JP2012002513A - Conduit inspection device - Google Patents

Conduit inspection device Download PDF

Info

Publication number
JP2012002513A
JP2012002513A JP2010134747A JP2010134747A JP2012002513A JP 2012002513 A JP2012002513 A JP 2012002513A JP 2010134747 A JP2010134747 A JP 2010134747A JP 2010134747 A JP2010134747 A JP 2010134747A JP 2012002513 A JP2012002513 A JP 2012002513A
Authority
JP
Japan
Prior art keywords
pipe
information
water
branch
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010134747A
Other languages
Japanese (ja)
Inventor
Katsura Nanbu
桂 南部
Yasushi Hirata
康 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010134747A priority Critical patent/JP2012002513A/en
Publication of JP2012002513A publication Critical patent/JP2012002513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conduit inspection device capable of automating inspection of a buried piping and suitable for miniaturization.SOLUTION: A conduit inspection device comprises: position detecting means 7 for detecting the position of the device within a conduit; sound pressure detecting means 5 and water pressure detecting means 6 for detecting a sound pressure and a water pressure in the conduit; a branch determining circuit for determining a branch of a water stream based on a signal from the pressure detecting means; and control means 10 for controlling the position detecting means 7, the sound pressure detecting means 5, the water pressure detecting means 6, and the branch determining circuit. The control means 10 puts the sound pressure detecting means 5, the water pressure detecting means 6, and the position detecting means 7 into operation simultaneously while moving in the conduit to obtain information on a water leakage position.

Description

本発明は水道管などの管路検査方法および管路検査装置に関するものである。   The present invention relates to a pipe inspection method such as a water pipe and a pipe inspection device.

水道管路など地中に埋設された管路あるいは表面に断熱材や構造物が設けられた管路は、異常箇所の診断が困難である。そのため、上水道の管路では漏水や盗水が見過ごされ、水道料金の有収率が低下するという問題がある。世界の上水道では有効率が80%以下の水道事業者が多く、発展途上国では60%以下の例も多い。漏水の発生が多いと、送水ポンプの機能が十分に果たせず断水が発生したり、漏水のため地中に空洞を生じ道路が陥没したりして社会全般に与える影響が大きい。現在、日本の水道の有効率は約90%と世界で最も高い水準にあるが、配水管の法定耐用年数を迎えつつあるために、異常の発生を迅速に検出する需要が高まっている。   Diagnosis of abnormal locations is difficult for pipes embedded in the ground, such as water pipes, or pipes provided with a heat insulating material or structure on the surface. For this reason, there is a problem in that water leaks and stolen water are overlooked in water supply pipelines, and the yield of water charges decreases. In the world's waterworks, there are many water utilities with an effective rate of 80% or less, and in developing countries there are many cases of 60% or less. If there is a lot of water leakage, the function of the water pump will not function sufficiently and water will be cut off, or there will be a hollow in the ground due to water leakage and the road will collapse, which will have a large impact on society as a whole. Currently, the effective rate of water supply in Japan is about 90%, which is the highest level in the world. However, as the legal service life of water distribution pipes is approaching, there is an increasing demand for quickly detecting the occurrence of abnormalities.

一般に、漏水の件数が多いのは、本数および延長距離の長い末端の管路(配水小管や給水管)およびそれらの接合部である。一方、配水本管などより大きな口径の管で漏水が生じる件数は少ないものの、1件あたりの被害額や影響を与える範囲が大きいという特徴がある。後者には地震など管の継ぎ手に異常が生じておこる事例や、腐食によって管路の肉厚が減少した結果水圧により破裂する事例がある。   In general, the number of water leaks is large in the number of pipes and terminal pipes (distribution pipes and water supply pipes) having a long extension distance and their junctions. On the other hand, although there are few cases where water leakage occurs in a pipe with a larger diameter such as a water distribution main, there is a feature that the damage amount per case and the range of influence are large. In the latter case, there are cases where an abnormality occurs in the pipe joint such as an earthquake, and there are cases where the wall thickness is ruptured due to a decrease in the wall thickness due to corrosion.

現在、日本でおこなわれている漏水地点の検知は、次の三段階の手順を踏む。   Currently, the detection of water leakage points in Japan is performed in the following three steps.

第1段階:管路の多くの個所に設置されている水圧センサーなどにより異常の発生を検知する。または水道の使用者から漏水の通報を受ける。   First stage: The occurrence of abnormalities is detected by water pressure sensors installed at many places in the pipeline. Or get a water leak report from a water user.

第2段階:漏水発生地点の絞り込みを行う。   Second stage: Narrow down the points of water leakage.

第3段階:絞り込み地点に検査具を差し込み、漏水地点を確認する。   Third stage: Insert the inspection tool into the narrowing point and check the water leakage point.

第2段階には、技能者が路面または配水管施設の一部に音響センサーを接触させて漏水に起因する高周波音響を聴きながら漏水地点を探り当てる方法や水中に溶解したヘリウムなどのトレーサーガスの漏えいを地上で検出して地点を探り当てる方法などがある。   In the second stage, technicians contact an acoustic sensor with the road surface or a part of the distribution pipe facility to find the location of the leak while listening to high-frequency sound caused by water leak, or leak of tracer gas such as helium dissolved in water There is a method of detecting a spot on the ground and finding a point.

いずれも熟練した技能者による労力を伴う作業であり、かつ配水管は道路沿いに埋設されているために交通に配慮しながら作業を行う必要があるため、漏水地点の絞り込みには多くの労力、時間、費用を要する。漏水に迅速に対処するためには、第1段階のセンシング網を充実させるとともに第2段階の作業を自動化する技術の開発が必要である。   Both are labor-intensive work by skilled technicians, and the water distribution pipes are buried along the road, so it is necessary to work while considering traffic. It takes time and money. In order to quickly cope with water leakage, it is necessary to develop a technology for enhancing the first-stage sensing network and automating the second-stage work.

上記第2段階の作業を自動化するためには、次の条件を満たすことが理想的である。1.既存の配管設備に対する改造や新たな設備の設置は最小限であること。2.熟練したオペレーターを必要とせずに自動的に調査および結果の解析ができること。3.内径の小さな末端の管路にも対応可能であること。   In order to automate the work of the second stage, it is ideal to satisfy the following conditions. 1. Minimize modifications to existing piping equipment and installation of new equipment. 2. The ability to automatically investigate and analyze results without the need for skilled operators. 3. Applicable to end pipes with small inner diameter.

このような狙いをもった先行技術としては、電源、記憶装置、通信装置を備えたカメラを配水管内に投入して、水流により受動的に移動させながら管内を撮影し、回収した後に画像を解析する方法がある(特許文献1を参照)。また、2箇所以上の消火栓から配水管内に水中マイクロホンを導入し、漏水による高周波音響を複数のマイクロホンで受信し、複数箇所で受信した音響強度の比から漏水地点を推定する方法がある(特許文献2を参照
)。
As a prior art with such aim, a camera equipped with a power supply, storage device, and communication device is inserted into the water distribution pipe, the inside of the pipe is photographed while being passively moved by the water flow, and the image is analyzed after being collected There is a method of performing (see Patent Document 1). In addition, there is a method of introducing underwater microphones into water pipes from two or more fire hydrants, receiving high-frequency sound due to water leakage with a plurality of microphones, and estimating the water leakage point from the ratio of the sound intensity received at the plurality of locations (Patent Document) 2).

特開2007−10513号公報JP 2007-10513 A 特開平11−014492号公報JP-A-11-014492

しかしながら画像情報に基づく特許文献1の技術には、次の制約がある。第1に、画像に映らないあるいは確認の困難な微小なクラックを検出することが難しいことである。微小なクラックは配管内表面の錆で覆われていることがあるが、このような小さなクラックを起点として配管が破裂するなど大きな被害に発展しがちである。そのため、画像のみによる検知は、十分な信頼性を備えているとは言えない。第2に、撮影のために照明手段を要することである。このため電源が大きくなりがちであり小径の配管に対応することが難しくなったり、一度に調査できる距離に制約が出たりする。第3に、画像は情報量が大きいために大容量の記憶手段と高性能の解析手段を要することである。現実には解析結果を熟練技能者によって確認する人的作業が必要になると思われる。   However, the technique of Patent Document 1 based on image information has the following restrictions. First, it is difficult to detect minute cracks that do not appear in the image or are difficult to confirm. Although micro cracks are sometimes covered with rust on the inner surface of the pipe, they tend to develop into great damage such as pipe rupture starting from such a small crack. Therefore, it cannot be said that detection based only on images has sufficient reliability. Second, it requires illumination means for photographing. For this reason, the power supply tends to be large, making it difficult to handle small-diameter pipes, and limiting the distance that can be investigated at once. Third, since an image has a large amount of information, a large-capacity storage unit and a high-performance analysis unit are required. In reality, it seems that human work is required to confirm the analysis results by skilled technicians.

また、水中マイクロホンを配管内の特定地点に導入する特許文献2の技術は、マイクロホンの設置地点近辺に複数の漏水がある場合は原理的に推定できないという制約がある。また、漏水地点推定の精度は2つのマイクロホンの間隔が小さいほど高いが、消火栓等の既設設備の配置間隔が制約条件となり必要に応じて精度を上げることができない。結果的に、十分な位置検知の精度が得られないことが多い。   In addition, the technique of Patent Document 2 that introduces an underwater microphone to a specific point in a pipe has a restriction that it cannot be estimated in principle when there are a plurality of leaks in the vicinity of the microphone installation point. In addition, the accuracy of the water leak point estimation is higher as the interval between the two microphones is smaller, but the arrangement interval of existing equipment such as a fire hydrant becomes a limiting condition, and the accuracy cannot be increased as necessary. As a result, sufficient position detection accuracy is often not obtained.

本発明は、上記の課題を解決し、検査の自動化が可能で小型化に適した配管検査方法および配管検査装置を実現することを目的とする。   An object of the present invention is to solve the above problems and to realize a pipe inspection method and a pipe inspection apparatus that can automate inspection and are suitable for downsizing.

前記従来の課題を解決するために、本発明の管路検査装置は、液体が流れる管路内で自位置を検知する自位置検知手段と、前記管路内の水圧または音圧を受動的に検知する圧力検知手段と、前記圧力検知手段による信号にもとづいて水流の分岐を判定する分岐判定回路と、前記自位置検知手段と前記圧力検知手段と前記分岐判定回路とを制御する制御手段とを備え、前記制御手段は、前記管路内を移動しながら前記圧力検知手段と前記自位置検知手段とを同時に作動させることにより漏水の位置情報を得るようにしたものである。   In order to solve the above-described conventional problems, a pipe inspection device according to the present invention passively detects a self-position detecting means for detecting a self-position in a pipe through which a liquid flows, and water pressure or sound pressure in the pipe. Pressure detecting means for detecting, a branch determining circuit for determining a branch of a water flow based on a signal from the pressure detecting means, and a control means for controlling the self-position detecting means, the pressure detecting means, and the branch determining circuit. The control means is configured to obtain the position information of water leakage by simultaneously operating the pressure detection means and the self-position detection means while moving in the pipe.

本発明の検査方法および検査装置は、管内で管路検査装置を移動しながら圧力情報を検知することによって、漏水に起因する高周波の発生地点や水圧の変化地点を感度良く検知することが可能であり、異常を精度よく検知可能である。また、電力消費量が比較的小さく、検知する信号量が小さいために電源部や記憶装置を含め装置全体を小型化することに適している。   The inspection method and inspection apparatus of the present invention can detect a high frequency generation point and a water pressure change point due to water leakage with high sensitivity by detecting pressure information while moving the pipe inspection device in the pipe. Yes, it is possible to detect abnormalities with high accuracy. Further, since the power consumption is relatively small and the amount of signal to be detected is small, it is suitable for downsizing the entire apparatus including the power supply unit and the storage device.

本発明の実施の形態1における管路検査装置の全体構成図Overall configuration diagram of a pipeline inspection apparatus according to Embodiment 1 of the present invention 本発明の実施の形態1における管路検査装置の検査装置本体の見取り図The sketch of the inspection apparatus main body of the pipeline inspection apparatus in Embodiment 1 of this invention 本発明の実施の形態1における検査方法を説明するための説明図Explanatory drawing for demonstrating the inspection method in Embodiment 1 of this invention その他の検査方法を説明するための説明図Explanatory drawing for explaining other inspection methods その他の検査方法を説明するための説明図Explanatory drawing for explaining other inspection methods

第1の発明は、液体が流れる管路内で自位置を検知する自位置検知手段と、前記管路内の水中を伝播する圧力を検知する圧力検知手段と、前記圧力検知手段による信号にもとづいて漏水の発生を検出する漏水検出回路と、前記自位置検知手段と前記圧力検知手段と前記漏水検出回路とを制御する制御手段とを備え、前記制御手段は、前記管路内を長手方向にそって移動しながら前記圧力検知手段と前記自位置検知手段とを同時に作動させて収集した信号に基づいて前記漏水検出回路を作動させて漏水発生位置情報を得るようにした管路検査方法である。管内で管路検査装置を移動しながら圧力情報を検知することによって、漏水に起因する特有の圧力情報を感度良く検知することが可能であり、かつ漏水の発生地点を精度よく検知することができる。また、電力消費量が比較的小さく、検知する信号量が小さいために電源部や記憶装置を含め装置全体を小型化することに適している。   The first invention is based on a self-position detecting means for detecting a self-position in a pipeline through which a liquid flows, a pressure detecting means for detecting a pressure propagating in water in the pipe, and a signal from the pressure detecting means. A leakage detection circuit for detecting the occurrence of leakage, and a control means for controlling the self-position detection means, the pressure detection means, and the leakage detection circuit, and the control means extends in the longitudinal direction in the pipeline. It is a pipe line inspection method in which the leak detection circuit is operated by operating the leak detection circuit based on signals collected by simultaneously operating the pressure detection means and the self-position detection means while moving along the line. . By detecting the pressure information while moving the pipe inspection device in the pipe, it is possible to detect the pressure information peculiar to water leakage with high sensitivity and to detect the occurrence point of water leakage with high accuracy. . Further, since the power consumption is relatively small and the amount of signal to be detected is small, it is suitable for downsizing the entire apparatus including the power supply unit and the storage device.

第2の発明は、特に、第1の発明の管路検査方法において、圧力検知手段は、所定周波数の音響音圧を検知する音圧検知手段であり、制御手段は移動しながら所定の音圧を検知することにより漏水の発生を判断するようにしたものである。   In particular, in the pipe inspection method according to the first aspect, the pressure detection means is a sound pressure detection means for detecting an acoustic sound pressure of a predetermined frequency, and the control means is a predetermined sound pressure while moving. The occurrence of water leakage is determined by detecting the above.

第3の発明は、特に、第1の発明の管路検査方法において、制御手段は、管路への投入位置および前記管路からの回収位置を入力する入力手段を有し、検出された漏水位置情報を前記管路への投入位置情報および回収位置情報に基づいて補正するようにしたものである。   According to a third invention, in particular, in the pipe inspection method according to the first invention, the control means has an input means for inputting a charging position into the pipe and a recovery position from the pipe, and the detected water leakage The position information is corrected based on the input position information and the collection position information to the conduit.

第4の発明は、特に、第1〜3のいずれか1つの発明の管路検査方法において、圧力検知手段は、水圧を検知する水圧検知手段と、所定周波数の音響音圧を検知する音圧検知手段の両方を備え、制御手段は、前記水圧検知手段により得られた水圧情報に基づいて管路の分岐を判定する分岐判定回路と、別途得られた管路の配置情報と照合する管路情報照合手段とを有し、前記分岐判定回路によって判定された管路の分岐位置情報と前記管路の配置情報とを照合し、もっとも両者の一致度が高くなるように前記管路の分岐位置情報を補正のうえ漏水位置情報を検出するようにしたものである。   In a fourth aspect of the invention, in particular, in the pipe line inspection method according to any one of the first to third aspects of the invention, the pressure detection means includes a water pressure detection means for detecting a water pressure, and a sound pressure for detecting an acoustic sound pressure of a predetermined frequency. Both of the detection means, the control means, a branch determination circuit that determines the branch of the pipeline based on the water pressure information obtained by the water pressure detection means, and a pipeline that collates with the arrangement information of the pipeline obtained separately And an information collating unit, collating the branch position information of the pipeline determined by the branch determination circuit with the arrangement information of the pipeline, and the branch position of the pipeline so that the degree of coincidence between them is the highest The leak position information is detected after correcting the information.

第5の発明は、特に、第4の発明の管路検査方法において、管路情報照合手段は、補正後の管路の分岐位置情報と管路の配置情報とを再度照合し、不一致な分岐を異常分岐水流と判断するようにしたものである。   According to a fifth aspect of the invention, in particular, in the pipe inspection method according to the fourth aspect of the invention, the pipe information collating unit collates the corrected branch position information of the pipe with the arrangement information of the pipe again, and the inconsistent branch Is determined to be an abnormal branch water flow.

第6の発明は、特に、第5の発明の管路検査方法において、管路情報照合手段は、管路情報に分岐管路が記載されていない位置で水流の分岐が測定された場合に漏水または盗水が発生していると判断するようにしたものである。   In a sixth aspect of the invention, in particular, in the pipe inspection method according to the fifth aspect of the invention, the pipe information collating means detects water leakage when a branch of water flow is measured at a position where no branch pipe is described in the pipe information. Alternatively, it is determined that theft has occurred.

第7の発明は、特に、第5の発明の管路検査方法において、管路情報照合手段は、管路情報に分岐管路が記載されている位置で水流の分岐が測定されなかった場合に前記分岐水路が閉じていると判断するようにしたものである。   According to a seventh aspect of the invention, in particular, in the pipe inspection method of the fifth aspect, the pipe information verification means is provided when the branch of the water flow is not measured at the position where the branch pipe is described in the pipe information. It is determined that the branch water channel is closed.

第8の発明は、特に、第1〜7のいずれか1つの発明の管路検査方法を用いた管路検査装置で、検知情報または判定結果情報を記憶する記憶手段と、前記記憶手段に情報を外部機器に出力する情報接続手段とを有したものである。   The eighth invention is a pipe inspection device using the pipe inspection method according to any one of the first to seventh inventions, in particular, storage means for storing detection information or determination result information, and information in the storage means Is connected to an external device.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における管路検査装置の全体構成図を示すものであ
る。
(Embodiment 1)
FIG. 1 is an overall configuration diagram of a pipe line inspection device according to a first embodiment of the present invention.

図1において、管路検査装置は検査装置本体1と、検査装置本体1に接続されたケーブル2と、検査装置本体1を無線充電する無線給電手段3と、検査装置本体1と情報の無線受送信を行なう無線受送信手段4とから構成される。また、検査装置本体1は、水中を伝播する音響の周波数および音圧を検知する音圧検知手段5と、管路の水圧を検知する水圧検知手段6と、角度と加速度情報を検知することにより検査装置本体1の自位置を検知するジャイロスコープなどの自位置検知手段7と、検知情報を記憶する記憶手段8と、無線受送信手段4との間で情報の受送信をおこなう情報接続手段9と、制御手段10と、二次電池11を防水性の筐体内に収納する。検査装置本体1内に収納された二次電池11は無線給電手段3によって充電される。   In FIG. 1, a pipe inspection apparatus includes an inspection apparatus main body 1, a cable 2 connected to the inspection apparatus main body 1, wireless power feeding means 3 for wirelessly charging the inspection apparatus main body 1, and wireless reception of information with the inspection apparatus main body 1. It is comprised from the radio | wireless transmission / reception means 4 which performs transmission. Further, the inspection apparatus main body 1 detects the angle and acceleration information by detecting the sound pressure detecting means 5 for detecting the frequency and sound pressure of the sound propagating in the water, the water pressure detecting means 6 for detecting the water pressure in the pipeline, and the angle and acceleration information. Information connecting means 9 for receiving and transmitting information between the own position detecting means 7 such as a gyroscope for detecting the own position of the inspection apparatus main body 1, the storage means 8 for storing the detected information, and the wireless transmitting / receiving means 4. And the control means 10 and the secondary battery 11 are accommodated in a waterproof housing. The secondary battery 11 housed in the inspection apparatus main body 1 is charged by the wireless power feeding means 3.

検査装置本体1は、水と同じく比重が約1.0に設けられ、水中で中性浮力を発現する。検査装置本体1の短軸方向のサイズは10〜20mm程度であり、内径が75mm以上の一般的な配水小管に投入可能なサイズである。   The inspection apparatus main body 1 is provided with a specific gravity of about 1.0 like water and exhibits neutral buoyancy in water. The size of the inspection apparatus main body 1 in the minor axis direction is about 10 to 20 mm, and is a size that can be put into a general water distribution small pipe having an inner diameter of 75 mm or more.

以上のように構成された管路検査装置について、まず検査の手順を説明する。図3(a)に示すように、検査装置本体1は、投入口13から上水道の管路14内に投入され、下流の回収口15において管路14から回収される。投入口13や回収口15としては、消火栓の補修弁などが利用可能である。上水道の配水管網は網目状に設けられるが、管路内の水圧や流速の管理情報に基づいて投入口13および回収口15を選定することができる。   First, the inspection procedure for the pipe inspection apparatus configured as described above will be described. As shown in FIG. 3 (a), the inspection apparatus main body 1 is introduced into the water supply pipe 14 from the inlet 13 and is recovered from the pipe 14 at the downstream recovery port 15. A fire hydrant repair valve or the like can be used as the input port 13 and the recovery port 15. Although the water distribution pipe network of the water supply is provided in a mesh shape, the input port 13 and the recovery port 15 can be selected based on the management information of the water pressure and flow velocity in the pipe.

投入する管路は、直線的な管路を基本的に想定しており、下流でT字分岐する場合は、分岐の前に検査装置本体1を回収する。ケーブル2は、万が一、検査装置本体1が予定通りに回収できなかった場合に備えて、検査装置本体1の所在が管路14内で不明になることを防止するために接続される。   The line to be introduced is basically assumed to be a straight line, and when the T-shaped branch is downstream, the inspection apparatus main body 1 is collected before the branch. The cable 2 is connected to prevent the location of the inspection apparatus body 1 from becoming unknown in the pipe 14 in case the inspection apparatus body 1 cannot be recovered as scheduled.

また、管路が支管を有する場合、投入前の予測に反して検査装置本体1が支管に進入する恐れがある。そのため、図2に示すように、既知の支管の最大の内径φ1が検査装置本体1の外径φ2以上である場合には、φ1よりも大きな外径φ3を持つ進入防止手段12を検査装置本体1の外部に設置する。さまざまな検査対象の配管に合わせてさまざまなサイズのφ3を持つ進入防止手段12が用意される。進入防止手段12は、管路14の内面に触れても音響ノイズを出さないようにシリコーンラバーなどで覆われる。また、進入防止手段12の内部に空洞を設けることによって、進入防止手段12単独の比重は約1.0になるように作られる。   Moreover, when a pipe line has a branch pipe, there exists a possibility that the test | inspection apparatus main body 1 may approach into a branch pipe contrary to prediction before injection | throwing-in. Therefore, as shown in FIG. 2, when the maximum inner diameter φ1 of the known branch pipe is equal to or larger than the outer diameter φ2 of the inspection apparatus main body 1, the intrusion prevention means 12 having an outer diameter φ3 larger than φ1 is provided as the inspection apparatus main body. Install outside of 1. Ingress prevention means 12 having φ3 of various sizes is prepared in accordance with various pipes to be inspected. The intrusion prevention means 12 is covered with silicone rubber or the like so as not to generate acoustic noise even if it touches the inner surface of the conduit 14. Further, by providing a cavity inside the entry preventing means 12, the specific gravity of the entry preventing means 12 alone is made to be about 1.0.

管路14内に投入された検査装置本体1は、流水によって受動的に移動しながら音響信号および水圧を検知して記憶手段8に検知情報を記憶する。検査装置本体1が地上に回収された後、使用者は無線受送信手段4と情報接続手段9を協働させて検知情報をコンピューターなどの制御手段10´に取り込み、コンピュータソフトウェア上の漏水検出回路および管路情報照合手段によって異常発生の地点を解析する。以下、音圧および水圧信号に分けて検知方法と解析方法を順に説明する。   The inspection apparatus main body 1 thrown into the pipe 14 detects the acoustic signal and the water pressure while passively moving with running water, and stores the detection information in the storage unit 8. After the inspection apparatus main body 1 is collected on the ground, the user takes the detection information into the control means 10 'such as a computer by cooperating the wireless transmission / reception means 4 and the information connection means 9, and detects the water leakage detection circuit on the computer software. And the point of occurrence of abnormality is analyzed by the pipe line information collating means. Hereinafter, the detection method and the analysis method will be described in order for sound pressure and water pressure signals.

水圧0.1MPa以上の管路で漏水が起こった場合、漏水地点で300Hz〜数10kHz域の高周波音響が発生する。同様の高周波音響は、分岐箇所などで局所的に水流が乱れて発生する高速水流によっても発生するが、一般に漏水地点では音圧が比較的大きいため区別がつく。   When water leakage occurs in a pipe having a water pressure of 0.1 MPa or more, high-frequency sound in the region of 300 Hz to several tens of kHz is generated at the water leakage point. The same high-frequency sound is also generated by a high-speed water flow that is locally disturbed at a branch point or the like, but can generally be distinguished because the sound pressure is relatively high at a water leakage point.

図3(b)は、検査装置本体1の音圧検知手段5により検知された音圧データを管路1
4の水平距離を横軸にしてプロットした一例である。水平距離は、自位置検知手段7によって得られた位置情報から得られた計測値である。本例では、投入口13を横軸の原点として距離Lxの地点で所定の閾値Tを越える音響が、距離La、Lb、Lcの地点において局所的な微弱な音響が計測された。この場合、漏水検出回路は距離Lxの地点で漏水が発生していると判定する。また、距離Ldの地点で計測された音圧の急激な低下は、回収口15から検査装置本体1が回収されたことによる。
FIG. 3B shows the sound pressure data detected by the sound pressure detecting means 5 of the inspection apparatus main body 1 as the pipe line 1.
It is an example plotted with the horizontal distance of 4 as the horizontal axis. The horizontal distance is a measured value obtained from the position information obtained by the own position detecting means 7. In this example, the sound exceeding the predetermined threshold T at the point of the distance Lx with the insertion port 13 as the origin of the horizontal axis, and the weak local sound at the points of the distances La, Lb, and Lc were measured. In this case, the water leakage detection circuit determines that water leakage has occurred at the distance Lx. Further, the sudden drop in the sound pressure measured at the point of the distance Ld is due to the inspection apparatus body 1 being recovered from the recovery port 15.

投入口13と回収口15間の実際の距離LD(図3(d))と計測された距離Ldとの差は自位置検知手段7による計測誤差が集積したものである。制御手段10´に取り込まれた音圧情報(図3(b))は、管路情報照合手段によって既知の管路情報(図3(c))と照合されて、距離La、Lb、Lcにおける音圧の局所的な上昇は支管A、B、Cへの水流の分岐箇所での乱流発生によるものと判定される。管路情報照合手段は、支管A、B、Cと回収口15の既知の配置距離L、L、L、Lと計測された距離La、Lb、Lc、Ldとが一致するように水平距離情報を補正して、補正後の情報(図3(d))が得られる。補正後の漏水発生位置Lxを使用者に知らせる。 The difference between the actual distance LD between the input port 13 and the recovery port 15 (FIG. 3 (d)) and the measured distance Ld is a result of accumulation of measurement errors by the self-position detecting means 7. The sound pressure information (FIG. 3 (b)) taken into the control means 10 ′ is collated with known pipe line information (FIG. 3 (c)) by the pipe line information collating means, and at the distances La, Lb, Lc. It is determined that the local increase in sound pressure is due to the occurrence of turbulent flow at the branch point of the water flow to the branch pipes A, B, and C. The pipeline information collating means is configured so that the known arrangement distances L A , L B , L C , and L D of the branch pipes A, B, and C and the recovery port 15 coincide with the measured distances La, Lb, Lc, and Ld. By correcting the horizontal distance information, corrected information (FIG. 3D) is obtained. The user is notified of the corrected leak position Lx.

図4は、音圧検知手段5と水圧検知手段6を併用して漏水を検出する例である。図3の例と異なるところを中心に説明する。図4(b)(c)に、検査装置本体1の音圧検知手段5により検知された音圧データと水圧検知手段6により検知された水圧データを管路14の水平距離(補正後)を横軸にしてそれぞれプロットした図を示す(本例では補正前のデータは割愛してある)。   FIG. 4 is an example in which water leakage is detected by using the sound pressure detection means 5 and the water pressure detection means 6 in combination. A description will be given centering on differences from the example of FIG. 4 (b) and 4 (c), the horizontal distance (after correction) of the pipe 14 is calculated from the sound pressure data detected by the sound pressure detection means 5 of the inspection apparatus body 1 and the water pressure data detected by the water pressure detection means 6. A graph plotted on the horizontal axis is shown (in this example, the data before correction is omitted).

図4(b)に示されるように、漏水特有の音圧閾値Tを超える音響信号は検出されない。その一方で、管路図などの管路情報(図4(d))からは想定されない位置(距離Lx)に水圧の低下が検出された(図4(c))。このような場合、距離Lxにおいて、管路の継ぎ手が外れるなど比較的大流量の漏水が発生している、または盗水が行われていると判定される。   As shown in FIG. 4B, an acoustic signal exceeding the sound pressure threshold T specific to water leakage is not detected. On the other hand, a drop in water pressure was detected at a position (distance Lx) that was not assumed from the pipeline information (Fig. 4 (d)) such as a pipeline diagram (Fig. 4 (c)). In such a case, at a distance Lx, it is determined that a relatively large flow rate of water leakage has occurred, for example, the pipe joint has been disconnected, or that water has been stolen.

漏水箇所の面積がある程度大きい場合、漏水が高圧の噴水とならず特有の高周波を発生しないため、深刻な異常にもかかわらず音響方式単独では検知しにくい。また、諸外国などで圧送設備の性能や不具合により水圧が0.1MPa以下の場合にも音響方式単独では検知しにくい。このように両検知手段はそれぞれ長所と短所があるため、管路で発生する問題が予め想定できる場合は問題に応じて使い分けるか、または両検知手段を併用して調査することが好ましい。   When the area of the water leakage location is large to some extent, the water leakage does not become a high-pressure fountain and does not generate a specific high frequency, so that it is difficult to detect the sound system alone despite a serious abnormality. In addition, the acoustic system alone is difficult to detect even when the water pressure is 0.1 MPa or less due to the performance or problems of the pumping equipment in other countries. As described above, both detection means have advantages and disadvantages. Therefore, when a problem occurring in a pipeline can be assumed in advance, it is preferable to use either according to the problem or to investigate using both detection means in combination.

また、図5は水圧検知手段6と管路情報照合手段を併用した場合のもう一つの応用例である。管路情報照合手段は、支管A、Cと回収口15の既知の配置距離L、L、Lと計測された距離La、Lc、Ldとが一致するように水平距離情報を補正して、補正後の情報(図5(d))が得られる。さらに管路情報照合手段は、管路情報(図5(c))と補正後の情報(図5(d))とを比較して、支管Bの存在によって想定される水圧変化がLの位置に見られないことを見出し、支管Bの閉鎖異常Yを判定する。 FIG. 5 shows another application example when the water pressure detecting means 6 and the pipe line information collating means are used in combination. The pipe line information matching means corrects the horizontal distance information so that the known arrangement distances L A , L C , and L D of the branch pipes A and C and the recovery port 15 coincide with the measured distances La, Lc, and Ld. Thus, the corrected information (FIG. 5D) is obtained. Furthermore conduit information collating means compares the conduit information (FIG. 5 (c)) and the corrected information (FIG. 5 (d)), the water pressure changes that are contemplated by the presence of a branch pipe B is L B It finds that it cannot be seen in the position, and determines the closing abnormality Y of the branch pipe B.

以上のように、本発明にかかる管路検査方法および管路検査装置は、検査装置本体を管内で移動しながら異常個所を感度良く、かつ正確に検知することができるので、断熱材や防音材を巻きつけられて外側から検査しにくい液体管路の検査にも適用できる。   As described above, the pipe inspection method and pipe inspection apparatus according to the present invention can detect an abnormal part with high sensitivity and accuracy while moving the inspection apparatus main body in the pipe, so that the heat insulating material and the soundproofing material It can also be applied to inspection of liquid pipes that are difficult to inspect from the outside.

1 検査装置本体
2 ケーブル
3 無線給電手段
4 無線受送信手段
5 音圧検知手段
6 水圧検知手段
7 自位置検知手段
8 記憶手段
9 情報接続手段
10 制御手段
10´ 制御手段
11 二次電池
12 進入防止手段
13 投入口
14 管路
15 回収口
16 確認地点
DESCRIPTION OF SYMBOLS 1 Inspection apparatus main body 2 Cable 3 Wireless power supply means 4 Wireless transmission / reception means 5 Sound pressure detection means 6 Water pressure detection means 7 Self-position detection means 8 Storage means 9 Information connection means 10 Control means 10 'Control means 11 Secondary battery 12 Invasion prevention Means 13 Input port 14 Pipe line 15 Recovery port 16 Confirmation point

Claims (8)

液体が流れる管路内で自位置を検知する自位置検知手段と、前記管路内の水中を伝播する圧力を検知する圧力検知手段と、前記圧力検知手段による信号にもとづいて漏水の発生を検出する漏水検出回路と、前記自位置検知手段と前記圧力検知手段と前記漏水検出回路とを制御する制御手段とを備え、前記制御手段は、前記管路内を長手方向に沿って移動しながら前記圧力検知手段と前記自位置検知手段とを同時に作動させて収集した信号に基づいて前記漏水検出回路を作動させて漏水発生位置情報を得るようにした管路検査装置。 Self-position detecting means for detecting its own position in the pipe through which the liquid flows, pressure detecting means for detecting the pressure propagating in the water in the pipe, and detecting the occurrence of water leakage based on a signal from the pressure detecting means And a control means for controlling the self-position detection means, the pressure detection means, and the water leakage detection circuit, and the control means moves while moving along the longitudinal direction in the pipeline. A pipeline inspection apparatus that operates the water leakage detection circuit based on signals collected by simultaneously operating the pressure detection unit and the self-position detection unit, and obtains the water leakage occurrence position information. 圧力検知手段は、所定周波数の音響音圧を検知する音圧検知手段であり、制御手段は移動しながら所定の音圧を検知することにより漏水の発生を判断するようにした請求項1に記載の管路検査装置。 The pressure detection means is a sound pressure detection means for detecting an acoustic sound pressure of a predetermined frequency, and the control means determines the occurrence of water leakage by detecting the predetermined sound pressure while moving. Pipe inspection device. 制御手段は、管路への投入位置および前記管路からの回収位置を入力する入力手段を有し、検出された漏水位置情報を前記管路への投入位置情報および回収位置情報に基づいて補正するようにした請求項1または2に記載の管路検査方装置。 The control means has an input means for inputting the input position to the pipe line and the collection position from the pipe line, and corrects the detected water leakage position information based on the input position information and the collection position information to the pipe line. The pipe line inspection method device according to claim 1 or 2, wherein the apparatus is used. 圧力検知手段は、水圧を検知する水圧検知手段と、所定周波数の音響音圧を検知する音圧検知手段の両方を備え、制御手段は、前記水圧検知手段により得られた水圧情報に基づいて管路の分岐を判定する分岐判定回路と、別途得られた管路の配置情報と照合する管路情報照合手段とを有し、前記分岐判定回路によって判定された管路の分岐位置情報と前記管路の配置情報とを照合し、もっとも両者の一致度が高くなるように前記管路の分岐位置情報を補正のうえ漏水位置情報を検出するようにした請求項1〜3のいずれか1項に記載の管路検査装置。 The pressure detection means includes both a water pressure detection means for detecting a water pressure and a sound pressure detection means for detecting an acoustic sound pressure of a predetermined frequency, and the control means is a pipe based on the water pressure information obtained by the water pressure detection means. A branch determination circuit for determining a branch of the road, and pipe information collating means for collating with separately obtained pipe arrangement information, the branch position information of the pipe determined by the branch judgment circuit and the pipe In any one of Claims 1-3 which collated with the arrangement information of a road, and detected water leak position information after correcting the branch position information of the said pipe | tube so that both coincidence might become the highest. The pipe line inspection device described. 管路情報照合手段は、補正後の管路の分岐位置情報と管路の配置情報とを再度照合し、不一致な分岐を異常分岐水流と判断するようにした請求項4に記載の管路検査装置。 5. The pipe inspection according to claim 4, wherein the pipe information collating means collates the corrected branch position information with the pipe arrangement information again, and determines that the inconsistent branch is an abnormal branch water flow. apparatus. 管路情報照合手段は、管路情報に分岐管路が記載されていない位置で水流の分岐が測定された場合に漏水または盗水が発生していると判断するようにした請求項5に記載の管路検査装置。 The pipe line information collating means judges that water leakage or stealing has occurred when a branch of water flow is measured at a position where no branch pipe line is described in the pipe line information. Pipe inspection device. 管路情報照合手段は、管路情報に分岐管路が記載されている位置で水流の分岐が測定されなかった場合に前記分岐水路が閉じていると判断するようにした請求項5に記載の管路検査装置。 The pipe line information collating means judges that the branch water path is closed when the branch of the water flow is not measured at the position where the branch pipe line is described in the pipe line information. Pipe inspection device. 検知情報または判定結果情報を記憶する記憶手段と、前記記憶手段に情報を外部機器に出力する情報接続手段とを有した請求項1〜7のいずれか1項に記載の管路検査装置。 The pipe line inspection device according to any one of claims 1 to 7, further comprising: a storage unit that stores detection information or determination result information; and an information connection unit that outputs information to an external device in the storage unit.
JP2010134747A 2010-06-14 2010-06-14 Conduit inspection device Pending JP2012002513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134747A JP2012002513A (en) 2010-06-14 2010-06-14 Conduit inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134747A JP2012002513A (en) 2010-06-14 2010-06-14 Conduit inspection device

Publications (1)

Publication Number Publication Date
JP2012002513A true JP2012002513A (en) 2012-01-05

Family

ID=45534694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134747A Pending JP2012002513A (en) 2010-06-14 2010-06-14 Conduit inspection device

Country Status (1)

Country Link
JP (1) JP2012002513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150080751A (en) * 2014-01-02 2015-07-10 대우조선해양 주식회사 Wireless power supply device and method for submarine pipe inspection mobile platform to drive
CN105229544A (en) * 2013-03-27 2016-01-06 威尔科股份公司 To embark on journey inspection and/or the method for proving installation and the equipment for performing this method
KR101835113B1 (en) * 2017-10-17 2018-03-07 윤영준 Endoscope diagnosis device for pipeline
KR101905584B1 (en) * 2018-02-22 2018-10-10 한국로봇융합연구원 Wireless Autonomy Swimming Inspection Robot for a Waterworks Pipe And Inspection Method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229544A (en) * 2013-03-27 2016-01-06 威尔科股份公司 To embark on journey inspection and/or the method for proving installation and the equipment for performing this method
JP2016517954A (en) * 2013-03-27 2016-06-20 ヴィルコ・アーゲー Method for inspecting and / or testing a device in-line and apparatus for performing such a method
CN105229544B (en) * 2013-03-27 2018-11-02 威尔科股份公司 The method for inspection and/or the test device of embarking on journey and the equipment for executing this method
KR20150080751A (en) * 2014-01-02 2015-07-10 대우조선해양 주식회사 Wireless power supply device and method for submarine pipe inspection mobile platform to drive
KR102122094B1 (en) * 2014-01-02 2020-06-11 대우조선해양 주식회사 Wireless power supply device for submarine pipe inspection mobile platform to drive
KR101835113B1 (en) * 2017-10-17 2018-03-07 윤영준 Endoscope diagnosis device for pipeline
KR101905584B1 (en) * 2018-02-22 2018-10-10 한국로봇융합연구원 Wireless Autonomy Swimming Inspection Robot for a Waterworks Pipe And Inspection Method

Similar Documents

Publication Publication Date Title
US8072340B2 (en) Water leakage monitoring system
KR101046216B1 (en) Smart-ball for detecting a leakage position in water pipes embedded in underground
KR101563279B1 (en) Method and System for detecting water leak location based on elastic wave velocity measured by section in pipe
Ismail et al. Water pipeline monitoring system using vibration sensor
KR101557865B1 (en) System for diagnosing ground subsidence using cctv data of sewerage and gpr data of upper ground, and method for the same
KR101749519B1 (en) Leakage detecting apparatus
KR101679519B1 (en) Pipe nondestructive inspection system and inspection method using the same
JP2012002513A (en) Conduit inspection device
CN109737317B (en) Infrasonic wave positioning system and method for fluid pipeline leakage
JP2011196745A (en) Leakage detection device and leakage detection method
KR102254655B1 (en) Leakage detction method and leakage detection system of underground pipe for fluid
KR20110121994A (en) Leak detecting apparatus into and the detecting system for pipelines
Mergelas et al. Leak locating method for precommissioned transmission pipelines: North American case studies
KR101762614B1 (en) Monitoring Equipment for water supply pipe
JP5650854B1 (en) Leakage detection method for underground water pipes
KR20140086507A (en) Method and exploration system for drainage pipe
JP2019100729A (en) Information presentation system, information presentation method, and program
KR102077658B1 (en) Method for diagnosing underground facilities using TDR and system for diagnosing underground facilities using it
US7222549B2 (en) Systems and methods for determining the location of a pig in a pipeline
JP2012002512A (en) Conduit inspection device
KR20200073563A (en) Water leak detecting system of water pipe network
KR101357810B1 (en) capsule check system for check in tube.
Kurtz Developments in a free-swimming acoustic leak detection system for water transmission pipelines
KR101965690B1 (en) A monitoring system of water supply pipeline
KR20200009314A (en) Sinkhole prediction system by measuring leakage of water supply and drainage