JP2012005556A - Optical measurement apparatus for biological function information - Google Patents

Optical measurement apparatus for biological function information Download PDF

Info

Publication number
JP2012005556A
JP2012005556A JP2010142210A JP2010142210A JP2012005556A JP 2012005556 A JP2012005556 A JP 2012005556A JP 2010142210 A JP2010142210 A JP 2010142210A JP 2010142210 A JP2010142210 A JP 2010142210A JP 2012005556 A JP2012005556 A JP 2012005556A
Authority
JP
Japan
Prior art keywords
light
opening
reception
living body
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010142210A
Other languages
Japanese (ja)
Inventor
Keiko Fukuda
恵子 福田
Mamiko Fujii
麻美子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2010142210A priority Critical patent/JP2012005556A/en
Publication of JP2012005556A publication Critical patent/JP2012005556A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To acquire more precise information about deep tissue.SOLUTION: A blood in a living body is roughly classified into a skin bloodstream and a bloodstream in biological tissue. Though a measurement object is the bloodstream in biological tissue, influence of the skin bloodstream due to change in posture affects the measurement since the change in the skin bloodstream around the living body surface is included in a measurement value in a configuration wherein light emitted from a first opening part is received by a second opening part. The bloodstream in biological tissue can be measured more precisely when light receiving intensity around the living body surface in the opening parts and light receiving intensity around the living body surface at an intermediate position between a light emitting point and a light receiving point are subtracted from the overall light receiving amount after assigning weights to them.

Description

本願発明は、生体機能情報を近赤外光により計測する装置に関する。   The present invention relates to an apparatus for measuring biological function information using near infrared light.

光は、生体内部の情報を簡便かつ非侵襲で得る手段として有効であり、光により生体の機能情報を計測する装置が開発されている。生体内に存在する何種類かの色素の光吸収特性は、波長に依存することが一般に知られている。このため、例えば、血液中のヘモグロビン色素の光吸収特性を波長の異なる2種類の光を利用して測定すれば、酸素化ヘモグロビン、脱酸素化ヘモグロビンの相対量、すなわち、酸素の消費量を計測することができる。   Light is effective as a means for easily and non-invasively obtaining information inside a living body, and an apparatus for measuring functional information of a living body using light has been developed. It is generally known that the light absorption characteristics of some kinds of pigments existing in a living body depend on the wavelength. Therefore, for example, if the light absorption characteristics of hemoglobin dyes in blood are measured using two types of light with different wavelengths, the relative amount of oxygenated hemoglobin and deoxygenated hemoglobin, that is, the amount of oxygen consumed is measured. can do.

可視から近赤外の波長の光を用いて生体の機能を計測する装置として、従来から光トポグラフィと呼ばれる生体(主として脳機能)の光計測装置が開発されている(例えば、非特許文献1参照。)。これは生体の表面(例えば、頭部)に光の照射点と光の受光点を配置して拡散・反射光を測定し、ヘモグロビン色素の光吸収特性から酸素消費量を推定する装置である。   As a device for measuring the function of a living body using light having a wavelength from visible to near-infrared, a living body (mainly brain function) optical measuring device called optical topography has been conventionally developed (see, for example, Non-Patent Document 1). .) This is an apparatus for measuring the diffused / reflected light by arranging a light irradiation point and a light receiving point on the surface of a living body (for example, the head), and estimating the oxygen consumption from the light absorption characteristics of the hemoglobin dye.

その基本的な概念図を図8に示す。開口部1aから光を照射して距離D離れた開口部1bにて受光した場合、1bで受光される光は伝播経路13に従い伝播した拡散・反射光である。そこで、距離Dの中点では、伝播経路はもっとも深いcの領域、すなわち、生体組織内の血液量変化による拡散反射光の伝播特性が測定できると考えられている。この測定を表面の複数の位置で行うことにより2次元の光の伝播特性の分布が計測され、運動に伴う筋肉内の酸素消費量の測定や脳の賦活状態の推定が行われている。   A basic conceptual diagram thereof is shown in FIG. When light is irradiated from the opening 1a and received by the opening 1b separated by the distance D, the light received by the light 1b is diffused / reflected light propagated along the propagation path 13. Therefore, it is considered that at the midpoint of the distance D, the propagation path of the deepest c can be measured, that is, the propagation characteristic of the diffuse reflected light due to the blood volume change in the living tissue can be measured. By performing this measurement at a plurality of positions on the surface, the distribution of two-dimensional light propagation characteristics is measured, and the measurement of oxygen consumption in the muscle accompanying exercise and the estimation of the activation state of the brain are performed.

しかしながら、そのような従来技術においては、1組の光の照射点と受光点を考えた場合、その中点位置付近の内部での生体組織内血流で光の吸収係数の変化が生じていると考え、拡散・反射光の測定結果からヘモグロビン代謝を求めているが、空気中から照射された光の大部分は、屈折率の高い生体の表面付近で反射されてしまい、内部に拡散散乱される光は一部であるという特性がある。さらに、上記図8の構成からは、実際に受光される光には表面付近での反射による皮膚血流の光吸収特性も含まれると考えられ、姿勢変化などにより皮膚血流が移動するとその影響が測定値に生じ、正確な生体組織内血流の光吸収特性の計測が行えないという問題があった。   However, in such a conventional technique, when a set of light irradiation point and light receiving point is considered, a change in the light absorption coefficient occurs in the blood flow in the living tissue in the vicinity of the middle point position. However, most of the light emitted from the air is reflected near the surface of the living body with a high refractive index and diffused and scattered inside. There is a characteristic that light is a part. Furthermore, from the configuration shown in FIG. 8, it is considered that the light actually received includes the light absorption characteristic of skin blood flow due to reflection near the surface. Occurs in the measured value, and there is a problem that the light absorption characteristic of the blood flow in the living tissue cannot be measured accurately.

この課題に対して検出用のプローブを倍密度で配置することにより、表層近傍の血液量変化を捕らえて補正する方法が多チャネルのトポグラフィ装置に関して検討されている。   In order to solve this problem, a multi-channel topography apparatus has been studied in which a detection probe is arranged at a double density to capture and correct changes in blood volume in the vicinity of the surface layer.

しかしながら、上記多チャンネルトポグラフィでは、装置が大がかりになるので、少数チャネルにも適用できる簡便な補正方法として、照射と同一開口部での受光を補正に用いることにより(全受光量から開口部近傍の受光量を差し引く補正)、測定値から皮膚血流の光吸収係数の変化に伴う測定値の変動を低減して、姿勢変化などによる影響を受けにくい生体光計測装置が開発された(特許文献1参照)。   However, in the above multi-channel topography, since the apparatus becomes large, as a simple correction method that can be applied to a small number of channels, light reception at the same opening as irradiation is used for correction (from the total light reception amount to the vicinity of the opening). A biological light measurement device that is less susceptible to the effects of posture changes has been developed by reducing fluctuations in the measurement values associated with changes in the light absorption coefficient of skin blood flow from the measurement values (Patent Document 1). reference).

すなわち、図9に示すように、同一の波長の光を発する第1の光源と第2の光源、2つの開口部および2つの受光手段を有し、第1の光源からの光を第1の開口部に照射して第2の開口部で受光し(受光1)、第2の光源からの光を第2の開口部に照射して第1の開口部で受光し(受光2)、第1の光源の光を第1の開口部で受光し(受光3)、第2の光源の光を第2の開口部で受光(受光4)する構成を有し、受光1から受光4を、受光2から受光3を受光強度に応じた係数を乗じて差し引くことにより皮膚(表面)血流の影響を低減している。   That is, as shown in FIG. 9, the light source has a first light source and a second light source that emit light of the same wavelength, two openings, and two light receiving means, and the light from the first light source is transmitted to the first light source. Irradiate the opening to receive light at the second opening (light reception 1), irradiate the light from the second light source to the second opening and receive light at the first opening (light reception 2), The light source 1 receives light from the first opening (light reception 3), and the light from the second light source receives light from the second opening (light reception 4). The influence of the skin (surface) blood flow is reduced by subtracting the light reception 3 from the light reception 2 by a coefficient corresponding to the light reception intensity.

“Spatial and temporal analysis of human motor activity using noninvasiveNIR topogaphy”,Medical Physics vol.22,pp.1997−2005,1995.“Spatial and temporal analysis of human motor activity using non-invasive NIR topology”, Medical Physics vol. 22, pp. 1997-2005, 1995.

特開2007―111461JP2007-111461A

上記開口部の生体表面近傍の受光強度を受光強度に応じて差し引く補正のみでは、開口部間における生体表面近傍の影響が残存しており、まだ、深部組織の正確な情報が得られていない。そこで、本願発明においては、深部組織のより正確な情報を得ることをその目的とする。   Only by subtracting the received light intensity in the vicinity of the living body surface of the opening according to the received light intensity, the influence of the vicinity of the living body surface between the openings remains, and accurate information on the deep tissue is not yet obtained. Therefore, an object of the present invention is to obtain more accurate information on the deep tissue.

本願発明においては、補正係数を容易に導出することを目的として、上記の同一開口部の補正に加えて、両開口部から等距離にある点からの情報も加味して補正することにより、更に正確な深部組織の情報を得ることができた。   In the present invention, for the purpose of easily deriving a correction coefficient, in addition to the correction of the same opening described above, correction is also made by taking into account information from a point equidistant from both openings. Accurate deep tissue information was obtained.

また、正三角形の頂点に照射点および受光点を設け、正三角形の重心に補足的な受光点を設定することにより、三角形頂点3点についての同時補正も可能とした。   In addition, by providing an irradiation point and a light receiving point at the vertex of the regular triangle and setting a supplementary light receiving point at the center of gravity of the regular triangle, simultaneous correction of three triangular vertices is possible.

本願発明においては、同一開口部の補正に加えて、両開口部から等距離にある点からの情報も加味して補正することにより、生体深部組織のより正確な情報を得ることができた。また、三角形の重心にも補足的な受光素子を配置することにより、三角的の各頂点の受光点の測定を同時に補正することを可能とした。このように、開口部の中点および三角形の重心にも補正用の受光点を設けたことにより、深部組織のより正確な情報を得ることが可能となった。   In the present invention, in addition to correction of the same opening, correction is also made by taking into account information from a point equidistant from both openings, thereby obtaining more accurate information on the deep tissue of the living body. In addition, by arranging a supplementary light receiving element at the center of gravity of the triangle, it is possible to simultaneously correct the measurement of the light receiving point at each triangular vertex. Thus, by providing correction light receiving points at the midpoint of the opening and the center of gravity of the triangle, more accurate information on the deep tissue can be obtained.

本願発明による3角形配置の場合の生体光計測装置の全体構成Overall structure of biological light measuring device in case of triangular arrangement according to the present invention 本願発明に用いられる光ファイバの説明図Illustration of optical fiber used in the present invention 本願発明に用いられる開口部と照射部・受光部の間の接続方法を説明する図The figure explaining the connection method between the opening part used for this invention, and an irradiation part and a light-receiving part 本願発明による生体光計測の原理説明図Principle explanatory diagram of biological light measurement according to the present invention 本願発明に係る計測点の三角形配置図Triangular arrangement of measurement points according to the present invention 本願発明による表面近傍吸収変化の補正効果を示す図The figure which shows the correction effect of the near surface absorption change by this invention 本願発明に係る2つの波長の光を用いた計測方法を説明する図The figure explaining the measuring method using the light of two wavelengths concerning this invention 従来の生体光計測の原理測定図Principle measurement diagram of conventional biological light measurement 従来の生体光計測の改良された測定方法の説明図Explanatory drawing of the improved measurement method of conventional biological light measurement

以下においては、本願発明を実施するための形態を示す。なお、説明を簡単にするために一波長の光を用いた場合を主に説明する。   Below, the form for implementing this invention is shown. In order to simplify the description, the case where light of one wavelength is used will be mainly described.

図1は、本発明による三角形配置の場合の生体光計測装置の構成を示す。本実施例において開口部1a、1b、1c、1dは、生体表面に配置されて、光の照射と戻り光の受光に用いられる。開口部には、必要に応じて集光のためにレンズを設ける。開口部1a、1b、1cと光の照射部・受光部3a、3b、3cの間および開口部1dと光の受光部3dの間は、光ファイバで接続される。   FIG. 1 shows a configuration of a biological light measurement device in a triangular arrangement according to the present invention. In this embodiment, the openings 1a, 1b, 1c, and 1d are disposed on the surface of the living body and used for light irradiation and return light reception. A lens is provided at the opening for condensing as necessary. The openings 1a, 1b, 1c and the light irradiating / light receiving portions 3a, 3b, 3c and the opening 1d and the light receiving portion 3d are connected by optical fibers.

光の照射部・受光部3a、3b、3cにおいては、光と電気信号の変換を行う。光の照射部では半導体レーザなどの光電変換素子により電気信号を光信号に変換し、必要に応じてレンズを介して出力される。受光部では必要に応じてレンズを介して光を受光し、フォトダイオード等の受光素子により電気信号に変換する。光照射部4は、必要に応じて、照射される光を周波数に応じて振幅変調して、測定に必要な振幅に調整する。受光回路5a、5b、5c、5dは、変換された信号に対して必要に応じて増幅や位相検波を行い、受光強度を求める。信号処理装置6は、デジタル/アナログ変換器及びアナログ/デジタル変換器7を介して受光回路5a等に接続される。信号処理装置6では、入射光の強度の調整、測定データの信号処理、測定結果の画面表示を行う。   The light irradiating / light receiving units 3a, 3b, and 3c convert light and electric signals. In the light irradiation section, an electrical signal is converted into an optical signal by a photoelectric conversion element such as a semiconductor laser, and output through a lens as necessary. The light receiving unit receives light through a lens as necessary, and converts it into an electric signal by a light receiving element such as a photodiode. The light irradiation unit 4 adjusts the light to be irradiated to an amplitude necessary for measurement by performing amplitude modulation according to the frequency as necessary. The light receiving circuits 5a, 5b, 5c, and 5d perform amplification and phase detection on the converted signal as necessary to obtain the received light intensity. The signal processing device 6 is connected to the light receiving circuit 5a and the like via a digital / analog converter and an analog / digital converter 7. The signal processing device 6 adjusts the intensity of incident light, performs signal processing of measurement data, and displays a measurement result on the screen.

単数のファイバで接続する場合は、照射用と受光用の光ファイバを融着して開口部へ入力する。複数の光ファイバで接続する場合には、図2に示すように、照射光と受光をそれぞれ複数の光ファイバから構成される光ファイバ束14へ入力し、これらを束ねて開口部へ接続する。開口部における光ファイバの配列はランダムでも中心部に照射用の光ファイバを周辺部に受光用の光ファイバを配置しても、照射・受光のファイバをランダムに配置してもよい。   When connecting with a single fiber, the optical fiber for irradiation and light reception are fused and input to the opening. When connecting with a plurality of optical fibers, as shown in FIG. 2, irradiation light and light reception are respectively input to an optical fiber bundle 14 composed of a plurality of optical fibers, and these are bundled and connected to an opening. Even if the arrangement of the optical fibers in the opening is random, the optical fiber for irradiation may be arranged in the central portion, the optical fiber for receiving light may be arranged in the peripheral portion, or the fibers for irradiation and light reception may be arranged randomly.

また、受光効率を上げるために受光用のファイバを照射用のファイバより太くすることや本数を増やすこともできる。また、照射部と受光部の間に分光器を設けて接続することも可能である。   In addition, in order to increase the light receiving efficiency, it is possible to make the light receiving fiber thicker than the irradiation fiber or increase the number of fibers. It is also possible to connect a spectroscope between the irradiation unit and the light receiving unit.

図3は、分光器11にて照射を透過して開口部へ入力し、戻り光を反射して受光する場合の構成例である。受光効率を高くする場合は、分光器11の分光比を反射率が透過率に対して高くするように設計すればよい。また、測定に不要な光が反射されないように筐体15の表面は光を吸収できるように加工する。   FIG. 3 shows a configuration example in the case where the spectroscope 11 transmits the radiation and inputs it to the opening, and reflects and receives the return light. In order to increase the light receiving efficiency, the spectral ratio of the spectroscope 11 may be designed so that the reflectance is higher than the transmittance. Further, the surface of the housing 15 is processed so as to be able to absorb light so that light unnecessary for measurement is not reflected.

図4は、本願発明にかかる生体光計測の測定方法を説明する図である。開口部Aおよび開口部Bから光P1およびP2を照射し、開口部Bにおいて、開口部Aからの光を受光し(その強度をSABとする。以下同様)、開口部Aにおいて、開口部Bからの光を受光する(SBA)。また、開口部A、Bにおいては、同一開口部からの照射による光、すなわち、開口部Aにおける光(SAA)、開口部Bにおける光(SBB)(同一開口補正)を受光する。また、照射点と受光点から等距離の位置Dにおいては、A点およびB点からの照射による光(SADおよびSBD)(等距離点補正)を検出する。 FIG. 4 is a diagram for explaining a measurement method of biological light measurement according to the present invention. Light P1 and P2 are irradiated from the opening A and the opening B, and the light from the opening A is received by the opening B (the intensity is S AB . The same applies hereinafter). The light from B is received (S BA ). In the openings A and B, light emitted from the same opening, that is, light in the opening A (S AA ) and light in the opening B (S BB ) (same opening correction) is received. In addition, at the position D equidistant from the irradiation point and the light receiving point, light (S AD and S BD ) (equal distance point correction) by irradiation from the points A and B is detected.

生体組織内に吸収体が存在しない場合に対して、吸収体が存在する場合に検出される光強度の変化を光検出感度とすると、光検出感度Sは、拡散方程式に基づいた摂動理論(Rytov近似)により下記の式(1)で与えられる。
S(x,y,z)=Φs・Φd/Φd0・・・・(1)
ここで、Φs、Φdは、光源および検出器位置の単位光源が、吸収体が存在する関心点(x、y、z)に作る光子密度、Φd0は吸収係数変化がない場合の光子密度である。このとき、測定対象となる生体組織内の血液還流による拡散反射光の検出感度は、上記同一開口補正および上記等距離点補正による補正係数をそれぞれαおよびβとすれば、補正後の光検出感度S_correctは、下記式(2)で示される。
S_correct=(SAB+SBA)/2
−α(SAA+SBB)/2−β(SAD+SBD)/2・・・(2)
If the change in the light intensity detected when the absorber is present is the light detection sensitivity when the absorber is not present in the living tissue, the light detection sensitivity S is the perturbation theory (Rytov) based on the diffusion equation. (Approximation) is given by the following equation (1).
S (x, y, z) = Φs · Φd / Φd0 (1)
Here, Φs and Φd are photon densities formed by the light source and the unit light source at the detector position at the point of interest (x, y, z) where the absorber exists, and Φd0 is a photon density when there is no change in the absorption coefficient. . At this time, the detection sensitivity of the diffuse reflected light due to blood circulation in the living tissue to be measured is the corrected light detection sensitivity if the correction coefficients by the same aperture correction and the equidistant point correction are α and β, respectively. S_correct is expressed by the following equation (2).
S_correct = (S AB + S BA ) / 2
-Α (S AA + S BB ) / 2-β (S AD + S BD ) / 2 (2)

同一開口補正(補正係数α)は、最も影響の高い、照射及び受光点近傍の表層の影響の補正であり、等距離点補正(補正係数β)は、吸収体の大きさや、位置に関する情報が得られる利点がある。2種類の補正信号を選択的に利用することにより簡便に高精度な測定を行うことが可能である。   The same aperture correction (correction coefficient α) is the correction of the influence of the surface layer near the irradiation and light receiving points, which has the highest influence, and the equidistant point correction (correction coefficient β) is information on the size and position of the absorber. There are benefits to be gained. By selectively using two types of correction signals, it is possible to easily perform highly accurate measurement.

具体的な補正手段としては、2種類の補正を条件により選択する。等距離点補正においては、吸収体の変化領域がD点の直下にあると過補正になる点に着目して、深部受光と等距離点受光の比(SAD+SBD)/(SAB+SBA)を指標として選択条件を決める。この値が著しく小さい場合(局所的な変化がA、B点直下)と大きい場合(局所的な変化がD点直下)に同一開口補正を、それ以外は等距離点補正を適用する。 As specific correction means, two types of correction are selected depending on conditions. In equidistant point correction, paying attention to the point that overcorrection occurs when the change region of the absorber is directly below point D, the ratio of deep light reception to equidistant point light reception (S AD + S BD ) / (S AB + S Selection conditions are determined using BA ) as an index. The same aperture correction is applied when this value is remarkably small (local change is directly under points A and B) and large (local change is directly under point D), and equidistant point correction is applied otherwise.

本実施例においては、2点の中点に受光素子を配置する代わりに、図5に示すように、正三角形の3頂点に、照射装置および受光装置を配備し、正三角形の重心には、受光装置のみを配置する。頂点A、B、Cにおいては、照射と共に深部信号及び同一開口補正の受光を行い、A,B、C各点から等距離となる重心位置Dにおいては等距離点補正の受光を行う。各点では、図中に示すように3種類の光を受光する。正三角形の各辺A−B、B−C、C−Aにおいて(1)式に示した辺A−Bと同様に2種類の補正を適用した信号を得ることができる。   In this embodiment, instead of placing the light receiving element at the midpoint of the two points, as shown in FIG. 5, the irradiation device and the light receiving device are arranged at the three vertices of the equilateral triangle, Place only the light receiving device. At the vertices A, B, and C, the light of the depth signal and the same aperture correction is received along with the irradiation, and at the center of gravity position D that is equidistant from the points A, B, and C, the light of the equidistant point correction is received. At each point, three types of light are received as shown in the figure. In each of the sides A-B, B-C, and C-A of the equilateral triangle, a signal to which two types of corrections are applied can be obtained in the same manner as the side A-B shown in the equation (1).

正三角形の配置およびその重心に等距離点補正用の受光点を配置することにより、過補正の検知が容易になると共に補正用の検出点を減らすことが可能となる。さらに、正三角形の配置により、正方形に配置する場合に比べて、頭部のような球面に配置が行いやすく、また、密に測定点を設けられるため、位置分解能の向上が期待できる。   By arranging equilateral triangles and light-receiving points for equidistant point correction at the center of gravity, overcorrection can be easily detected and correction detection points can be reduced. Furthermore, the arrangement of equilateral triangles makes it easier to arrange on a spherical surface such as the head than in the case of arranging in a square, and since the measurement points can be densely provided, an improvement in position resolution can be expected.

図5において、A、B、C間の距離を30mm、表層吸収体の位置を深さ2mm、大きさを8×8×1mm、開口部の半径を3mm、吸収係数μa=0.01mm-1、換算散乱係数μs=1.0mm-1として拡散方程式近似によるシミュレーションを行った。 In FIG. 5, the distance between A, B and C is 30 mm, the position of the surface absorber is 2 mm deep, the size is 8 × 8 × 1 mm, the radius of the opening is 3 mm, and the absorption coefficient μa = 0.01 mm −1. The simulation was performed by approximating the diffusion equation with the reduced scattering coefficient μs = 1.0 mm −1 .

図6に、表層吸収体の変化領域をA点(0mm)から重心D方向へ移動した際の光検出感度のシミュレーション結果を示す。図の横軸はA−B方向の距離を示し、15mmの位置が重心Dに相当する。補正αは、同一開口補正、補正βは等距離点補正、補正α・βは、α、βを条件により選択して補正を行った結果である。補正を行わない場合、表層吸収体による光検出感度は、開口部Aの近傍において高く、距離が離れるに従い低くなる。補正の際には開口部近傍でα、5〜10mm付近においてはβ、重心付近においては過補正にならないようにαが適用され、全体として表層吸収体の影響が最も小さくなるように補正を施してある。   In FIG. 6, the simulation result of the photodetection sensitivity at the time of moving the change area | region of a surface layer absorber from the A point (0 mm) to the gravity center D direction is shown. The horizontal axis in the figure indicates the distance in the AB direction, and the position of 15 mm corresponds to the center of gravity D. The correction α is the same aperture correction, the correction β is the equidistant point correction, and the correction α · β is the result of correction by selecting α and β according to the conditions. When correction is not performed, the light detection sensitivity of the surface layer absorber is high in the vicinity of the opening A, and decreases as the distance increases. When correcting, α is applied in the vicinity of the opening, β in the vicinity of 5 to 10 mm, and α is applied in the vicinity of the center of gravity so as not to be overcorrected. It is.

上記実施例においては1波長の光を用いた場合について説明したが、ヘモグロビンの酸素化、脱酸素化による変化を調べるために、光の吸収特性が異なる少なくとも2波長の光源を組み合わせて測定を行うのが一般的である。   In the above-described embodiment, the case where light of one wavelength is used has been described. In order to examine changes due to oxygenation and deoxygenation of hemoglobin, measurement is performed by combining at least two light sources having different light absorption characteristics. It is common.

図7に2つの波長の光を用いた場合の計測方法を示す。光の照射・受光を行う開口部1aおよび1bに第1の波長の光P11およびP21、第2の波長のP12およびP22をそれぞれ入力する。このとき測定対象となる生体組織内の血液循環による第1、第2の波長の拡散反射光による光強度が求められる。ただし、第1、第2の波長の拡散反射光による補正係数は、光の波長により異なる。開口部1a、1b、1cと光の照射部・受光部3a、3b、3cの間の接続には図2の光ファイバ束に第2の波長の光を入力するための光ファイバ束を加えた3分岐型の光ファイバ束を用いれば2つの照射光を融合して開口部1a、1bに入力し、1つのファイバから受光することが容易に実現できる。   FIG. 7 shows a measurement method when light of two wavelengths is used. Lights P11 and P21 having the first wavelength and P12 and P22 having the second wavelength are input to the openings 1a and 1b that perform light irradiation and light reception, respectively. At this time, the light intensity by the diffuse reflected light of the first and second wavelengths due to blood circulation in the living tissue to be measured is obtained. However, the correction coefficient due to the diffusely reflected light of the first and second wavelengths varies depending on the wavelength of the light. An optical fiber bundle for inputting light of the second wavelength is added to the optical fiber bundle of FIG. 2 for the connection between the openings 1a, 1b, 1c and the light emitting / receiving sections 3a, 3b, 3c. If a three-branch type optical fiber bundle is used, it is possible to easily realize that two irradiation lights are fused and input to the openings 1a and 1b and received from one fiber.

本発明により生体光計測装置において、生体組織内血流の酸素化状態の変化に伴う脳などの生体機能を皮膚血流の影響を抑えて測定できるようになる。このため運動などの姿勢変化が大きな場合にも皮膚血流の影響を抑えて正確な測定が可能な生体光計測装置を提供することが可能となり、医学、心理学などの分野において幅広い状況下での測定が可能となる。   According to the present invention, a biological function such as a brain associated with a change in oxygenation state of blood flow in a biological tissue can be measured in a biological optical measurement device while suppressing the influence of skin blood flow. For this reason, it is possible to provide a biological optical measurement device that can accurately measure the influence of skin blood flow even when posture changes such as exercise are large, under a wide range of conditions in the fields of medicine and psychology. Can be measured.

1、1a、1b、1c、1d 開口部
3a、3b、3c、3d 光の照射・受光部
4 入射光調整回路
5a、5b、5c、5d 受光回路
6 信号処理装置
7 A/D変換器
11 分光器
12 光ファイバ
13 光の伝播経路
14 光ファイバ束
15 筐体
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c, 1d Opening part 3a, 3b, 3c, 3d Light irradiation / light-receiving part 4 Incident light adjustment circuit 5a, 5b, 5c, 5d Light-receiving circuit 6 Signal processing device 7 A / D converter 11 Spectroscopy Device 12 Optical fiber 13 Light propagation path 14 Optical fiber bundle 15 Case

Claims (3)

生体光計測装置であり、第1の波長の光を発生する第1の光源及び該第1の光源と同一の波長の光を発生する第2の光源、3つの開口部及び3つの受光手段を有し、
上記第1の光源からの光を第1の開口部に照射して第2の開口部で受光し(受光1)、
上記第2の光源からの光を該第2の開口部に照射して該第1の開口部で受光し(受光2)、
上記第1の光源による光を上記第1の開口部で受光し(受光3)、
上記第2の光源による光を上記第2の開口部で受光し(受光4)、
上記第1の光源からの光を第1の開口部に照射して第3の開口部で受光し(受光5)、
上記第2の光源からの光を上記第2の開口部に照射して第3の開口部での受光(受光6)するように構成され、
上記受光1から受光6により受光された光をそれぞれ電気信号に変換する手段と、該電気信号に変換された光を受光強度に換算する手段を有することを特徴とする生体光計測装置。
A biological light measurement device, comprising: a first light source that generates light of a first wavelength; a second light source that generates light of the same wavelength as the first light source; three openings and three light receiving means Have
Irradiating the first opening with light from the first light source and receiving the light through the second opening (light reception 1);
Irradiating the second opening with light from the second light source and receiving the light through the first opening (light reception 2);
The light from the first light source is received by the first opening (light reception 3),
The light from the second light source is received by the second opening (light reception 4),
Irradiating the first opening with light from the first light source and receiving the light through the third opening (light reception 5);
The second light source is irradiated with light from the second light source, and is configured to receive light (light reception 6) at the third opening,
A living body light measuring device comprising means for converting the light received by the light receiving 1 to the light receiving 6 into an electric signal and means for converting the light converted into the electric signal into a light receiving intensity.
上記受光1から上記受光3及び上記受光5をそれぞれ受光強度に応じた係数を持って差し引きする手段並びに上記受光2から上記受光4及び上記受光6をそれぞれ受光強度に応じた係数を持って差し引きする手段を有することを特徴とする上記請求項1に記載の生体光計測装置。   Means for subtracting the light reception 3 from the light reception 1 and the light reception 5 with a coefficient corresponding to the light reception intensity, and subtracting the light reception 4 and the light reception 6 from the light reception 2 with a coefficient according to the light reception intensity, respectively. The living body light measuring apparatus according to claim 1, further comprising: means. 上記第1および第2の光源において、上記第1の波長の光と異なる波長の第2の波長の光に切り替える切替器を具備することを特徴とする請求項1に記載の生体光計測装置。
The living body light measurement apparatus according to claim 1, wherein the first and second light sources include a switch that switches to light having a second wavelength different from the light having the first wavelength.
JP2010142210A 2010-06-23 2010-06-23 Optical measurement apparatus for biological function information Withdrawn JP2012005556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142210A JP2012005556A (en) 2010-06-23 2010-06-23 Optical measurement apparatus for biological function information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142210A JP2012005556A (en) 2010-06-23 2010-06-23 Optical measurement apparatus for biological function information

Publications (1)

Publication Number Publication Date
JP2012005556A true JP2012005556A (en) 2012-01-12

Family

ID=45536825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142210A Withdrawn JP2012005556A (en) 2010-06-23 2010-06-23 Optical measurement apparatus for biological function information

Country Status (1)

Country Link
JP (1) JP2012005556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092872A1 (en) * 2013-12-18 2015-06-25 株式会社日立製作所 Biophotonic measurement apparatus and biophotonic measurement method using same
WO2020174842A1 (en) * 2019-02-27 2020-09-03 国立研究開発法人産業技術総合研究所 Brain function measurement device, brain function measurement method, and probe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092872A1 (en) * 2013-12-18 2015-06-25 株式会社日立製作所 Biophotonic measurement apparatus and biophotonic measurement method using same
JPWO2015092872A1 (en) * 2013-12-18 2017-03-16 株式会社日立製作所 Biological light measurement device and biological light measurement method using the same
WO2020174842A1 (en) * 2019-02-27 2020-09-03 国立研究開発法人産業技術総合研究所 Brain function measurement device, brain function measurement method, and probe
JPWO2020174842A1 (en) * 2019-02-27 2021-10-14 国立研究開発法人産業技術総合研究所 Brain function measuring device and brain function measuring method and probe
JP7227652B2 (en) 2019-02-27 2023-02-22 国立研究開発法人産業技術総合研究所 Brain function measuring device, brain function measuring method and probe
US11911130B2 (en) 2019-02-27 2024-02-27 National Institute Of Advanced Industrial Science And Technology Brain function measurement device, brain function measurement method, and probe

Similar Documents

Publication Publication Date Title
Scholkmann et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
Ntziachristos et al. Multichannel photon counting instrument for spatially resolved near infrared spectroscopy
Yamashita et al. Near‐infrared topographic measurement system: Imaging of absorbers localized in a scattering medium
JP6710383B2 (en) Biometric device
US8199322B2 (en) Apparatus and method for determining analyte concentrations
WO2012153769A1 (en) Optical tomography device
KR102043330B1 (en) Frequency domian based multi-wavelength bio-signal analysing apparatus
Di Sieno et al. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices
US9259158B2 (en) Object information acquiring apparatus
CN104582588A (en) Biophotonic measurement apparatus and biophotonic measurement method using same
JP2007020735A (en) Biological light measuring device
JP6125821B2 (en) Oxygen saturation measuring apparatus and oxygen saturation calculating method
US11872022B2 (en) System and method for an optical blood flow measurement
JP2007111461A (en) Bio-optical measurement apparatus
Sanfilippo et al. Design and development of a fNIRS system prototype based on SiPM detectors
JP2012005556A (en) Optical measurement apparatus for biological function information
CN107019493A (en) Subject information acquisition device and signal processing method
JP5420163B2 (en) Biological measuring device
US20150265154A1 (en) Systems and methods for a multi-element medical sensor
KR101792584B1 (en) Apparatus and method of Homodyne-based multi-channel body composition analyzing
Chiarelli et al. Wearable, fiber-less, multi-channel system for continuous wave functional near infrared spectroscopy based on silicon photomultipliers detectors and lock-in amplification
Das et al. Dual-wavelength diffuse optical tomographic system for direct concentration measurement
Wojtkiewicz et al. Towards optical tomography of an adult human head
Alhemsi et al. Time-resolved near-infrared spectroscopic imaging systems
JP4077477B2 (en) Method and apparatus for measuring absorption information of scatterers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903