JP2012006379A - Method for generatively manufacturing three-dimensional object with broaching element and method for generating corresponding data set - Google Patents

Method for generatively manufacturing three-dimensional object with broaching element and method for generating corresponding data set Download PDF

Info

Publication number
JP2012006379A
JP2012006379A JP2011102781A JP2011102781A JP2012006379A JP 2012006379 A JP2012006379 A JP 2012006379A JP 2011102781 A JP2011102781 A JP 2011102781A JP 2011102781 A JP2011102781 A JP 2011102781A JP 2012006379 A JP2012006379 A JP 2012006379A
Authority
JP
Japan
Prior art keywords
dimensional object
cavity
broaching member
powder material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011102781A
Other languages
Japanese (ja)
Inventor
Axel Thoma
トーマ アクセル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
EOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EOS GmbH filed Critical EOS GmbH
Publication of JP2012006379A publication Critical patent/JP2012006379A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Abstract

PROBLEM TO BE SOLVED: To provide a method for generatively manufacturing a three-dimensional object by which removal of remaining powder in the three-dimensional object is simplified.SOLUTION: (a) Powder material 11 is applied in a layer shape onto a support 5 of a producing apparatus or onto a precoated layer, (b) the powder material 11 is selectively solidified by using energy radiation 8' at a position corresponding to a cross-section of three dimensions object 3 in the layer and (c) the application and the solidification are repeated till the three-dimensional object 3 is completed. The three-dimensional object 3 has at least one cavity 13 opened in an opening 14 in the surface, the powder material 11 extends in the cavity 13 and is solidified to form a broaching member 12 which can be taken out of the cavity via the opening 14.

Description

本発明は、三次元物体の生成的な製造方法及び対応データセットの生成方法に関する。   The present invention relates to a method for generating a three-dimensional object and a method for generating a corresponding data set.

特許文献1(DE 199 37 260 B4)は、三次元物体を生成的に製造する既知の方法と装置を開示する。この方法及び装置は、a)装置の支持体又は先に塗工された層に粉末材料を層状に塗工する工程と、b)層における上記三次元物体の断面に対応する位置にエネルギー放射により粉末材料を選択的に固化する工程と、c)上記三次元物体が完成するまで上記a)の塗工工程とb)の固化工程を繰り返す工程を含む。   Patent Document 1 (DE 199 37 260 B4) discloses a known method and apparatus for generatively producing a three-dimensional object. This method and apparatus comprises: a) a step of applying a powder material to a support of the apparatus or a previously applied layer, and b) energy radiation at a position corresponding to the cross section of the three-dimensional object in the layer. A step of selectively solidifying the powder material, and c) a step of repeating the coating step of a) and the solidification step of b) until the three-dimensional object is completed.

特許文献2(DE 295 06 716 U1)は、三次元物体を生成的に製造する既知の後処理方法を開示する。この方法では、残留粉末を除去するために、エアガンを用いて三次元物体を空気で吹き払う。   Patent document 2 (DE 295 06 716 U1) discloses a known post-processing method for producing a three-dimensional object in a generative manner. In this method, a three-dimensional object is blown off with air using an air gun in order to remove residual powder.

独国特許発明第19937260号明細書German Patent Invention No. 1937260 独国実用新案第29506716号明細書German utility model No. 29506716

本発明は、三次元物体内における残留粉末の除去を簡易化する三次元物体の生成的な製造方法を提供することを目的とする。この三次元物体は、請求項1の特徴を含む方法と請求項10の特徴を有するデータセットの生成方法により達成される。また、従属項は本発明の更なる有利な具体例を規定する。   An object of the present invention is to provide a generative manufacturing method of a three-dimensional object that simplifies the removal of residual powder in the three-dimensional object. This three-dimensional object is achieved by a method comprising the features of claim 1 and a method for generating a data set having the features of claim 10. The dependent claims define further advantageous specific examples of the present invention.

本発明による三次元物体は、大きな負担なしに内部の残留粉末を放出できるという利点を有する。例えば細長い形状のブローチ加工部材は、少なくとも案内路を生成するために、三次元物体の通路又はある程度角度の付いた空洞における残留粉末の放出を可能にする。経路と空洞の全断面のそれぞれが徐々に露呈されるように粗粒の有無にかかわらず気流が加えられる場合には、この案内路は最小流量の流れを許可する。   The three-dimensional object according to the invention has the advantage that it can discharge the residual powder inside without significant burden. For example, an elongated shaped broaching member allows for the release of residual powder in the path of a three-dimensional object or in a somewhat angled cavity, at least to create a guide path. If airflow is applied with or without coarse grains so that each of the channel and the entire cross-section of the cavity is gradually exposed, this guideway allows the flow at the minimum flow rate.

ブローチ加工部材は、三次元物体の製造時に用いるデータの要素である。ブローチ加工部材は、空洞の内壁に接触しないように配置される。均一に延在する内壁の経路の形状である空洞において、ブローチ加工部材は経路の中立軸と等しく又は少なくとも略沿って延長する。三次元物体の各空洞に対して、分離したブローチ加工部材を設けてもよい。同様に、一つの空洞において二つの部材を配置してもよい。すなわち、ブローチ加工部材がブローチ加工に適した角度の地点を示す分岐点で分かれる場合があり、空洞における開口部の両方のどちらからでも取り出しできる。   The broached member is an element of data used when manufacturing a three-dimensional object. The broaching member is arranged so as not to contact the inner wall of the cavity. In a cavity that is in the form of a uniformly extending inner wall path, the broaching member extends at least approximately along the neutral axis of the path. A separate broaching member may be provided for each cavity of the three-dimensional object. Similarly, two members may be arranged in one cavity. That is, the broaching member may be divided at a branch point indicating a point of an angle suitable for broaching, and can be taken out from both of the openings in the cavity.

ブローチ部材は細長い形状を有し得るが、この形状に限られない。三次元物体用のデータセットの要素である各種類の幾何学的形状を用いることが可能であり、案内路を露呈できる。ブローチ加工部材は平坦な通路断面用の帯板形状、波形形状、又はらせん形状、又はこれらを組み合わせた形状を有し得る。従って、大きな角度が付いた空洞、通路、又は湾曲した通路のそれぞれから残留粉末を放出可能である。   The broach member may have an elongated shape, but is not limited to this shape. Each type of geometric shape that is an element of a data set for a three-dimensional object can be used, and a guideway can be exposed. The broached member may have a flat channel cross-sectional strip shape, a corrugated shape, or a spiral shape, or a combination thereof. Thus, residual powder can be released from each of the large angled cavities, passages, or curved passages.

本発明の更なる特徴及び目的は、以下の添付図面に基づく実施形態の説明から明らかになる。   Further features and objects of the present invention will become apparent from the following description of embodiments based on the accompanying drawings.

三次元物体を製造する装置の概略図を示す。1 shows a schematic diagram of an apparatus for producing a three-dimensional object. 図1の装置により製造される三次元物体の断面図を示す。FIG. 2 shows a cross-sectional view of a three-dimensional object manufactured by the apparatus of FIG.

図1は、レーザ焼結装置として例示的に具体化された三次元物体3の製造装置の概略図を示す。   FIG. 1 shows a schematic view of an apparatus for manufacturing a three-dimensional object 3 exemplarily embodied as a laser sintering apparatus.

上記レーザ焼結装置は、上部に開口を有し、その内に支持体5を備えるフレーム1と、製造される三次元物体3を支持し、垂直移動可能な支持体5を備える。フレーム1は、上部2において造形領域6を囲む。好ましくは、フレーム1と支持体5は、レーザ焼結装置から取り外し可能且つ交換可能な代替フレームを形成する。支持体5は、固化される各層の上側が造形領域6の面に沿うように、少なくとも造形領域6の面の下方において支持体5を垂直移動するリフト機構4と連結する。   The laser sintering apparatus includes a frame 1 having an opening at an upper portion thereof and a support body 5 provided therein, and a support body 5 that supports a three-dimensional object 3 to be manufactured and is vertically movable. The frame 1 surrounds the modeling area 6 in the upper part 2. Preferably, the frame 1 and the support 5 form an alternative frame that is removable and replaceable from the laser sintering apparatus. The support 5 is connected to the lift mechanism 4 that vertically moves the support 5 at least below the surface of the modeling region 6 so that the upper side of each layer to be solidified follows the surface of the modeling region 6.

さらに、粉末材料11の層を塗工する塗工装置10が設けられる。粉末材料11として、全てのレーザ焼結可能な粉末が使用され得る。例えば、合成粉末、金属粉末、セラミック粉末、鋳物砂、及び複合材料粉末などが挙げられる。金属含有粉末状材料、任意の金属や合金を含む粉末材料、及び金属含有要素や非金属含有要素との混合物も考慮され得る。   Furthermore, a coating device 10 for coating a layer of the powder material 11 is provided. As the powder material 11, all laser-sinterable powders can be used. Examples thereof include synthetic powder, metal powder, ceramic powder, foundry sand, and composite material powder. Metal-containing powdered materials, powder materials including any metals and alloys, and mixtures with metal-containing and non-metal-containing elements can also be considered.

塗工装置10は、粉末材料11の層がそれぞれ支持体5の上方及び最後に固化された層の上方に沿うように、造形領域6の上方における所定の高さに移動される。さらに上記装置は、偏向手段9により造形領域6における任意の位置に集中されるレーザビーム8、8’を発生するレーザ7形状の放射装置を備える。従って、レーザビーム8、8’は、製造される三次元物体3の断面に対応する位置に粉末材料11を選択的に固化できる。   The coating device 10 is moved to a predetermined height above the modeling region 6 so that the layer of the powder material 11 is above the support 5 and above the last solidified layer, respectively. Further, the apparatus includes a laser 7-shaped radiation device that generates laser beams 8 and 8 ′ which are concentrated at an arbitrary position in the modeling region 6 by the deflecting unit 9. Therefore, the laser beams 8 and 8 ′ can selectively solidify the powder material 11 at a position corresponding to the cross section of the three-dimensional object 3 to be manufactured.

レーザ焼結装置は、新たに塗工された粉末層を固化に必要な粉末材料11の加工温度近くに予熱するために、造形領域6の上方に加熱装置(不図示)を備える場合がある。   The laser sintering apparatus may include a heating device (not shown) above the modeling region 6 in order to preheat the newly coated powder layer near the processing temperature of the powder material 11 necessary for solidification.

参照符号100は、フレーム1、支持体5、及び塗工装置10が配置される筐体を示している。好ましくは、筐体100はレーザビーム8、8’導入用の入射口を上部領域に有する。また、好ましくは、筐体100は気密に形成され、その内部に不活性ガスを導入できる。さらに、本製造装置において制御装置40が提供される。この制御装置40によって、造形処理を行うため及びレーザ7によるエネルギーの影響を制御するために本製造装置が協調的に制御される。上記制御装置40は、三次元物体3を製造するために、三次元物体3の形状をCADデータなどで定義したデータセットを用いる。   Reference numeral 100 indicates a housing in which the frame 1, the support 5, and the coating apparatus 10 are arranged. Preferably, the housing 100 has an entrance for introducing the laser beams 8, 8 'in the upper region. Moreover, preferably, the housing | casing 100 is formed airtight and can introduce an inert gas in the inside. Furthermore, the control apparatus 40 is provided in this manufacturing apparatus. The manufacturing apparatus is cooperatively controlled by the control device 40 in order to perform the modeling process and to control the influence of energy by the laser 7. In order to manufacture the three-dimensional object 3, the control device 40 uses a data set in which the shape of the three-dimensional object 3 is defined by CAD data or the like.

本製造装置の操作では、最初に、第1粉末層の所望の厚さ単位で、支持体5の上側が造形領域6の面の下方に沿うまで、リフト機構4により支持体5が降下される。次に、塗工装置10によって第1の粉末材料11の層が支持体5上に塗工され、平坦化される。加熱装置が設けられる場合には、加熱装置を用いて最上部の粉末層11の全体的な温度を固化に必要な加工温度より数℃低い温度に予熱できる。その後、制御装置40は、固化される粉末材料11の層の位置に対して偏向レーザビーム8、8’が選択的に作用するように偏向手段9を制御する。従って、粉末材料11はそれらの位置で固化及び/又は焼結され、これにより三次元物体3が生成される。   In the operation of the manufacturing apparatus, first, the support 5 is lowered by the lift mechanism 4 until the upper side of the support 5 is below the surface of the modeling region 6 in a desired thickness unit of the first powder layer. . Next, a layer of the first powder material 11 is coated on the support 5 by the coating apparatus 10 and flattened. When a heating device is provided, the overall temperature of the uppermost powder layer 11 can be preheated to a temperature several degrees lower than the processing temperature required for solidification using the heating device. Thereafter, the control device 40 controls the deflecting means 9 so that the deflected laser beams 8, 8 'act selectively on the position of the layer of the powder material 11 to be solidified. Accordingly, the powder material 11 is solidified and / or sintered at those positions, thereby producing a three-dimensional object 3.

次に、支持体5は、次層の所望の厚さ単位でリフト機構4により下降される。第2の粉末材料層は塗工装置10により塗工且つ平坦化され、さらにレーザビーム8、8’により選択的に固化される。これらの工程は所望の物体3が製造されるまで繰り返される。   Next, the support 5 is lowered by the lift mechanism 4 in a desired thickness unit of the next layer. The second powder material layer is coated and flattened by the coating apparatus 10 and further selectively solidified by the laser beams 8 and 8 '. These steps are repeated until the desired object 3 is manufactured.

図2は、図1の装置により製造される三次元物体3の断面図を示す。   FIG. 2 shows a cross-sectional view of a three-dimensional object 3 produced by the apparatus of FIG.

三次元物体3は、自身の下面において開口部14に開けた空洞13を有する。三次元物体3の製造中、空洞13内に延長し、開口部14を介して空洞13から取り出し可能なブローチ加工部材12が追加的に形成されるように、粉末材料11が固化される。図2に示す実施形態では、空洞13は、三次元物体3の上面において第2の開口部14’にも開けている。ブローチ加工部材12は第2の開口部14’を介して空洞13からも取り出し可能である。   The three-dimensional object 3 has a cavity 13 opened in the opening 14 on the lower surface thereof. During the production of the three-dimensional object 3, the powder material 11 is solidified so as to additionally form a broaching member 12 that extends into the cavity 13 and can be removed from the cavity 13 via the opening 14. In the embodiment shown in FIG. 2, the cavity 13 is also opened in the second opening 14 ′ on the upper surface of the three-dimensional object 3. The broaching member 12 can also be removed from the cavity 13 via the second opening 14 '.

このように、ブローチ加工部材12は、最終的な三次元物体3における固有の構成要素ではない。レーザ焼結処理により三次元物体3を完成させた後、ブローチ加工部材12が空洞13の開口部14から取り出され、案内路(pilot channel)が生成される。案内路は、レーザ焼結処理後に空洞13から取り除くべき残留粉末材料11の除去を簡略化する。ブローチ加工要素12が取り出された後、流体が開口部14、そして生成された案内路に加えられる。その結果、空洞13内の粉末材料11は除去され、空洞13の全断面が徐々に露呈される。例えば、流体は粗粒の有無に関わらず加圧空気であってもよく、三次元物体3の表面に沿って吹き付けられる。それにより粉末材料11は、ベンチュリノズル(Venturi-nozzle)と同様の動圧より、例えば開口部14から吸い込まれる。従って、上記加圧空気は他の開口部14’を介して空洞13内へ吸い込まれる。あるいは、加圧空気を開口部14内に直接吹き付けてもよい。その結果、残留粉末材料11が他の開口部14’から排出される。   Thus, the broaching member 12 is not a unique component in the final three-dimensional object 3. After the three-dimensional object 3 is completed by the laser sintering process, the broaching member 12 is taken out from the opening 14 of the cavity 13 and a pilot channel is generated. The guide path simplifies the removal of the residual powder material 11 to be removed from the cavity 13 after the laser sintering process. After the broaching element 12 is removed, fluid is added to the opening 14 and the generated guideway. As a result, the powder material 11 in the cavity 13 is removed, and the entire cross section of the cavity 13 is gradually exposed. For example, the fluid may be pressurized air with or without coarse particles, and is sprayed along the surface of the three-dimensional object 3. Thereby, the powder material 11 is sucked, for example, from the opening 14 by the dynamic pressure similar to that of the Venturi-nozzle. Therefore, the pressurized air is sucked into the cavity 13 through the other opening 14 '. Alternatively, pressurized air may be blown directly into the opening 14. As a result, the residual powder material 11 is discharged from the other opening 14 '.

上述の流体は、加圧空気に限定されるものではなく、不活性ガスなどの他の気体、又は水や油などの液体であってもよい。   The fluid described above is not limited to pressurized air, and may be another gas such as an inert gas, or a liquid such as water or oil.

図示の実施形態において、ブローチ加工部材12は細長い形状である。しかし、本発明はこの形状に限られず、ブローチ加工要素は帯板形状、波形形状、らせん形状、又は他の適当な形状を有し得る。例えば、波形形状においては、正弦波、矩形波、又は鋸歯状波の波形に振動する。   In the illustrated embodiment, the broaching member 12 has an elongated shape. However, the invention is not limited to this shape and the broaching element can have a strip shape, a corrugated shape, a helical shape, or other suitable shape. For example, the waveform shape vibrates into a sine wave, a rectangular wave, or a sawtooth waveform.

ブローチ加工部材12の断面が、使用される粉末材料を考慮して適切に寸法決めされている場合、ブローチ加工部材12は折り曲げ可能であることが好ましい。これは、角度の付いた空洞からブローチ加工部材12を取り出す際に有利となる。例えば、取り出す際にブローチ加工部材12は伸縮され得る。   The broaching member 12 is preferably bendable if the cross-section of the broaching member 12 is appropriately sized taking into account the powder material used. This is advantageous when the broaching member 12 is removed from the angled cavity. For example, the broaching member 12 can be expanded and contracted when taken out.

同様に、ブローチ加工部材12を接合部と共に、又は複数のチェーンリンク(chain links)から成るチェーンとして形成することが考えられる。   Similarly, it is conceivable to form the broaching member 12 with joints or as a chain consisting of a plurality of chain links.

ブローチ加工部材12は、ブローチ加工部材12を取り出す際に大量の粉末材料11を取り込むかかり(barbs)又は押付部材(共に不図示)を備える場合がある。   The broaching member 12 may be provided with barbs or a pressing member (both not shown) that take in a large amount of powder material 11 when the broaching member 12 is removed.

図示の実施形態において、ブローチ加工部材12は、ブローチ加工部材12の把持を容易にする把持部材15を有する。しかしながら、把持部材15を設けなくてもよい。   In the illustrated embodiment, the broaching member 12 has a gripping member 15 that facilitates gripping the broaching member 12. However, the gripping member 15 may not be provided.

図2から分かるように、ブローチ加工部材12は空洞13の内壁に接触しない。図示の実施形態において、空洞13は均一に延在する内壁を有し、通路13の形状となる。好ましくは、ブローチ加工部材12は実質的に通路13の中立軸に沿って延長する。従って、案内路の理想的な経路が確保される。しかしながら、ブローチ加工部材12の経路は、必ずしも通路13の中立軸に沿って延長する必要はない。   As can be seen from FIG. 2, the broaching member 12 does not contact the inner wall of the cavity 13. In the illustrated embodiment, the cavity 13 has a uniformly extending inner wall and is in the shape of a passage 13. Preferably, the broaching member 12 extends substantially along the neutral axis of the passage 13. Therefore, an ideal route of the guide route is ensured. However, the path of the broaching member 12 need not necessarily extend along the neutral axis of the passage 13.

図2では、第2のブローチ加工部材12’が追加的に図示されている。第2のブローチ加工部材12’は、第1のブローチ加工部材12とは分離して形成され、第3の開口部14’’から取り出し可能である。   In FIG. 2, a second broaching member 12 'is additionally illustrated. The second broaching member 12 ′ is formed separately from the first broaching member 12 and can be taken out from the third opening 14 ″.

上記実施形態には図示されていないが、ブローチ加工部材12は、ブローチ加工部材12が三次元物体3の空洞の異なる枝に進む分岐点を有する場合がある。好ましくは、ブローチ加工部材12は、三次元物体におけるブローチ加工部材の非分岐部分に結合する開口部から取り出される。   Although not shown in the above embodiment, the broaching member 12 may have a branch point where the broaching member 12 proceeds to a different branch of the cavity of the three-dimensional object 3. Preferably, the broaching member 12 is removed from an opening that joins the unbranched portion of the broaching member in the three-dimensional object.

また、三次元物体3の一つの空洞13において、いくつかの分離したブローチ加工部材12を形成することが考えられる。同様に、分離したブローチ加工部材12は空洞13の異なる枝に部分的に延長することが考えられる。   It is also conceivable to form several separate broaching members 12 in one cavity 13 of the three-dimensional object 3. Similarly, it is conceivable that the separated broaching member 12 extends partially to different branches of the cavity 13.

また、本発明は、三次元物体3のデータセットを生成する方法に関する。上記三次元物体3は、三次元物体3の生成的な製造方法を用いて製造される。例えば、上記データセットは三次元物体3のCADデータを含み、それによりレーザ焼結装置は三次元物体3を製造する。また、レーザ焼結装置は製造方法を実行する。レーザ焼結装置によって、粉末材料11は装置の支持体5又は先に塗工された層に繰り返し且つ層状に塗工される。粉末材料11はエネルギー放射8’により三次元物体3に対応する位置に固化される。三次元物体3は、自身の表面における開口部に開けた少なくとも一つの空洞13を有する。   The present invention also relates to a method for generating a data set of a three-dimensional object 3. The three-dimensional object 3 is manufactured using a generative manufacturing method for the three-dimensional object 3. For example, the data set includes CAD data of the three-dimensional object 3, whereby the laser sintering apparatus produces the three-dimensional object 3. In addition, the laser sintering apparatus executes a manufacturing method. By means of the laser sintering device, the powder material 11 is applied repeatedly and in layers on the support 5 of the device or on the previously applied layer. The powder material 11 is solidified at a position corresponding to the three-dimensional object 3 by the energy radiation 8 '. The three-dimensional object 3 has at least one cavity 13 opened in an opening on its surface.

本発明による三次元物体3のデータセットを生成する方法は、以下のステップを含む。   The method for generating a data set of a three-dimensional object 3 according to the present invention includes the following steps.

初めに、完成した三次元物体の寸法及び形状を定義するデータセットが一般的な方法で生成される。例えば、これらは三次元物体3の通常のCADデータである。   Initially, a data set defining the dimensions and shape of the completed three-dimensional object is generated in a general manner. For example, these are normal CAD data of the three-dimensional object 3.

次に、ブローチ加工部材12の寸法と形状を定義するデータを用いてデータセットが完成する。ブローチ加工部材12は、空洞13内に延長し、開口部14を介して空洞13から取り出し可能である。それにより、ブローチ加工部材12はレーザ焼結装置により固有の三次元物体3とともに製造される。   Next, a data set is completed using data defining the dimensions and shape of the broached member 12. The broaching member 12 extends into the cavity 13 and can be removed from the cavity 13 through the opening 14. Thereby, the broaching member 12 is manufactured together with the unique three-dimensional object 3 by a laser sintering apparatus.

本発明の技術的範囲は図示の実施形態に限定されず、提供される更なる変形や改良は請求項に規定する本発明の技術的範囲に属する。   The technical scope of the present invention is not limited to the illustrated embodiments, and further modifications and improvements provided belong to the technical scope of the present invention as defined in the claims.

例えば、本発明の製造装置はレーザ焼結に適用できるだけでなく、原料と粉末材料の各々が塗工される各層に用いられる粉体に基づいた生成方法の全てに適用可能である。そこでは、エネルギー放射などにより粉末が固化される。エネルギー放射は必ずしもレーザビーム8’である必要はなく、例えば電子ビームや粒子ビームであってもよい。さらに、例えばマスクなど、全表面に対する放射が可能である。エネルギー放射に換えて、粉末材料を選択的に接着する接着剤や結合剤を各々所望の位置に適用できる。   For example, the production apparatus of the present invention can be applied not only to laser sintering, but also to all production methods based on powder used for each layer on which a raw material and a powder material are applied. There, the powder is solidified by energy radiation or the like. The energy radiation does not necessarily have to be the laser beam 8 ', but may be, for example, an electron beam or a particle beam. Furthermore, radiation to the entire surface is possible, for example a mask. Instead of energy radiation, an adhesive or a binder that selectively adheres the powder material can be applied to each desired position.

Claims (10)

a)製造装置の支持体(5)又は先に塗工された層に粉末材料(11)を層状に塗工し、
b)層における三次元物体(3)の断面に対応する位置に前記粉末材料(11)を選択的に固化し、
c)前記三次元物体(3)が完成するまで前記塗工と前記固化を繰り返すことを含む、三次元物体(3)の生成的な製造方法であって、
前記三次元物体(3)は、前記三次元物体(3)の表面における開口部(14)に開けた少なくとも一つの空洞(13)を有し、
前記粉末材料(11)は、前記空洞(13)内に延長し、前記開口部(14)を介して前記空洞から取り出し可能なブローチ加工部材(12)が形成されるように固化されることを特徴とする製造装置を用いた三次元物体(3)の生成的な製造方法。
a) The powder material (11) is applied in layers to the support (5) of the production apparatus or the previously applied layer,
b) selectively solidifying said powder material (11) at a position corresponding to the cross section of the three-dimensional object (3) in the layer;
c) a generative production method of a three-dimensional object (3) comprising repeating the coating and the solidification until the three-dimensional object (3) is completed,
The three-dimensional object (3) has at least one cavity (13) opened in an opening (14) in the surface of the three-dimensional object (3);
The powder material (11) extends into the cavity (13) and is solidified to form a broaching member (12) that can be removed from the cavity through the opening (14). A generative production method of a three-dimensional object (3) using the production apparatus characterized.
前記三次元物体(3)が完成した後、案内路を形成するために、前記空洞(13)の前記開口部(14)から前記ブローチ加工部材(12)を取り出し、
前記空洞(13)内の前記粉末材料(11)が除去されるように前記開口部(14)と前記案内路に流体を適用することをさらに含む請求項1に記載の製造方法。
After the three-dimensional object (3) is completed, the broaching member (12) is taken out from the opening (14) of the cavity (13) to form a guide path,
The manufacturing method according to claim 1, further comprising applying a fluid to the opening (14) and the guide path so that the powder material (11) in the cavity (13) is removed.
前記ブローチ加工部材(12)は、帯板形状、波形形状、らせん形状、又はそれらを組み合わせた形状を有することを特徴とする請求項1又は2に記載の製造方法。   The method according to claim 1 or 2, wherein the broaching member (12) has a strip shape, a corrugated shape, a spiral shape, or a combination thereof. 前記ブローチ加工部材(12)は、押付部材又はかかりを有することを特徴とする請求項1乃至3の何れか一項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the broaching member (12) has a pressing member or a hook. 前記ブローチ加工部材(12)は、把持部材(15)を有することを特徴とする請求項1乃至4の何れか一項に記載の製造方法。   The method according to any one of claims 1 to 4, wherein the broaching member (12) has a gripping member (15). 前記ブローチ加工部材(12)は、前記空洞(13)の内壁に接触せず、且つ、均一に延在する内壁を有し通路の形状となる空洞(13)において、好ましくは前記経路の中立軸に実質的に沿って延長することを特徴とする請求項1乃至5の何れか一項に記載の製造方法。   The broaching member (12) preferably does not contact the inner wall of the cavity (13) and has a uniformly extending inner wall in the shape of a passage (13), preferably a neutral axis of the path. The manufacturing method according to claim 1, wherein the manufacturing method extends substantially along the axis. 前記空洞(13)は、前記三次元物体(3)の表面において少なくとも2つの開口部(14、14’)に開け、両方の開口部(14、14’)における前記空洞(13)から前記ブローチ加工部材(12)を取り出し可能なことを特徴とする請求項1乃至6の何れか一項に記載の製造方法。   The cavity (13) opens into at least two openings (14, 14 ') on the surface of the three-dimensional object (3), and the broach from the cavity (13) in both openings (14, 14') The manufacturing method according to claim 1, wherein the processed member can be taken out. 前記ブローチ加工部材(12)は、前記ブローチ加工部材(12)が前記三次元物体(3)の前記空洞(13)の異なる枝に進む分岐点を有することを特徴とする請求項1乃至7の何れか一項に記載の製造方法。   8. The broaching member (12) according to claim 1, wherein the broaching member (12) has a branch point where the broaching member (12) advances to a different branch of the cavity (13) of the three-dimensional object (3). The manufacturing method as described in any one. 複数のブローチ加工部材(12、12’)が、前記三次元物体(3)における一つ又は複数の空洞(13)に形成されることを特徴とする請求項1乃至8の何れか一項に記載の製造方法。   A plurality of broaching members (12, 12 ') are formed in one or more cavities (13) in the three-dimensional object (3). The manufacturing method as described. 製造装置の支持体(5)又は先に塗工された層に粉末材料(11)を層状に繰り返し塗工し、三次元物体(3)に対応する位置に前記粉末材料(11)が固化される、生成的な製造方法により製造される三次元物体(3)のデータセットの生成方法であって、
前記三次元物体(3)の表面における開口部(14)に開けた少なくとも一の空洞(13)を備える完成した三次元物体(3)の形状を定義するデータセットを生成し、
前記空洞(13)内に延長し、前記開口部(14)を介して前記空洞(13)から取り出し可能なブローチ加工部材(12)の形状を定義するデータにより前記データセットを補足することを特徴とするデータセットの生成方法。
The powder material (11) is repeatedly applied in layers to the support (5) of the production apparatus or the previously applied layer, and the powder material (11) is solidified at a position corresponding to the three-dimensional object (3). A method of generating a data set of a three-dimensional object (3) manufactured by a generative manufacturing method,
Generating a data set defining the shape of the completed three-dimensional object (3) comprising at least one cavity (13) opened in an opening (14) in the surface of the three-dimensional object (3);
Supplementing the data set with data defining the shape of a broaching member (12) extending into the cavity (13) and removable from the cavity (13) through the opening (14) How to create a dataset.
JP2011102781A 2010-05-05 2011-05-02 Method for generatively manufacturing three-dimensional object with broaching element and method for generating corresponding data set Withdrawn JP2012006379A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010019447A DE102010019447A1 (en) 2010-05-05 2010-05-05 A method for generatively producing a three-dimensional object with reamers and method for creating a corresponding dataset
DE102010019447.6 2010-05-05

Publications (1)

Publication Number Publication Date
JP2012006379A true JP2012006379A (en) 2012-01-12

Family

ID=44484026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102781A Withdrawn JP2012006379A (en) 2010-05-05 2011-05-02 Method for generatively manufacturing three-dimensional object with broaching element and method for generating corresponding data set

Country Status (4)

Country Link
US (1) US20120107496A1 (en)
EP (1) EP2384882A1 (en)
JP (1) JP2012006379A (en)
DE (1) DE102010019447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065180A (en) * 2012-09-25 2014-04-17 Brother Ind Ltd Three-dimensional shaping apparatus and three-dimensional shaping data creation program

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014165310A2 (en) 2013-03-15 2014-10-09 3D Systems, Inc. Improved powder distribution for laser sintering systems
DE102013224693A1 (en) * 2013-12-02 2015-06-03 Eos Gmbh Electro Optical Systems Method for the accelerated production of objects by means of generative production
CA2952633C (en) 2014-06-20 2018-03-06 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
EP3028839A1 (en) * 2014-12-01 2016-06-08 Siemens Aktiengesellschaft A method for manufacturing an object by laser sintering and a laser sintering device for manufacturing the object
US10040235B2 (en) * 2014-12-30 2018-08-07 Wobbleworks, Inc. Extrusion device for three-dimensional drawing
GB201502086D0 (en) * 2015-02-09 2015-03-25 Rolls Royce Plc Methods of manufacturing and cleaning
GB201509580D0 (en) * 2015-06-03 2015-07-15 Rolls Royce Plc Manufacture of component with cavity
US10786966B2 (en) 2015-10-05 2020-09-29 Raytheon Technologies Corporation Additive manufactured conglomerated powder removal from internal passages
CN108367498A (en) 2015-11-06 2018-08-03 维洛3D公司 ADEPT 3 D-printings
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US20170197284A1 (en) * 2016-01-13 2017-07-13 United Technologies Corporation Method for removing partially sintered powder from internal passages in electron beam additive manufactured parts
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
DE102016205147A1 (en) 2016-03-29 2017-10-05 Eos Gmbh Electro Optical Systems Machining tool and method for its production by means of a generative layering process
EP3492244A1 (en) 2016-06-29 2019-06-05 VELO3D, Inc. Three-dimensional printing system and method for three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US20180186081A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US10682704B2 (en) 2017-01-24 2020-06-16 General Electric Company Material extraction tool
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281283A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US10654065B2 (en) 2017-08-11 2020-05-19 General Electric Company Cleaning fixtures and methods of cleaning components using cleaning fixtures
US11001002B2 (en) * 2017-08-24 2021-05-11 The Regents Of The University Of California Powder bed additive manufacturing method of fabricating a porous matrix
FR3070288B1 (en) 2017-08-31 2019-09-06 Safran Landing Systems METHOD FOR CLEARING PIPES IN PARTS OBTAINED BY ADDITIVE MANUFACTURING
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
EP3511093A1 (en) * 2018-01-16 2019-07-17 Siemens Aktiengesellschaft Method of removing an excess material from a cavity, additive manufacturing method and part
WO2020065650A1 (en) * 2018-09-26 2020-04-02 Stratasys Ltd. Automated 3d-printing of hollow objects

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874463A (en) * 1972-03-29 1975-04-01 Charles L Hicks Means for boring parallel holes
DE2643525A1 (en) * 1976-09-28 1978-03-30 Kloth Senking Eisen Metall CORE FOR THE MANUFACTURING OF THIN-CHANNELED CASTINGS
US6209420B1 (en) * 1994-03-16 2001-04-03 Baker Hughes Incorporated Method of manufacturing bits, bit components and other articles of manufacture
US5482659A (en) * 1994-12-22 1996-01-09 United Technologies Corporation Method of post processing stereolithographically produced objects
DE29506716U1 (en) 1995-04-21 1995-06-22 Eos Electro Optical Syst Device for post-processing an object made of a powdery or granular material
US5849238A (en) * 1997-06-26 1998-12-15 Ut Automotive Dearborn, Inc. Helical conformal channels for solid freeform fabrication and tooling applications
US6355086B2 (en) * 1997-08-12 2002-03-12 Rolls-Royce Corporation Method and apparatus for making components by direct laser processing
US6391251B1 (en) * 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
DE19937260B4 (en) 1999-08-06 2006-07-27 Eos Gmbh Electro Optical Systems Method and device for producing a three-dimensional object
US6623687B1 (en) * 1999-08-06 2003-09-23 Milwaukee School Of Engineering Process of making a three-dimensional object
US6955023B2 (en) * 2000-12-13 2005-10-18 Kevin Chaite Rotheroe Unitary metal structural member with internal reinforcement
AU2002360464A1 (en) * 2001-12-03 2003-06-17 Memgen Corporation Miniature rf and microwave components and methods for fabricating such components
US7372616B2 (en) * 2001-12-06 2008-05-13 Microfabrica, Inc. Complex microdevices and apparatus and methods for fabricating such devices
JP2003214300A (en) * 2002-01-18 2003-07-30 Toyota Motor Corp Manufacturing method of injector nozzle
US7033160B2 (en) * 2002-05-28 2006-04-25 3D Systems, Inc. Convection cooling techniques in selective deposition modeling
WO2005097476A2 (en) * 2004-04-02 2005-10-20 Z Corporation Methods and apparatus for 3d printing
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
US20070126157A1 (en) * 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
US20070163114A1 (en) * 2006-01-13 2007-07-19 General Electric Company Methods for fabricating components
WO2008103985A2 (en) * 2007-02-23 2008-08-28 The Exone Company, Llc Replaceable build box for three dimensional printer
EP1973189B1 (en) * 2007-03-20 2012-12-05 Nuvotronics, LLC Coaxial transmission line microstructures and methods of formation thereof
US8070473B2 (en) * 2008-01-08 2011-12-06 Stratasys, Inc. System for building three-dimensional objects containing embedded inserts, and method of use thereof
US9789540B2 (en) * 2008-02-13 2017-10-17 Materials Solutions Limited Method of forming an article
US8061142B2 (en) * 2008-04-11 2011-11-22 General Electric Company Mixer for a combustor
US20100021638A1 (en) * 2008-07-28 2010-01-28 Solidscape, Inc. Method for fabricating three dimensional models
JP4404947B1 (en) * 2009-02-12 2010-01-27 株式会社松浦機械製作所 Three-dimensional structure manufacturing method
US20110017581A1 (en) * 2009-07-23 2011-01-27 Keith Bryan Hardin Z-Directed Switch Components for Printed Circuit Boards
CA2788249A1 (en) * 2009-12-30 2011-07-07 Beat Lechmann Intergrated multi-material implants and methods of manufacture
DE102010020418A1 (en) * 2010-05-12 2011-11-17 Eos Gmbh Electro Optical Systems Apparatus and method for the generative production of a three-dimensional object with construction panel boundary

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065180A (en) * 2012-09-25 2014-04-17 Brother Ind Ltd Three-dimensional shaping apparatus and three-dimensional shaping data creation program

Also Published As

Publication number Publication date
DE102010019447A1 (en) 2011-11-10
EP2384882A1 (en) 2011-11-09
US20120107496A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
JP2012006379A (en) Method for generatively manufacturing three-dimensional object with broaching element and method for generating corresponding data set
JP6409079B2 (en) Method for additive manufacturing and keyway support
RU2311984C2 (en) Casting method and equipment for performing the same
JP6475766B2 (en) Method for additive manufacturing and support around it
JP6420855B2 (en) Method for additive manufacturing
CN107052336B (en) Method for additive manufacturing and support with powder removal port
CN105710377B (en) Composite additive manufacturing method using composite additive manufacturing features for composite components
JP6412180B2 (en) Method for additive manufacturing and leading edge support
JP6547262B2 (en) Three-dimensional forming apparatus and three-dimensional forming method
US9901983B2 (en) Method of applying multiple materials with selective laser melting on a 3D article
US20140349132A1 (en) Method for manufacturing a compact component, and component that can be produced by means of the method
CN102240806A (en) Device and method for generative manufacturing of a three dimensional object with construction area limit
CN108971486B (en) Method and apparatus for growing compression chambers to relieve powder loading on a growing part in powder-based additive manufacturing
CN109328121B (en) Method for additive manufacturing and multi-purpose powder removal component
JP6937587B2 (en) Casting method including step-by-step core parts
EP3096907B1 (en) Nanoparticle enhancement for additive manufacturing
EP3238913B1 (en) Additively manufactured components including channels
US11584068B2 (en) Additive manufacturing systems and methods including louvered particulate containment wall
JP2022046610A (en) Method for additionally manufacturing three-dimensional object
JP6711868B2 (en) Continuous additive manufacturing of high pressure turbines
EP3315227A1 (en) Method of manufacturing metal articles
CN108580891A (en) A kind of rapid three dimensional printing forming method
JP6878364B2 (en) Movable wall for additional powder floor
US20210362267A1 (en) Method of manufacturing metal articles
CN108943324A (en) A kind of 3D printing powder bonding method based on water-soluble effect

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805