JP2012006307A - Method for controlling humidity of wood, method of manufacturing veneer, and veneer - Google Patents

Method for controlling humidity of wood, method of manufacturing veneer, and veneer Download PDF

Info

Publication number
JP2012006307A
JP2012006307A JP2010145365A JP2010145365A JP2012006307A JP 2012006307 A JP2012006307 A JP 2012006307A JP 2010145365 A JP2010145365 A JP 2010145365A JP 2010145365 A JP2010145365 A JP 2010145365A JP 2012006307 A JP2012006307 A JP 2012006307A
Authority
JP
Japan
Prior art keywords
wood
temperature
cooling
pressure
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010145365A
Other languages
Japanese (ja)
Other versions
JP5597041B2 (en
Inventor
Shinichi Suzuki
伸一 鈴木
Kohei Oshima
公平 大嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010145365A priority Critical patent/JP5597041B2/en
Publication of JP2012006307A publication Critical patent/JP2012006307A/en
Application granted granted Critical
Publication of JP5597041B2 publication Critical patent/JP5597041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling humidity of wood, along with a method of manufacturing veneer and the veneer, capable of controlling variations after the moisture content of the wood is adjusted in a constant range.SOLUTION: The wood humidity control method includes: a heating step of heating the wood 6 so as to have substantially uniform distribution of temperature, by supplying a high pressure steam J into a container 2 where the wood 6 is stored; a cooling step of cooling the wood 6, which is processed by the heating step, such that the temperature distribution of a surface layer section 10 is lower than the temperature of the center layer section 11; and a decompression drying step of drying the wood 6 by decompressing the interior of the container 2 storing the wood 6 where the temperature of the surface layer section 10 becomes to have the distribution of temperature lower than the temperature of the center layer section 11.

Description

本発明は、木材の調湿方法,単板の製造方法,及び単板に関する。   The present invention relates to a humidity control method for wood, a method for manufacturing a veneer, and a veneer.

従来から、伐採後の木材は、製品に加工される前に十分に乾燥されることで、含水率が均一な状態に調整される(例えば特許文献1参照)。   Conventionally, the timber after cutting is sufficiently dried before being processed into a product, so that the moisture content is adjusted to be uniform (see, for example, Patent Document 1).

ここで含水率を均一に近づけるのは次の理由による。伐採後の木材は、部位ごとの含水率が均一ではなくばらつきがあるため、部位によって膨張率が異なった状態となっている。仮に、部位によって膨張率が異なる状態で加工を行なうと、加工後の乾燥により、部位によって収縮率に差が生じてしまい、反りやひび割れ等の問題が生じてしまうからである。   The reason why the moisture content is made close to uniform is as follows. Since the moisture content of each timber after logging is not uniform and varies, the expansion rate differs depending on the site. This is because if the processing is performed in a state where the expansion coefficient differs depending on the part, a difference in the contraction rate occurs depending on the part due to drying after the processing, and problems such as warping and cracking occur.

特開2004−1237号公報JP 2004-1237 A

ところが特許文献1に示された方法で乾燥された木材は、十分な乾燥により低い含水率となっており、水分をほとんど含んでいないため硬い。そのため製品加工時に機械的な負担を増大させてしまうという問題を生じさせる。   However, the wood dried by the method disclosed in Patent Document 1 has a low moisture content due to sufficient drying, and is hard because it contains almost no moisture. Therefore, the problem of increasing the mechanical burden during product processing occurs.

そこで製品加工時の機械的な負担を減らすべく、乾燥させ過ぎず且つ含水率を均一に調整する方法としては、煮沸や高圧蒸気による湿熱処理が挙げられる。ところが、この煮沸や高圧蒸気による湿熱処理によれば、木材は含水率が高くなりすぎてしまうため、作業時において、切削部分(切除部分)同士が付着し合って作業性を低下させてしまうという問題があった。   Therefore, as a method for adjusting the moisture content uniformly without excessive drying in order to reduce the mechanical burden during product processing, boiling or wet heat treatment with high-pressure steam can be mentioned. However, according to this heat treatment with boiling or high-pressure steam, the moisture content of wood becomes too high, so that during cutting, cutting parts (cutting parts) adhere to each other and workability is reduced. There was a problem.

本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、木材の含水率を一定の範囲に調整したうえで、そのばらつきを抑制することが可能な、木材の調湿方法,単板の製造方法,及び単板を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to adjust the moisture content of wood, which can suppress the variation after adjusting the moisture content of the wood to a certain range. It is to provide a method, a method for manufacturing a veneer, and a veneer.

本発明の木材の調湿方法は、木材の収容された容器内に高圧蒸気を供給することで、当該木材を略均一な温度分布となるように加熱する加熱工程と、前記加熱工程により処理された木材を、その表層部分の温度がその中央層部分の温度よりも低い温度分布となるように冷却する冷却工程と、前記冷却工程後、前記表層部分の温度がその中央層部分の温度よりも低い温度分布となった前記木材が収容された容器内を減圧することで、この木材を乾燥させる減圧乾燥工程とを含むことを特徴とする。   The method for conditioning moisture of a wood according to the present invention includes a heating step of heating the wood to have a substantially uniform temperature distribution by supplying high-pressure steam into a container in which the wood is accommodated, and the heating step. A cooling step of cooling the timber so that the temperature of the surface layer portion has a temperature distribution lower than the temperature of the central layer portion, and after the cooling step, the temperature of the surface layer portion is lower than the temperature of the central layer portion And a reduced-pressure drying step of drying the wood by decompressing the inside of the container in which the wood having a low temperature distribution is accommodated.

この木材の調湿方法において、冷却工程は前記木材を冷却水により冷却するものであることが好ましい。   In this wood humidity control method, the cooling step is preferably to cool the wood with cooling water.

また、本発明の単板の製造方法は、木材の収容された容器内に高圧蒸気を供給することで、当該木材を略均一な温度分布となるように加熱する加熱工程と、前記加熱工程により処理された木材を、その表層部分の温度がその中央層部分の温度よりも低い温度分布となるように冷却する冷却工程と、前記冷却工程後、前記表層部分の温度がその中央層部分の温度よりも低い温度分布となった前記木材が収容された容器内を減圧することで、この木材を乾燥させる減圧乾燥工程と、この減圧乾燥工程により処理された木材を所定の厚みにスライスすると共に、所定のサイズにカットして単板を生成する加工工程とを含むことを特徴とする。   Moreover, the method for producing a veneer according to the present invention includes a heating step of heating the wood so as to have a substantially uniform temperature distribution by supplying high-pressure steam into a container in which the wood is accommodated, and the heating step. A cooling step of cooling the treated wood so that the temperature of the surface layer portion is lower than the temperature of the central layer portion; and after the cooling step, the temperature of the surface layer portion is the temperature of the central layer portion Pressure reducing the inside of the container in which the wood having a temperature distribution lower than this is contained, and drying the wood, slicing the wood treated by the reduced pressure drying step to a predetermined thickness, And a processing step of generating a single plate by cutting into a predetermined size.

また、本発明の単板は、略均一な温度分布となるように高圧蒸気を用いて加熱された木材が、その表層部分の温度が中央層部分の温度よりも低い温度分布となるように冷却された状態で、減圧乾燥されて生成された調湿木材を、所定の厚みにスライスすると共に、所定のサイズにカットして成ることを特徴とする。   In addition, the veneer of the present invention is cooled so that the wood heated using high-pressure steam so as to have a substantially uniform temperature distribution has a temperature distribution in which the surface layer portion has a temperature lower than that of the central layer portion. In this state, the conditioned wood produced by drying under reduced pressure is sliced to a predetermined thickness and cut into a predetermined size.

本発明の木材の調湿方法,単板の製造方法及び単板によれば、木材の含水率を一定の範囲に調整したうえで、しかもそのばらつきを抑制することができる。   According to the wood moisture conditioning method, veneer manufacturing method, and veneer of the present invention, the moisture content of the wood can be adjusted to a certain range, and variations thereof can be suppressed.

本発明の一実施形態の各工程の流れを説明する概略図である。It is the schematic explaining the flow of each process of one Embodiment of this invention. 本実施形態の木材含水率調整装置を示す概略構成図である。It is a schematic block diagram which shows the wood moisture content adjusting device of this embodiment.

以下、本発明の実施形態について添付図面に基づいて説明する。図1には本実施形態の木材調湿方法の概略を示し、図2には本実施形態の木材含水率調整装置の概略を示す。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an outline of a wood moisture conditioning method of the present embodiment, and FIG. 2 shows an outline of a wood moisture content adjusting device of the present embodiment.

本実施形態の木材含水率調整装置は、機械加工前の木材6の含水率を、およそ40〜100%の範囲の所望の値に調整し、しかもばらつきを抑制して略均一なものとするための装置である。この木材含水率調整装置は、図2に示されるように、木材6が収容される圧力容器2と、圧力容器2内に高圧蒸気を供給する蒸気供給手段3と、圧力容器2内を加圧又は減圧する加圧・減圧手段4と、圧力容器2内の木材6を冷却する冷却手段5とを備えている。また、木材含水率調整装置は、蒸気供給手段3,加圧・減圧手段4,冷却手段5のこれらの動作を制御する制御装置を備えている。   The wood moisture content adjusting device of the present embodiment adjusts the moisture content of the wood 6 before machining to a desired value in the range of approximately 40 to 100%, and suppresses the variation so as to be substantially uniform. It is a device. As shown in FIG. 2, this wood moisture content adjusting device includes a pressure vessel 2 in which wood 6 is accommodated, a steam supply means 3 for supplying high-pressure steam into the pressure vessel 2, and pressurizing the inside of the pressure vessel 2. Alternatively, a pressurizing / depressurizing unit 4 for depressurizing and a cooling unit 5 for cooling the wood 6 in the pressure vessel 2 are provided. Further, the wood moisture content adjusting device includes a control device for controlling these operations of the steam supply means 3, the pressurizing / depressurizing means 4, and the cooling means 5.

圧力容器2は、木材6の搬入部及び搬出部となる開口部21を有しており、この開口部21は開閉自在な扉22により閉塞される。この圧力容器2は、この扉22が閉じられると、その内部が密閉空間となり、加圧・減圧手段4により内部の圧力を自在に調整可能となっている。圧力容器2は、大気に連通した空気抜き管23が接続されており、この空気抜き管23には電磁弁からなる空気抜き弁24が接続されている。この空気抜き弁24が開かれることで、加圧又は減圧された圧力容器2の内部の圧力が大気圧に戻される。また圧力容器2は、外部の排水設備に連通するドレン管25が連通接続されており、このドレン管25には電磁弁からなるドレン排水電磁弁26が接続されている。このドレン管25により、蒸気が凝縮した際に生ずる凝縮水や、冷却手段5として用いられる冷却水51の残水等を外部に排出することができる。   The pressure vessel 2 has an opening 21 serving as a carrying-in portion and a carrying-out portion for the wood 6, and the opening 21 is closed by a door 22 that can be opened and closed. When the door 22 is closed, the inside of the pressure vessel 2 becomes a sealed space, and the pressure inside the pressure vessel 2 can be freely adjusted by the pressurizing / depressurizing means 4. The pressure vessel 2 is connected to an air vent pipe 23 communicating with the atmosphere, and an air vent valve 24 made of an electromagnetic valve is connected to the air vent pipe 23. By opening the air vent valve 24, the pressure inside the pressure vessel 2 that has been pressurized or depressurized is returned to atmospheric pressure. The pressure vessel 2 is connected to a drain pipe 25 that communicates with an external drainage facility. A drain drain electromagnetic valve 26 that is an electromagnetic valve is connected to the drain pipe 25. The drain pipe 25 can discharge the condensed water generated when the steam is condensed, the remaining water of the cooling water 51 used as the cooling means 5, and the like.

圧力容器2は、その内部に、圧力を測定する圧力センサー27と、温度を測定する温度センサー28とが設けられており、これらは制御装置に接続されている。   The pressure vessel 2 is provided with a pressure sensor 27 for measuring pressure and a temperature sensor 28 for measuring temperature, which are connected to a control device.

蒸気供給手段3は、高圧蒸気を圧力容器2内に供給するための部分であり、本実施形態では高温・高圧の飽和水蒸気を圧力容器2内に供給する。蒸気供給手段3は、少なくとも大気圧以上の高圧な飽和水蒸気を生成するボイラ31と、このボイラ31と圧力容器2とを連通接続する蒸気供給管32とを有しており、この蒸気供給管32にはボイラ31からの蒸気の供給を閉止する電磁弁により構成された蒸気供給弁33が接続されている。この蒸気供給弁33が開放している間は、圧力容器2に蒸気が供給され続けるため、内部の圧力が次第に大きくなっていく。   The steam supply means 3 is a part for supplying high-pressure steam into the pressure vessel 2, and supplies high-temperature and high-pressure saturated water vapor into the pressure vessel 2 in this embodiment. The steam supply means 3 includes a boiler 31 that generates high-pressure saturated steam at least above atmospheric pressure, and a steam supply pipe 32 that connects the boiler 31 and the pressure vessel 2 in communication with each other. A steam supply valve 33 configured by an electromagnetic valve that closes the supply of steam from the boiler 31 is connected. While the steam supply valve 33 is open, the steam continues to be supplied to the pressure vessel 2, so that the internal pressure gradually increases.

加圧・減圧手段4は、圧力容器2の圧力を所望の圧力に調整するためのものである。加圧・減圧手段4は、容器2内を昇圧させる加圧ポンプ42からなる昇圧装置41と、容器2内を減圧させる真空ポンプ44からなる減圧装置43とを有している。さらに加圧・減圧手段4は、減圧装置43の上流側の配管から分岐して接続された圧力調整弁45を有しており、この圧力調整弁45により圧力容器2の圧力値の微調整を可能とする。   The pressurizing / depressurizing means 4 is for adjusting the pressure of the pressure vessel 2 to a desired pressure. The pressurizing / depressurizing means 4 has a pressure increasing device 41 composed of a pressure pump 42 for increasing the pressure inside the container 2 and a pressure reducing device 43 consisting of a vacuum pump 44 for reducing the pressure inside the container 2. Further, the pressurizing / depressurizing means 4 has a pressure regulating valve 45 that is branched and connected from a pipe on the upstream side of the decompressing device 43, and this pressure regulating valve 45 finely adjusts the pressure value of the pressure vessel 2. Make it possible.

冷却手段5は、圧力容器2内に収容された木材6を冷却するためのものであり、本実施形態においては冷却水51を圧力容器2内で循環させる水冷式の冷却手段5となっている。冷却手段5は、水道水の温度を調整して冷却水51を生成する水温調整装置52と、この水温調整装置52と圧力容器2とを連通する給水管53と、圧力容器2内の冷却水51を排出する排水管54とを有している。給水管53と排水管54とにはそれぞれ給水電磁弁55と排水電磁弁56とが接続されている。また冷却手段5は、冷却水51を圧力容器2内で循環させる循環装置57を有している。循環装置57としては、例えば、圧力容器2内の冷却水51に一定の水流を作るように冷却水噴出口を一方向に臨ませた噴出ノズルと、吸込口と、噴出ノズルと吸込口とを接続すると共に循環ポンプを有する循環路とを備えたものが挙げられる。   The cooling means 5 is for cooling the wood 6 accommodated in the pressure vessel 2. In this embodiment, the cooling means 5 is a water cooling type cooling means 5 for circulating the cooling water 51 in the pressure vessel 2. . The cooling means 5 includes a water temperature adjusting device 52 that adjusts the temperature of the tap water to generate the cooling water 51, a water supply pipe 53 that connects the water temperature adjusting device 52 and the pressure vessel 2, and cooling water in the pressure vessel 2. And a drain pipe 54 for discharging 51. A water supply electromagnetic valve 55 and a drainage electromagnetic valve 56 are connected to the water supply pipe 53 and the drainage pipe 54, respectively. The cooling means 5 has a circulation device 57 that circulates the cooling water 51 in the pressure vessel 2. As the circulation device 57, for example, an injection nozzle having a cooling water outlet facing in one direction so as to create a constant water flow in the cooling water 51 in the pressure vessel 2, an inlet, an outlet nozzle and an inlet What is provided with the circulation path which has a circulation pump while connecting is mentioned.

制御装置は、上述の各種弁(空気抜き弁24・ドレン排水電磁弁26・蒸気供給弁33・圧力調整弁45・給水電磁弁55・排水電磁弁56)の開閉動作や、加圧・減圧手段4の動作、冷却手段5の動作を制御する。各種弁の制御としては、温度センサー28や圧力センサー27の測定値と、使用者の設定する設定圧力値や設定温度値とを比較して、必要な弁の開閉制御を行なったり、また各工程に応じて弁の開閉制御を行なったりする。制御装置は、マイクロプロセッサーを主構成要素とするコンピュータによって構成されている。   The control device includes opening / closing operations of the above-described various valves (the air vent valve 24, the drain drain electromagnetic valve 26, the steam supply valve 33, the pressure adjusting valve 45, the water supply electromagnetic valve 55, the drain electromagnetic valve 56), and the pressurizing / depressurizing means 4 And the operation of the cooling means 5 are controlled. The various valves are controlled by comparing the measured values of the temperature sensor 28 and the pressure sensor 27 with the set pressure value and set temperature value set by the user, and performing necessary valve opening / closing control. Depending on the situation, valve opening / closing control is performed. The control device is constituted by a computer whose main component is a microprocessor.

このような構成の木材含水率調整装置を用いて、木材6の含水率の調整を行なうには、次のようにして行なう。   In order to adjust the moisture content of the wood 6 using the wood moisture content adjusting device having such a configuration, the following operation is performed.

まず、台車などに載置された木材6(フリッチ材)を開口部21から圧力容器2内に搬入し、扉22を閉めてこの開口部21を閉塞する。そして圧力容器2内を密閉状態に保ったうえで、加熱工程,冷却工程,減圧乾燥工程を順に実施していく。   First, the wood 6 (flitch material) placed on a carriage or the like is carried into the pressure vessel 2 from the opening 21 and the door 22 is closed to close the opening 21. And after maintaining the inside of the pressure vessel 2 in a sealed state, a heating process, a cooling process, and a reduced-pressure drying process are sequentially performed.

加熱工程は、木材6の収容された圧力容器2内に高圧蒸気を供給することで、当該木材6を加熱する工程である。加熱工程を開始すると制御装置は、空気抜き弁24及びドレン排水電磁弁26を閉塞させると共に蒸気供給弁33を開放させる。すると密閉された圧力容器2内にボイラ31からの高圧蒸気(図1における符号J)の供給が開始される。制御装置は、温度センサー28により検知する値が、使用者の設定する設定温度値に達するまで蒸気供給弁33を開放させ続け、温度センサー28が設定温度値を検知したときに当該蒸気供給弁33を閉塞させる。つまり圧力容器2内の温度は、設定温度値(図1の例では140℃)まで上昇し、その後蒸気供給弁33が閉弁することによって、その温度上昇が止まる。圧力容器2はこの状態のまま一定時間(例えば2時間)放置される。このとき、内部の温度が低下した場合には、制御装置は再び蒸気供給弁33を開放させて、圧力容器2内の温度を上昇させ、温度を一定値に保持する。   The heating step is a step of heating the wood 6 by supplying high-pressure steam into the pressure vessel 2 in which the wood 6 is accommodated. When the heating process is started, the control device closes the air vent valve 24 and the drain drain electromagnetic valve 26 and opens the steam supply valve 33. Then, the supply of high-pressure steam (symbol J in FIG. 1) from the boiler 31 is started in the sealed pressure vessel 2. The control device keeps the steam supply valve 33 open until the value detected by the temperature sensor 28 reaches the set temperature value set by the user, and when the temperature sensor 28 detects the set temperature value, the steam supply valve 33. Occlude. That is, the temperature in the pressure vessel 2 rises to a set temperature value (140 ° C. in the example of FIG. 1), and then the steam supply valve 33 is closed to stop the temperature rise. The pressure vessel 2 is left in this state for a certain time (for example, 2 hours). At this time, when the internal temperature decreases, the control device opens the steam supply valve 33 again to increase the temperature in the pressure vessel 2 and keep the temperature at a constant value.

加熱工程を経た木材6は、高含水率で且つ高温な状態となり、しかも含水率及び温度の分布が略均一な状態となる。   The wood 6 that has undergone the heating process is in a high water content and high temperature state, and the water content and temperature distribution are substantially uniform.

次いで冷却工程を実施する。冷却工程は、加熱工程により処理された木材6をその表層部分10の温度がその中央層部分11の温度よりも低い温度分布となるように冷却する工程である。本実施形態における冷却工程には冷却水51による冷却が採用されている。冷却工程において、制御装置は、加熱工程を終えた直後の圧力容器2内に冷却水51を供給させ、一定時間、この冷却水51を圧力容器2内で循環させる。具体的には、水温調整装置52を作動させることによって冷却水51の温度を調節し(図1の例では55℃)、給水電磁弁55を開放させると共に排水電磁弁56を閉塞させる。木材6の全てが浸るまで冷却水51が供給されると、給水電磁弁55を閉塞させ、循環装置57を駆動させる。このとき、圧力容器2内は高圧状態(例えば0.3MPa)となっているのが好ましい。この高圧状態は、昇圧装置41を駆動させることで形成するものであってもよいし、加熱工程の高圧状態をそのまま保持するものであってもよい。そして循環装置57を所定の時間駆動させた後、木材6の表層部分10の温度が50℃よりも下がらないうちに、排水電磁弁56を開放させて圧力容器2内の冷却水51を外部に排出させる。   Next, a cooling step is performed. The cooling step is a step of cooling the wood 6 processed by the heating step so that the temperature of the surface layer portion 10 has a temperature distribution lower than the temperature of the central layer portion 11. Cooling by the cooling water 51 is employed in the cooling process in the present embodiment. In the cooling process, the control device causes the cooling water 51 to be supplied into the pressure vessel 2 immediately after the heating step, and circulates the cooling water 51 in the pressure vessel 2 for a certain period of time. Specifically, the temperature of the cooling water 51 is adjusted by operating the water temperature adjusting device 52 (55 ° C. in the example of FIG. 1), and the water supply electromagnetic valve 55 is opened and the drain electromagnetic valve 56 is closed. When the cooling water 51 is supplied until all of the wood 6 is immersed, the water supply electromagnetic valve 55 is closed and the circulation device 57 is driven. At this time, the inside of the pressure vessel 2 is preferably in a high pressure state (for example, 0.3 MPa). This high-pressure state may be formed by driving the booster 41, or may hold the high-pressure state in the heating process as it is. Then, after the circulation device 57 is driven for a predetermined time, the drain electromagnetic valve 56 is opened to bring the cooling water 51 in the pressure vessel 2 to the outside before the temperature of the surface layer portion 10 of the wood 6 falls below 50 ° C. Let it drain.

なお冷却工程としては、冷却水51を用いず、加熱工程後、単に放置するだけのものであってもよいし、また、圧力容器2に送風ファンを設け、空気循環による冷却を行なうものであってもよい。   The cooling process may be one in which the cooling water 51 is not used and is simply left after the heating process, or a cooling fan is provided in the pressure vessel 2 for cooling by air circulation. May be.

冷却工程を経た木材6は、その表層部分10の温度がその中央層部分11の温度よりも低い温度分布となり、含水率がおよそ100〜120%の値となり、しかも部位によってばらつきが少なくほぼ均一となる。このときの木材6の表層部分10の温度は、50℃以上95℃以下となる。なお、外部に排水された冷却水51は、加熱工程後の木材6と熱交換を行なったため、冷却前の水温よりも高い温度(図1の例では70℃)となる。   The wood 6 that has undergone the cooling process has a temperature distribution in which the temperature of the surface layer portion 10 is lower than the temperature of the central layer portion 11, the moisture content is about 100 to 120%, and is almost uniform with little variation depending on the part. Become. The temperature of the surface layer portion 10 of the wood 6 at this time is 50 ° C. or higher and 95 ° C. or lower. In addition, since the cooling water 51 discharged | emitted outside was heat-exchanged with the timber 6 after a heating process, it becomes temperature (70 degreeC in the example of FIG. 1) higher than the water temperature before cooling.

次いで減圧乾燥工程を実施する。減圧乾燥工程は、圧力容器2内を減圧することで、この木材6を乾燥させる工程である。この減圧乾燥工程は、表層部分10の温度がその中央層部分11の温度よりも低い温度分布となった木材6の当該表層部分10の温度が、50℃以上(好ましくは50℃以上95℃以下)の状態で処理される。制御装置は、冷却工程を終えた直後の圧力容器2において、空気抜き弁24を開放させ、圧力容器2内の圧力を一旦大気圧に復帰させる。そして、再び空気抜き弁24を閉塞させ、減圧装置43の真空ポンプ44を駆動させる。制御装置は、圧力センサー27の検知値が設定圧力値(例えば−0.08MPa)に達するまで真空ポンプ44を駆動させ続け、当該圧力センサー27が設定圧力値を検知した時点で真空ポンプ44を停止させる。そして、一定時間(例えば3分間)放置させる。   Next, a vacuum drying step is performed. The reduced-pressure drying step is a step of drying the wood 6 by reducing the pressure in the pressure vessel 2. In this vacuum drying step, the temperature of the surface layer portion 10 of the wood 6 in which the temperature of the surface layer portion 10 is lower than the temperature of the central layer portion 11 is 50 ° C. or higher (preferably 50 ° C. or higher and 95 ° C. or lower). ) Is processed. The control device opens the air vent valve 24 in the pressure vessel 2 immediately after finishing the cooling process, and once returns the pressure in the pressure vessel 2 to atmospheric pressure. Then, the air vent valve 24 is closed again, and the vacuum pump 44 of the decompression device 43 is driven. The control device continues to drive the vacuum pump 44 until the detection value of the pressure sensor 27 reaches a set pressure value (for example, −0.08 MPa), and stops the vacuum pump 44 when the pressure sensor 27 detects the set pressure value. Let And let it stand for a fixed time (for example, 3 minutes).

減圧乾燥工程を経た木材6は、冷却工程により含浸した水が温度の高い中央層部分11から優先して蒸発してゆき、一方、表層部分10はもともと蒸発しやすいから、これらが相俟って、結果的にばらつきが少なくほぼ均一な含水率となる(図1の例ではおよそ70%)。また、冷却工程により生じた温度勾配は、時間の経過と共にほぼ均一な温度分布となる(図1の例では68℃)。   In the wood 6 that has been subjected to the vacuum drying process, the water impregnated in the cooling process evaporates preferentially from the central layer portion 11 having a higher temperature, while the surface layer portion 10 originally tends to evaporate. As a result, the water content is almost uniform with little variation (in the example of FIG. 1, about 70%). In addition, the temperature gradient generated by the cooling process has a substantially uniform temperature distribution with the passage of time (68 ° C. in the example of FIG. 1).

上記各工程を終えた後、制御装置は、空気抜き弁24を開放させて圧力容器2内を大気圧状態に戻す。この後、各工程を終えて得られた調湿木材を圧力容器2から取り出すことができる。   After finishing the above steps, the control device opens the air vent valve 24 to return the pressure vessel 2 to the atmospheric pressure state. Thereafter, the humidity-controlled wood obtained after finishing each step can be taken out from the pressure vessel 2.

このようにして得られた調湿木材は、およそ40〜100%の高含水率となっており、しかも部位によって含水率にばらつきが少ない。そのため、製品加工時における機械への負担を軽減させることができ、また切削部分(切除部分)同士が付着し合って作業性が低下してしまうことも低減させる。しかも、含水率にばらつきが少ないため、加工後に乾燥を行なっても収縮率の差により不具合が生じにくいものとなる。   The humidity-controlled wood thus obtained has a high moisture content of about 40 to 100%, and the moisture content varies little depending on the part. Therefore, it is possible to reduce the load on the machine during product processing, and it is also possible to reduce the deterioration of workability due to the attachment of the cut parts (cut parts). And since there is little dispersion | variation in a moisture content, even if it performs drying after a process, it will become a thing which does not produce a malfunction easily by the difference in shrinkage rate.

各工程を経て生成された調湿木材は、この後加工工程を経る。加工工程は、調湿木材を所定の厚みにスライスすると共に、所定のサイズにカットして単板を生成する工程であり、機械加工によって行なわれる。この加工工程には、木材を薄く切削し所定のサイズの単板を生成する木材加工装置が用いられ、この木材加工装置に上記調湿木材をセットして加工を行なう。ここで、木材加工装置としては、木材スライサーやロータリーレースといった公知の木材加工装置が用いられる。   The moisture-conditioned wood produced through each process goes through a post-processing process. The processing step is a step of slicing the humidity-controlled wood into a predetermined thickness and cutting it into a predetermined size to generate a single plate, which is performed by machining. In this processing step, a wood processing device that cuts wood thinly to produce a single plate of a predetermined size is used, and processing is performed by setting the humidity-controlling wood in the wood processing device. Here, as the wood processing apparatus, a known wood processing apparatus such as a wood slicer or a rotary race is used.

加工工程を経て生成された単板は、ばらつきが少ないほぼ均一な含水率の調湿木材から生成されたものであるため、当該調湿木材と同様に、ほぼ均一な含水率となっている。そのためこの後、調湿木材から生成された単板を、自然乾燥又は人工乾燥により20%以下の低含水率にまで乾燥させたとしても、その単板には収縮率の差が生じ難い。この結果、単板は反りや表面割れの発生を低減できるものとなる。   Since the veneer produced | generated through the process process was produced | generated from the humidity control wood of the almost uniform moisture content with little dispersion | variation, it has the substantially uniform moisture content like the said humidity control wood. Therefore, after that, even if the veneer produced from the moisture-regulated wood is dried to a low water content of 20% or less by natural drying or artificial drying, a difference in shrinkage rate hardly occurs between the veneers. As a result, the veneer can reduce the occurrence of warpage and surface cracks.

(実施例1)
本実施例は、調湿前の木材として、含水率が65〜90%、サイズが厚み45mm×幅120mm×長さ640mmのブナ材を使用して、上記各工程を順に実施した。加熱工程の条件は、高圧水蒸気により圧力容器2内を140℃まで上昇させ、その温度で2時間保持させる。冷却工程の条件は、55℃の冷却水51を用いると共に、圧力容器2内の圧力を0.3MPaに保ち、循環装置57により10分間循環冷却を行なう。減圧乾燥工程の条件は、冷却工程を終えて大気圧に戻した後、速やかに−0.08MPaにまで減圧し、この状態で3分間保持させる。
(Example 1)
In this example, as the wood before moisture conditioning, a beech material having a moisture content of 65 to 90% and a size of 45 mm × width 120 mm × length 640 mm was used, and the above steps were performed in order. The heating process is carried out by raising the inside of the pressure vessel 2 to 140 ° C. with high-pressure steam and holding at that temperature for 2 hours. As the conditions for the cooling process, 55 ° C. cooling water 51 is used, the pressure in the pressure vessel 2 is kept at 0.3 MPa, and the circulating device 57 performs circulation cooling for 10 minutes. The conditions of the reduced pressure drying step are that after the cooling step is finished and the pressure is returned to the atmospheric pressure, the pressure is quickly reduced to -0.08 MPa and held in this state for 3 minutes.

減圧乾燥工程終了後の木材を、7等分に切断し、各部における含水率を全乾法によって算出した。なお、全乾法とは、全乾状態の木材重量に対する水分の重量の割合を示したものであり、下記の計算式が用いられる。   The wood after completion of the vacuum drying process was cut into seven equal parts, and the moisture content in each part was calculated by a total dry method. In addition, the total dry method indicates the ratio of the weight of moisture to the weight of wood in a completely dry state, and the following calculation formula is used.

Figure 2012006307
Figure 2012006307

これらの結果を表1に示す。なお本実施例における冷却工程後の木材の表面温度は70℃であった。表1からも分かるように、含水率がどの部位においても70%前後の略均一な値になっているのが分かる。    These results are shown in Table 1. In addition, the surface temperature of the wood after the cooling process in a present Example was 70 degreeC. As can be seen from Table 1, it can be seen that the moisture content is approximately uniform at around 70% in any part.

(実施例2)
本実施例は、冷却工程の条件を、35℃の冷却水51を用いると共に、圧力容器2内の圧力を0.3MPaに保ち、循環装置57により10分間循環冷却を行なうようにした。それ以外は、実施例1と同様にして各工程を実施した。
(Example 2)
In this embodiment, the cooling process was performed using cooling water 51 at 35 ° C., maintaining the pressure in the pressure vessel 2 at 0.3 MPa, and performing circulation cooling for 10 minutes by the circulation device 57. Other than that, it carried out similarly to Example 1, and implemented each process.

これらの結果を表1に示す。なお本実施例における冷却工程後の木材の表面温度は50℃であった。表1からも分かるように、含水率がどの部位においても100%前後の略均一な値になっているのが分かる。   These results are shown in Table 1. In addition, the surface temperature of the wood after the cooling process in a present Example was 50 degreeC. As can be seen from Table 1, it can be seen that the moisture content is substantially uniform at around 100% in any part.

(実施例3)
本実施例は、調湿前の木材として、含水率が50〜80%、サイズが厚み45mm×幅120mm×長さ640mmのカバ材を使用して、上記各工程を順に実施した。加熱工程の条件は、高圧水蒸気により圧力容器2内を140℃まで上昇させ、その温度で2時間保持させる。冷却工程の条件は、冷却水51を用いず、単に高圧水蒸気の供給を停止して30分放置する。なおこのとき圧力容器2内の温度は116℃程度である。減圧乾燥工程の条件は、冷却工程を終えて大気圧に戻した後、速やかに−0.08MPaにまで減圧し、この状態で3分間保持させる。
(Example 3)
In this example, as the wood before humidity control, a birch material having a moisture content of 50 to 80% and a size of 45 mm in thickness, 120 mm in width, and 640 mm in length was used to sequentially perform the above steps. The heating process is carried out by raising the inside of the pressure vessel 2 to 140 ° C. with high-pressure steam and holding at that temperature for 2 hours. The condition of the cooling process is that the cooling water 51 is not used, the supply of high-pressure steam is simply stopped and left for 30 minutes. At this time, the temperature in the pressure vessel 2 is about 116 ° C. The conditions of the reduced pressure drying step are that after the cooling step is finished and the pressure is returned to the atmospheric pressure, the pressure is quickly reduced to -0.08 MPa and held in this state for 3 minutes.

これらの結果を表1に示す。表1からも分かるように、含水率がどの部位においても50%前後の略均一な値になっているのが分かる。   These results are shown in Table 1. As can be seen from Table 1, it can be seen that the moisture content is substantially uniform at around 50% in any part.

Figure 2012006307
Figure 2012006307

実施例1〜3からも分かるように、木材に対し、加熱工程、冷却工程、減圧乾燥工程と順に実施することで、およそ40〜100%の範囲の高含水率で且つ、ばらつきが少ないほぼ均一な含水率となった調湿木材を得ることができる。また、減圧乾燥工程を開始する際の(すなわち、冷却工程後の)木材の温度が高温になるほど、最終的に得られる調湿木材の含水率は低下することがわかる。しかし、減圧乾燥工程を開始する際の木材の温度が高くなると、木材に割れが発生しやすくなるため、最終的に得られる調湿木材の目標含水率の下限値は、40%程度にすることが好ましい。    As can be seen from Examples 1 to 3, by carrying out the heating process, cooling process, and reduced-pressure drying process in this order on the wood, the moisture content is high in the range of about 40 to 100% and almost uniform with little variation. Humidity-controlling wood with a high moisture content can be obtained. Moreover, it turns out that the moisture content of the moisture-conditioned wood finally obtained falls, so that the temperature of the wood at the time of starting a reduced pressure drying process (namely, after a cooling process) becomes high temperature. However, if the temperature of the wood at the start of the vacuum drying process is high, cracks are likely to occur in the wood, so the lower limit of the target moisture content of the moisture-conditioned wood finally obtained should be about 40%. Is preferred.

なお、木材に含浸した水は、通常よりも蒸発しにくいため、減圧乾燥工程における圧力は、−0.06MPaよりも低くすることが望ましい。   In addition, since the water impregnated in the wood is less likely to evaporate than usual, it is desirable that the pressure in the reduced pressure drying step is lower than −0.06 MPa.

上記実施形態における加熱工程では、高圧蒸気として高温の飽和水蒸気を使用したが、本発明の加熱工程は、蒸気を供給した後に容器内を加熱することによって容器内を高温高圧状態とするものであってもよく、実施形態のもののみに限定されない。また上記実施形態における冷却工程では、水冷によって木材を冷却したが、本発明の冷却工程は、空冷によって木材を冷却してもよく、水冷のみに限定されない。   In the heating process in the above embodiment, high-temperature saturated steam is used as the high-pressure steam. However, the heating process of the present invention is to heat the inside of the container after supplying the steam to bring the inside of the container into a high-temperature and high-pressure state. The present invention is not limited to the embodiment. In the cooling process in the above embodiment, the wood is cooled by water cooling. However, the cooling process of the present invention may cool the wood by air cooling, and is not limited to only water cooling.

また、加熱工程に飽和水蒸気を使用したり、冷却工程に水冷式を採用したりすることで、木材の表面乾燥割れを有効に防ぐことが可能となる。このため表面乾燥割れが発生しやすい材料に対しては、飽和水蒸気や水冷を共に使用したり、またいずれかを選択的に使用したりすることが好ましいといえる。   Moreover, it becomes possible to effectively prevent surface dry cracking of wood by using saturated steam in the heating process or adopting a water cooling system in the cooling process. For this reason, it can be said that it is preferable to use both saturated steam and water cooling, or selectively use either one for a material that is prone to surface dry cracking.

10 表層部分
11 中央層部分
2 容器
21 開口部
22 扉
23 空気抜き管
24 空気抜き弁
25 ドレン管
26 ドレン排水電磁弁
27 圧力センサー
28 温度センサー
3 蒸気供給手段
31 ボイラ
32 蒸気供給管
33 蒸気供給弁
4 加圧・減圧手段
41 昇圧装置
42 加圧ポンプ
43 減圧装置
44 真空ポンプ
45 圧力調整弁
5 冷却手段
51 冷却水
52 水温調整装置
53 給水管
54 排水管
55 給水電磁弁
56 排水電磁弁
57 循環装置
6 木材
DESCRIPTION OF SYMBOLS 10 Surface layer part 11 Center layer part 2 Container 21 Opening part 22 Door 23 Air vent pipe 24 Air vent valve 25 Drain pipe 26 Drain drainage electromagnetic valve 27 Pressure sensor 28 Temperature sensor 3 Steam supply means 31 Boiler 32 Steam supply pipe 33 Steam supply valve 4 Addition Pressure / pressure reducing means 41 Pressure raising device 42 Pressure pump 43 Pressure reducing device 44 Vacuum pump 45 Pressure adjusting valve 5 Cooling means 51 Cooling water 52 Water temperature adjusting device 53 Water supply pipe 54 Drain pipe 55 Water supply electromagnetic valve 56 Drain electromagnetic valve 57 Circulating device 6 Wood

Claims (4)

木材の収容された容器内に高圧蒸気を供給することで、当該木材を略均一な温度分布となるように加熱する加熱工程と、
前記加熱工程により処理された前記木材を、その表層部分の温度がその中央層部分の温度よりも低い温度分布となるように冷却する冷却工程と、
前記冷却工程後、前記表層部分の温度がその中央層部分の温度よりも低い温度分布となった前記木材が収容された容器内を減圧することで、この木材を乾燥させる減圧乾燥工程と
を含むことを特徴とする木材の調湿方法。
A heating step of heating the wood so as to have a substantially uniform temperature distribution by supplying high-pressure steam into the container containing the wood;
A cooling step of cooling the wood treated by the heating step so that the temperature of the surface layer portion has a temperature distribution lower than the temperature of the central layer portion;
A vacuum drying step of drying the wood by decompressing the inside of the container in which the wood in which the temperature of the surface layer portion has a temperature distribution lower than the temperature of the central layer portion is stored after the cooling step. A method of conditioning moisture of wood characterized by the above.
前記冷却工程は前記木材を冷却水により冷却するものである、請求項1記載の木材の調湿方法。   The wood conditioning method according to claim 1, wherein the cooling step cools the wood with cooling water. 木材の収容された容器内に高圧蒸気を供給することで、当該木材を略均一な温度分布となるように加熱する加熱工程と、
前記加熱工程により処理された前記木材を、その表層部分の温度がその中央層部分の温度よりも低い温度分布となるように冷却する冷却工程と、
前記冷却工程後、前記表層部分の温度がその中央層部分の温度よりも低い温度分布となった前記木材が収容された容器内を減圧することで、この木材を乾燥させる減圧乾燥工程と、
この減圧乾燥工程により処理された木材を所定の厚みにスライスすると共に、所定のサイズにカットして単板を生成する加工工程と
を含むことを特徴とする単板の製造方法。
A heating step of heating the wood so as to have a substantially uniform temperature distribution by supplying high-pressure steam into the container containing the wood;
A cooling step of cooling the wood treated by the heating step so that the temperature of the surface layer portion has a temperature distribution lower than the temperature of the central layer portion;
After the cooling step, the reduced pressure drying step of drying the wood by depressurizing the inside of the container containing the wood in which the temperature of the surface layer portion is lower than the temperature of the central layer portion,
A method of manufacturing a veneer comprising: a step of slicing wood treated by the reduced-pressure drying step to a predetermined thickness and cutting the wood into a predetermined size to generate a veneer.
略均一な温度分布となるように高圧蒸気を用いて加熱された木材が、その表層部分の温度が中央層部分の温度よりも低い温度分布となるように冷却された状態で、減圧乾燥されて生成された調湿木材を、所定の厚みにスライスすると共に、所定のサイズにカットして成ることを特徴とする単板。
The wood heated with high-pressure steam so as to have a substantially uniform temperature distribution is dried under reduced pressure in a state where the temperature of the surface layer portion is cooled to a temperature distribution lower than the temperature of the central layer portion. A veneer formed by slicing the generated humidity-controlled wood into a predetermined thickness and cutting it into a predetermined size.
JP2010145365A 2010-06-25 2010-06-25 Humidity control method of wood and manufacturing method of veneer Active JP5597041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010145365A JP5597041B2 (en) 2010-06-25 2010-06-25 Humidity control method of wood and manufacturing method of veneer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145365A JP5597041B2 (en) 2010-06-25 2010-06-25 Humidity control method of wood and manufacturing method of veneer

Publications (2)

Publication Number Publication Date
JP2012006307A true JP2012006307A (en) 2012-01-12
JP5597041B2 JP5597041B2 (en) 2014-10-01

Family

ID=45537425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145365A Active JP5597041B2 (en) 2010-06-25 2010-06-25 Humidity control method of wood and manufacturing method of veneer

Country Status (1)

Country Link
JP (1) JP5597041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184899A (en) * 2013-03-25 2014-10-02 Toyota Auto Body Co Ltd Impact absorption member

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112904A (en) * 1974-07-22 1976-01-31 Seiwa Kosan Kk MOKUZAI KANSOHO
JPS54135205A (en) * 1978-04-08 1979-10-20 Hiyougo Izumi Correction and prevention of strain generating material
JPS557427A (en) * 1978-07-01 1980-01-19 Hiyougo Izumi Method of producing material of high water content
JPS55118570A (en) * 1979-03-06 1980-09-11 Ashida Mfg Method of drying lumber
JPS5687784A (en) * 1979-12-17 1981-07-16 Hiyougo Izumi Method of drying wood
JPH06312408A (en) * 1991-08-07 1994-11-08 Hyogo Izumi Method to change starting time for processing of wood
JP2001105409A (en) * 1999-10-12 2001-04-17 Yoji Kikata Method for manufacturing dry wood
JP2002086407A (en) * 2000-09-11 2002-03-26 Shinshiba Setsubi:Kk Method for artificially drying lumber and apparatus for drying lumber
JP2002137210A (en) * 2000-11-07 2002-05-14 Yamamoto Vinita Co Ltd Method and apparatus for drying lumber
JP2010006045A (en) * 2008-05-27 2010-01-14 Panasonic Electric Works Co Ltd Coloring method for lumber and coloring device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112904A (en) * 1974-07-22 1976-01-31 Seiwa Kosan Kk MOKUZAI KANSOHO
JPS54135205A (en) * 1978-04-08 1979-10-20 Hiyougo Izumi Correction and prevention of strain generating material
JPS557427A (en) * 1978-07-01 1980-01-19 Hiyougo Izumi Method of producing material of high water content
JPS55118570A (en) * 1979-03-06 1980-09-11 Ashida Mfg Method of drying lumber
JPS5687784A (en) * 1979-12-17 1981-07-16 Hiyougo Izumi Method of drying wood
JPH06312408A (en) * 1991-08-07 1994-11-08 Hyogo Izumi Method to change starting time for processing of wood
JP2001105409A (en) * 1999-10-12 2001-04-17 Yoji Kikata Method for manufacturing dry wood
JP2002086407A (en) * 2000-09-11 2002-03-26 Shinshiba Setsubi:Kk Method for artificially drying lumber and apparatus for drying lumber
JP2002137210A (en) * 2000-11-07 2002-05-14 Yamamoto Vinita Co Ltd Method and apparatus for drying lumber
JP2010006045A (en) * 2008-05-27 2010-01-14 Panasonic Electric Works Co Ltd Coloring method for lumber and coloring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184899A (en) * 2013-03-25 2014-10-02 Toyota Auto Body Co Ltd Impact absorption member

Also Published As

Publication number Publication date
JP5597041B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
EP2125309B1 (en) Method and apparatus for preserving wood, and wood product
JP5251557B2 (en) Cooling device and cooling method
CN105387691B (en) A kind of drying means of control wood shrinkage
US10315331B2 (en) Thermo treatment process for wood
JP5597041B2 (en) Humidity control method of wood and manufacturing method of veneer
JP5785447B2 (en) Wood dryer control device
JP2011094836A (en) Method of drying wood and wood drying machine
JP6631952B2 (en) Wood treatment method
JP5907424B2 (en) Sterilizer
JP2001194067A (en) Operation method of microwave dryer
CN106895664A (en) A kind of combined drying method of control wood shrinkage
JP6229887B2 (en) Sterilizer
JP6283926B2 (en) Sterilizer
JP6748456B2 (en) Vacuum cooling device
KR102322516B1 (en) Method for drying and high heat-treating wood to produce high-strength wood
RU2235636C1 (en) Wood-working method and apparatus
JP4278053B2 (en) Drying apparatus and drying method using pressure vessel
JP5370670B2 (en) Operation method of cooking device
JP5558290B2 (en) Steaming device
JP6650594B2 (en) Wood treatment method and wood treatment equipment
JP2015130824A (en) Sterilizing apparatus
JP2018162960A (en) Food machine having vacuum cooling function
JP2019184097A (en) Method of drying lumber
JP2013148242A (en) Vacuum cooling apparatus
RU2453425C1 (en) Method for thermal treatment of wood

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R151 Written notification of patent or utility model registration

Ref document number: 5597041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151