 2017-01-26 レン フューエル ケイ2ビー アクチエボラグRen Fuel K2B AB A composition comprising an ester of lignin and an oil or fatty acid
CN112094611A (en) * 2020-09-25 2020-12-18 大连工业大学 Low-temperature-resistant lignin-based epoxy resin adhesive and preparation method thereof
CN112126391A (en) * 2020-09-25 2020-12-25 大连工业大学 Waterproof lignin-based epoxy resin adhesive and preparation method thereof

Also Published As

Publication number Publication date
JP5729589B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
Liu et al. A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry
CN109651595B (en) Halogen-free flame-retardant bio-based epoxy resin precursor and preparation method and application thereof
CN105001081B (en) A kind of anthracene system sensitizer and its application in UV LED light curing system
CN105037587B (en) Sensitizer applicable to UV-LED photocuring system
Lligadas et al. Development of novel phosphorus‐containing epoxy resins from renewable resources
Jawerth et al. Allylation of a lignin model phenol: a highly selective reaction under benign conditions towards a new thermoset resin platform
JP5729589B2 (en) Epoxy resin composition using acylated lignin and method for producing the same
CN102119154A (en) Polymerizable benzoxazine compositions
TWI768347B (en) Thermosetable composition, epoxy curable product prepared thereby and a method for degrading epoxy curable product
CN103449979A (en) Bisphenol epoxy resin and preparation method thereof
Makwana et al. Cardol: Cashew nut shell liquid (CNSL)-derived starting material for the preparation of partially bio-based epoxy resins
Nabipour et al. A bio-based epoxy resin derived from syringaldehyde with excellent mechanical properties, flame retardant and high glass transition temperature
Lu et al. A sustainable lignin-based epoxy resin: Its preparation and combustion behaviors
EP2980064A1 (en) Novel inclusion compound
JP5582528B2 (en) Partially acylated lignin, epoxy resin composition using the same, and method for producing the same
Ma et al. Synthesis of a vanillin‐based curing agent and its application in wood to improve dimensional stability and flame retardancy
EP3632949A1 (en) Process for the production of epoxy resins
KR101427729B1 (en) Eco friendly epoxy resin composition based on biomass oil
CN107501526B (en) DOPO type epoxy resin curing agent and preparation method thereof
CN105153407B (en) A kind of thermosetting rosin resin compositions and preparation method thereof
CN115260489B (en) Bio-based difunctional benzoxazine resin and preparation method thereof
CN115505099B (en) Epoxy resin containing carbazole structure, and preparation method and application thereof
Yang et al. Degradable, intrinsically flame-retardant, low-water-absorbing vanillin-derived epoxy thermoset with a Schiff base structure
JP2013018822A (en) Epoxidized lignin resin or epoxidized lignophenol resin, resin composition, varnish and cured product thereof
Bulgakov et al. Synthesis and characterization of cured allyl/propargyl ether novolac resins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150325

R150 Certificate of patent or registration of utility model

Ref document number: 5729589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250