JP2012005996A - Method for treating organic compound by fenton reaction - Google Patents

Method for treating organic compound by fenton reaction Download PDF

Info

Publication number
JP2012005996A
JP2012005996A JP2010146359A JP2010146359A JP2012005996A JP 2012005996 A JP2012005996 A JP 2012005996A JP 2010146359 A JP2010146359 A JP 2010146359A JP 2010146359 A JP2010146359 A JP 2010146359A JP 2012005996 A JP2012005996 A JP 2012005996A
Authority
JP
Japan
Prior art keywords
compound
organic compound
anion
generating
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010146359A
Other languages
Japanese (ja)
Inventor
Junya Okazaki
純也 岡崎
Mamoru Numata
守 沼田
Shigeru Mihara
茂 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2010146359A priority Critical patent/JP2012005996A/en
Publication of JP2012005996A publication Critical patent/JP2012005996A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method for an organic compound capable of efficiently and continuously decomposing the organic compound.SOLUTION: In the treatment method for the organic compound, hydrogen peroxide and a compound (A) capable of generating metal ions (I) to cause Fenton reaction are added to soil water including the organic compound, and oxidation decomposition of the organic compound is performed by radicals generated by the Fenton reaction. The treatment method for the organic compound includes a step of adding, to the soil water, a compound (B) capable of generating anion which is different from counter anion combined when metal ions (I) generated by the reaction between the hydrogen peroxide and the metal ions (I) form metal salt and precipitate and of preventing precipitation of a compound formed from the metal ions (I) and/or the metal ions (I) by making one and 1.5 times equivalent amount or more of the different anion with respect to the metal ions (I) in the compound (A) added to the soil water present in the soil water.

Description

本発明は、フェントン反応による有機化合物の処理方法に関する。より詳しくは、本発明は、有機化合物を含む汚水に、過酸化水素と、フェントン反応を起こすための金属イオンを生成し得る化合物とを添加し、フェントン反応により生成するラジカルにより上記有機化合物を酸化分解する有機化合物の処理方法に関する。   The present invention relates to a method for treating an organic compound by a Fenton reaction. More specifically, the present invention adds hydrogen peroxide and a compound capable of generating metal ions for causing a Fenton reaction to wastewater containing an organic compound, and oxidizes the organic compound by radicals generated by the Fenton reaction. The present invention relates to a method for treating an organic compound that decomposes.

近年の水資源利用に対する関心の高まりを受け、生活排水や工業廃水、畜産排水等に含まれる有機化合物の処理は重要度を増してきている[特許文献1、非特許文献1、2など]。たとえば、アトラジンや1,4−ジオキサンなどの有機化合物は、除草剤や洗剤として一般に用いられているが、このような難分解性の有機化合物は、従来の生物処理やオゾン酸化法、活性炭吸着法等では分解が困難であり、水環境汚染の原因になることが指摘されている[特許文献2、非特許文献3など]。   In response to growing interest in water resource utilization in recent years, the treatment of organic compounds contained in domestic wastewater, industrial wastewater, livestock wastewater, and the like has increased in importance [Patent Document 1, Non-Patent Documents 1 and 2, etc.]. For example, organic compounds such as atrazine and 1,4-dioxane are generally used as herbicides and detergents, but such persistent organic compounds are conventionally used for biological treatment, ozone oxidation, activated carbon adsorption, and the like. It has been pointed out that it is difficult to disassemble and the like, causing water pollution (Patent Document 2, Non-Patent Document 3, etc.).

一方、過酸化水素と金属イオン触媒を原料として反応性の高いラジカルを生成するフェントン反応は、前記ラジカルが強い酸化力を有するため、難分解性の有機化合物を酸化分解する方法として注目されている。同法は、低温で、かつ簡便な設備で実行可能であること、分解の過程でNOxやSOx等の有害ガスを放出しないことなど、従来の方法に比べ多数の利点がある[非特許文献4〜8など]。また、先述したアトラジンや1,4−ジオキサンはもとより、各種アルコール、アルデヒド、芳香族化合物、アミン類、ケトン類など、様々な種類の有機化合物を酸化分解することが可能である[非特許文献9など]。   On the other hand, the Fenton reaction, which generates highly reactive radicals using hydrogen peroxide and a metal ion catalyst as raw materials, has attracted attention as a method for oxidatively decomposing refractory organic compounds because the radicals have strong oxidizing power. . This method has many advantages over conventional methods, such as being feasible at low temperatures and with simple equipment, and not releasing harmful gases such as NOx and SOx during the decomposition process [Non-Patent Document 4]. ~ 8 etc.]. In addition to the aforementioned atrazine and 1,4-dioxane, various kinds of organic compounds such as various alcohols, aldehydes, aromatic compounds, amines, and ketones can be oxidatively decomposed [Non-Patent Document 9]. Such].

しかしながら、フェントン反応を用いた酸化分解法は、過酸化水素からラジカルを生成するための触媒として添加した金属イオンが金属塩として沈殿し、結果的に廃棄物量の増大に繋がることが問題視されていた[非特許文献10、11など]。たとえば、特許文献3、4には、フェントン反応の触媒である金属イオンを沈殿・除去する中和槽と沈殿槽とにより廃棄物を処理することが記載されている。このように、フェントン反応を用いた酸化分解法に関する技術では、フェントン反応の触媒である金属イオンを沈殿除去する方法や、沈殿した触媒の再利用方法など、酸化分解後の処理にスポットが当てられている。   However, the oxidative decomposition method using the Fenton reaction has been regarded as a problem that metal ions added as a catalyst for generating radicals from hydrogen peroxide precipitate as metal salts, resulting in an increase in the amount of waste. [Non-Patent Documents 10, 11, etc.]. For example, Patent Documents 3 and 4 describe that waste is treated by a neutralization tank and a precipitation tank for precipitating and removing metal ions that are catalysts for the Fenton reaction. As described above, in the technology related to the oxidative decomposition method using the Fenton reaction, spots are applied to the treatment after the oxidative decomposition, such as a method for precipitating and removing metal ions, which are catalysts for the Fenton reaction, and a method for reusing the precipitated catalyst. ing.

特開2008−229450号公報JP 2008-229450 A 特開2005−58854号公報JP 2005-58854 A 特開2003−300083号公報JP 2003-300083 A 特開平6−182362号公報JP-A-6-182362

D. F. Bishop, G. Stern, M. Fleischman and L. S. Marshall, Hydrogen peroxide catalytic oxidation of refractory organics in municipal wastewaters, Ind. Eng. Process Des. Dev.,1968,7(1),110−117D. F. Bishop, G.M. Stern, M.M. Fleischman and L. S. Marshall, Hydrogen peroxide catalytic oxidation of refractory organics in uniaxial wastewaters, Ind. Eng. Process Des. Dev. 1968, 7 (1), 110-117. M. Muruganandham and M. Swaminathan, Decolourisation of Reactive Orange 4 by Fenton and photo−Fenton oxidation technology, Dyes Pigm.,2004,63,315−321M.M. Murganandham and M.M. Swamithan, Demolition of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology, Dies Pigm. , 2004, 63, 315-321 A. Ventura, G. Jacquet, A. Bermond and V. Camel, Electrochemical generation of the Fenton’s reagent: application to atrazine degradation, Water Res.,2002,36,3517−3522A. Ventura, G.M. Jacquet, A.J. Bermond and V.M. Camel, Electrochemical generation of the Fenton's reagent: application to atrazine degradation, Water Res. , 2002, 36, 3517-3522 X. Jian, T. Wu and G. Yun, A study of wet catalytic oxidation of radioactive spent ion exchange resin by hydrogen peroxide, Nucl. Safety,1996,37(2),149−157X. Jian, T.W. Wu and G. Yun, A study of wet catalytic oxidation of radioactive stress exchange exchange by hydrogen peroxide, Nucl. Safety, 1996, 37 (2), 149-157 J. P. Wilks and N. S. Holt, Wet oxidation of mixed organic and inorganic radioactive sludge wastes from a water reactor, Waste Manage., 1990,10,197−203J. et al. P. Wilks and N.W. S. Holt, Wet oxidation of mixed organic and organic radioactive sludge wastes from water reactor, Waste Management. , 1990, 10, 197-203. M. Vilve, A. Hirvonen and M. Sillanpaa, Effects of reaction conditions on nuclear laundry water treatment in Fenton process, J. Hazard. Mater.,2009,164,1468−1473M.M. Vilve, A.M. Hirvonen and M.M. Sillanpaa, Effects of reaction conditions on nuclear groundwater treatment in Fenton process, J. Am. Hazard. Mater. , 2009, 164, 1468-1473. 出水 丈志, 萩原 正弘, 大津 孝, 稲川 博文, 荒井 正幸, 放射性使用済イオン交換樹脂処理方法の開発, エバラ時報,2008,218,29−34Takeshi Izumi, Masahiro Sugawara, Takashi Otsu, Hirofumi Inagawa, Masayuki Arai, Development of Radioactive Used Ion Exchange Resin Treatment Method, Ebara Times, 2008, 218, 29-34 C. Srinivas, G. Sugilal and P. K. Wattal, Management of spent organic ion−exchange resins by photochemical oxidation, Proc. Waste Management ’03 Conf., Feb. 23−27,2003C. Srinivas, G.M. Normal and P.M. K. Wattal, Management of stress organic-exchange resins by photochemical oxidation, Proc. Waste Management '03 Conf. , Feb. 23-27, 2003 R. J. Bigda, Consider Fenton’s chemistry for wastewater treatment, Chem. Eng. Prog., 1995 Dec,62−66R. J. et al. Bigda, Consider Fenton's chemistry for wastewater treatment, Chem. Eng. Prog. , 1995 Dec, 62-66. G.−m. Cao, M. Sheng, W.−f. Niu, Y.−l. Fei and D. Li, Regeneration and reuse of iron catalyst for Fenton−like reactions, J. Hazard. Mater., 2009,172,1446−1449G. -M. Cao, M.C. Sheng, W.H. -F. Niu, Y .; -L. Fei and D. Li, Generation and reuse of iron cat for for Fenton-like reactions, J. Am. Hazard. Mater. , 2009, 172, 1446-1449. 林 寛一, 中島 陽一, 太田 清久, 酸化鉄を用いる環境中有機化合物分解法の開発, 大阪府立産業技術総合研究所報告, 2007,21,79−83Kanichi Hayashi, Yoichi Nakajima, Kiyohisa Ota, Development of decomposition method of organic compounds in the environment using iron oxide, Report of Osaka Prefectural Institute of Advanced Industrial Science and Technology, 2007, 21, 79-83

本発明の目的は、フェントン反応に用いる金属イオン触媒の沈殿を防ぎ、有機物化合物を効率的かつ持続的に分解する有機化合物の処理方法を提供することにある。   An object of the present invention is to provide a method for treating an organic compound that prevents the precipitation of the metal ion catalyst used in the Fenton reaction and efficiently and continuously decomposes the organic compound.

本発明の有機化合物の処理方法は、有機化合物を含む汚水に、過酸化水素と、フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)とを添加し、フェントン反応により生成するラジカルにより上記有機化合物を酸化分解する有機化合物の処理方法であって、上記汚水に、上記過酸化水素と金属イオン(I1)との反応で生じた金属イオン(I2)が金属塩を形成して沈殿する際に化合するカウンターアニオンとは異種のアニオンを生成し得る化合物(B)を添加し、上記汚水中に、上記汚水に添加した上記金属イオン(I1)を生成し得る化合物(A)における金属イオン(I1)に対して、上記異種のアニオンを1.5倍当量以上の量で存在させて、上記金属イオン(I1)および/または金属イオン(I2)から形成される化合物の沈殿を防止する工程を含むことを特徴とする。 In the method for treating an organic compound of the present invention, hydrogen peroxide and a compound (A) capable of generating a metal ion (I 1 ) for causing a Fenton reaction are added to wastewater containing the organic compound, and the Fenton reaction is performed. A method for treating an organic compound in which the organic compound is oxidatively decomposed by a generated radical, wherein the metal ion (I 2 ) generated by the reaction between the hydrogen peroxide and the metal ion (I 1 ) is converted into a metal salt in the waste water. A compound (B) capable of generating an anion different from the counter anion that forms a compound upon precipitation is formed, and the metal ion (I 1 ) added to the waste water can be generated in the waste water. the metal ion in the compound (a) (I 1), be present in the anion amount of more than 1.5 equivalents of the dissimilar from the metal ion (I 1) and / or metal ion (I 2) Characterized in that it comprises a step of preventing the precipitation of the made compound.

本発明の有機化合物の処理方法によれば、金属イオン触媒の沈殿を非常に効果的に抑制することができる。そのため、フェントン試薬として用いる金属イオン触媒の添加量を低減し、かつ、フェントン反応による有機化合物の分解処理においてしばしば発生するスラッジ等の沈殿物の量を劇的に低減することが可能である。   According to the method for treating an organic compound of the present invention, precipitation of the metal ion catalyst can be suppressed very effectively. Therefore, the amount of metal ion catalyst used as a Fenton reagent can be reduced, and the amount of precipitates such as sludge often generated in the decomposition treatment of organic compounds by the Fenton reaction can be dramatically reduced.

また、本発明は、染色排水の脱色、難分解性有機物を含む廃水の分解処理、原子力施設での使用済みイオン交換樹脂の分解処理など、多様な種類の有機化合物の酸化分解処理に対して充分に効果を発揮する。   In addition, the present invention is sufficient for oxidative decomposition treatment of various types of organic compounds such as decolorization of dyeing waste water, decomposition treatment of wastewater containing hardly decomposable organic matter, and decomposition treatment of used ion exchange resin in nuclear facilities. To be effective.

さらに、本発明は、従来法においてフェントン反応による分解工程としばしば併用されているスラッジ等の沈殿物の除去工程の負荷を低減し、経済性の大幅な向上に寄与するものである。   Furthermore, the present invention reduces the load of the removal process of precipitates such as sludge, which is often used in combination with the decomposition process by the Fenton reaction in the conventional method, and contributes to a significant improvement in economic efficiency.

図1は、実施例2−1〜2−5および比較例2−1の結果を説明するための図である。FIG. 1 is a diagram for explaining the results of Examples 2-1 to 2-5 and Comparative Example 2-1.

本発明の有機化合物の処理方法は、有機化合物を含む汚水に、過酸化水素と、フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)とを添加し、フェントン反応により生成するラジカルにより上記有機化合物を酸化分解する有機化合物の処理方法である。 In the method for treating an organic compound of the present invention, hydrogen peroxide and a compound (A) capable of generating a metal ion (I 1 ) for causing a Fenton reaction are added to wastewater containing the organic compound, and the Fenton reaction is performed. This is a method for treating an organic compound in which the organic compound is oxidatively decomposed by a radical generated.

フェントン反応により酸化分解できる有機化合物としては、ギ酸、グルコン酸、乳酸等の有機酸;ベンジルアルコール、ターシャルブチルアルコール、グリセロール等のアルコール;アセトアルデヒド、ベンズアルデヒド、ホルムアルデヒド等のアルデヒド;ベンゼン、クロロベンゼン、クロロフェノール等の芳香族化合物;アニリン、環状アミン、ジエチルアミン等のアミン;アントラキノン、ジアゾ、モノアゾ等の染料;テトラヒドロフラン等のエーテル;ジヒドロキシアセトン、メチルエチルケトン等のケトン;カチオン交換樹脂、アニオン交換樹脂等のイオン交換樹脂などが挙げられる。有機化合物は汚水中に1種含まれていてもよく、2種以上含まれていてもよい。   Organic compounds that can be oxidatively decomposed by Fenton reaction include organic acids such as formic acid, gluconic acid and lactic acid; alcohols such as benzyl alcohol, tertiary butyl alcohol and glycerol; aldehydes such as acetaldehyde, benzaldehyde and formaldehyde; benzene, chlorobenzene and chlorophenol Aromatic compounds such as aniline, amines such as cyclic amine and diethylamine; dyes such as anthraquinone, diazo and monoazo; ethers such as tetrahydrofuran; ketones such as dihydroxyacetone and methylethylketone; ion exchange resins such as cation exchange resin and anion exchange resin Etc. One kind of organic compound may be contained in the wastewater, or two or more kinds thereof may be contained.

上記汚水としては、上記有機化合物を含む生活排水、工業廃水が挙げられ、該工業廃水としては、具体的には染色排水、畜産排水、原子力施設等での水処理に用いたイオン交換樹脂を含む廃水などが挙げられる。   Examples of the sewage include domestic wastewater and industrial wastewater containing the organic compounds. Specifically, the industrial wastewater includes dye exchange wastewater, livestock wastewater, ion exchange resins used for water treatment in nuclear facilities, etc. Examples include waste water.

上記化合物(A)としては、Fe2+を生成し得る鉄(II)塩(a1)が好適に用いられる。以下、化合物(A)の例としてFe2+を生成し得る鉄(II)塩(a1)を用いて説明する。Fe2+を生成し得る鉄(II)塩(a1)としては、硫酸第一鉄(FeSO4)、フマル酸第一鉄、シュウ酸第一鉄、塩化第一鉄、クエン酸第一鉄ナトリウム、グルコン酸第一鉄、クエン酸第一鉄、オロチン酸第一鉄、酢酸第一鉄、これらの水和物などが挙げられる。Fe2+を生成し得る鉄(II)塩(a1)は単独で用いてもよく、2種以上組み合わせて用いてもよい。 As the compound (A), an iron (II) salt (a 1 ) capable of generating Fe 2+ is preferably used. Hereinafter, an example of the compound (A) will be described using an iron (II) salt (a 1 ) capable of generating Fe 2+ . Examples of the iron (II) salt (a 1 ) capable of producing Fe 2+ include ferrous sulfate (FeSO 4 ), ferrous fumarate, ferrous oxalate, ferrous chloride, and ferrous citrate. Examples thereof include sodium, ferrous gluconate, ferrous citrate, ferrous orotate, ferrous acetate, and hydrates thereof. The iron (II) salt (a 1 ) capable of producing Fe 2+ may be used alone or in combination of two or more.

この場合、フェントン反応により生成するラジカルはヒドロキシラジカル(・OH)である。すなわち、フェントン反応とは、下記式(1)のように、過酸化水素と、鉄(II)塩(a1)由来のFe2+とから強い酸化力を有するヒドロキシラジカルが生成する反応である。 In this case, the radical generated by the Fenton reaction is a hydroxy radical (.OH). That is, the Fenton reaction is a reaction in which a hydroxy radical having a strong oxidizing power is generated from hydrogen peroxide and Fe 2+ derived from an iron (II) salt (a 1 ) as shown in the following formula (1). .

22 + Fe2+ → Fe3+ + OH- + ・OH (1)
このヒドロキシラジカルは、有機化合物が最終的に炭酸ガス(CO2)となるまで分解できる。
H 2 O 2 + Fe 2+ → Fe 3+ + OH + OH (1)
This hydroxy radical can be decomposed until the organic compound finally becomes carbon dioxide (CO 2 ).

本発明の有機化合物の処理方法は、上記汚水に、過酸化水素と金属イオン(I1)との反応で生じた金属イオン(I2)が金属塩を形成して沈殿する際に化合するカウンターアニオンとは異種のアニオンを生成し得る化合物(B)を添加し、上記汚水中に、汚水に添加した上記化合物(A)における金属イオン(I1)に対して、上記異種のアニオンを1.5倍当量(化学当量)以上の量で存在させて、金属イオン(I1)および/または金属イオン(I2)から形成される化合物の沈殿を防止する工程を含む。具体的には、上記有機化合物の処理方法は、上記汚水に、過酸化水素とFe2+との反応で生じたFe3+が金属塩Fe(OH)3を形成して沈殿する際に化合するカウンターアニオンであるヒドロキシアニオン(OH-)とは異種のアニオンを生成し得る化合物(B)を添加し、上記汚水中に、汚水に添加した上記鉄(II)塩(a1)におけるFe2+に対して、上記異種のアニオンを1.5倍当量以上の量で存在させて、Fe2+および/またはFe3+から形成される化合物の沈殿を防止する工程を含む。 The organic compound treatment method of the present invention is a counter that combines with the waste water when the metal ions (I 2 ) generated by the reaction of hydrogen peroxide and metal ions (I 1 ) form a metal salt and precipitate. The compound (B) capable of generating a different anion from the anion is added, and the different anion is 1. added to the metal ion (I 1 ) in the compound (A) added to the waste water. And a step of preventing precipitation of a compound formed from the metal ion (I 1 ) and / or the metal ion (I 2 ) by being present in an amount of 5 times equivalent (chemical equivalent) or more. Specifically, the method for treating the organic compound is a method in which Fe 3+ generated by the reaction of hydrogen peroxide and Fe 2+ forms a metal salt Fe (OH) 3 and precipitates in the sewage. The compound (B) capable of generating a different anion from the hydroxy anion (OH ), which is a counter anion, is added, and the Fe 2 in the iron (II) salt (a 1 ) added to the sewage is added to the sewage. + respect, including the step of preventing the precipitation of be present in the anion amount of more than 1.5 equivalents of the heterogeneous compounds formed from Fe 2+ and / or Fe 3+.

従来のフェントン反応を利用した有機化合物の処理方法では、たとえば下記式(2)のように、過酸化水素とFe2+との反応で生じたFe3+が金属塩Fe(OH)3を形成して沈殿するという問題があった。 In the conventional method for treating an organic compound using the Fenton reaction, Fe 3+ formed by the reaction of hydrogen peroxide and Fe 2+ forms a metal salt Fe (OH) 3 , for example, as shown in the following formula (2). Then, there was a problem of precipitation.

Fe3+ + 3OH- → Fe(OH)3↓ (2)
また、上記式(1)で表されるフェントン反応に続いていろいろな反応が起こると考えられている。それらの反応によりFe2+および/またはFe3+が酸化鉄を形成して沈殿するという問題もあった。このようにFe(OH)3および酸化鉄の沈殿物(スラッジ)が生じ始めると酸化分解が進まなくなるため、処理を続けるには、さらに過酸化水素および鉄(II)塩(a1)を加える必要が生ずる。結果として大量の沈殿物が発生し、効率よく有機化合物を処理することは困難であった。
Fe 3+ + 3OH → Fe (OH) 3 ↓ (2)
Further, it is considered that various reactions occur following the Fenton reaction represented by the above formula (1). There was also a problem that Fe 2+ and / or Fe 3+ precipitated by forming iron oxide due to their reaction. Thus, when precipitation of Fe (OH) 3 and iron oxide (sludge) begins to occur, oxidative decomposition does not proceed, so hydrogen peroxide and iron (II) salt (a 1 ) are further added to continue the treatment. Need arises. As a result, a large amount of precipitate was generated, and it was difficult to efficiently treat the organic compound.

本発明では、上述のように上記汚水に化合物(B)を添加し、上記汚水中に上記異種のアニオンを特定の量以上で存在させる工程により、この問題を解決している。具体的には、上記汚水に化合物(B)を添加し、ヒドロキシアニオン(OH-)とは異種のアニオンを生成させる。そして、上記汚水中に、汚水に添加した上記鉄(II)塩(a1)におけるFe2+に対して、上記異種のアニオンを1.5倍当量以上の量で存在させて、Fe(OH)3等の沈殿を防止できる。なお、Fe(OH)3等の沈殿が防止できるのは、いわゆる異種イオン効果により、Fe(OH)3の溶解度が上昇するためと考えられる。 In the present invention, this problem is solved by the step of adding the compound (B) to the sewage and causing the different anions to exist in a specific amount or more in the sewage as described above. Specifically, the compound (B) is added to the sewage to generate an anion different from the hydroxy anion (OH ). Then, the heterogeneous anion is present in an amount of 1.5 times or more equivalent to Fe 2+ in the iron (II) salt (a 1 ) added to the sewage, and Fe (OH) ) Precipitation of 3 etc. can be prevented. The reason why precipitation of Fe (OH) 3 or the like can be prevented is because the solubility of Fe (OH) 3 increases due to the so-called heterogeneous ion effect.

また、上記式(1)でFe3+が生成した後、汚水中ではFe3+からFe2+への変換が起こると考えられる。なお、この変換は、以下の式(1−1)〜(1−5)で表わされる汚水中での反応によると考えられる。 In addition, after Fe 3+ is generated by the above formula (1), it is considered that conversion from Fe 3+ to Fe 2+ occurs in the sewage. In addition, it is thought that this conversion is based on the reaction in the sewage represented by the following formulas (1-1) to (1-5).

Fe3+ + H22 → FeOOH2+ + H+ (1−1)
FeOOH2+ → Fe2+ + ・OH2 (1−2)
22 + ・OH → ・OH2 + H2O (1−3)
Fe2+ + ・OH2 → Fe3+ + HO2c (1−4)
Fe3+ + ・OH2 → Fe2+ + O2 + H+ (1−5)
そして、Fe3+から変換されたFe2+と過酸化水素とからヒドロキシラジカルが新たに生成すると考えられる。このように、本発明では、上記工程を採用したことにより、沈殿物の発生が抑制でき、Fe3+からFe2+への変換が起こるため、従来の有機化合物の処理方法よりも、長時間処理を続けられる。結果として、鉄(II)塩(a1)の添加量が少なくて済み、効率よく有機化合物を処理できる。
Fe 3+ + H 2 O 2 → FeOOH 2+ + H + (1-1)
FeOOH 2+ → Fe 2+ + OH 2 (1-2)
H 2 O 2 + .OH → .OH 2 + H 2 O (1-3)
Fe 2+ + OH 2 → Fe 3+ + HO 2 c (1-4)
Fe 3+ + .OH 2 → Fe 2+ + O 2 + H + (1-5)
Then, it is considered that a hydroxy radical is newly generated from Fe 2+ converted from Fe 3+ and hydrogen peroxide. As described above, in the present invention, by adopting the above-described steps, the generation of precipitates can be suppressed, and the conversion from Fe 3+ to Fe 2+ occurs. Therefore, it takes a longer time than the conventional organic compound treatment method. Processing can continue. As a result, the amount of iron (II) salt (a 1 ) added can be reduced, and organic compounds can be processed efficiently.

沈殿を効果的に防止させるためには、上記異種のアニオンを好ましくは1.5〜20倍当量の量で存在させることが望ましい。   In order to effectively prevent precipitation, it is desirable that the above-mentioned different kinds of anions be present in an amount of preferably 1.5 to 20 times equivalent.

また、上記工程では、上記異種のアニオンを生成し得る化合物(B)は、汚水に対して、有機化合物の酸化分解を開始する前に、過酸化水素と、上記鉄(II)塩(a1)とともに添加してもよく、あるいは、より具体的には過酸化水素または上記鉄(II)塩(a1)よりも先に添加しておいてもよい。また、上記沈殿物の生成が有機化合物の酸化分解に対して問題とならない状態を維持できるのであれば、化合物(B)は、有機化合物の酸化分解を開始してから添加してもよい。さらに、上記異種のアニオンは、有機化合物の酸化分解を行っている間に生成すればよく、有機化合物の酸化分解を行っている間に上記の量で存在すればよい。すなわち、上記沈殿物の生成が有機化合物の酸化分解に対して問題とならない状態を維持できていればよい。 Further, in the above step, the compound (B) capable of generating the different anion is converted into hydrogen peroxide and the iron (II) salt (a 1 ) before oxidative decomposition of the organic compound with respect to sewage. Or may be added before hydrogen peroxide or the iron (II) salt (a 1 ). In addition, the compound (B) may be added after the oxidative decomposition of the organic compound is started as long as the formation of the precipitate can maintain a state that does not cause a problem with respect to the oxidative decomposition of the organic compound. Further, the heterogeneous anion may be generated during the oxidative decomposition of the organic compound, and may be present in the above amount during the oxidative decomposition of the organic compound. That is, it is only necessary to maintain a state in which the formation of the precipitate does not cause a problem with respect to the oxidative decomposition of the organic compound.

また、本発明において、過酸化水素と、フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)とを添加した有機化合物を含む汚水のpHは、好ましくは1〜5、より好ましくは1〜3に調整し、フェントン反応により生成するラジカルにより有機化合物を酸化分解することが望ましい。pHが上記範囲にあると、ヒドロキシラジカルの発生を促進できる。また、有機化合物の酸化分解を行っている間中、pHを上記範囲にしておくことが好ましい。 In the present invention, the pH of sewage containing an organic compound to which hydrogen peroxide and a compound (A) capable of generating a metal ion (I 1 ) for causing Fenton reaction are added is preferably 1 to 5, More preferably, it is adjusted to 1 to 3, and it is desirable to oxidatively decompose the organic compound with radicals generated by the Fenton reaction. When the pH is in the above range, generation of hydroxy radicals can be promoted. Further, it is preferable to keep the pH within the above range during the oxidative decomposition of the organic compound.

上記異種のアニオンを生成し得る化合物(B)は、好ましくは硫酸塩、硝酸塩、塩化物塩および炭酸塩の少なくとも1種を含む。化合物(B)は単独で用いてもよく、2種以上組み合わせて用いてもよい。これらの化合物(B)を用いた場合、生成する異種のアニオンは、硫酸イオン(SO4 2-)、硝酸イオン(NO3 -)、塩化物イオン(Cl-)、炭酸イオン(CO3 2-)である。 The compound (B) capable of generating the heterogeneous anion preferably contains at least one of sulfate, nitrate, chloride and carbonate. A compound (B) may be used independently and may be used in combination of 2 or more type. When these compounds (B) are used, the generated different anions are sulfate ion (SO 4 2− ), nitrate ion (NO 3 ), chloride ion (Cl ), carbonate ion (CO 3 2−). ).

具体的には、硫酸塩としては、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウムが挙げられる。硝酸塩としては、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウムが挙げられる。塩化物塩としては、塩化ナトリウム、塩化カリウム、塩化マグネシウムが挙げられる。炭酸塩としては、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウムが挙げられる。   Specifically, examples of the sulfate include sodium sulfate, potassium sulfate, and magnesium sulfate. Examples of nitrates include sodium nitrate, potassium nitrate, and magnesium nitrate. Examples of the chloride salt include sodium chloride, potassium chloride, and magnesium chloride. Examples of the carbonate include sodium carbonate, potassium carbonate, and magnesium carbonate.

また、上記異種のアニオンを生成し得る化合物(B)は、スルホ基、ニトロ基、クロロ基およびカルボキシル基の少なくとも1種を有する有機化合物を含むことも好ましい。   Moreover, it is also preferable that the compound (B) which can produce | generate the said different kind of anion contains the organic compound which has at least 1 sort (s) of a sulfo group, a nitro group, a chloro group, and a carboxyl group.

このような化合物(B)を用いると、化合物(B)の添加によって異種アニオンが速やかに生成し、沈殿物の生成が抑制されて、有機物化合物を効率的かつ持続的に分解できる利点がある。   When such a compound (B) is used, there is an advantage that a heterogeneous anion is rapidly generated by the addition of the compound (B), the formation of a precipitate is suppressed, and the organic compound can be decomposed efficiently and continuously.

また、上記工程において、汚水のpHを上記範囲に調整するために、硫酸、硝酸、塩酸、苛性ソーダ等のpH調整剤を添加してもよい。なお、上記汚水中に存在させる上記異種のアニオンの量には、pH調整剤に由来するアニオンの量は含めない。いいかえると、上記汚水中に存在させる上記異種のアニオンの量は、化合物(A)および化合物(B)に由来するアニオンの合計量を意味する。   Moreover, in the said process, in order to adjust pH of sewage to the said range, you may add pH adjusters, such as a sulfuric acid, nitric acid, hydrochloric acid, and caustic soda. Note that the amount of the different anions present in the wastewater does not include the amount of anions derived from the pH adjuster. In other words, the amount of the different anions present in the waste water means the total amount of anions derived from the compound (A) and the compound (B).

さらに、上記工程において、Fe2+および/またはFe3+から形成される化合物の沈殿を防止する効果に影響を及ぼさない範囲で、汚水にオイル系、シリコン系、ポリマー系の消泡剤等を添加してもよい。 Furthermore, in the above process, oil-based, silicon-based, polymer-based antifoaming agents, etc. are added to the sewage within a range that does not affect the effect of preventing precipitation of compounds formed from Fe 2+ and / or Fe 3+. It may be added.

以下に、本発明のさらに具体的な実施態様について説明する。   Hereinafter, more specific embodiments of the present invention will be described.

<実施態様1>
本発明の実施態様1では、上記有機化合物を含む汚水が、染料を含む染色排水であり、上記異種のアニオンを生成し得る化合物(B)が、硫酸塩、硝酸塩、塩化物塩および炭酸塩の少なくとも1種を含む。すなわち、本発明の実施態様1は、染料を含む染色排水に、過酸化水素と、Fe2+を生成し得る鉄(II)塩(a1)とを添加し、フェントン反応により生成するヒドロキシラジカルにより上記染料を酸化分解する有機化合物の処理方法であって、上記染色排水に、上記過酸化水素とFe2+との反応で生じたFe3+が金属塩Fe(OH)3を形成して沈殿する際に化合するヒドロキシラジカルとは異種のアニオンを生成し得る化合物(B)を添加し、上記排水中に、上記排水に添加した上記鉄(II)塩(a1)におけるFe2+に対して、上記異種のアニオンを1.5倍当量以上の量で存在させて、上記Fe2+および/またはFe3+から形成される化合物の沈殿を防止する工程を含む。
<Embodiment 1>
In Embodiment 1 of the present invention, the sewage containing the organic compound is a dye wastewater containing a dye, and the compound (B) capable of generating the different anion is sulfate, nitrate, chloride or carbonate. Contains at least one. That is, in Embodiment 1 of the present invention, the hydroxyl radical generated by the Fenton reaction by adding hydrogen peroxide and an iron (II) salt (a 1 ) capable of generating Fe 2+ to the dyeing wastewater containing the dye. The method of treating an organic compound that oxidatively decomposes the dye by Fe 3+ formed by the reaction of the hydrogen peroxide and Fe 2+ forms a metal salt Fe (OH) 3 in the dyeing waste water. A compound (B) capable of generating an anion different from the hydroxy radical that combines during precipitation is added to the Fe 2+ in the iron (II) salt (a 1 ) added to the waste water. On the other hand, the method includes the step of preventing the precipitation of the compound formed from Fe 2+ and / or Fe 3+ by causing the heterogeneous anion to be present in an amount of 1.5 times equivalent or more.

染料を含む染色排水としては、使用済みのアゾ系、アントラキノン系、フタロシアニン系などの染料を含む排水が挙げられる。   Examples of the dye wastewater containing dyes include wastewater containing used azo dyes, anthraquinone dyes, phthalocyanine dyes, and the like.

鉄(II)塩(a1)としては、排水に添加したときにFe2+を生成し得る化合物であればよく、化合物(B)としては、排水に添加したときにヒドロキシラジカルとは異種のアニオンを生成し得る化合物であればよいが、具体的には上述した化合物が挙げられる。 The iron (II) salt (a 1 ) may be any compound that can generate Fe 2+ when added to wastewater, and the compound (B) is different from hydroxy radicals when added to wastewater. Any compound that can generate an anion may be used, and specific examples include the compounds described above.

本発明の実施形態1では、より詳細には、反応槽に排水を供給し、さらに過酸化水素と、Fe2+を生成し得る鉄(II)塩(a1)と、異種のアニオンを生成し得る化合物(B)とを添加する。これにより、排水中で、鉄(II)塩(a1)からFe2+が生成し、次いでヒドロキシラジカルが発生し、染料の酸化分解が開始する。 In Embodiment 1 of the present invention, more specifically, waste water is supplied to the reaction tank, and further, hydrogen peroxide, iron (II) salt (a 1 ) capable of generating Fe 2+ , and different anions are generated. And possible compound (B). As a result, Fe 2+ is generated from the iron (II) salt (a 1 ) in the waste water, and then a hydroxy radical is generated, and the oxidative decomposition of the dye starts.

ここで、効率よく染料を酸化分解させるため、反応槽中の排水を攪拌することも好ましい。また、染料の酸化分解処理は、10〜40℃で行うことが好ましく、20〜30℃で行うことがより好ましい。   Here, in order to efficiently oxidize and decompose the dye, it is also preferable to stir the waste water in the reaction tank. Moreover, it is preferable to perform the oxidative decomposition process of dye at 10-40 degreeC, and it is more preferable to carry out at 20-30 degreeC.

染色排水のCOD(化学的酸素要求量)は、通常、0.1〜10g/Lである。   The COD (chemical oxygen demand) of the dye wastewater is usually 0.1 to 10 g / L.

Fe2+を生成し得る鉄(II)塩(a1)は、排水1Lに対して0.1〜10gの量で添加することが好ましい。 The iron (II) salt (a 1 ) capable of generating Fe 2+ is preferably added in an amount of 0.1 to 10 g with respect to 1 L of waste water.

過酸化水素は、排水の量に応じて適宜好ましい量で添加すればよいが、2〜70w/v%の過酸化水素水として添加することが好ましく、30〜70w/v%の過酸化水素水として添加することがより好ましい。   Hydrogen peroxide may be added in a preferable amount according to the amount of waste water, but it is preferably added as 2 to 70 w / v% hydrogen peroxide solution, and 30 to 70 w / v% hydrogen peroxide solution. It is more preferable to add as

また、フェントン反応の効率を高めるため、排水のpHは、好ましくは1〜5、より好ましくは1〜3に調整することが望ましい。pHを調整するため、たとえば硫酸、硝酸、塩酸などを添加する。また、染料の酸化分解処理を行っている間中、pHを上記範囲になるよう調整することが好ましい。さらに、排水を予めpH調整してから反応槽に供給してもよい。   In order to increase the efficiency of the Fenton reaction, the pH of the wastewater is preferably adjusted to 1 to 5, more preferably 1 to 3. In order to adjust the pH, for example, sulfuric acid, nitric acid, hydrochloric acid or the like is added. Further, it is preferable to adjust the pH to be in the above range during the oxidative decomposition treatment of the dye. Further, the wastewater may be supplied to the reaction tank after pH adjustment in advance.

化合物(B)は、鉄(II)塩(a1)におけるFe2+に対して、上記異種のアニオンを1.5倍当量以上の量で、好ましくは2〜100倍当量、より好ましくは2〜20倍当量の量で異種のアニオンが存在できるような量で添加する。なお、化合物(B)の添加により、排水中で異種のアニオンが速やかに生成するが、この異種アニオンには、鉄(II)塩(a1)から生成する異種アニオンも含まれる(ただし、pHを調整するために添加した硫酸などから生成するアニオンは含めない)。したがって、排水中にこれらの異種アニオンの合計量が上記範囲で存在するように、化合物(B)を添加することが好ましい。 The compound (B) is an amount of 1.5 times equivalent or more, preferably 2 to 100 times equivalent, more preferably 2 times the amount of the heterogeneous anion with respect to Fe 2+ in the iron (II) salt (a 1 ). It is added in such an amount that different kinds of anions can be present in an amount of ˜20 times equivalent. Incidentally, the addition of the compound (B) quickly generates a different anion in the waste water, and this different anion also includes a different anion generated from the iron (II) salt (a 1 ) (however, pH Does not include anions generated from sulfuric acid or the like added to adjust the Therefore, it is preferable to add the compound (B) so that the total amount of these different anions is in the above range in the waste water.

実施形態1では、排水中に異種アニオンが存在し、Fe2+および/またはFe3+から形成される化合物、すなわちFe(OH)3および酸化鉄の沈殿が防止できるため、染料の酸化処理を長時間持続できる。上記濃度で染料を含む排水であれば、通常1〜2時間処理を行うと充分に染料が分解できるが、実施形態1によれば、この間スラッジの沈殿が抑えられるため、効率よく廃水処理が行える。 In the first embodiment, since different anions exist in the waste water and precipitation of compounds formed from Fe 2+ and / or Fe 3+ , that is, Fe (OH) 3 and iron oxide, can be prevented. Can last for a long time. If the wastewater contains the dye at the above concentration, the dye can be sufficiently decomposed when the treatment is usually carried out for 1 to 2 hours. However, according to the first embodiment, since sludge precipitation is suppressed during this period, the wastewater treatment can be performed efficiently. .

なお、排水、過酸化水素およびFe2+を生成し得る鉄(II)塩(a1)は、上述のように反応槽に一度に供給してもよいが、複数回に分けて供給したり、連続的に供給したりしてもよい。この場合も、染料、過酸化水素およびFe2+を生成し得る鉄(II)塩(a1)それぞれの合計量が上述した量となるように供給されることが好ましい。 The wastewater, hydrogen peroxide and iron (II) salt (a 1 ) capable of generating Fe 2+ may be supplied to the reaction tank at a time as described above, but may be supplied in multiple times. Or may be supplied continuously. Also in this case, it is preferable to supply the dye, hydrogen peroxide, and iron (II) salt (a 1 ) capable of producing Fe 2+ so that the total amount becomes the above-described amount.

また、異種のアニオンを生成し得る化合物(B)は、上述のように、染料の酸化処理を開始する前に、過酸化水素およびFe2+を生成し得る鉄(II)塩(a1)とともに反応槽に添加してもよいが、上記沈殿物の生成が染料の酸化分解に対して問題とならない状態を維持できるのであれば、染料の酸化処理を開始してから添加してもよい。また、異種のアニオンを生成し得る化合物(B)は、上述のように反応槽に一度に供給してもよいが、上記沈殿物の生成が染料の酸化分解に対して問題とならない状態を維持できるのであれば、複数回に分けて供給したり、連続的に供給したりしてもよい。いいかえると、少なくとも染料の酸化処理を終了する前に、上記異種のアニオンが上記の量で存在するように添加されればよい。 Further, as described above, the compound (B) capable of generating a different anion is an iron (II) salt (a 1 ) capable of generating hydrogen peroxide and Fe 2+ before starting the oxidation treatment of the dye. In addition, it may be added to the reaction vessel, but if the state where the above-mentioned precipitate formation does not cause a problem with respect to the oxidative decomposition of the dye can be maintained, the dye may be added after the oxidation treatment of the dye is started. Further, the compound (B) capable of generating different types of anions may be supplied to the reaction tank at a time as described above, but the state in which the formation of the precipitate does not pose a problem for the oxidative decomposition of the dye is maintained. If possible, it may be supplied in a plurality of times or continuously. In other words, at least before the end of the oxidation treatment of the dye, it is sufficient to add the different anions so that they are present in the above amounts.

<実施形態2>
本発明の実施態様2では、上記有機化合物を含む廃水が、酸性基を有するカチオン交換樹脂およびアニオン交換樹脂を含む廃水であり、上記有機化合物である上記酸性基を有するカチオン交換樹脂が、上記異種のアニオンを生成し得る化合物(B)と同一であり、ヒドロキシラジカルにより酸化分解されて、上記異種のアニオンとして酸性基由来のアニオンを生成し得るカチオン交換樹脂である。すなわち、本発明の実施態様2は、酸性基を有するカチオン交換樹脂およびアニオン交換樹脂を含む廃水に、過酸化水素と、Fe2+を生成し得る鉄(II)塩(a1)とを添加し、フェントン反応により生成するヒドロキシラジカルにより上記カチオン交換樹脂およびアニオン交換樹脂を酸化分解する有機化合物の処理方法である。ここで、上記廃水中に、上記過酸化水素とFe2+との反応で生じたFe3+が金属塩Fe(OH)3を形成して沈殿する際に化合するヒドロキシラジカルとは異種のアニオンであって、かつカチオン交換樹脂が有する酸性基由来のアニオンを生成させ、上記廃水中に、上記廃水に添加した上記鉄(II)塩(a1)におけるFe2+に対して、上記異種のアニオンを1.5倍当量以上の量で存在させて、上記Fe2+および/またはFe3+から形成される化合物の沈殿を防止する工程を含む。
<Embodiment 2>
In Embodiment 2 of the present invention, the waste water containing the organic compound is waste water containing a cation exchange resin having an acidic group and an anion exchange resin, and the cation exchange resin having the acidic group being the organic compound is This is a cation exchange resin which is the same as the compound (B) capable of generating an anion of the above and can be oxidized and decomposed by a hydroxy radical to generate an anion derived from an acidic group as the heterogeneous anion. That is, in Embodiment 2 of the present invention, hydrogen peroxide and an iron (II) salt (a 1 ) capable of generating Fe 2+ are added to waste water containing a cation exchange resin having an acidic group and an anion exchange resin. And an organic compound treatment method in which the cation exchange resin and the anion exchange resin are oxidatively decomposed by hydroxy radicals generated by the Fenton reaction. Here, an anion which is different from the hydroxy radical which combines when Fe 3+ produced by the reaction of hydrogen peroxide and Fe 2+ forms a metal salt Fe (OH) 3 and precipitates in the waste water. An anion derived from an acidic group of the cation exchange resin is generated, and in the wastewater, the heterogeneity is different from Fe 2+ in the iron (II) salt (a 1 ) added to the wastewater. A step of preventing the precipitation of the compound formed from the Fe 2+ and / or Fe 3+ by causing the anion to be present in an amount of 1.5 times equivalent or more.

廃水は、使用済みの酸性基を有するカチオン交換樹脂および塩基性基を有するアニオン交換樹脂を含む。これらのイオン交換樹脂基体は、たとえばスチレンとジビニルベンゼンとの共重合体である。カチオン交換樹脂が有する酸性基としては、たとえばスルホン酸基(−SO3-)である。なお、原子力施設では、水処理などに使用したカチオン交換樹脂およびアニオン交換樹脂を同じ貯蔵槽に貯めておくことが多い。実施形態2によれば、このように両者が混合して貯蔵されている交換樹脂を効率よく処理できる。また、貯蔵されている交換樹脂は難分解性であるため、従来、焼却などにより処理されているが、焼却法では窒素酸化物(NOx)や硫黄酸化物(SOx)等の有害ガスが発生する問題があった。一方、フェントン反応による酸化分解では、これら有害ガスを発生させることなく交換樹脂を処理することができる。 Waste water includes used cation exchange resins having acidic groups and anion exchange resins having basic groups. These ion exchange resin substrates are, for example, copolymers of styrene and divinylbenzene. The acidic group possessed by the cation exchange resin is, for example, a sulfonic acid group (—SO 3− ). In nuclear facilities, cation exchange resins and anion exchange resins used for water treatment are often stored in the same storage tank. According to the second embodiment, it is possible to efficiently treat the exchange resin in which both are mixed and stored in this way. In addition, the exchange resin stored is difficult to decompose, so it has been conventionally treated by incineration. However, incineration methods generate harmful gases such as nitrogen oxides (NOx) and sulfur oxides (SOx). There was a problem. On the other hand, in the oxidative decomposition by the Fenton reaction, the exchange resin can be processed without generating these harmful gases.

鉄(II)塩(a1)としては、廃水に添加したときにFe2+を生成し得る化合物であればよく、具体的には上述した化合物が挙げられる。 The iron (II) salt (a 1 ) may be any compound that can produce Fe 2+ when added to wastewater, and specifically includes the compounds described above.

本発明の実施形態2では、より詳細には、反応槽に使用済みのカチオン交換樹脂およびアニオン交換樹脂を含む廃水を供給し、さらに過酸化水素と、Fe2+を生成し得る鉄(II)塩(a1)とを添加する。これにより、汚水中で、鉄(II)塩(a1)からFe2+が生成し、次いでヒドロキシラジカルが発生し、カチオン交換樹脂およびアニオン交換樹脂の酸化分解が開始する。このカチオン交換樹脂の酸化分解により、廃水中に、酸性基由来の異種アニオン、たとえばスルホン酸基(−SO3-)由来の硫酸イオンが生成する。 In Embodiment 2 of the present invention, more specifically, iron (II) that can supply wastewater containing used cation exchange resin and anion exchange resin to the reaction vessel, and further generate hydrogen peroxide and Fe 2+. Salt (a 1 ) is added. As a result, Fe 2+ is generated from the iron (II) salt (a 1 ) in the sewage, and then a hydroxy radical is generated, and oxidative decomposition of the cation exchange resin and the anion exchange resin starts. Oxidative decomposition of the cation exchange resin produces different anions derived from acidic groups, for example, sulfate ions derived from sulfonic acid groups (—SO 3− ), in the wastewater.

ここで、効率よくカチオン交換樹脂およびアニオン交換樹脂を酸化分解させるため、反応槽中の廃水を攪拌することも好ましい。また、カチオン交換樹脂およびアニオン交換樹脂の酸化分解処理は、90〜110℃で行うことが好ましい。   Here, in order to efficiently oxidatively decompose the cation exchange resin and the anion exchange resin, it is also preferable to stir the waste water in the reaction tank. Moreover, it is preferable to perform the oxidative decomposition process of a cation exchange resin and an anion exchange resin at 90-110 degreeC.

原子力発電所の実際の廃棄物は、カチオン交換樹脂、アニオン交換樹脂およびクラッド等の固体と液体とが混在した状態で貯蔵タンクに入っている。廃水処理時、固体の濃度は通常10〜200g/Lに調整され、反応槽に供給される。また、通常カチオン交換樹脂は30〜70質量%、好ましくは40〜60質量%の量で、アニオン交換樹脂は30〜70質量%、好ましくは40〜60質量%の量で含まれる。ここで、カチオン交換樹脂およびアニオン交換樹脂の合計量を100質量%とする。アニオン交換樹脂の比率が高くなるにつれて本発明によるFe(OH)3の沈殿防止の効果が得られる。 The actual waste of the nuclear power plant is stored in a storage tank in a state where solids and liquids such as cation exchange resin, anion exchange resin, and cladding are mixed. During the wastewater treatment, the solid concentration is usually adjusted to 10 to 200 g / L and supplied to the reaction vessel. Further, the cation exchange resin is usually contained in an amount of 30 to 70% by mass, preferably 40 to 60% by mass, and the anion exchange resin is contained in an amount of 30 to 70% by mass, preferably 40 to 60% by mass. Here, the total amount of the cation exchange resin and the anion exchange resin is 100% by mass. As the ratio of the anion exchange resin increases, the effect of preventing precipitation of Fe (OH) 3 according to the present invention is obtained.

Fe2+を生成し得る鉄(II)塩(a1)は、カチオン交換樹脂およびアニオン交換樹脂を含む廃水1Lに対して0.001〜0.1molの量で添加することが好ましく、0.005〜0.02molの量で添加することがより好ましい。 The iron (II) salt (a 1 ) capable of generating Fe 2+ is preferably added in an amount of 0.001 to 0.1 mol with respect to 1 L of waste water containing a cation exchange resin and an anion exchange resin. More preferably, it is added in an amount of 005 to 0.02 mol.

過酸化水素は、廃水に含まれるイオン交換樹脂の量に応じて適宜好ましい量で添加すればよいが、2〜70w/v%の過酸化水素水として添加することが好ましく、30〜70w/v%の過酸化水素水として添加することがより好ましい。   Hydrogen peroxide may be added in an appropriate amount according to the amount of ion exchange resin contained in the waste water, but it is preferably added as 2 to 70 w / v% hydrogen peroxide water, and 30 to 70 w / v. It is more preferable to add as% hydrogen peroxide solution.

また、フェントン反応の効率を高めるため、汚水のpHは、好ましくは1〜5、より好ましくは1〜3に調整することが望ましい。pHを調整するため、たとえば硫酸、硝酸、塩酸などを添加する。また、上記イオン交換樹脂の酸化分解処理を行っている間中、pHを上記範囲になるよう調整することが好ましい。さらに、廃水を予めpH調整してから反応槽に供給してもよい。   In order to increase the efficiency of the Fenton reaction, the pH of the sewage is preferably adjusted to 1 to 5, more preferably 1 to 3. In order to adjust the pH, for example, sulfuric acid, nitric acid, hydrochloric acid or the like is added. Moreover, it is preferable to adjust pH so that it may become the said range during performing the oxidative decomposition process of the said ion exchange resin. Further, the wastewater may be supplied to the reaction tank after pH adjustment in advance.

実施形態2では、廃水中に、鉄(II)塩(a1)におけるFe2+に対して、上記異種のアニオンを1.5倍当量以上の量で、好ましくは2〜100倍当量、より好ましくは2〜50倍当量の量で異種のアニオンを存在させる。なお、この異種アニオンとしては、カチオン交換樹脂の酸化分解により生成する酸性基由来のアニオンのほか、鉄(II)塩(a1)から生成する異種アニオンも含まれる(ただし、pHを調整するために添加した硫酸などから生成するアニオンは含めない)。ここで、廃水中の固体の濃度、カチオン交換樹脂およびアニオン交換樹脂の割合、鉄(II)塩(a1)の量が上記範囲内となっていることにより、廃水中でのこれらの異種アニオンの合計量も上記範囲内に調整できる。 In Embodiment 2, the amount of the different anion is 1.5 times equivalent or more, preferably 2 to 100 times equivalent to Fe 2+ in the iron (II) salt (a 1 ) in the waste water. Preferably, a different anion is present in an amount of 2 to 50 times equivalent. This heteroanion includes an anion derived from an acidic group produced by oxidative decomposition of a cation exchange resin, and a heteroanion produced from an iron (II) salt (a 1 ) (however, in order to adjust pH) Does not include anions generated from sulfuric acid added to Here, since the concentration of solids in the wastewater, the ratio of the cation exchange resin and the anion exchange resin, and the amount of the iron (II) salt (a 1 ) are within the above ranges, these different anions in the wastewater The total amount of can also be adjusted within the above range.

実施形態2では、廃水中に異種アニオンが存在し、Fe2+および/またはFe3+から形成される化合物、すなわちFe(OH)3の沈殿が防止できるため、上記イオン交換樹脂の酸化処理を長時間持続できる。上記濃度でイオン交換樹脂を含む廃水であれば、通常5〜10時間処理を行うと充分にイオン交換樹脂が分解できるが、実施形態2によれば、この間スラッジの沈殿が抑えられるため、効率よく廃水処理が行える。また、実施形態2によれば、酸化分解したいカチオン交換樹脂が、異種イオンの供給源ともなる利点がある。なお、実施形態2では、上記イオン交換樹脂の酸化分解開始時には、廃水中に異種のアニオンとしての酸性基由来のアニオンは生成していないが、フェントン反応によりカチオン交換樹脂が酸化分解するにつれて速やかに酸性基由来のアニオンが生成する。このように酸性基由来のアニオンがある程度の量で生成するときまでは、Fe(OH)3および酸化鉄の沈殿は、イオン交換樹脂の酸化分解に問題となるほどには通常起こらない。 In Embodiment 2, since the heterogeneous anion exists in the wastewater and precipitation of a compound formed from Fe 2+ and / or Fe 3+ , that is, Fe (OH) 3 can be prevented, the oxidation treatment of the ion exchange resin is performed. Can last for a long time. In the case of waste water containing an ion exchange resin at the above concentration, the ion exchange resin can be decomposed sufficiently when treated for 5 to 10 hours. However, according to the second embodiment, since sedimentation of sludge is suppressed during this period, it is efficient. Wastewater treatment can be performed. Further, according to the second embodiment, there is an advantage that the cation exchange resin to be oxidatively decomposed also serves as a supply source of different ions. In the second embodiment, at the start of the oxidative decomposition of the ion exchange resin, an anion derived from an acidic group as a different kind of anion is not generated in the wastewater. However, as the cation exchange resin is oxidatively decomposed by the Fenton reaction, An anion derived from an acidic group is generated. Thus, until a certain amount of anion derived from an acidic group is formed, precipitation of Fe (OH) 3 and iron oxide does not usually occur to the extent that it causes a problem for oxidative decomposition of the ion exchange resin.

なお、廃水、過酸化水素およびFe2+を生成し得る鉄(II)塩(a1)は、上述のように反応槽に一度に供給してもよいが、複数回に分けて供給したり、連続的に供給したりしてもよい。この場合も、イオン交換樹脂、過酸化水素およびFe2+を生成し得る鉄(II)塩(a1)それぞれの合計量が上記の量となるように供給されることが好ましい。 The iron (II) salt (a 1 ) capable of generating waste water, hydrogen peroxide and Fe 2+ may be supplied to the reaction tank at a time as described above, but may be supplied in multiple times. Or may be supplied continuously. Also in this case, it is preferable that the total amount of each of the iron (II) salt (a 1 ) capable of generating the ion exchange resin, hydrogen peroxide, and Fe 2+ is supplied to the above amount.

ところで、カチオン交換樹脂およびアニオン交換樹脂の割合や、廃水中のカチオン交換樹脂が有する酸性基の量などによっては、廃水中に異種アニオンを上記範囲の量で存在させることができない場合もあり得る。この場合は、反応槽に使用済みのカチオン交換樹脂およびアニオン交換樹脂を含む廃水を供給し、さらに過酸化水素と、Fe2+を生成し得る鉄(II)塩(a1)とを添加するとともに、実施形態1で用いた異種のアニオンを生成し得る化合物(B)を添加してもよい。このようにして、汚水中での異種アニオンの量を調整してもよい。 By the way, depending on the ratio of the cation exchange resin and the anion exchange resin, the amount of acidic groups of the cation exchange resin in the wastewater, etc., there may be a case where the heterogeneous anion cannot be present in the amount within the above range. In this case, waste water containing used cation exchange resin and anion exchange resin is supplied to the reaction tank, and hydrogen peroxide and iron (II) salt (a 1 ) capable of producing Fe 2+ are added. At the same time, the compound (B) capable of generating the different types of anions used in Embodiment 1 may be added. In this way, the amount of different anions in the sewage may be adjusted.

また、異種のアニオンを生成し得る化合物(B)を併用する場合は、上記オン交換樹脂の酸化処理を開始する前に、過酸化水素およびFe2+を生成し得る鉄(II)塩(a1)とともに反応槽に添加してもよいが、上記沈殿物の生成がイオン交換樹脂の酸化分解に対して問題とならない状態を維持できるのであれば、上記イオン交換樹脂の酸化処理を開始してから添加してもよい。また、異種のアニオンを生成し得る化合物(B)は、上述のように反応槽に一度に供給してもよいが、上記沈殿物の生成がイオン交換樹脂の酸化分解に対して問題とならない状態を維持できるのであれば、複数回に分けて供給したり、連続的に供給したりしてもよい。いいかえると、少なくとも上記オン交換樹脂の酸化処理を終了する前に、上記異種のアニオンが上記の量で存在するように添加されればよい。 When the compound (B) capable of generating a different anion is used in combination, before starting the oxidation treatment of the on-exchange resin, an iron (II) salt (a) capable of generating hydrogen peroxide and Fe 2+ 1 ) may be added to the reaction vessel together with the above, but if the state where the precipitate formation does not pose a problem for oxidative decomposition of the ion exchange resin can be maintained, the oxidation treatment of the ion exchange resin is started. May be added. Further, the compound (B) capable of generating different types of anions may be supplied to the reaction tank at a time as described above, but the state in which the formation of the precipitate does not pose a problem for the oxidative decomposition of the ion exchange resin. Can be supplied in a plurality of times or continuously. In other words, at least before the end of the oxidation treatment of the on-exchange resin, it is sufficient that the different types of anions are added so as to exist in the above amounts.

<その他の実施形態>
実施形態1、2において、鉄(II)塩(a1)の代わりに銅(I)塩(a2)を用いてもよい。この場合のフェントン反応は、下記式(3)で表わされる。
<Other embodiments>
In Embodiments 1 and 2, a copper (I) salt (a 2 ) may be used instead of the iron (II) salt (a 1 ). The Fenton reaction in this case is represented by the following formula (3).

22 + Cu+ → Cu2+ + OH- + ・OH
また、実施形態1、2において、有機化合物を酸化分解処理した後の廃水に、さらに、Fe2+および/またはFe3+を除去するための処理を行ってもよい。
H 2 O 2 + Cu + → Cu 2+ + OH - + · OH
In Embodiments 1 and 2, the waste water after the organic compound is subjected to oxidative decomposition treatment may be further subjected to a treatment for removing Fe 2+ and / or Fe 3+ .

実施形態1において、染料を含む染色排水の代わりに、難分解性の有機化合物を含む畜産廃水や、窒素やリンを有する有機化合物を含む生活排水を用いてもよく、また、ベンゼン、トルエン、ホルムアルデヒド等の健康を害する恐れのある揮発性有機化合物(VOC)を含む地下水などを用いてもよい。いずれの場合も、フェントン反応に用いる金属イオン触媒の沈殿を防ぎ、このような有機物化合物を効率的かつ持続的に分解できる。   In Embodiment 1, instead of dye wastewater containing dyes, livestock wastewater containing persistent organic compounds or domestic wastewater containing organic compounds containing nitrogen or phosphorus may be used, and benzene, toluene, formaldehyde For example, groundwater containing a volatile organic compound (VOC) that may be harmful to health may be used. In any case, precipitation of the metal ion catalyst used for the Fenton reaction can be prevented, and such an organic compound can be decomposed efficiently and continuously.

本発明は、以下に関する。   The present invention relates to the following.

[1] 有機化合物を含む汚水に、過酸化水素と、フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)とを添加し、フェントン反応により生成するラジカルにより上記有機化合物を酸化分解する有機化合物の処理方法であって、上記汚水に、上記過酸化水素と金属イオン(I1)との反応で生じた金属イオン(I2)が金属塩を形成して沈殿する際に化合するカウンターアニオンとは異種のアニオンを生成し得る化合物(B)を添加し、上記汚水中に、上記汚水に添加した上記化合物(A)における金属イオン(I1)に対して、上記異種のアニオンを1.5倍当量以上の量で存在させて、上記金属イオン(I1)および/または金属イオン(I2)から形成される化合物の沈殿を防止する工程を含むことを特徴とする有機化合物の処理方法。 [1] Hydrogen peroxide and a compound (A) capable of generating a metal ion (I 1 ) for causing a Fenton reaction are added to sewage containing the organic compound, and the organic compound is generated by a radical generated by the Fenton reaction. A method of treating an organic compound that oxidatively decomposes, wherein the metal ion (I 2 ) generated by the reaction between the hydrogen peroxide and the metal ion (I 1 ) forms a metal salt and precipitates in the waste water. A compound (B) capable of generating a different anion from the counter anion that combines with the metal ion (I 1 ) in the compound (A) added to the sewage is added to the sewage. In the amount of 1.5 times equivalent or more to prevent precipitation of the compound formed from the metal ion (I 1 ) and / or the metal ion (I 2 ). A method for treating organic compounds.

上記化合物の沈殿を防止する工程を含むため、沈殿物の生成が抑制されて、有機物化合物を効率的かつ持続的に分解できる。   Since the step of preventing precipitation of the compound is included, the generation of the precipitate is suppressed, and the organic compound can be decomposed efficiently and continuously.

[2] 上記フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)が、Fe2+を生成し得る鉄(II)塩(a1)であり、上記フェントン反応により生成するラジカルがヒドロキシラジカルであることを特徴とする[1]に記載の処理方法。 [2] The compound (A) capable of generating the metal ion (I 1 ) for causing the Fenton reaction is an iron (II) salt (a 1 ) capable of generating Fe 2+, and is generated by the Fenton reaction. The treatment method according to [1], wherein the radical to be treated is a hydroxy radical.

Fe2+を生成し得る鉄(II)塩(a1)を用いたフェントン反応により、有機物化合物を効率的かつ持続的に分解できる。 The organic compound can be efficiently and continuously decomposed by the Fenton reaction using the iron (II) salt (a 1 ) capable of generating Fe 2+ .

[3] 上記過酸化水素と、フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)とを添加した有機化合物を含む汚水のpHを1〜5に調整し、フェントン反応により生成するラジカルにより上記有機化合物を酸化分解することを特徴とする[1]または[2]に記載の処理方法。 [3] The pH of sewage containing an organic compound to which the hydrogen peroxide and the compound (A) capable of generating a metal ion (I 1 ) for causing the Fenton reaction are added is adjusted to 1 to 5, and the Fenton reaction is performed. The treatment method according to [1] or [2], wherein the organic compound is oxidatively decomposed by radicals generated by the above.

汚水のpHを上記範囲にすることにより、ヒドロキシラジカルを効率よく発生できる。   By setting the pH of the sewage within the above range, hydroxy radicals can be generated efficiently.

[4] 上記有機化合物を含む汚水が、酸性基を有するカチオン交換樹脂およびアニオン交換樹脂を含む廃水であり、上記有機化合物である上記酸性基を有するカチオン交換樹脂が、上記異種のアニオンを生成し得る化合物(B)と同一であり、ヒドロキシラジカルにより酸化分解されて、上記異種のアニオンとして酸性基由来のアニオンを生成し得るカチオン交換樹脂であることを特徴とする[1]〜[3]のいずれか1つに記載の有機化合物の処理方法。   [4] The waste water containing the organic compound is waste water containing a cation exchange resin having an acidic group and an anion exchange resin, and the cation exchange resin having the acidic group being the organic compound generates the heterogeneous anion. [1] to [3], wherein the cation exchange resin is the same as the compound (B) to be obtained and is oxidatively decomposed by a hydroxyl radical to generate an anion derived from an acidic group as the heterogeneous anion. The processing method of the organic compound as described in any one.

酸性基を有するカチオン交換樹脂が酸化分解するにつれて生成する異種アニオンにより、沈殿物の生成が抑制されて、有機物化合物を効率的かつ持続的に分解できる。   The heterogeneous anion generated as the cation exchange resin having an acidic group undergoes oxidative decomposition suppresses the formation of precipitates, and the organic compound can be decomposed efficiently and continuously.

[5] 上記有機化合物を含む汚水が、染料を含む染色排水であり、上記異種のアニオンを生成し得る化合物(B)が、硫酸塩、硝酸塩、塩化物塩および炭酸塩の少なくとも1種を含むことを特徴とする[1]〜[3]のいずれか1つに記載の有機化合物の処理方法。   [5] The wastewater containing the organic compound is dyed wastewater containing a dye, and the compound (B) capable of generating the different anions includes at least one of sulfate, nitrate, chloride and carbonate. The method for treating an organic compound according to any one of [1] to [3], wherein:

化合物(B)が生成する異種アニオンにより、沈殿物の生成が抑制されて、有機物化合物を効率的かつ持続的に分解できる。   The heterogeneous anion produced by the compound (B) suppresses the formation of a precipitate, and the organic compound can be decomposed efficiently and continuously.

[6] 上記異種のアニオンを生成し得る化合物(B)が、硫酸塩、硝酸塩、塩化物塩および炭酸塩の少なくとも1種を含むことを特徴とする[1]〜[3]のいずれか1つに記載の処理方法。   [6] Any one of [1] to [3], wherein the compound (B) capable of generating the different anion includes at least one of sulfate, nitrate, chloride and carbonate. The processing method described in one.

[7] 上記異種のアニオンを生成し得る化合物(B)が、スルホ基、ニトロ基、クロロ基およびカルボキシル基の少なくとも1種を有する有機化合物を含むことを特徴とする[1]〜[3]のいずれか1つに記載の処理方法。   [7] The compound (B) capable of generating a different kind of anion includes an organic compound having at least one of a sulfo group, a nitro group, a chloro group, and a carboxyl group [1] to [3] The processing method as described in any one of these.

これらの化合物(B)によれば、異種アニオンが速やかに生成し、沈殿物の生成が抑制されて、有機物化合物を効率的かつ持続的に分解できる。   According to these compounds (B), different anions are rapidly generated, the formation of precipitates is suppressed, and the organic compound can be decomposed efficiently and continuously.

[実施例]
以下、本発明について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
[Example]
Hereinafter, although an example is given and the present invention is explained, the present invention is not limited to these.

[実施例1]
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液(COD約900mg/L)に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gと、異種アニオンの供給剤として硫酸ナトリウム10gとを添加し、温度25〜30℃、pH=2.3の条件で1時間の分解試験を行った。前記の分解試験の実施の前後において、廃液の透過率の変化と廃液中の鉄イオン濃度の変化を測定した。ただし、原液の透過率は0%である。透過率は、ベックマンコールター社製紫外・可視分光光度計DU 730により、波長625nmで測定し、鉄イオン濃度は、エスアイアイナノテクノロジー社製ICP発光分光分析装置SPS5520で測定した。
[Example 1]
For dyeing waste liquid (COD of about 900 mg / L) containing 1.6 g / L of Levafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye, the following conditions were used: A degradation test was performed. That is, to 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt as a Fenton reagent, 18 g of 35% hydrogen peroxide water, and 10 g of sodium sulfate as a different anion supplier were added, The decomposition test for 1 hour was conducted on the conditions of 25-30 degreeC and pH = 2.3. Before and after the above decomposition test, the change in the transmittance of the waste liquid and the change in the iron ion concentration in the waste liquid were measured. However, the transmittance of the stock solution is 0%. The transmittance was measured with a UV / visible spectrophotometer DU 730 manufactured by Beckman Coulter, Inc. at a wavelength of 625 nm, and the iron ion concentration was measured with an ICP emission spectroscopic analyzer SPS5520 manufactured by SII Nano Technology.

なお、pHの調整は、0.5mol/L硫酸水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、実施例1では、硫酸第一鉄七水和物塩および硫酸ナトリウムに由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、4.5倍当量の量で存在していた。 The pH was adjusted with a 0.5 mol / L sulfuric acid aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. Further, in Example 1, the heterogeneous anion (sulfate ion) derived from the ferrous sulfate heptahydrate salt and sodium sulfate was compared with Fe 2+ of the ferrous sulfate heptahydrate salt in the waste liquid. It was present in an amount equivalent to 4.5 times.

[比較例1](従来法)
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gとを添加し、温度25〜30℃、pH=2.3の条件で1時間の分解試験を行った。ただし、原液の透過率は0%である。透過率および鉄イオン濃度の変化は、実施例1と同様の方法で測定した。
[Comparative Example 1] (Conventional method)
A dye waste solution containing 1.6 g / L of Revafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, to 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt and 18 g of 35% hydrogen peroxide solution were added as Fenton reagent, and the temperature was 25 to 30 ° C. and the pH was 2.3. Under the conditions, a 1 hour decomposition test was performed. However, the transmittance of the stock solution is 0%. Changes in transmittance and iron ion concentration were measured by the same method as in Example 1.

なお、pHの調整は、0.5mol/L硫酸水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、比較例1では、硫酸第一鉄七水和物塩に由来する異種アニオン(硫酸イオン)が、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、1倍当量の量で存在していた。 The pH was adjusted with a 0.5 mol / L sulfuric acid aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. In Comparative Example 1, different anions (sulfate ions) derived from ferrous sulfate heptahydrate salt are equivalent to 1-fold equivalent to Fe 2+ of ferrous sulfate heptahydrate salt in the waste liquid. Was present in an amount.

以上のようにして得られた実施例1および比較例1における透過率および鉄イオン濃度の測定結果は、表1に示す通りである。   The measurement results of transmittance and iron ion concentration in Example 1 and Comparative Example 1 obtained as described above are as shown in Table 1.

Figure 2012005996
Figure 2012005996

[実施例2−1]
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gと、異種アニオンの供給剤として硫酸ナトリウム1.5gとを添加し、温度25〜30℃、pH=2.0の条件で1時間の分解試験を行った。前記の分解試験の実施の前後において、廃液の透過率の変化と廃液中の鉄イオン濃度の変化を測定した。ただし、原液の透過率は0%である。透過率は、ベックマンコールター社製紫外・可視分光光度計DU 730により、波長625nmで測定し、鉄イオン濃度は、エスアイアイナノテクノロジー社製ICP発光分光分析装置SPS5520で測定した。
[Example 2-1]
A dye waste solution containing 1.6 g / L of Revafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, to 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt as a Fenton reagent, 18 g of 35% hydrogen peroxide water, and 1.5 g of sodium sulfate as a different anion supplier are added. The decomposition test was conducted for 1 hour under the conditions of a temperature of 25 to 30 ° C. and a pH of 2.0. Before and after the above decomposition test, the change in the transmittance of the waste liquid and the change in the iron ion concentration in the waste liquid were measured. However, the transmittance of the stock solution is 0%. The transmittance was measured with a UV / visible spectrophotometer DU 730 manufactured by Beckman Coulter, Inc. at a wavelength of 625 nm, and the iron ion concentration was measured with an ICP emission spectroscopic analyzer SPS5520 manufactured by SII Nano Technology.

なお、pHの調整は、0.5mol/L硫酸水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、実施例2では、硫酸第一鉄七水和物塩および硫酸ナトリウムに由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、1.5倍当量の量で存在していた。 The pH was adjusted with a 0.5 mol / L sulfuric acid aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. Further, in Example 2, the heterogeneous anion (sulfate ion) derived from the ferrous sulfate heptahydrate salt and sodium sulfate was compared with Fe 2+ of the ferrous sulfate heptahydrate salt in the waste liquid. It was present in an amount equivalent to 1.5 times.

[実施例2−2〜2−5]
実施例2−2〜2−5は、染色廃液1Lに対して、異種アニオンの供給剤として硫酸ナトリウム1.5gを用いる変わりに、硫酸ナトリウム3.0g、6.0g、12gまたは18gを用いた以外は、実施例2−1と同様に行った。
[Examples 2-2 to 2-5]
In Examples 2-2 to 2-5, 3.0 g, 6.0 g, 12 g, or 18 g of sodium sulfate was used instead of 1.5 g of sodium sulfate as a different anion supplier for 1 L of dyeing waste liquid. Except for this, the same procedure as in Example 2-1 was performed.

実施例2−2〜2−5では、硫酸第一鉄七水和物塩および硫酸ナトリウムに由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、2、3、5または7倍当量の量で存在していた。 In Examples 2-2 to 2-5, the ferrous sulfate heptahydrate salt and the heterogeneous anion (sulfate ion) derived from sodium sulfate were added to the Fe 2+ of the ferrous sulfate heptahydrate salt in the waste liquid. It was present in an amount of 2, 3, 5 or 7 times the equivalent.

また、実施例2−1〜2−5では、分解試験の実施後において、廃液の透過率は、99%であった。   In Examples 2-1 to 2-5, the transmittance of the waste liquid was 99% after the decomposition test was performed.

[比較例2](従来法)
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gとを添加し、温度25〜30℃、pH=2.3の条件で1時間の分解試験を行った。ただし、原液の透過率は0%である。透過率および鉄イオン濃度の変化は、実施例2−1と同様の方法で測定した。
[Comparative Example 2] (Conventional method)
A dye waste solution containing 1.6 g / L of Revafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, to 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt and 18 g of 35% hydrogen peroxide solution were added as Fenton reagent, and the temperature was 25 to 30 ° C. and the pH was 2.3. Under the conditions, a 1 hour decomposition test was performed. However, the transmittance of the stock solution is 0%. Changes in transmittance and iron ion concentration were measured in the same manner as in Example 2-1.

比較例2では、硫酸第一鉄七水和物塩に由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、1倍当量の量で存在していた。 In Comparative Example 2, the different anion (sulfate ion) derived from the ferrous sulfate heptahydrate salt is in an amount equivalent to one-fold equivalent to Fe 2+ of the ferrous sulfate heptahydrate salt in the waste liquid. Existed.

以上のようにして得られた実施例2−1〜2−5および比較例2における鉄イオン濃度の測定結果は、図1に示す通りである。なお、図1におけるプロットは、左から順に、比較例2、実施例2−1〜2−5の結果を表している。   The measurement results of the iron ion concentration in Examples 2-1 to 2-5 and Comparative Example 2 obtained as described above are as shown in FIG. In addition, the plot in FIG. 1 represents the results of Comparative Example 2 and Examples 2-1 to 2-5 in order from the left.

[実施例3]
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gと、異種アニオンの供給剤として硝酸ナトリウム17gとを添加し、温度25〜30℃、pH=2.3の条件で2時間の分解試験を行った。前記の分解試験の実施の前後において、廃液の透過率の変化と廃液中の鉄イオン濃度の変化を測定した。ただし、原液の透過率は0%である。透過率は、ベックマンコールター社製紫外・可視分光光度計DU 730により、波長625nmで測定し、鉄イオン濃度は、エスアイアイナノテクノロジー社製ICP発光分光分析装置SPS5520で測定した。
[Example 3]
A dye waste solution containing 1.6 g / L of Revafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, to 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt as a Fenton reagent, 18 g of 35% hydrogen peroxide water, and 17 g of sodium nitrate as a different anion supplier were added, The degradation test was conducted for 2 hours under the conditions of 25 to 30 ° C. and pH = 2.3. Before and after the above decomposition test, the change in the transmittance of the waste liquid and the change in the iron ion concentration in the waste liquid were measured. However, the transmittance of the stock solution is 0%. The transmittance was measured with a UV / visible spectrophotometer DU 730 manufactured by Beckman Coulter, Inc. at a wavelength of 625 nm, and the iron ion concentration was measured with an ICP emission spectroscopic analyzer SPS5520 manufactured by SII Nano Technology.

なお、pHの調整は、0.5mol/L硫酸水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、実施例3では、硫酸第一鉄七水和物塩および硝酸ナトリウムに由来する異種アニオン(硫酸イオンおよび硝酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、11倍当量の量で存在していた。 The pH was adjusted with a 0.5 mol / L sulfuric acid aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. In Example 3, different anions (sulfate ion and nitrate ion) derived from ferrous sulfate heptahydrate salt and sodium nitrate were converted into ferrous sulfate heptahydrate salt Fe 2+ in the waste liquid. In contrast, it was present in an amount of 11 equivalents.

[比較例3](従来法)
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gとを添加し、温度25〜30℃、pH=2.3の条件で2時間の分解試験を行った。ただし、原液の透過率は0%である。透過率および鉄イオン濃度の変化は、実施例3と同様の方法で測定した。
[Comparative Example 3] (Conventional method)
A dye waste solution containing 1.6 g / L of Revafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, to 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt and 18 g of 35% hydrogen peroxide solution were added as Fenton reagent, and the temperature was 25 to 30 ° C. and the pH was 2.3. A 2-hour degradation test was performed under the conditions. However, the transmittance of the stock solution is 0%. Changes in transmittance and iron ion concentration were measured by the same method as in Example 3.

なお、pHの調整は、0.5mol/L硫酸水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、比較例3では、硫酸第一鉄七水和物塩に由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、1倍当量の量で存在していた。 The pH was adjusted with a 0.5 mol / L sulfuric acid aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. In Comparative Example 3, the different anion (sulfate ion) derived from the ferrous sulfate heptahydrate salt is equivalent to 1-fold equivalent in the waste liquid with respect to Fe 2+ of the ferrous sulfate heptahydrate salt. Was present in an amount.

以上のようにして得られた実施例3および比較例3における透過率および鉄イオン濃度の測定結果は、表2に示す通りである。   The measurement results of transmittance and iron ion concentration in Example 3 and Comparative Example 3 obtained as described above are as shown in Table 2.

Figure 2012005996
Figure 2012005996

[実施例4]
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gと、異種アニオンの供給剤として硫酸マグネシウム七水和物25gとを添加し、温度25〜30℃、pH=2.3の条件で2時間の分解試験を行った。前記の分解試験の実施の前後において、廃液の透過率の変化と廃液中の鉄イオン濃度の変化を測定した。ただし、原液の透過率は0%である。透過率は、ベックマンコールター社製紫外・可視分光光度計DU 730により、波長625nmで測定し、鉄イオン濃度は、エスアイアイナノテクノロジー社製ICP発光分光分析装置SPS5520で測定した。
[Example 4]
A dye waste solution containing 1.6 g / L of Revafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, for 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt as a Fenton reagent, 18 g of 35% hydrogen peroxide water, and 25 g of magnesium sulfate heptahydrate as a supplier of different anions. Then, a decomposition test was conducted for 2 hours under the conditions of a temperature of 25 to 30 ° C. and a pH of 2.3. Before and after the above decomposition test, the change in the transmittance of the waste liquid and the change in the iron ion concentration in the waste liquid were measured. However, the transmittance of the stock solution is 0%. The transmittance was measured with a UV / visible spectrophotometer DU 730 manufactured by Beckman Coulter, Inc. at a wavelength of 625 nm, and the iron ion concentration was measured with an ICP emission spectroscopic analyzer SPS5520 manufactured by SII Nano Technology.

なお、pHの調整は、0.5mol/L硫酸水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、実施例4では、硫酸第一鉄七水和物塩および硫酸マグネシウム七水和物に由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、6倍当量の量で存在していた。 The pH was adjusted with a 0.5 mol / L sulfuric acid aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. Further, in Example 4, the different anions (sulfate ions) derived from the ferrous sulfate heptahydrate salt and magnesium sulfate heptahydrate were added to the Fe 2+ of the ferrous sulfate heptahydrate salt in the waste liquid. It was present in an amount equivalent to 6 times the amount.

[比較例4](従来法)
染料として、ダイスター社製のレバフィックスターコイズブルー E−BA(Levafix Turquoise Blue E−BA)を1.6g/L含有する染色廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、フェントン試薬として硫酸第一鉄七水和物塩6.0gと、35%過酸化水素水18gとを添加し、温度25〜30℃、pH=2.3の条件で2時間の分解試験を行った。ただし、原液の透過率は0%である。透過率および鉄イオン濃度の変化は、実施例4と同様の方法で測定した。
[Comparative Example 4] (Conventional method)
A dye waste solution containing 1.6 g / L of Revafix Turquoise Blue E-BA (Levafix Turquoise Blue E-BA) manufactured by Daistar as a dye was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, to 1 L of dyeing waste liquid, 6.0 g of ferrous sulfate heptahydrate salt and 18 g of 35% hydrogen peroxide solution were added as Fenton reagent, and the temperature was 25 to 30 ° C. and the pH was 2.3. A 2-hour degradation test was performed under the conditions. However, the transmittance of the stock solution is 0%. Changes in transmittance and iron ion concentration were measured by the same method as in Example 4.

なお、pHの調整は、0.5mol/L硫酸水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、比較例4では、硫酸第一鉄七水和物塩に由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、1倍当量の量で存在していた。 The pH was adjusted with a 0.5 mol / L sulfuric acid aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. In Comparative Example 4, the different anion (sulfate ion) derived from the ferrous sulfate heptahydrate salt is equivalent to 1-fold equivalent to the ferrous sulfate heptahydrate salt Fe 2+ in the waste liquid. Was present in an amount.

以上のようにして得られた実施例4および比較例4における透過率および鉄イオン濃度の測定結果は、表3に示す通りである。   The measurement results of the transmittance and iron ion concentration in Example 4 and Comparative Example 4 obtained as described above are as shown in Table 3.

Figure 2012005996
Figure 2012005996

[実施例5]
難分解性有機物であるアニオン交換樹脂(C1218NOH)65g/Lおよびカチオン交換樹脂(C87SO3H)55g/Lを含有する廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、硫酸第一鉄七水和物塩5.6gを添加し、35%過酸化水素水を150ml/hで連続供給しながら、温度95〜105℃、pH=1〜3の条件で8時間の分解試験を行った。前記の分解試験の実施の前後において、廃液中の有機炭素の分解率と鉄イオン濃度の変化を測定した。有機炭素の分解率は、島津製全有機体炭素計TOC−500Aで測定し、鉄イオン濃度は、エスアイアイナノテクノロジー社製ICP発光分光分析装置SPS5520で測定した。また、硫酸イオン濃度は、ダイオネクス社製イオンクロマトグラフICS−3000で測定した。
[Example 5]
A waste liquid containing 65 g / L of an anion exchange resin (C 12 H 18 NOH) and 55 g / L of a cation exchange resin (C 8 H 7 SO 3 H), which are hardly decomposable organic substances, was subjected to Fenton reaction under the following conditions. A degradation test was performed. That is, 5.6 g of ferrous sulfate heptahydrate salt was added to 1 L of dyeing waste liquid, and a temperature of 95 to 105 ° C., pH = 1 while continuously supplying 35% hydrogen peroxide water at 150 ml / h. A decomposition test for 8 hours was performed under the conditions of ~ 3. Before and after performing the above-described decomposition test, the decomposition rate of organic carbon in the waste liquid and the change in iron ion concentration were measured. The decomposition rate of organic carbon was measured with a total organic carbon meter TOC-500A manufactured by Shimadzu, and the iron ion concentration was measured with an ICP emission spectroscopic analyzer SPS5520 manufactured by SII Nano Technology. The sulfate ion concentration was measured with an ion chromatograph ICS-3000 manufactured by Dionex.

なお、pHの調整は、64%硫酸水溶液および25%苛性ソーダ水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、実施例5では、硫酸第一鉄七水和物塩、カチオン交換樹脂に由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、試験前は1倍当量の量で存在しており、試験終了時は8倍当量の量で存在していた。このように、試験中に、カチオン交換樹脂の酸化分解により、スルホン酸基(−SO3-)由来の硫酸イオンが生成したと考えられる。 The pH was adjusted with a 64% sulfuric acid aqueous solution and a 25% caustic soda aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. Further, in Example 5, the ferrous sulfate heptahydrate salt and the different anion (sulfate ion) derived from the cation exchange resin are contained in the waste liquid with respect to Fe 2+ of the ferrous sulfate heptahydrate salt. Before the test, it was present in an amount of 1 equivalent, and at the end of the test, it was present in an amount of 8 equivalents. Thus, it is considered that during the test, sulfate ions derived from the sulfonic acid group (—SO 3− ) were generated by oxidative decomposition of the cation exchange resin.

[実施例6]
難分解性有機物であるアニオン交換樹脂(C1218NOH)60g/Lおよびカチオン交換樹脂(C87SO3H)60g/Lを含有する廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、硫酸第一鉄七水和物塩5.6gを添加し、35%過酸化水素水を150ml/hで連続供給しながら、温度95〜105℃、pH=1〜3の条件で8時間の分解試験を行った。前記の分解試験の実施の前後において、廃液中の有機炭素の分解率と鉄イオン濃度の変化を測定した。有機炭素の分解率は、島津製全有機体炭素計TOC−500Aで測定し、鉄イオン濃度は、エスアイアイナノテクノロジー社製ICP発光分光分析装置SPS5520で測定した。また、硫酸イオン濃度は、ダイオネクス社製イオンクロマトグラフICS−3000で測定した。
[Example 6]
A waste liquid containing 60 g / L of an anion exchange resin (C 12 H 18 NOH) and 60 g / L of a cation exchange resin (C 8 H 7 SO 3 H), which are hardly decomposable organic substances, was subjected to Fenton reaction under the following conditions. A degradation test was performed. That is, 5.6 g of ferrous sulfate heptahydrate salt was added to 1 L of dyeing waste liquid, and a temperature of 95 to 105 ° C., pH = 1 while continuously supplying 35% hydrogen peroxide water at 150 ml / h. A decomposition test for 8 hours was performed under the conditions of ~ 3. Before and after performing the above-described decomposition test, the decomposition rate of organic carbon in the waste liquid and the change in iron ion concentration were measured. The decomposition rate of organic carbon was measured with a total organic carbon meter TOC-500A manufactured by Shimadzu, and the iron ion concentration was measured with an ICP emission spectroscopic analyzer SPS5520 manufactured by SII Nano Technology. The sulfate ion concentration was measured with an ion chromatograph ICS-3000 manufactured by Dionex.

なお、pHの調整は、64%硫酸水溶液および25%苛性ソーダ水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、実施例6では、硫酸第一鉄七水和物塩、カチオン交換樹脂に由来する異種アニオン(硫酸イオン)は、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、試験前は1倍当量の量で存在しており、試験終了時は8.5倍当量の量で存在していた。このように、試験中に、カチオン交換樹脂の酸化分解により、スルホン酸基(−SO3-)由来の硫酸イオンが生成したと考えられる。 The pH was adjusted with a 64% sulfuric acid aqueous solution and a 25% caustic soda aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. Further, in Example 6, ferrous sulfate heptahydrate salt, a heterogeneous anion (sulfate ion) derived from a cation exchange resin, was reduced in the waste liquid with respect to Fe 2+ of ferrous sulfate heptahydrate salt. Before the test, it was present in an amount of 1-fold equivalent, and at the end of the test, it was present in an amount of 8.5-fold equivalent. Thus, it is considered that during the test, sulfate ions derived from the sulfonic acid group (—SO 3− ) were generated by oxidative decomposition of the cation exchange resin.

[比較例5](従来法)
難分解性有機物であるアニオン交換樹脂(C1218NOH)130g/Lを含有する廃液に対して、以下の条件でフェントン反応による分解試験を行った。即ち、染色廃液1Lに対して、硫酸第一鉄七水和物塩5.6gを添加し、35%過酸化水素水を180ml/hで連続供給しながら、温度95〜105℃、pH=1〜3の条件で8時間の分解試験を行った。廃液中の有機炭素分解率および鉄イオン濃度の変化は、実施例5と同様の方法で測定した。
[Comparative Example 5] (Conventional method)
A waste liquid containing 130 g / L of an anion exchange resin (C 12 H 18 NOH), which is a hardly decomposable organic substance, was subjected to a decomposition test by the Fenton reaction under the following conditions. That is, 5.6 g of ferrous sulfate heptahydrate salt was added to 1 L of dyeing waste liquid, and 35% hydrogen peroxide solution was continuously supplied at 180 ml / h, while the temperature was 95 to 105 ° C., pH = 1. A decomposition test for 8 hours was performed under the conditions of ~ 3. Changes in organic carbon decomposition rate and iron ion concentration in the waste liquid were measured by the same method as in Example 5.

なお、pHの調整は、64%硫酸水溶液および25%苛性ソーダ水溶液により行い、廃液のpHは、堀場製作所製pHメータF−51を用いて測定した。また、比較例5では、試験前および試験終了時ともに、硫酸第一鉄七水和物塩に由来する異種アニオン(硫酸イオン)が、廃液中に硫酸第一鉄七水和物塩のFe2+に対して、1倍当量の量で存在していた。 The pH was adjusted with a 64% sulfuric acid aqueous solution and a 25% caustic soda aqueous solution, and the pH of the waste liquid was measured using a pH meter F-51 manufactured by Horiba. In Comparative Example 5, the different anion (sulfate ion) derived from the ferrous sulfate heptahydrate salt was added to the Fe 2 sulfate heptahydrate salt in the waste liquid both before and at the end of the test. It was present in an amount equivalent to 1 fold with respect to + .

以上のようにして得られた実施例5、6および比較例5における有機炭素分解率および鉄イオン濃度の測定結果は、表4に示す通りである。   Table 4 shows the measurement results of the organic carbon decomposition rate and the iron ion concentration in Examples 5 and 6 and Comparative Example 5 obtained as described above.

Figure 2012005996
Figure 2012005996

上記実施例の結果から明らかなように、本発明では、有機化合物の分解を行った後でも、鉄イオン濃度があまり減少せず、沈殿物の生成が抑えられているため、有機物化合物を効率的かつ持続的に分解できることが分かる。   As is clear from the results of the above examples, in the present invention, even after the decomposition of the organic compound, the iron ion concentration does not decrease so much and the formation of precipitates is suppressed. And it can be seen that it can be continuously decomposed.

なお、実施例で測定した鉄イオン濃度はFe2+のほかFe3+を合計した濃度である。このため、本発明の実施例では、Fe2+ではなくFe3+の状態であっても沈殿せずに汚水中に存在していることが分かる。このFe3+は上記式(1−1)〜(1−5)により再びFe2+に変換され、さらに上記式(1)により新たなヒドロキシラジカルを発生できると考えられる。したがって、本発明の実施例では、さらに汚水を追加して、その中の有機物化合物を持続的に分解することも可能である。 The iron ion concentration measured in the examples is the total concentration of Fe 3+ in addition to Fe 2+ . Therefore, in the embodiment of the present invention, it is understood that the present in wastewater without precipitation even when the Fe 2+ rather than Fe 3+. This Fe 3+ is again converted to Fe 2+ by the above formulas (1-1) to (1-5), and it is considered that a new hydroxy radical can be generated by the above formula (1). Therefore, in the Example of this invention, it is also possible to add a sewage and to decompose | disassemble the organic compound in it continuously.

本発明によれば、生活排水および工業廃水に含まれる有機物化合物を酸化分解し無害化することができる。また、本発明は、繊維・染物産業の染色排水および畜産排水の酸化分解による脱色処理や、使用済みイオン交換樹脂等の難分解性有機物の酸化分解による処理にも適用できる。さらに、揮発性有機化合物(VOC)を酸化分解し無害化することができる。   According to the present invention, organic compounds contained in domestic wastewater and industrial wastewater can be oxidatively decomposed and rendered harmless. The present invention can also be applied to decolorization treatment by oxidative decomposition of dyed wastewater and livestock wastewater in the textile and dyeing industry, and treatment by oxidative decomposition of hardly decomposable organic substances such as used ion exchange resins. Furthermore, volatile organic compounds (VOC) can be oxidatively decomposed and rendered harmless.

Claims (7)

有機化合物を含む汚水に、過酸化水素と、フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)とを添加し、フェントン反応により生成するラジカルにより前記有機化合物を酸化分解する有機化合物の処理方法であって、
前記汚水に、前記過酸化水素と金属イオン(I1)との反応で生じた金属イオン(I2)が金属塩を形成して沈殿する際に化合するカウンターアニオンとは異種のアニオンを生成し得る化合物(B)を添加し、
前記汚水中に、前記汚水に添加した前記化合物(A)における金属イオン(I1)に対して、前記異種のアニオンを1.5倍当量以上の量で存在させて、前記金属イオン(I1)および/または金属イオン(I2)から形成される化合物の沈殿を防止する工程を含むことを特徴とする有機化合物の処理方法。
Hydrogen peroxide and a compound (A) capable of generating a metal ion (I 1 ) for causing a Fenton reaction are added to waste water containing an organic compound, and the organic compound is oxidatively decomposed by radicals generated by the Fenton reaction. A method for treating an organic compound comprising:
In the sewage, a counter anion that is combined with the metal ion (I 2 ) generated by the reaction of the hydrogen peroxide and the metal ion (I 1 ) to form a metal salt forms a different anion. Adding the resulting compound (B),
During said wastewater, the metal ion (I 1) in the compound added to the sewerage (A), be present in the anion amount of more than 1.5 equivalents of said heterologous, the metal ion (I 1 And / or a process for preventing precipitation of the compound formed from the metal ion (I 2 ).
前記フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)が、Fe2+を生成し得る鉄(II)塩(a1)であり、前記フェントン反応により生成するラジカルがヒドロキシラジカルであることを特徴とする請求項1に記載の処理方法。 The compound (A) capable of generating the metal ion (I 1 ) for causing the Fenton reaction is an iron (II) salt (a 1 ) capable of generating Fe 2+ , and the radical generated by the Fenton reaction is The treatment method according to claim 1, wherein the treatment method is a hydroxy radical. 前記過酸化水素と、フェントン反応を起こすための金属イオン(I1)を生成し得る化合物(A)とを添加した有機化合物を含む汚水のpHを1〜5に調整し、フェントン反応により生成するラジカルにより前記有機化合物を酸化分解することを特徴とする請求項1または2に記載の処理方法。 The wastewater containing the organic compound to which the hydrogen peroxide and the compound (A) capable of generating the metal ion (I 1 ) for causing the Fenton reaction are added is adjusted to pH 1 to 5, and generated by the Fenton reaction. The processing method according to claim 1, wherein the organic compound is oxidatively decomposed by radicals. 前記有機化合物を含む汚水が、酸性基を有するカチオン交換樹脂およびアニオン交換樹脂を含む廃水であり、
前記有機化合物である前記酸性基を有するカチオン交換樹脂が、前記異種のアニオンを生成し得る化合物(B)と同一であり、ヒドロキシラジカルにより酸化分解されて、前記異種のアニオンとして酸性基由来のアニオンを生成し得るカチオン交換樹脂である
ことを特徴とする請求項1〜3のいずれか1項に記載の有機化合物の処理方法。
The wastewater containing the organic compound is wastewater containing a cation exchange resin having an acidic group and an anion exchange resin,
The cation exchange resin having an acidic group, which is the organic compound, is the same as the compound (B) capable of generating the different anion, and is oxidatively decomposed by a hydroxy radical, and the anion derived from the acidic group as the different anion. It is a cation exchange resin which can produce | generate, The processing method of the organic compound of any one of Claims 1-3 characterized by the above-mentioned.
前記有機化合物を含む汚水が、染料を含む染色排水であり、
前記異種のアニオンを生成し得る化合物(B)が、硫酸塩、硝酸塩、塩化物塩および炭酸塩の少なくとも1種を含む
ことを特徴とする請求項1〜3のいずれか1項に記載の有機化合物の処理方法。
The sewage containing the organic compound is dyed wastewater containing a dye,
The organic compound according to any one of claims 1 to 3, wherein the compound (B) capable of generating a heterogeneous anion contains at least one of sulfate, nitrate, chloride and carbonate. Compound processing method.
前記異種のアニオンを生成し得る化合物(B)が、硫酸塩、硝酸塩、塩化物塩および炭酸塩の少なくとも1種を含むことを特徴とする請求項1〜3のいずれか1項に記載の処理方法。   The treatment according to any one of claims 1 to 3, wherein the compound (B) capable of generating a heterogeneous anion contains at least one of sulfate, nitrate, chloride and carbonate. Method. 前記異種のアニオンを生成し得る化合物(B)が、スルホ基、ニトロ基、クロロ基およびカルボキシル基の少なくとも1種を有する有機化合物を含むことを特徴とする請求項1〜3のいずれか1項に記載の処理方法。   The compound (B) capable of generating the heterogeneous anion includes an organic compound having at least one of a sulfo group, a nitro group, a chloro group, and a carboxyl group. The processing method as described in.
JP2010146359A 2010-06-28 2010-06-28 Method for treating organic compound by fenton reaction Pending JP2012005996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146359A JP2012005996A (en) 2010-06-28 2010-06-28 Method for treating organic compound by fenton reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146359A JP2012005996A (en) 2010-06-28 2010-06-28 Method for treating organic compound by fenton reaction

Publications (1)

Publication Number Publication Date
JP2012005996A true JP2012005996A (en) 2012-01-12

Family

ID=45537185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146359A Pending JP2012005996A (en) 2010-06-28 2010-06-28 Method for treating organic compound by fenton reaction

Country Status (1)

Country Link
JP (1) JP2012005996A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964607A (en) * 2014-05-14 2014-08-06 武汉纺织大学 Method for treating organic wastewater through clay mineral-sulfite catalytic system
CN105347579A (en) * 2015-11-02 2016-02-24 浙江奇彩环境科技有限公司 Improved K acid synthesis technology
KR101757724B1 (en) 2015-09-04 2017-07-13 하나산업 주식회사 Non-toxic Fenton oxidation solution And organic hydrolysis method using the same
CN110563116A (en) * 2019-09-09 2019-12-13 安徽科技学院 Method for degrading azo dye gold orange II solution by catalyzing persulfate through aluminum alloy pickling waste liquid
JP7157501B1 (en) * 2022-04-22 2022-10-20 Jトップ株式会社 Organic matter decomposition method and organic matter decomposition apparatus
CN115399378A (en) * 2022-08-02 2022-11-29 大连工业大学 Method for improving content of flavor substances in oil oxidation process

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444352A (en) * 1977-09-12 1979-04-07 Gunze Kk Dyeing waste water disposal method
JPS5872099A (en) * 1981-10-27 1983-04-28 日揮株式会社 Treatment of radioactive organic waste
JPS58161898A (en) * 1982-03-19 1983-09-26 日本原子力事業株式会社 Chemical decomposition of radioactive ion exchange resin
JPS6274485A (en) * 1985-09-30 1987-04-06 Meidensha Electric Mfg Co Ltd Decoloring apparatus
JPH03101893A (en) * 1989-09-14 1991-04-26 Kyoritsu Yuki Co Ltd Treatment of waste water
JPH05345189A (en) * 1992-06-12 1993-12-27 Nippon Steel Corp Method for treating organic halogen compound-containing waste water
JPH06182362A (en) * 1992-12-17 1994-07-05 Gunze Ltd Treatment of dyeing waste water
JP2002159959A (en) * 2000-11-22 2002-06-04 Japan Organo Co Ltd Method and device for purifying underground polluted region
JP2004249258A (en) * 2003-02-21 2004-09-09 Kurita Water Ind Ltd Wastewater treatment method
JP2006299068A (en) * 2005-04-20 2006-11-02 Adeka Corp Chemical substance-decomposing agent and cleaning method using the same
WO2006123574A1 (en) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. Method of purifying soil and/or groundwater
JP2007244983A (en) * 2006-03-15 2007-09-27 Nippon Oil Corp Method for purifying soil

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444352A (en) * 1977-09-12 1979-04-07 Gunze Kk Dyeing waste water disposal method
JPS5872099A (en) * 1981-10-27 1983-04-28 日揮株式会社 Treatment of radioactive organic waste
JPS58161898A (en) * 1982-03-19 1983-09-26 日本原子力事業株式会社 Chemical decomposition of radioactive ion exchange resin
JPS6274485A (en) * 1985-09-30 1987-04-06 Meidensha Electric Mfg Co Ltd Decoloring apparatus
JPH03101893A (en) * 1989-09-14 1991-04-26 Kyoritsu Yuki Co Ltd Treatment of waste water
JPH05345189A (en) * 1992-06-12 1993-12-27 Nippon Steel Corp Method for treating organic halogen compound-containing waste water
JPH06182362A (en) * 1992-12-17 1994-07-05 Gunze Ltd Treatment of dyeing waste water
JP2002159959A (en) * 2000-11-22 2002-06-04 Japan Organo Co Ltd Method and device for purifying underground polluted region
JP2004249258A (en) * 2003-02-21 2004-09-09 Kurita Water Ind Ltd Wastewater treatment method
JP2006299068A (en) * 2005-04-20 2006-11-02 Adeka Corp Chemical substance-decomposing agent and cleaning method using the same
WO2006123574A1 (en) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. Method of purifying soil and/or groundwater
JP2007244983A (en) * 2006-03-15 2007-09-27 Nippon Oil Corp Method for purifying soil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013061241; イオン交換体 アンバーライト , オルガノ株式会社 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964607A (en) * 2014-05-14 2014-08-06 武汉纺织大学 Method for treating organic wastewater through clay mineral-sulfite catalytic system
CN103964607B (en) * 2014-05-14 2016-01-20 武汉纺织大学 The method of a kind of clay mineral-sulphite catalyst system process organic waste water
KR101757724B1 (en) 2015-09-04 2017-07-13 하나산업 주식회사 Non-toxic Fenton oxidation solution And organic hydrolysis method using the same
CN105347579A (en) * 2015-11-02 2016-02-24 浙江奇彩环境科技有限公司 Improved K acid synthesis technology
CN110563116A (en) * 2019-09-09 2019-12-13 安徽科技学院 Method for degrading azo dye gold orange II solution by catalyzing persulfate through aluminum alloy pickling waste liquid
JP7157501B1 (en) * 2022-04-22 2022-10-20 Jトップ株式会社 Organic matter decomposition method and organic matter decomposition apparatus
CN115399378A (en) * 2022-08-02 2022-11-29 大连工业大学 Method for improving content of flavor substances in oil oxidation process
CN115399378B (en) * 2022-08-02 2024-03-26 大连工业大学 Method for improving content of flavor substances in grease oxidation process

Similar Documents

Publication Publication Date Title
Fedorov et al. Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon–a review
Xu et al. Advancements in the Fenton process for wastewater treatment
Boczkaj et al. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review
Pan et al. Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe0/PS process enhanced by ultrasound
Soares et al. Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes
Cai et al. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe–Co/SBA-15 catalyst for the degradation of Orange II in water
Kordkandi et al. Application of full factorial design for methylene blue dye removal using heat-activated persulfate oxidation
Ghiselli et al. Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation
Wang et al. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV–Vis irradiation
Buthiyappan et al. Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater
Kumari et al. ADVANCED OXIDATION PROCESS: A remediation technique for organic and non-biodegradable pollutant
Kumar Degradation and mineralization, of organic contaminants by Fenton and photo-Fenton processes: review of mechanisms and effects of organic and inorganic additives
JP2012005996A (en) Method for treating organic compound by fenton reaction
Li et al. Thermal activation of persulfates for organic wastewater purification: Heating modes, mechanism and influencing factors
US20220112106A1 (en) Method for Processing Wastewater Having Organics Even Together with High-Concentration Ammonia-Nitrogen and Apparatus Thereof
Moussavi et al. The selective direct oxidation of ammonium in the contaminated water to nitrogen gas using the chemical-less VUV photochemical continuous-flow reactor
Shokria et al. Treatment of aqueous solution containing acid red 14 using an electro peroxone process and a box-Behnken experimental design
Tungler et al. Wet air oxidation of aqueous wastes
CN101168465A (en) Catalysis wet-type oxidation degradation method for dyestuff contaminant
CN104310567B (en) One utilizes Protocatechuic Acid to promote Fe (III)/H 2o 2the method of the repairing organic polluted water body of system
Can-Güven et al. Effective removal of furfural by ultraviolet activated persulfate, peroxide, and percarbonate oxidation: Focus on influencing factors, kinetics, and water matrix effect
Wahyuni et al. Removal of Pb (II) ions in the aqueous solution by photo-Fenton method
JP2009022940A (en) Method of decoloring livestock wastewater and colored wastewater containing hardly decomposable ingredient
Zhang et al. Application of experimental design methodology to the decolorization of Orange II using low iron concentration of photoelectro-Fenton process
JP2009254964A (en) Treatment device and treatment method for volatile organic compound-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610