JP2012002554A - Three dimensional load cell - Google Patents

Three dimensional load cell Download PDF

Info

Publication number
JP2012002554A
JP2012002554A JP2010135689A JP2010135689A JP2012002554A JP 2012002554 A JP2012002554 A JP 2012002554A JP 2010135689 A JP2010135689 A JP 2010135689A JP 2010135689 A JP2010135689 A JP 2010135689A JP 2012002554 A JP2012002554 A JP 2012002554A
Authority
JP
Japan
Prior art keywords
load
load cell
strain generating
base
receiving portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010135689A
Other languages
Japanese (ja)
Inventor
Rip-Gun Wan
立群 阮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Original Assignee
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC filed Critical Kumamoto University NUC
Priority to JP2010135689A priority Critical patent/JP2012002554A/en
Publication of JP2012002554A publication Critical patent/JP2012002554A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a three dimensional load cell with enhanced accuracy and high practicality in load measurement.SOLUTION: A three dimensional load cell 10 comprises: a base 12; a load receiving portion 14 supported being interposed by a gap G between the base 12 and the same; a first, second and third strain portions 161, 162 and 163 constituted of plural strain portions each formed in a bridge-like shape between the base 14 and the load receiving portion 14, which are oriented in three directions; i.e. in an arbitral first direction, a second direction crossing the first direction, and a third direction crossing a plane including the first direction and the second direction, one end of which is fixed to the base 12 and the other end thereof is fixed to the load receiving portion 14 to support the load receiving portion 14 on the base 12, and when a load is applied, the load receiving portion 14 strains; and strain gauges each attached to the first, second and third strain portions.

Description

本発明は、荷重の大きさ、その方向、及び3次元的な3方向の成分の分力を測定できる3次元ロードセルに関する。   The present invention relates to a three-dimensional load cell capable of measuring the magnitude of a load, its direction, and the component force of a three-dimensional component in three directions.

ロードセルは、弾性体にひずみゲージを貼り付けて、弾性体にかかる応力とひずみゲージからの出力の関係を利用して荷重を測定する荷重測定装置であり、従来、一つの方向の荷重を測定するように設計されたものが普及している。ロードセルは、構造が簡単で低コストで製造できるとともに、比較的に測定性能、応答性、信頼性が高いことから、例えば、はかりや天秤等の計量器等に利用されている。   A load cell is a load measuring device that measures the load using a relationship between the stress applied to the elastic body and the output from the strain gauge by attaching a strain gauge to the elastic body, and conventionally measures the load in one direction. The ones designed in this way are popular. The load cell has a simple structure, can be manufactured at low cost, and has relatively high measurement performance, responsiveness, and reliability. Therefore, the load cell is used for measuring instruments such as scales and balances.

また、例えば、特許文献1に開示されているように、ロードセルは、自動車や二輪車等の車輪の接地部への作用力を測定する車輪作用力測定装置にも利用されている。特許文献1では、車輪の回転軸線方向であるZ軸方向に延びる基部9からX軸およびY軸方向に沿って外方に十字状に延びる4本のアーム部10、10…が設けられ、それらの4本の各アーム部10、10…にストレインゲージ18、18…を貼着した多分力ロードセルの技術が記載されている。そして、4本のアーム部に貼着したストレインゲージ18、18…による歪検出値に基づいて、X、Y、Z各軸方向の分力Fx、Fy、Fzおよび各軸まわりの偶力Mx、My、Mzの6分力を測定するものであった。なお、符号は特許文献1記載のものである。   For example, as disclosed in Patent Document 1, the load cell is also used in a wheel acting force measuring device that measures an acting force on a ground contact portion of a wheel of an automobile or a two-wheeled vehicle. In Patent Document 1, four arm portions 10, 10... Extending in a cross shape outwardly along the X-axis and Y-axis directions from the base portion 9 extending in the Z-axis direction, which is the rotation axis direction of the wheel, are provided. The technology of a multi-force load cell in which strain gauges 18, 18... Are attached to the four arm portions 10, 10. Based on the strain detection values by the strain gauges 18, 18... Attached to the four arms, the component forces Fx, Fy, Fz in the X, Y, and Z axial directions and the couple Mx around each axis, The six component forces of My and Mz were measured. In addition, a code | symbol is a thing of patent document 1.

特開平11−173929号公報Japanese Patent Laid-Open No. 11-173929

ロードセルは、上述のように様々な分野に広く利用されているが、3次元のように任意の方向にかかる荷重の計測を必要する場面も多い。しかしながら、従来のロードセルでは1つの方向しか測定できないので、荷重を測定するには複数のロードセルを測定しようとする各方向に沿って設置する必要があった。したがって、複数のロードセルはそれぞれ独立的に荷重を測定するので、3次元的な荷重及びその分力を測定するには精度が劣るとともに、取り付け位置が制約を受ける等の問題があった。また、特許文献1に記載されている多分力ロードセルは、車輪に適用した構成であるが、ストレインゲージが貼着されたアーム部は、X軸方向とY軸方向に沿って十字状に配置され、Z軸方向にはアーム部が配置されていない構成なので2次元的な配置構成となっていることから、3次元的な荷重を測定するには精度が劣るおそれがあった。   Although the load cell is widely used in various fields as described above, there are many scenes in which it is necessary to measure a load applied in an arbitrary direction as in three dimensions. However, since the conventional load cell can measure only one direction, it is necessary to install a plurality of load cells along each direction to be measured in order to measure the load. Therefore, since the load cells measure the load independently, there is a problem that the accuracy is inferior in measuring the three-dimensional load and its component force, and the mounting position is restricted. The multi-component load cell described in Patent Document 1 has a configuration applied to a wheel, but the arm portion to which the strain gauge is attached is arranged in a cross shape along the X-axis direction and the Y-axis direction. Since the arm portion is not arranged in the Z-axis direction, the arrangement is a two-dimensional arrangement, and therefore there is a possibility that the accuracy is inferior in measuring a three-dimensional load.

一方、鍛造加工において素材を塑性変形して部品を製造する際には、表面に焼き付きや傷などが無い高精度の製品が要求されるため、潤滑剤の使用が不可欠である。素材の塑性変形過程では、摩擦係数の測定による素材表面の摩擦評価及び潤滑剤の性能評価が重要である。しかしながら、素材は3次元的に塑性変形されることが多いとともに、変形過程で高温、高面圧となる結果、素材の摩擦面の環境は複雑となり、正確な摩擦係数を測定するのは困難であった。したがって、正確な摩擦係数を測定するための技術の開発が望まれていた。   On the other hand, when a part is manufactured by plastic deformation of a material in forging, a highly accurate product that does not have seizure or scratches on its surface is required, and therefore the use of a lubricant is indispensable. In the plastic deformation process of the material, it is important to evaluate the friction of the material surface by measuring the friction coefficient and to evaluate the performance of the lubricant. However, the material is often plastically deformed three-dimensionally, and as a result of the high temperature and high surface pressure during the deformation process, the environment of the friction surface of the material becomes complicated and it is difficult to measure the accurate friction coefficient. there were. Therefore, development of a technique for measuring an accurate friction coefficient has been desired.

本発明は上記従来の課題に鑑みてなされたものであり、その一つの目的は、荷重の大きさ、その方向、及び3方向の分力を同時に測定でき、測定精度を向上させて実用性が高い3次元ロードセルを提供することにある。さらに、他の目的は、引き抜き加工や摩擦試験機等に良好に適用でき、素材の摩擦係数を正確に測定算出するために高精度な荷重の測定を実現できる3次元ロードセルを提供することにある。   The present invention has been made in view of the above-described conventional problems, and one object of the present invention is to simultaneously measure the magnitude of the load, its direction, and the component force in three directions, improving the measurement accuracy and being practical. The object is to provide a high three-dimensional load cell. Another object of the present invention is to provide a three-dimensional load cell that can be satisfactorily applied to a drawing process, a friction tester, and the like and can realize a highly accurate load measurement in order to accurately measure and calculate a friction coefficient of a material. .

上記課題を解決するために本発明は、基部12と、基部12との間に間隙Gをあけて支持された荷重受部14と、一端を基部12に固定し他端を荷重受部14に固定して荷重受部14を基部12に支持させ、荷重受部14が荷重を受けた際に歪みを生じる複数の起歪部であり、任意の第1方向と、第1方向に交差する第2方向と、第1方向と第2方向を含む平面に交差する第3方向と、の3つの方向に向けて基部14と荷重受部14との間に渡架状に設けられた第1、第2、第3起歪部161、162、163と、第1、第2、第3起歪部161、162、163にそれぞれ取り付けられたひずみゲージ18と、を含むことを特徴とする3次元ロードセル10から構成される。   In order to solve the above problems, the present invention provides a base 12, a load receiving portion 14 that is supported with a gap G between the base 12, one end fixed to the base 12, and the other end to the load receiving portion 14. A plurality of strain generating portions that are fixed to support the load receiving portion 14 on the base portion 12 and cause distortion when the load receiving portion 14 receives a load, and intersects the first direction with an arbitrary first direction. The first, which is provided between the base portion 14 and the load receiving portion 14 so as to extend in the three directions of two directions and a third direction intersecting a plane including the first direction and the second direction, A three-dimensional structure including second and third strain generating portions 161, 162, and 163 and strain gauges 18 attached to the first, second, and third strain generating portions 161, 162, and 163, respectively. The load cell 10 is configured.

また、第1、第2、第3起歪部161、162、163は、互いに直交する3つの軸方向に沿って荷重受部14と基部12との間に渡架状に設けられたこととしてもよい。   In addition, the first, second, and third strain generating portions 161, 162, and 163 are provided in a spanning manner between the load receiving portion 14 and the base portion 12 along three axial directions orthogonal to each other. Also good.

また、3次元ロードセルは、素材Mを直線移動させながらダイスに引き抜き通過させて該素材を所望形状に塑性加工する引き抜き加工において、ダイスに作用する荷重を計測するロードセルであり、荷重受部14は、ダイスを取り付けるダイス取り付け部(22)を有し、第1起歪部161は、素材の直線移動方向Lと平行な第1軸(x軸)方向に沿って設けられ、第2起歪部162は、第1軸方向に直交となる第2軸(y軸)方向に沿って設けられ、第3起歪部163は、第1軸方向及び第2軸方向にともに直交となる第3軸(z軸)方向に沿って設けられたこととしてもよい。例えば、引き抜き加工を行って実際に製品を製造する場合に適用しても良いし、引き抜き加工を利用した材料試験機等に適用してもよい。   The three-dimensional load cell is a load cell that measures a load acting on a die in a drawing process in which the material M is drawn and passed through a die while linearly moving, and the material is plastically processed into a desired shape. And a die attaching portion (22) for attaching the die, and the first strain generating portion 161 is provided along the first axis (x-axis) direction parallel to the linear movement direction L of the material, and the second strain generating portion. 162 is provided along a second axis (y-axis) direction orthogonal to the first axis direction, and the third strain generating portion 163 is a third axis orthogonal to both the first axis direction and the second axis direction. It may be provided along the (z-axis) direction. For example, the present invention may be applied when a product is actually manufactured by performing a drawing process, or may be applied to a material testing machine using a drawing process.

また、基部12は、一つの隅部が切欠き凹設された一部切欠き箱型形状に設けられ、荷重受部14は、基部12の切欠き凹設位置(22)に設置されたこととしてもよい。   The base 12 is provided in a partially cut-out box shape in which one corner is notched and recessed, and the load receiving portion 14 is installed at the notch recessed position (22) of the base 12. It is good.

また、基部12と荷重受部14と第1、第2、第3起歪部161、162、163とが一体形成されたこととしてもよい。例えば、金属材料からの削り出し加工や、溶融金属や溶融合成樹脂を鋳型に入れて成型加工等により一体形成されていてもよい。   Further, the base portion 12, the load receiving portion 14, and the first, second, and third strain generating portions 161, 162, and 163 may be integrally formed. For example, it may be integrally formed by machining from a metal material, or by molding molten metal or molten synthetic resin into a mold.

本発明の3次元ロードセルによれば、基部と、基部との間に間隙をあけて支持された荷重受部と、一端を基部に固定し他端を荷重受部に固定して荷重受部を基部に支持させ、荷重受部が荷重を受けた際に歪みを生じる複数の起歪部であり、任意の第1方向と、第1方向に交差する第2方向と、第1方向と第2方向を含む平面に交差する第3方向と、の3つの方向に向けて基部と荷重受部との間に渡架状に設けられた第1、第2、第3起歪部と、第1、第2、第3起歪部にそれぞれ取り付けられたひずみゲージと、を含むことから、構造が簡単であるとともに、第1、第2、第3起歪部を異なる3方向に向けて設けたことにより、該荷重の3方向成分の分力、及び荷重のかかる方向を精度良く測定できる。また、測定対称の試験機や各種装置等に取り付ける際も簡単に取り付けることができ、広い分野での応用に実用できる。特に、3次元ロードセルを摩擦試験機等に応用すれば、正確な摩擦係数の測定を実現することができ、素材試験の性能、信頼性を向上させ得る。   According to the three-dimensional load cell of the present invention, the load receiving portion supported with a gap between the base portion and the base portion, one end fixed to the base portion and the other end fixed to the load receiving portion, A plurality of strain generating portions that are supported by the base and generate strain when the load receiving portion receives a load, an arbitrary first direction, a second direction that intersects the first direction, a first direction, and a second direction First, second, and third strain-generating portions provided in a bridge shape between the base portion and the load receiving portion in the three directions of the third direction intersecting the plane including the direction, and the first direction And the strain gauges attached to the second and third strain generating portions, respectively, so that the structure is simple and the first, second, and third strain generating portions are provided in three different directions. Thus, the component force of the three-direction component of the load and the direction in which the load is applied can be accurately measured. In addition, it can be easily attached to a measurement symmetric testing machine or various devices, and can be used in a wide range of applications. In particular, if a three-dimensional load cell is applied to a friction tester or the like, accurate measurement of the friction coefficient can be realized, and the performance and reliability of the material test can be improved.

また、第1、第2、第3起歪部は、互いに直交する3つの軸方向に沿って荷重受部と基部との間に渡架状に設けられた構成とすることにより、測定対象の荷重のx軸、y軸、z軸方向の分力をスムーズに、高い精度で正確に測定でき、荷重分析を容易に行える。   In addition, the first, second, and third strain generating portions are configured to be provided between the load receiving portion and the base portion along three axial directions orthogonal to each other, so that the measurement target is The load component in the x-axis, y-axis, and z-axis directions can be measured smoothly and accurately with high accuracy, and load analysis can be easily performed.

また、3次元ロードセルは、素材を直線移動させながらダイスに引き抜き通過させて該素材を所望形状に塑性加工する引き抜き加工において、ダイスに作用する荷重を計測する3次元ロードセルであり、荷重受部は、ダイスを取り付けるダイス取り付け部を有し、第1起歪部は、素材の直線移動方向と平行な第1軸方向に沿って設けられ、第2起歪部は、第1軸方向に直交となる第2軸方向に沿って設けられ、第3起歪部は、第1軸方向及び第2軸方向にともに直交となる第3軸方向に沿って設けられた構成とすることにより、加工機等のダイスに3次元ロードセルを具体的に組み付けて、直交する3つ軸方向の分力を正確に測定でき、ダイスに作用する荷重の分析を行える。さらには、素材とダイスとの間の摩擦係数を正確に測定でき、素材表面の摩擦特性や潤滑剤の性能評価をスムーズかつ正確に行える。   The three-dimensional load cell is a three-dimensional load cell that measures a load acting on the die in a drawing process in which the material is drawn and passed through a die while linearly moving, and the material is plastically processed into a desired shape. And a die attaching portion for attaching the die, wherein the first strain generating portion is provided along a first axial direction parallel to the linear movement direction of the material, and the second strain generating portion is orthogonal to the first axial direction. The third strain generating portion is provided along the third axis direction that is orthogonal to both the first axis direction and the second axis direction. By specifically assembling a three-dimensional load cell on a die such as the like, it is possible to accurately measure the component forces in three orthogonal directions, and to analyze the load acting on the die. Furthermore, the coefficient of friction between the material and the die can be accurately measured, and the friction characteristics of the material surface and the performance evaluation of the lubricant can be performed smoothly and accurately.

また、基部は、一つの隅部が切欠き凹設された一部切欠き箱型形状に設けられ、荷重受部は、基部の切欠き凹設位置に設置された構成とすることにより、配置効率が良い構造を具体的に実現でき、引き抜き加工機やその他荷重測定対象物へ効率良く設置できる。   Also, the base is provided in a partially cut-out box shape in which one corner is cut and recessed, and the load receiving portion is arranged by being installed at the notch and recessed position of the base. An efficient structure can be specifically realized, and can be efficiently installed on a drawing machine or other load measuring object.

また、荷重受部と基部と第1、第2、第3起歪部とが一体形成された構成とすることにより、構成要素どうしの接続部分で荷重が吸収されて誤差が生じる等の不具合を防止でき、精度の高い荷重測定を実現できる。   In addition, by adopting a configuration in which the load receiving portion, the base portion, and the first, second, and third strain generating portions are integrally formed, there is a problem such that an error occurs due to absorption of a load at a connection portion between the components. It is possible to prevent the load measurement with high accuracy.

本発明の一実施形態に係る3次元ロードセルの斜視図である。It is a perspective view of the three-dimensional load cell concerning one embodiment of the present invention. 図1の3次元ロードセルの平面図である。It is a top view of the three-dimensional load cell of FIG. 図1の3次元ロードセルの正面図である。It is a front view of the three-dimensional load cell of FIG. 図1の3次元ロードセルの側面図である。It is a side view of the three-dimensional load cell of FIG. 3次元ロードセルによる荷重測定テストを行った例を示す説明図である。It is explanatory drawing which shows the example which performed the load measurement test by a three-dimensional load cell. 本発明の実施例に係る3次元ロードセルの荷重測定テストの結果のグラフである。It is a graph of the result of the load measurement test of the three-dimensional load cell which concerns on the Example of this invention. 3次元ロードセルの他の実施形態の斜視図である。It is a perspective view of other embodiments of a three-dimensional load cell. 図1の3次元ロードセルを引き抜き加工型の摩擦試験機に取り付けた例を説明する平面図である。It is a top view explaining the example which attached the three-dimensional load cell of FIG. 1 to the drawing-type friction tester. 図8の摩擦試験機のダイス周辺の要部斜視説明図である。It is principal part perspective explanatory drawing of the die periphery of the friction tester of FIG. 図9の平面図である。FIG. 10 is a plan view of FIG. 9. 図9の側面図である。FIG. 10 is a side view of FIG. 9.

以下添付図面を参照しつつ本発明の3次元ロードセルの実施形態について説明する。本発明に係る3次元ロードセルは、3次元の荷重計測に有利な荷重測定装置である。図1ないし図4は、本発明の3次元ロードセルの一実施形態を示している。本実施形態において、図1に示すように、3次元ロードセル10は、基部12と、荷重を受ける荷重受部14と、複数の起歪部16と、複数の起歪部16にそれぞれ取り付けられたひずみゲージ18と、を含む。   Hereinafter, an embodiment of a three-dimensional load cell of the present invention will be described with reference to the accompanying drawings. The three-dimensional load cell according to the present invention is a load measuring device advantageous for three-dimensional load measurement. 1 to 4 show an embodiment of the three-dimensional load cell of the present invention. In the present embodiment, as shown in FIG. 1, the three-dimensional load cell 10 is attached to a base 12, a load receiving portion 14 that receives a load, a plurality of strain generating portions 16, and a plurality of strain generating portions 16. Strain gauge 18.

基部12は、ある程度の剛性を備え荷重受部14及び起歪部16を一体的に組み付けて支持しているベース体である。基部12は、荷重を受ける荷重受部14に対する固定部となっており、荷重が荷重受部14から起歪部16に伝達された際に容易に変形しないような強度を有している。本実施形態では、基部12は、図1、図2、図3、図4に示すように、例えば、炭素鋼等の金属から形成され、縦方向、横方向及び高さ方向にある程度の大きさで形成された中実のブロック体からなる。基部12は、例えば、略立体矩形箱状の一つの隅部を切り欠き凹設して凹部20を形成させた一部切欠き箱型形状に設けられている。なお、平面視で基部12の横辺に沿った方向をx軸方向、平面視でx軸方向に直交する基部12の縦辺に沿った方向をy軸方向、正面視で鉛直高さ方向すなわちx軸及びy軸を含む平面に直交する方向をz軸方向としている。基部12の凹部20には、例えば、xy平面、yz平面、xz平面にそれぞれ平行な3つの凹部側面201〜203が形成されており、これらの3つの凹部側面201〜203は荷重受部14と対向している。なお、基部12の形状は荷重受部14、起歪部16を支持しうる構造であれば任意の形状でも良い。また、基部12は、例えば、図8のような引き抜き加工機や材料試験機等の他の装置へのロードセルの取り付けを可能にするために、他の装置側の構成部材等と係合する凸部、凹部や切欠き、孔、又は固定用のボルト孔等が設けられていても良い。   The base portion 12 is a base body that has a certain degree of rigidity and supports the load receiving portion 14 and the strain-generating portion 16 by being assembled together. The base portion 12 is a fixed portion for the load receiving portion 14 that receives a load, and has a strength that does not easily deform when the load is transmitted from the load receiving portion 14 to the strain generating portion 16. In this embodiment, as shown in FIGS. 1, 2, 3, and 4, the base portion 12 is made of a metal such as carbon steel and has a certain size in the vertical direction, the horizontal direction, and the height direction. It consists of a solid block body formed of The base portion 12 is provided in a partially cut-out box shape in which, for example, one corner portion of a substantially three-dimensional rectangular box shape is cut out to form a concave portion 20. The direction along the horizontal side of the base 12 in plan view is the x-axis direction, the direction along the vertical side of the base 12 orthogonal to the x-axis direction in plan view is the y-axis direction, and the vertical height direction in front view, The direction orthogonal to the plane including the x axis and the y axis is taken as the z axis direction. The concave portion 20 of the base 12 is formed with, for example, three concave side surfaces 201 to 203 that are parallel to the xy plane, the yz plane, and the xz plane, and these three concave side surfaces 201 to 203 are connected to the load receiving portion 14. Opposite. The base 12 may have any shape as long as it can support the load receiving portion 14 and the strain-generating portion 16. Further, the base portion 12 is a convex portion that engages with a component member on the other device side in order to enable the load cell to be attached to another device such as a drawing machine or a material testing machine as shown in FIG. A portion, a recess, a notch, a hole, a fixing bolt hole, or the like may be provided.

図1、図2、図3、図4に示すように、荷重受部14は、測定対象物に直接又は間接に係合して荷重を受ける荷重受手段であり、基部12との間に間隙Gをあけて支持されている。荷重受部14は、該荷重受部14から脚のように3方向に延設された複数の起歪部16により基部12に対して空中位置に支持されている。荷重受部14は、固定的な基部12に対して荷重を受けた際に僅かに動き得る可動部となっており、受けた荷重を複数の起歪部16に伝達させる。本実施形態では、荷重受部14は、例えば、炭素鋼等の金属から形成されており、略立体矩形箱状の一つの隅部を切り欠き凹設して受凹部22を形成させた一部切り欠き箱型形状に設けられている。荷重受部14は、基部12の凹部20内に収容状に配置されており、受凹部22を外側に向けて露出させつつ、受凹部22が設けられていない3つの側面261〜263を基部12の凹部内面201〜203に平行状に対向させながら離隔配置される。受凹部22は、例えば、略立体矩形状の凹部空間であり、後述のようなダイス等の工具が取り付けられるダイス取り付け部を構成する。なお、荷重受部14は、本実施形態のような形状に限らず、例えば、受凹部22を設けなくてもよく、測定対象に応じてその他任意の形状に形成してもよい。   As shown in FIGS. 1, 2, 3, and 4, the load receiving unit 14 is a load receiving unit that receives a load by directly or indirectly engaging a measurement object, and a gap between the load receiving unit 14 and the base 12. G is supported. The load receiving portion 14 is supported at an aerial position with respect to the base portion 12 by a plurality of strain generating portions 16 extending in three directions like legs from the load receiving portion 14. The load receiving portion 14 is a movable portion that can move slightly when a load is applied to the fixed base 12, and transmits the received load to the plurality of strain generating portions 16. In the present embodiment, the load receiving portion 14 is made of, for example, a metal such as carbon steel, and a portion in which a receiving recess 22 is formed by cutting out one corner of a substantially three-dimensional rectangular box shape. It is provided in a notch box shape. The load receiving portion 14 is disposed in a recessed shape in the recess 20 of the base 12, and the three side surfaces 261 to 263 that are not provided with the receiving recess 22 are exposed to the base 12 while the receiving recess 22 is exposed outward. The inner surfaces of the recesses 201 to 203 are spaced apart from each other in parallel. The receiving recess 22 is, for example, a substantially three-dimensional rectangular recess space, and constitutes a die attaching portion to which a tool such as a die as described later is attached. In addition, the load receiving part 14 is not restricted to a shape like this embodiment, For example, the receiving recessed part 22 does not need to be provided and may be formed in other arbitrary shapes according to a measuring object.

図1、図2、図3、図4に示すように、起歪部16は、一端を基部12に固定し他端を荷重受部14に固定して荷重受部14を基部12に支持する支持手段であり、かつ荷重受部14が荷重を受けた際に歪みを生じる弾性体である。起歪部16は、固定部としての基部12と可動部としての荷重受部14との間の間隙Gに介設された梁であり、荷重受部14から荷重が伝達されると荷重の大きさに対応してひずみを生じ、荷重が解除されると弾性復帰する。それぞれの起歪部16は、例えば、炭素鋼等の金属で形成された断面正方形状の四角柱状のアームからなる。なお、起歪部16の形状は四角柱状に限らず、例えば、円柱状や、板状に形成されていても良い。   As shown in FIGS. 1, 2, 3, and 4, the strain generating portion 16 supports one end of the strain receiving portion 16 to the base portion 12 and the other end to the load receiving portion 14 to support the load receiving portion 14 to the base portion 12. It is an elastic body that is a support means and generates distortion when the load receiving portion 14 receives a load. The strain generating portion 16 is a beam interposed in the gap G between the base portion 12 as the fixed portion and the load receiving portion 14 as the movable portion. When a load is transmitted from the load receiving portion 14, the load is large. Strain is generated corresponding to the height, and when the load is released, it returns elastically. Each of the strain generating portions 16 is made of a square columnar arm having a square cross section formed of a metal such as carbon steel. The shape of the strain generating portion 16 is not limited to a quadrangular prism shape, and may be formed in a columnar shape or a plate shape, for example.

本実施形態では、複数の起歪部16は、基部12と荷重受部14との間において異なる3つの軸方向に向けて直線状に渡架状に設けられており、第1方向となるx軸方向に向けて設けられた第1起歪部161(梁)と、第2方向となるy軸方向に向けて設けられた第2起歪部162(梁)と、第3方向となるz軸方向に向けて設けられた第3起歪部163(梁)と、を含む。第1、第2、第3起歪部161〜163は、互いに直交する3つの軸(x軸、y軸、z軸)方向に向けてそれぞれ1つずつ設けられ、起歪部は全部で3つ設けられた構成となっている。第1、第2、第3起歪部161〜163は、例えば、第1〜第3梁としてそれぞれ一端が基部12の凹部側面201〜203に一体で繋げられ、他端が荷重受部14の側面261〜263に一体で繋げられており、それらの基部12と荷重受部14の対向面に対して直交状に設けられている。直交する3つの方向に伸びた第1、第2、第3起歪部161〜163は、各方向の互いの干渉を配慮して設計されており、誤差が小さく、荷重のx軸、y軸、z軸の3次元方向の分力を簡単で正確に計測できる起歪部の配置構成を実現している。上記のように直交する3方向に向けて立体的に第1、第2、第3起歪部161、162、163を設けた構成であるから、x軸、y軸、z軸方向の分力の測定精度を向上でき、3次元の荷重測定用ロードセルとして実用性が高い。   In the present embodiment, the plurality of strain generating portions 16 are provided in a linearly extending manner toward three different axial directions between the base portion 12 and the load receiving portion 14, and are in the first direction x A first straining portion 161 (beam) provided in the axial direction, a second straining portion 162 (beam) provided in the y-axis direction that is the second direction, and z that is in the third direction And a third strain generating portion 163 (beam) provided in the axial direction. The first, second, and third strain generating portions 161 to 163 are provided one by one in the directions of three axes (x-axis, y-axis, and z-axis) that are orthogonal to each other, and the total number of strain generating portions is three. It is the structure which was provided. For example, the first, second, and third strain generating portions 161 to 163 are integrally connected to the concave side surfaces 201 to 203 of the base portion 12 as the first to third beams, respectively, and the other end of the load receiving portion 14. The side surfaces 261 to 263 are integrally connected, and are provided orthogonal to the facing surfaces of the base portion 12 and the load receiving portion 14. The first, second, and third strain generating portions 161 to 163 extending in three orthogonal directions are designed in consideration of mutual interference in each direction, and have a small error, and the x-axis and y-axis of the load. The arrangement configuration of the strain generating portion that can easily and accurately measure the component force in the three-dimensional direction of the z-axis is realized. Since the first, second, and third strain generating portions 161, 162, and 163 are three-dimensionally provided in three orthogonal directions as described above, component forces in the x-axis, y-axis, and z-axis directions are provided. Measurement accuracy can be improved, and it is highly practical as a load cell for three-dimensional load measurement.

本実施形態では、基部12と荷重受部14と第1、第2、第3起歪部161、162、163とを含むロードセル本体は、例えば、鋼塊を上述のような所定形状に削り出し加工して一体形成されている。これにより、3次元ロードセル10は各構成要素間での継ぎ目やねじ等の接続部材が無い一体的な構造となり、荷重を受けた際に継ぎ目や接続部材の影響により荷重を吸収して測定精度を低下させるのを防止でき、高い測定精度を得ることができる。なお、ロードセル本体の材料は、例えば、ゴム、プラスチック、アルミニウム、鉄、その他合金等で形成してもよく、測定する荷重の大きさによって適宜選択するとよい。また、3次元ロードセル10は、基部12、荷重受部14、第1、第2、第3起歪部161、162、163をそれぞれ別部材で構成し、それらを所定構造に連結して製造することとしてもよいが、上述のように一体成形した構造のものの方が高い測定精度を得られる。   In the present embodiment, the load cell body including the base portion 12, the load receiving portion 14, and the first, second, and third strain generating portions 161, 162, and 163, for example, cuts a steel ingot into a predetermined shape as described above. Processed and integrally formed. As a result, the three-dimensional load cell 10 has an integrated structure with no connecting members such as joints and screws between the components, and when receiving a load, the load is absorbed by the influence of the joints and connecting members to improve measurement accuracy. It is possible to prevent the reduction, and high measurement accuracy can be obtained. The material of the load cell body may be formed of, for example, rubber, plastic, aluminum, iron, other alloys, etc., and may be appropriately selected depending on the magnitude of the load to be measured. The three-dimensional load cell 10 is manufactured by configuring the base portion 12, the load receiving portion 14, the first, second, and third strain generating portions 161, 162, and 163 as separate members and connecting them to a predetermined structure. However, it is possible to obtain higher measurement accuracy with the structure integrally formed as described above.

図1、図2、図3、図4に示すように、ひずみゲージ18は、それぞれの起歪部161、162、163に取り付けられており、それらの起歪部に生じた歪みに応じて電気抵抗が変化するひずみ検出センサである。ひずみゲージ18は、例えば、抵抗線や金属箔を利用した従来周知のひずみゲージが利用され、それぞれの起歪部161、162、163ごとに1個又は複数個が取り付けられる。ひずみゲージ18は、ブリッジ回路24に電気的に接続される。ブリッジ回路24は、例えば、周知従来のブリッジ回路が利用されており、ひずみゲージ18の電気抵抗の変化を電圧変化に変換して出力する。なお、ブリッジ回路24には、例えば、回路出力を増幅するアンプ装置や出力を数値で表示するモニタ装置や、数値を記録するレコーダ装置等が接続されてもよい。   As shown in FIGS. 1, 2, 3, and 4, the strain gauge 18 is attached to each of the strain generating portions 161, 162, and 163, and an electric power is generated according to the strain generated in the strain generating portions. This is a strain detection sensor whose resistance changes. As the strain gauge 18, for example, a conventionally known strain gauge using a resistance wire or a metal foil is used, and one or a plurality of strain gauges 161, 162, and 163 are attached to each of the strain generating portions 161, 162, and 163. The strain gauge 18 is electrically connected to the bridge circuit 24. As the bridge circuit 24, for example, a well-known conventional bridge circuit is used, and a change in electrical resistance of the strain gauge 18 is converted into a voltage change and output. The bridge circuit 24 may be connected to, for example, an amplifier device that amplifies the circuit output, a monitor device that displays the output numerically, a recorder device that records the numerical value, and the like.

よって、3次元ロードセル10は、荷重受部14が荷重を受けると、各起歪部16で荷重に対応した歪みが生じ、それらの歪みに応じてひずみゲージ18で電気抵抗の変化に変換され、その電気抵抗の変化をブリッジ回路24で電圧変化に変換し、出力電圧に応じて所定の計算が行われてロードセルにかかる荷重P及びx軸、y軸、z軸の各方向の分力Px、Py、Pzが求められる。本実施形態では、例えば、x軸方向の第1起歪部161に取り付けられた第1ひずみゲージ18からの回路の出力値εx、y軸方向の第2起歪部162に取り付けられた第2ひずみゲージ18からの回路の出力値εy、z軸方向の第3起歪部163に取り付けられた第3ひずみゲージ18からの回路の出力値εz、とすると、3次元ロードセル10にかかる荷重Pのx軸方向の分力Px、荷重Pのy軸方向の分力Py、荷重Pのz軸方向の分力Pzはそれぞれ次の計算式で近似的に求められる。

Figure 2012002554
第1、第2、第3起歪部161、162、163は全て荷重受部14に一体的に固定されているので、各方向の起歪部161、162、163どうしが互いに影響を及ぼすようになっている。なお、Ax、Ay、Az、Bx、By、Bz、Cx、Cy、Czは起歪部の形状や構成、ブリッジ回路等を含む諸条件により定まるパラメータである。そして、荷重Pは各分力Px、Py、Pzの合力として、次の計算式で求められる。
Figure 2012002554
或いは、合力Pは下記の式からも求められる。
Figure 2012002554
さらに、荷重Pのx軸、y軸、z軸方向に対する角度θx、θy、θzとすると、方向余弦及び、各角度θx、θy、θzは次の計算式で求められる。
Figure 2012002554
Figure 2012002554
Therefore, in the three-dimensional load cell 10, when the load receiving portion 14 receives a load, strain corresponding to the load is generated in each strain generating portion 16, and is converted into a change in electric resistance by the strain gauge 18 according to the strain, The change in the electrical resistance is converted into a voltage change by the bridge circuit 24, a predetermined calculation is performed according to the output voltage, and the load P applied to the load cell and the component forces Px in the x-axis, y-axis, and z-axis directions, Py and Pz are obtained. In the present embodiment, for example, the output value εx of the circuit from the first strain gauge 18 attached to the first strain-generating part 161 in the x-axis direction, the second attached to the second strain-generating part 162 in the y-axis direction. Assuming that the output value εy of the circuit from the strain gauge 18 and the output value εz of the circuit from the third strain gauge 18 attached to the third strain generating portion 163 in the z-axis direction, the load P applied to the three-dimensional load cell 10 The component force Px in the x-axis direction, the component force Py in the y-axis direction of the load P, and the component force Pz in the z-axis direction of the load P are approximately obtained by the following calculation formulas, respectively.
Figure 2012002554
Since the first, second, and third strain generating portions 161, 162, and 163 are all fixed integrally to the load receiving portion 14, the strain generating portions 161, 162, and 163 in each direction affect each other. It has become. Ax, Ay, Az, Bx, By, Bz, Cx, Cy, and Cz are parameters determined by various conditions including the shape and configuration of the strain generating portion, the bridge circuit, and the like. And the load P is calculated | required with the following formula as a resultant force of each component force Px, Py, and Pz.
Figure 2012002554
Alternatively, the resultant force P can be obtained from the following equation.
Figure 2012002554
Furthermore, when the angles θx, θy, and θz of the load P with respect to the x-axis, y-axis, and z-axis directions are given, the direction cosine and the angles θx, θy, and θz can be obtained by the following calculation formulas.
Figure 2012002554
Figure 2012002554

本実施形態では、第1〜第3起歪部(第1〜第3梁)161〜163のそれぞれのひずみεx、εy、εzと、分力Px、Py、Pzの関係式を、上記[数1]の計算式で表すと仮定して、x軸、y軸、z軸の各軸に対して荷重試験(圧縮試験)を行って分力Px、Py、Pzのデータをとり、それらのデータから最小2乗法により係数を求めた。

Figure 2012002554
これらの係数を[数1]の計算式に代入すると、ひずみεx、εy、εzと分力Px、Py、Pzとの関係式は次の計算式となる。
Figure 2012002554
上記計算式の確認のために、図5に示すように、3次元ロードセル10を水平方向に対して、例えば、φx=45度、φy=φz=30度傾けて鉛直方向に荷重Pを加えて実験を行った。すなわち、3次元ロードセル10に、θx=45°、θy=60°、θz=60°の方向に向けて荷重Pを加えた。理論計算結果と上式から算出される分力および合力を比較した。図6はその比較した結果を示す。図6のグラフの横軸は本実施形態に係る3次元ロードセルに実際に加えた荷重P(重量トン(tf:ton-force))、縦軸が3次元ロードセル10が出力した各軸方向の分力Px、Py、Pz及び合力荷重P(重量トン(tf:ton-force))の結果である。なお、一例として、3次元ロードセルに、荷重P=0.79tをθx=45°、θy=60°、θz=60°の方向に加えると[表1]の結果となった。
Figure 2012002554
図6に示すように、実線で表した出力理想値に対してロードセル10の出力結果の誤差が少なく、高い測定精度を期待できる。これにより、本実施形態では[数7]の計算式を利用して3次元ロードセルに任意に加えた荷重の分力、合力、方向等を得ることができる。 In the present embodiment, the relational expressions of the respective strains εx, εy, εz and the component forces Px, Py, Pz of the first to third strain generating portions (first to third beams) 161 to 163 are expressed by 1], the load test (compression test) is performed on each of the x-axis, y-axis, and z-axis to obtain data on the component forces Px, Py, and Pz. From the above, the coefficient was obtained by the method of least squares.
Figure 2012002554
By substituting these coefficients into the formula of [Equation 1], the relational expression between the strains εx, εy, εz and the component forces Px, Py, Pz becomes the following formula.
Figure 2012002554
In order to confirm the above calculation formula, as shown in FIG. 5, the load P 0 is applied in the vertical direction by tilting the three-dimensional load cell 10 with respect to the horizontal direction, for example, φx = 45 degrees and φy = φz = 30 degrees. The experiment was conducted. That is, the load P 0 was applied to the three-dimensional load cell 10 in the directions of θx = 45 °, θy = 60 °, and θz = 60 °. The component force and resultant force calculated from the theoretical calculation result and the above equation were compared. FIG. 6 shows the comparison result. The horizontal axis of the graph of FIG. 6 is the load P 0 (ton ton (tf)) actually applied to the three-dimensional load cell according to the present embodiment, and the vertical axis is the direction of each axis output by the three-dimensional load cell 10. It is the result of component force Px, Py, Pz and resultant load P (weight ton (tf: ton-force)). As an example, when a load P 0 = 0.79 t was applied to a three-dimensional load cell in the directions of θx = 45 °, θy = 60 °, and θz = 60 °, the results shown in Table 1 were obtained.
Figure 2012002554
As shown in FIG. 6, there is little error in the output result of the load cell 10 with respect to the ideal output value represented by a solid line, and high measurement accuracy can be expected. Thereby, in the present embodiment, the component force, resultant force, direction, and the like of the load arbitrarily applied to the three-dimensional load cell can be obtained using the formula of [Equation 7].

なお、3次元ロードセル10の構成は上記実施形態に限定するものではない。例えば、第1、第2、第3起歪部161、162、163は、x軸、y軸、z軸方向に複数設けられていても良い。図7は3次元ロードセルの他の実施形態10aを示しており、図7に示すように、複数の起歪部16は、例えば、x軸方向に向けて1つの第1起歪部161が形成されるが、y軸方向に向けて2つの第2起歪部162a、162bが設けられ、z軸方向に向けて2つの第3起歪部163a、163bが設けられ、合計5つの起歪部を有している。第2起歪部162a、162bどうし、及び第2起歪部163a、163bどうしは、互いに所定の間隙をあけて離隔して平行に配置されている。各々の起歪部16は、例えば、略矩形板状に設けられている。略矩形板状の起歪部の表裏面にはひずみゲージ18がそれぞれ2箇所取り付けられ、各起歪部16ごとに計4箇所ずつ取り付けられている。この実施形態の3次元ロードセル10aでは、上記実施形態のロードセル10と比較して、起歪部の耐荷重強度を高く構成できるので、例えば、数重量トン以上の大きな荷重を測定するのに好適に利用できる。3次元ロードセル10は、起歪部16の材料、断面積、形状、個数等の構成条件を変更することにより、数gfから数千tfの計測範囲に対応した製作を行える。3次元ロードセルのサイズやロードセルの材料を変えて製造することで、数十kgの比較的小さな荷重を計測することも可能であるし、数千tfの比較的大きな荷重を計測することも可能である。   The configuration of the three-dimensional load cell 10 is not limited to the above embodiment. For example, a plurality of the first, second, and third strain generating portions 161, 162, and 163 may be provided in the x-axis, y-axis, and z-axis directions. FIG. 7 shows another embodiment 10a of the three-dimensional load cell. As shown in FIG. 7, the plurality of strain generating portions 16 are formed by, for example, one first strain generating portion 161 in the x-axis direction. However, two second strain generating portions 162a and 162b are provided in the y-axis direction, and two third strain generating portions 163a and 163b are provided in the z-axis direction, for a total of five strain generating portions. have. The second strain generating portions 162a and 162b and the second strain generating portions 163a and 163b are arranged in parallel with a predetermined gap therebetween. Each strain generating portion 16 is provided in a substantially rectangular plate shape, for example. Two strain gauges 18 are attached to the front and back surfaces of the substantially rectangular plate-like strain generating portion, and a total of four strain gauges 16 are attached to each strain generating portion 16. In the three-dimensional load cell 10a of this embodiment, the load bearing strength of the strain generating portion can be configured higher than that of the load cell 10 of the above embodiment, which is suitable for measuring a large load of several tons or more, for example. Available. The three-dimensional load cell 10 can be manufactured corresponding to a measurement range of several gf to several thousand tf by changing the constituent conditions such as the material, cross-sectional area, shape, and number of the strain generating portion 16. It is possible to measure a relatively small load of several tens of kilograms by measuring the size of the three-dimensional load cell and the load cell material, and it is also possible to measure a relatively large load of several thousand tf. is there.

また、第1、第2、第3起歪部161、162、163の方向は互いに直交する方向に向けて設けた構成に限らない。例えば、第1起歪部161は任意の第1方向αに向けて設け、第2起歪部162は該第1方向に直交しないθの角度で交差する第2方向βに向けて設け、第3起歪部163は第1方向と第2方向を含む平面に直交しないφの角度で交差する第3方向γに向けて設けて、互いに同一平面上で無く、かつ平行で無い3つの異なる方向に設けられるとよい。すなわち、第1、第2起歪部161、162は、互いに角度θ(0°<θ<180°)で交差する異なる第1方向αと第2方向βに向けて設けるとともに、第3起歪部163は、第1方向と第2方向を含む平面と角度φ(0°<φ<180°)で交差する第3方向γに向けて設けられるとよい。この場合でも、各方向へ向けてそれぞれ一つの起歪部が設けられても良いし、各方向に向けて複数の起歪部が設けられていても良い。   Moreover, the direction of the 1st, 2nd, 3rd strain generation part 161,162,163 is not restricted to the structure provided toward the direction orthogonal to each other. For example, the first strain generating portion 161 is provided in an arbitrary first direction α, the second strain generating portion 162 is provided in a second direction β intersecting at an angle θ that is not orthogonal to the first direction, The three strain generating portions 163 are provided toward a third direction γ that intersects at an angle of φ that is not orthogonal to the plane including the first direction and the second direction, and are not on the same plane and are not parallel to each other. It is good to be provided. That is, the first and second strain generating portions 161 and 162 are provided in different first directions α and second directions β intersecting each other at an angle θ (0 ° <θ <180 °), and the third strain generating portions. The part 163 may be provided toward a third direction γ that intersects the plane including the first direction and the second direction at an angle φ (0 ° <φ <180 °). Even in this case, one strain generating portion may be provided in each direction, or a plurality of strain generating portions may be provided in each direction.

次に図8ないし図11を参照しつつ、上記実施形態の3次元ロードセル10を引抜き加工機に利用し、ダイスに作用する荷重を測定する場合について説明する。引き抜き加工機は、例えば、素材Mを直線移動させながらダイス36に引き抜き通過させて該素材Mを所望形状に塑性加工する加工装置である。図8、図9に示すように、本実施形態では、引き抜き加工機は、例えば、引き抜き型の摩擦試験機30からなる。摩擦試験機30は、自動車部品等の鍛造のような複雑な塑性変形に酷似した塑性加工を引き抜き加工により再現し、素材Mやダイス36に作用する荷重の分析、素材とダイスとの接触面の摩擦評価、さらには素材表面に使用する潤滑剤評価等を効率的に試験、評価に利用できる。   Next, the case where the load acting on the die is measured using the three-dimensional load cell 10 of the above embodiment in a drawing machine will be described with reference to FIGS. The drawing machine is, for example, a processing apparatus that plastically processes the material M into a desired shape by drawing the material M through a die 36 while linearly moving the material M. As shown in FIGS. 8 and 9, in this embodiment, the drawing machine includes, for example, a drawing type friction test machine 30. The friction testing machine 30 reproduces a plastic processing very similar to complicated plastic deformation such as forging of automobile parts by drawing, analyzes the load acting on the material M and the die 36, and determines the contact surface between the material and the die. Friction evaluation and further evaluation of lubricant used on the surface of the material can be efficiently used for testing and evaluation.

図8、図9に示すように、摩擦試験機30は、例えば、機枠32と、素材Mを直線移動させてダイス36に対して引き抜き動作させる駆動部34と、ダイス36が取り付けられ該ダイス36により素材Mを塑性変形させる加工部38と、を含み、加工部38のダイス36に3次元ロードセル10が組み付けられている。そして、素材Mの引き抜き動作の際に3次元ロードセル10でダイス36に作用する荷重を測定できるとともに、該荷重の測定値から所定の計算式を用いて素材の摩擦係数を求めることができる。   As shown in FIGS. 8 and 9, the friction tester 30 includes, for example, a machine frame 32, a drive unit 34 that moves the material M linearly and pulls out the die 36, and a die 36 to which the die 36 is attached. A three-dimensional load cell 10 is assembled to a die 36 of the processing unit 38. Then, the load acting on the die 36 can be measured by the three-dimensional load cell 10 during the pulling operation of the material M, and the friction coefficient of the material can be obtained from the measured value of the load using a predetermined calculation formula.

本実施形態では、素材Mは、例えば、鉄や鋼等の金属又は合金からなり、直径が10〜20mm程度の長い丸棒体が利用される。素材Mの表面には、鍛造用の潤滑剤が被膜付けされている。素材に使用する潤滑剤の種類を変更しながら摩擦評価を行って、潤滑剤の性能評価を行える。機枠32は、引き抜き駆動部34と加工部38とを一体的に組み付けており、例えば、駆動部34を支持している矩形板状の駆動部支持板40と、駆動部支持板40に対して横方向に離隔して平行に対向配置された矩形板状の中間支持板42と、それらの2枚の支持板40、42を連結して支持する複数の支持ロッド44と、支持板42に固定され加工部38を支持しているコ字板状の加工部支持板46と、を含む。中間支持板42及び加工部支持板46には、素材Mを長手方向に通係させる貫通孔48が設けられている。   In this embodiment, the raw material M consists of metals or alloys, such as iron and steel, for example, and the long round bar about 10-20 mm in diameter is utilized. The surface of the material M is coated with a lubricant for forging. The friction performance can be evaluated while changing the type of lubricant used for the material, and the performance of the lubricant can be evaluated. The machine frame 32 is integrally assembled with a pulling drive unit 34 and a processing unit 38. For example, a rectangular plate-like drive unit support plate 40 that supports the drive unit 34, and the drive unit support plate 40. In addition, a rectangular plate-shaped intermediate support plate 42 that is spaced apart in the horizontal direction and arranged in parallel, a plurality of support rods 44 that connect and support the two support plates 40, 42, and the support plate 42 And a U-shaped processing part support plate 46 that is fixed and supports the processing part 38. The intermediate support plate 42 and the processing portion support plate 46 are provided with through holes 48 for engaging the material M in the longitudinal direction.

駆動部34は、例えば、素材Mの一端を着脱可能に掴んで固定するチャック50がシリンダロッド先端側に設けられた駆動シリンダ52を含む。駆動シリンダ52は、チャック50で一端を固定した状態で強制的に素材Mを長手方向に沿って水平横方向に直線移動させて引き抜き駆動させる。駆動シリンダ52は、例えば、油圧シリンダからなり、駆動部支持板40にシリンダ本体を固定され、油圧コントロール用の油圧制御装置53に接続されている。駆動シリンダ52には、素材Mの移動ストローク量を計測するストローク計測システム54が設けられている。   The drive unit 34 includes, for example, a drive cylinder 52 in which a chuck 50 that detachably grips and fixes one end of the material M is provided on the tip side of the cylinder rod. The drive cylinder 52 forcibly drives the material M by linearly moving the material M in the horizontal horizontal direction along the longitudinal direction with one end fixed by the chuck 50. The drive cylinder 52 is composed of, for example, a hydraulic cylinder, and a cylinder body is fixed to the drive unit support plate 40 and is connected to a hydraulic control device 53 for hydraulic control. The drive cylinder 52 is provided with a stroke measurement system 54 that measures the movement stroke amount of the material M.

加工部38は、例えば、素材Mの長手方向と直交方向(素材の直径方向)に配置されて素材Mを挟持状に押圧する1対のダイス36(36a、36b)と、1対のダイス36の支持機構と、を含む。ダイス36の支持機構は、一方のダイス36aを所定位置に固定的に支持する固定台としての3次元ロードセル10と、他方のダイス36bを支持し一方のダイス36aに対して近接又は離隔方向に移動自在に支持する可動台56と、加工部支持板46に3次元ロードセル10を支持及び可動台56をガイド支持させる複数のガイドロッド58と、可動台56をガイドロッド58に沿ってスライドさせながらダイス36bに素材Mへの押圧力を作用させるための押圧用シリンダ60と、を含む。   For example, the processing unit 38 is arranged in a direction orthogonal to the longitudinal direction of the material M (diameter direction of the material), and a pair of dies 36 (36a, 36b) that press the material M in a sandwiched manner, and a pair of dies 36. And a support mechanism. The support mechanism of the die 36 is a three-dimensional load cell 10 as a fixed base that fixedly supports one die 36a in a predetermined position, and the other die 36b is supported and moves in a direction close to or away from the one die 36a. A movable base 56 that is freely supported, a plurality of guide rods 58 that support the three-dimensional load cell 10 on the processing unit support plate 46 and guide and support the movable base 56, and a die that slides the movable base 56 along the guide rod 58. And a pressing cylinder 60 for applying a pressing force to the material M to 36b.

本実施形態では、3次元ロードセル10は、ダイスに作用する荷重測定手段とダイスの試験機への支持手段とを兼用している。3次元ロードセル10は、素材Mの長手方向に直交する一方側(図8の平面図上では、素材Mの下方側)に配置されて、その基部12が加工部支持板46、ガイドロッド58に固定されている。図8、図9、図10、図11に示すように、3次元ロードセル10は、x軸方向すなわち第1起歪部161の渡設方向が素材Mの直線移動方向L(引き抜き方向)と平行となるように設置される。第2起歪部162は、引き抜き方向Lと直交な方向で水平方向Wすなわちダイスの押圧方向に沿って設けられている。第3起歪部163は、高さ方向Hに沿って設けられている。3次元ロードセル10の荷重受部14の受凹部22には、ダイスホルダ64が嵌合状に配置されてボルト等を介して取り付けられ、該ダイスホルダ64にダイス36aが着脱交換可能に固定されている。3次元ロードセル10のひずみゲージ18は、例えば、ブリッジ回路24を内部に含み、荷重Pや分力Px、Py、Pz、角度θx、θy、θz及び摩擦係数等を計算するとともに、測定結果を出力、モニタ表示及び記録等を行う負荷荷重計測システム66に接続されている。   In the present embodiment, the three-dimensional load cell 10 serves as both a load measuring unit that acts on the die and a supporting unit for the die testing machine. The three-dimensional load cell 10 is arranged on one side orthogonal to the longitudinal direction of the material M (on the lower side of the material M in the plan view of FIG. 8), and its base 12 is connected to the processing unit support plate 46 and the guide rod 58. It is fixed. As shown in FIGS. 8, 9, 10, and 11, in the three-dimensional load cell 10, the x-axis direction, that is, the passing direction of the first strain generating portion 161 is parallel to the linear movement direction L (drawing direction) of the material M. It is installed to become. The second strain generating portion 162 is provided along the horizontal direction W, that is, the pressing direction of the die in a direction orthogonal to the drawing direction L. The third strain generating portion 163 is provided along the height direction H. A die holder 64 is disposed in a fitting shape and attached via a bolt or the like to the receiving recess 22 of the load receiving portion 14 of the three-dimensional load cell 10, and the die 36 a is fixed to the die holder 64 so as to be attachable and detachable. The strain gauge 18 of the three-dimensional load cell 10 includes, for example, a bridge circuit 24 inside, and calculates the load P, component forces Px, Py, Pz, angles θx, θy, θz, friction coefficients, and the like, and outputs measurement results. , Connected to a load measurement system 66 for performing monitor display and recording.

可動台56は、例えば、ガイドロッド58の長手方向に沿って水平方向Wにスライド移動自在に形成された矩形板状の可動支持板56aと、可動支持板56aの一面側に固定され一部にダイス取り付け用の凹部が設けられた支持台部56bと、が一体的に組み付けられている。支持台部56bの凹部には、ダイスホルダ64が嵌合状に配置されてボルト等を介して取り付けられ、該ダイスホルダ64にダイス36bが着脱交換可能に固定されている。ガイドロッド58は、例えば、コ字状の加工部支持板46の対向板部46a、46b間に、素材Mの引き抜き方向Lと直交方向Wに向けて架設されている。押圧用シリンダ60は、例えば、油圧シリンダからなり、シリンダ本体が加工部支持板46の板部46aに固定され、伸縮されるシリンダロッドの先端64aが可動台56に固定されている。押圧用シリンダ60は、油圧コントロール用の油圧制御装置62に接続されている。   The movable table 56 is, for example, a rectangular plate-shaped movable support plate 56a formed to be slidable in the horizontal direction W along the longitudinal direction of the guide rod 58, and fixed to a part of one surface of the movable support plate 56a. A support base portion 56b provided with a recess for attaching a die is integrally assembled. A die holder 64 is arranged in a fitting manner in the recess of the support base portion 56b and attached via a bolt or the like, and the die 36b is fixed to the die holder 64 so as to be attachable / detachable. For example, the guide rod 58 is installed between the opposing plate portions 46 a and 46 b of the U-shaped processing portion support plate 46 in the direction W perpendicular to the drawing direction L of the material M. The pressing cylinder 60 is composed of, for example, a hydraulic cylinder, the cylinder body is fixed to the plate portion 46 a of the processing portion support plate 46, and the tip 64 a of the cylinder rod to be expanded and contracted is fixed to the movable table 56. The pressing cylinder 60 is connected to a hydraulic control device 62 for controlling hydraulic pressure.

ダイス36a、36bは、例えば、2つの平面が所定の刃先角度をなしてノミ刃状のダイス先端を形成した平面ダイスからなる。ダイス36a、36bは、直線状の刃先を素材Mの長手方向に対して直交方向に当てられている。なお、ダイスは、例えば、ダイス先端に半球状の凸部が設けられたものでも良いし、凹凸が繰り返し形成された波形状に形成されたものでも良く、その他種々の鍛造条件に応じた任意のパターンのダイス形状のものが適宜選択されるとよい。   The dies 36a and 36b are formed of, for example, a flat die in which two flat surfaces form a chisel blade-shaped die tip with a predetermined cutting edge angle. The dies 36 a and 36 b have a linear cutting edge applied in a direction orthogonal to the longitudinal direction of the material M. The die may be, for example, a hemispherical protrusion provided at the tip of the die, or may be formed in a wave shape in which unevenness is repeatedly formed, or any other according to various forging conditions. A pattern having a die shape may be appropriately selected.

なお、摩擦試験機30には、図示しないが、電磁誘導によりダイス36と素材Mを加熱する加熱システム、加熱システムの温度コントロールシステム、ダイスの温度を計測する温度計測システム、ロードセル10等を冷却する冷却システム等が設けられている。   Although not shown, the friction tester 30 cools a heating system that heats the die 36 and the material M by electromagnetic induction, a temperature control system for the heating system, a temperature measurement system that measures the temperature of the die, the load cell 10, and the like. A cooling system or the like is provided.

摩擦試験を行う際には、押圧用シリンダ60を駆動して可動台56を水平方向Wに沿って移動させ、ダイス36a、36bで素材Mの両側から挟持しながら加圧する。そのダイス36a、36bにより一定の圧力で素材を加圧した状態で、駆動シリンダ52を駆動して素材Mを引き抜き方向(L)に沿って直線移動させて引き抜き駆動させることにより、該素材を長手方向に亘って平面的に押しつぶし状に塑性変形(Ma)させる。この際、ロードセル10により、ダイス36aに作用する荷重P及びそのx軸、y軸、z軸各方向の分力Px,Py,Pzを測定される。そして、荷重及び分力の測定結果を利用して、その荷重のかかる方向(θx、θy、θz)、さらには、素材表面の摩擦係数を所定の計算式を用いて求めることができる。上述のように、3次元ロードセルは、異なる3つの方向に向けて第1、第2、第3起歪部が設けられているので、荷重の測定を高い精度に正確に行える結果、摩擦係数の測定(算出)も高い精度で正確に行うことができる。なお、本実施形態では、摩擦試験機30には、図1の3次元ロードセル10を利用した例で説明したが、例えば、数tf以上の荷重がかかる場合には、図7の3次元ロードセル10aを利用してもよい。この際、x軸方向に向けて設けられた1つの第1起歪部161が素材Mの引き抜き方向に向けて平行に設定されるとよい。また、ロードセル10は、上記のような摩擦試験機30に限らず、実際に素材を所定の目的形状に塑性変形して製品を製造する引き抜き加工機に適用してもよい。さらに、3次元ロードセル10は、引き抜き加工機に限らず、例えば、加圧機、型プレス機、その他鍛造、鋳造等の生産ライン、材料や製品の試験機、等種々の荷重測定に適用することができる。   When the friction test is performed, the pressing cylinder 60 is driven to move the movable table 56 along the horizontal direction W, and pressurization is performed while sandwiching the material M from both sides with the dies 36a and 36b. In a state where the material is pressurized at a constant pressure by the dies 36a and 36b, the drive cylinder 52 is driven to linearly move the material M along the drawing direction (L) to drive the material. It is plastically deformed (Ma) in a flattened shape over a direction. At this time, the load cell 10 measures the load P acting on the die 36a and the component forces Px, Py, and Pz in the x-axis, y-axis, and z-axis directions. Then, using the measurement results of the load and the component force, the direction (θx, θy, θz) in which the load is applied, and the friction coefficient of the material surface can be obtained using a predetermined calculation formula. As described above, the three-dimensional load cell is provided with the first, second, and third strain generating portions in three different directions. As a result, the load can be accurately measured with high accuracy. Measurement (calculation) can also be performed accurately with high accuracy. In the present embodiment, the friction tester 30 has been described using an example in which the three-dimensional load cell 10 of FIG. 1 is used. For example, when a load of several tf or more is applied, the three-dimensional load cell 10a of FIG. May be used. At this time, it is preferable that one first strain generating portion 161 provided in the x-axis direction is set in parallel in the drawing direction of the material M. The load cell 10 is not limited to the friction test machine 30 as described above, and may be applied to a drawing machine that actually manufactures a product by plastically deforming a material into a predetermined target shape. Further, the three-dimensional load cell 10 is not limited to a drawing machine, and can be applied to various load measurements such as a pressurizing machine, a die press machine, a production line such as forging and casting, a testing machine for materials and products, and the like. it can.

上記のように本実施形態に係る3次元ロードセルでは、基部12と、基部12との間に間隙Gをあけて支持された荷重受部14と、一端を基部12に固定し他端を荷重受部14に固定して荷重受部を基部に支持させ、荷重受部14が荷重を受けた際に歪みを生じる複数の起歪部であり、任意の第1方向と、第1方向に交差する第2方向と、第1方向と第2方向を含む平面に交差する第3方向と、の3つの方向に向けて基部と荷重受部との間に渡架状に設けられた第1、第2、第3起歪部161、162、163と、第1、第2、第3起歪部にそれぞれ取り付けられたひずみゲージ18と、を含むことにより、従来のロードセルのように一方向の荷重測定しかできないものや、特許文献1のロードセルのようにひずみゲージが貼り付けられるアームがx軸、y軸方向の2方向のみに十字状に配置された2次元的な構成のものと比較して、荷重の3次元の各成分方向の分力を正確に計測でき、測定精度の高いロードセルを提供できる。したがって、例えば、摩擦試験機等に利用して、正確な摩擦係数の測定を可能とし、信頼度の高い摩擦試験や素材の潤滑剤の性能評価を実現できる。さらに、簡単な構造で高価値のロードセルを提供でき、荷重測定において広い分野に実用することができる。   As described above, in the three-dimensional load cell according to the present embodiment, the base 12 and the load receiving portion 14 supported with a gap G between the base 12 and one end fixed to the base 12 and the other end receiving the load. A plurality of strain generating portions that are fixed to the portion 14 and support the load receiving portion on the base, and generate strain when the load receiving portion 14 receives a load, and intersect the arbitrary first direction and the first direction. The first and second bridges are provided between the base portion and the load receiving portion in the three directions of the second direction and the third direction intersecting the plane including the first direction and the second direction. 2 and 3rd strain generating part 161,162,163, and the load of one direction like the conventional load cell by including the strain gauge 18 attached to each of the 1st, 2nd, 3rd strain generating part Those that can only be measured, and those that can be attached with a strain gauge, such as the load cell of Patent Document 1. Compared with a two-dimensional configuration in which the system is arranged in a cross shape only in the two directions of the x-axis and y-axis, the component force in the three-dimensional component direction of the load can be measured more accurately, and the measurement accuracy A high load cell can be provided. Therefore, for example, it can be used in a friction tester or the like to enable accurate measurement of the friction coefficient, thereby realizing a highly reliable friction test and performance evaluation of the material lubricant. Furthermore, a high-value load cell can be provided with a simple structure, and can be used in a wide range of fields in load measurement.

以上説明した本発明の3次元ロードセルは、上記した実施形態のみの構成に限定されるものではなく、特許請求の範囲に記載した本発明の本質を逸脱しない範囲において、任意の改変を行ってもよい。   The three-dimensional load cell of the present invention described above is not limited to the configuration of only the above-described embodiment, and may be modified arbitrarily without departing from the essence of the present invention described in the claims. Good.

本発明の3次元ロードセルは、例えば、計測機器、摩擦試験機や材料試験機等の試験機、プレス加工、鋳造又は鍛造加工等の加工機等その他任意の荷重測定に適用される。   The three-dimensional load cell of the present invention is applied to, for example, any other load measurement such as a measuring instrument, a testing machine such as a friction testing machine or a material testing machine, a processing machine such as press working, casting or forging.

10 3次元ロードセル
12 基部
14 荷重受部
161〜163 第1〜第3起歪部
18 ひずみゲージ
30 摩擦試験機
G 間隙
DESCRIPTION OF SYMBOLS 10 3D load cell 12 Base 14 Load receiving part 161-163 1st-3rd strain generation part 18 Strain gauge 30 Friction tester G Gap

Claims (5)

基部と、
基部との間に間隙をあけて支持された荷重受部と、
一端を基部に固定し他端を荷重受部に固定して荷重受部を基部に支持させ、荷重受部が荷重を受けた際に歪みを生じる複数の起歪部であり、任意の第1方向と、第1方向に交差する第2方向と、第1方向と第2方向を含む平面に交差する第3方向と、の3つの方向に向けて基部と荷重受部との間に渡架状に設けられた第1、第2、第3起歪部と、
第1、第2、第3起歪部にそれぞれ取り付けられたひずみゲージと、を含むことを特徴とする3次元ロードセル。
The base,
A load receiver supported with a gap between the base and
One end is fixed to the base portion, the other end is fixed to the load receiving portion, the load receiving portion is supported by the base portion, and a plurality of strain generating portions that generate distortion when the load receiving portion receives a load. Crossing between the base portion and the load receiving portion in three directions: a direction, a second direction intersecting the first direction, and a third direction intersecting a plane including the first direction and the second direction First, second, and third strain generating portions provided in a shape;
And a strain gauge attached to each of the first, second, and third strain generating portions.
第1、第2、第3起歪部は、互いに直交する3つの軸方向に沿って荷重受部と基部との間に渡架状に設けられたことを特徴とする請求項1記載の3次元ロードセル。   The first, second, and third strain generating portions are provided in a spanning manner between the load receiving portion and the base portion along three axial directions orthogonal to each other. Dimensional load cell. 3次元ロードセルは、素材を直線移動させながらダイスに引き抜き通過させて該素材を所望形状に塑性加工する引き抜き加工において、ダイスに作用する荷重を計測するロードセルであり、
荷重受部は、ダイスを取り付けるダイス取り付け部を有し、
第1起歪部は、素材の直線移動方向と平行な第1軸方向に沿って設けられ、
第2起歪部は、第1軸方向に直交となる第2軸方向に沿って設けられ、
第3起歪部は、第1軸方向及び第2軸方向にともに直交となる第3軸方向に沿って設けられたことを特徴とする請求項1又は2記載の3次元ロードセル。
The three-dimensional load cell is a load cell that measures a load acting on a die in a drawing process in which the material is drawn and passed through a die while being linearly moved to plastically process the material into a desired shape.
The load receiving part has a die attaching part for attaching a die,
The first strain portion is provided along a first axis direction parallel to the linear movement direction of the material,
The second strain generating portion is provided along the second axis direction orthogonal to the first axis direction,
3. The three-dimensional load cell according to claim 1, wherein the third strain generating portion is provided along a third axial direction that is orthogonal to both the first axial direction and the second axial direction.
基部は、一つの隅部が切欠き凹設された一部切欠き箱型形状に設けられ、
荷重受部は、基部の切欠き凹設位置に設置されたことを特徴とする請求項1ないし3のいずれかに記載の3次元ロードセル。
The base is provided in a partially cut-out box shape with one corner cut out and recessed,
The three-dimensional load cell according to any one of claims 1 to 3, wherein the load receiving portion is installed at a notch recessed position of the base portion.
基部と荷重受部と第1、第2、第3起歪部とが一体形成されたことを特徴とする請求項1ないし4のいずれかに記載の3次元ロードセル。
The three-dimensional load cell according to any one of claims 1 to 4, wherein the base portion, the load receiving portion, and the first, second, and third strain generating portions are integrally formed.
JP2010135689A 2010-06-15 2010-06-15 Three dimensional load cell Pending JP2012002554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135689A JP2012002554A (en) 2010-06-15 2010-06-15 Three dimensional load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135689A JP2012002554A (en) 2010-06-15 2010-06-15 Three dimensional load cell

Publications (1)

Publication Number Publication Date
JP2012002554A true JP2012002554A (en) 2012-01-05

Family

ID=45534731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135689A Pending JP2012002554A (en) 2010-06-15 2010-06-15 Three dimensional load cell

Country Status (1)

Country Link
JP (1) JP2012002554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278277A (en) * 2013-05-22 2013-09-04 北京航空航天大学 One-dimensional force sensor-based test platform for four-degree-of-freedom aircraft
CN103822833A (en) * 2014-03-12 2014-05-28 中国水电顾问集团中南勘测设计研究院有限公司 Size variable true triaxial test system
JP2016504009A (en) * 2013-01-25 2016-02-08 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド Magnetic alignment system and magnetic alignment method
WO2019000677A1 (en) * 2017-06-28 2019-01-03 山东大学 Full-automatic true triaxial tunnel and underground construction model testing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329224A (en) * 1986-07-23 1988-02-06 Mitsubishi Heavy Ind Ltd Six-component balance
JPH10274573A (en) * 1997-03-31 1998-10-13 Nitta Ind Corp Force sensor
JP2000304632A (en) * 1999-04-20 2000-11-02 Ohbayashi Corp Main body for load cell, and load cell using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329224A (en) * 1986-07-23 1988-02-06 Mitsubishi Heavy Ind Ltd Six-component balance
JPH10274573A (en) * 1997-03-31 1998-10-13 Nitta Ind Corp Force sensor
JP2000304632A (en) * 1999-04-20 2000-11-02 Ohbayashi Corp Main body for load cell, and load cell using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504009A (en) * 2013-01-25 2016-02-08 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド Magnetic alignment system and magnetic alignment method
KR101796535B1 (en) 2013-01-25 2017-11-10 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 Magnetic alignment method
CN103278277A (en) * 2013-05-22 2013-09-04 北京航空航天大学 One-dimensional force sensor-based test platform for four-degree-of-freedom aircraft
CN103822833A (en) * 2014-03-12 2014-05-28 中国水电顾问集团中南勘测设计研究院有限公司 Size variable true triaxial test system
WO2019000677A1 (en) * 2017-06-28 2019-01-03 山东大学 Full-automatic true triaxial tunnel and underground construction model testing system
US11579055B2 (en) 2017-06-28 2023-02-14 Shandong University Fully automatic true triaxial tunnel and underground project model test system

Similar Documents

Publication Publication Date Title
Freddi et al. Experimental stress analysis for materials and structures
Dong et al. FEA-based prediction of machined surface errors for dynamic fixture-workpiece system during milling process
JP2001059803A (en) Material tester, jig set for tensile test used therein and material testing method using the same
JP3710432B2 (en) Compression spring characteristic testing method and apparatus
JP2012002554A (en) Three dimensional load cell
Swanson Handbook of fatigue testing
CN103389202A (en) Method for testing bolt joint surface contact damping characteristics
CN105973550A (en) Integrated measuring device and method for five kinds of static rigidity of linear guide pair
CN205015236U (en) Compound load normal position nanometer indentation testing arrangement of drawing - bending
Groche et al. Overview and comparison of different sensor positions and measuring methods for the process force measurement in stamping operations
Guo et al. Development of a material testing machine with multi-dimensional loading capability
EP3059548B1 (en) Method and test assembly for determining machine parameters
Sandwell et al. Novel multi-degrees of freedom optical table dynamometer for force measurements
CN110088592B (en) Test jig and test method
Müller et al. Experimental analysis of the elastic boundary conditions of press machines for modelling the deep-drawing process: Centric and eccentric loading
Tao et al. Modelling and experimental investigation of a sensor–integrated workpiece–fixture system
CN108151944B (en) Flexible large deformation constant force transmits three-dimensional force sensing mechanisms
Sandwell et al. Development of multi-degrees of freedom optical table dynamometer
Jang et al. Analysis of vibration characteristics of one-axis heavy duty stages
CN113125260B (en) Elastic modulus testing method for small-size nonstandard test piece
JP2004347354A (en) Method and apparatus for measuring amount of metal mold displacement during press molding
Ma et al. A Novel Design Optimization Methodology for Machine Tools Based on Computer-Assisted Engineering and Sensor-Based Measurement Techniques
Lu Universal Testing Machine Frame Deformation
KR101536661B1 (en) Apparatus for measuring residual stress
Meyer et al. In Situ Investigations of Elastic Strain State in Deep Rolled 4140H Steel by Neutron Diffraction Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708