JP2012002228A - Member including cooling passage therein - Google Patents

Member including cooling passage therein Download PDF

Info

Publication number
JP2012002228A
JP2012002228A JP2011186723A JP2011186723A JP2012002228A JP 2012002228 A JP2012002228 A JP 2012002228A JP 2011186723 A JP2011186723 A JP 2011186723A JP 2011186723 A JP2011186723 A JP 2011186723A JP 2012002228 A JP2012002228 A JP 2012002228A
Authority
JP
Japan
Prior art keywords
cooling
rib
flow
ribs
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011186723A
Other languages
Japanese (ja)
Other versions
JP5041093B2 (en
Inventor
Yasuhiro Horiuchi
康広 堀内
Yoshiaki Kizuka
宣明 木塚
Shinya Marushima
信也 圓島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011186723A priority Critical patent/JP5041093B2/en
Publication of JP2012002228A publication Critical patent/JP2012002228A/en
Application granted granted Critical
Publication of JP5041093B2 publication Critical patent/JP5041093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member including a cooling passage therein and enabling efficient cooling by reducing a peeling circulation region.SOLUTION: Inside the member including the cooling passage therein, the cooling passage having a wall face 23 on which cooling ribs 31a, 31b are arranged is provided, and cooling is performed by making a cooling medium flow along the wall face 23. The cooling ribs 31a, 31b are arranged so that part of the cooling medium made to flow in a portion 51 in the vicinity of the center of the wall face 23 of the cooling passage is made to flow to sides of both lateral ends 6b, 6c of the wall face 23, and are installed so that part 58 of the cooling medium made to flow on the surfaces of the cooling ribs 31a, 31b is made to move along the surfaces of the cooling ribs 31a, 31b and flow to the wall face 23.

Description

本発明は、内部に冷却通路を有する部材に係り、特にその冷却通路の壁面に冷却用のリブを有する部材に関するものである。   The present invention relates to a member having a cooling passage therein, and particularly to a member having a cooling rib on a wall surface of the cooling passage.

内部に冷却通路を有する部材に関しては、例えば特許文献1に記載のように、冷却通路の壁面を這う冷却媒体に対して、乱流の発生と壁面の中央から壁面の側端への流動を促すために、冷却媒体流れ方向に対して傾斜配置した冷却リブを備える技術などが提唱されている。   With respect to the member having the cooling passage inside, for example, as described in Patent Document 1, the generation of turbulent flow and the flow from the center of the wall surface to the side edge of the wall surface are promoted with respect to the cooling medium that runs over the wall surface of the cooling passage Therefore, a technique including cooling ribs that are inclined with respect to the flow direction of the cooling medium has been proposed.

特許第3006174号Japanese Patent No. 3006174

特許文献1に開示されたリブを有する冷却通路では、リブの冷却媒体流れ方向下流側に比較的伝熱に寄与しない大きな剥離循環領域が存在し、この領域が冷却通路全体としての熱伝達性能を下げている。   In the cooling passage having ribs disclosed in Patent Document 1, there is a large separation circulation region that does not contribute to heat transfer relatively downstream of the rib in the coolant flow direction, and this region has the heat transfer performance of the entire cooling passage. It is lowered.

本発明の目的は、部材の冷却に効果的な流れを作り出して剥離循環領域を減らし、少ない冷却媒体量で効率よく冷却できる内部に冷却通路を有する部材を提供することにある。   An object of the present invention is to provide a member having a cooling passage in the inside thereof that can create an effective flow for cooling the member, reduce the separation circulation region, and efficiently cool with a small amount of cooling medium.

上記目的を達成するために、本発明は、冷却リブが設けられた壁面を有する冷却通路を内部に備え、前記壁面に冷却媒体を流通させて冷却を行う、内部に冷却通路を有する部材において、前記冷却リブは、前記冷却流路の前記壁面の中央付近を流れる前記冷却媒体の一部を前記壁面両側端側へ流動するように配置されるとともに、前記冷却リブ表面上を流れる前記冷却媒体の一部は前記冷却リブ表面上を前記壁面へと流動するように設置され、前記冷却リブのリブ前面が前記冷却通路形成方向断面に流線形状であり、前記冷却リブのリブ背面は、前記壁面の中央から前記壁面両端側に向かうにしたがって前記冷却リブの流れ方向長さが長くなり、冷却空気流れ方向に向かうに従って前記冷却リブの高さが低くなり、後方のリブ手前で前記冷却リブ高さがゼロになることを特徴とする。   In order to achieve the above object, the present invention comprises a cooling passage having a wall surface provided with cooling ribs therein, and a cooling medium is circulated through the wall surface to cool the member. The cooling rib is disposed so that a part of the cooling medium flowing near the center of the wall surface of the cooling flow path flows to both ends of the wall surface, and the cooling medium flowing on the surface of the cooling rib. A part of the cooling rib is installed on the surface of the cooling rib so as to flow to the wall surface, and the rib front surface of the cooling rib has a streamline shape in a cross section in the cooling passage forming direction. The length of the cooling rib in the flow direction becomes longer from the center of the wall toward the both ends of the wall surface, and the height of the cooling rib is reduced in the direction of the cooling air flow. Bed height is characterized by comprising a zero.

本発明によれば、部材内部の冷却流路中の冷却媒体流れに効果的な乱流を発生させ、高い冷却熱伝達率を得て少ない冷却媒体量で部材を効率よく冷却できるという効果を奏する。   According to the present invention, it is possible to generate an effective turbulent flow in the cooling medium flow in the cooling flow path inside the member, obtain a high cooling heat transfer coefficient, and efficiently cool the member with a small amount of cooling medium. .

本発明の実施形態の一つである冷却構造の斜視図を示す。The perspective view of the cooling structure which is one of the embodiments of the present invention is shown. ガスタービン翼の縦断面図を示す。The longitudinal cross-sectional view of a gas turbine blade is shown. ガスタービン翼の横断面図を示す。The cross-sectional view of a gas turbine blade is shown. 本発明の実施形態の一つである冷却通路の断面拡大図を示す。The cross-sectional enlarged view of the cooling channel | path which is one of the embodiment of this invention is shown. 本発明の実施形態と比較例のヌセルト数の比較図を示す。The comparison figure of the Nusselt number of embodiment of this invention and a comparative example is shown. 本発明の実施形態の一つである冷却通路の断面拡大図を示す。The cross-sectional enlarged view of the cooling channel | path which is one of the embodiment of this invention is shown. 本発明の実施形態の一つである冷却構造の斜視図を示す。The perspective view of the cooling structure which is one of the embodiments of the present invention is shown. 本発明の実施形態の一つである冷却構造の斜視図を示す。The perspective view of the cooling structure which is one of the embodiments of the present invention is shown. 比較例の冷却通路の断面拡大図を示す。The cross-sectional enlarged view of the cooling passage of a comparative example is shown. 比較例の冷却構造の斜視図を示す。The perspective view of the cooling structure of a comparative example is shown.

内部に冷却通路を有する部材の一例であるガスタービンの翼を例にとって述べる。   A gas turbine blade, which is an example of a member having a cooling passage inside, will be described as an example.

ガスタービン設備は、圧縮機で圧縮された圧縮空気と燃料とを燃焼器で混合燃焼させ、発生した高温高圧の作動ガスによりタービンを駆動し、例えば電力等のエネルギーに変換するものである。   In the gas turbine equipment, compressed air and fuel compressed by a compressor are mixed and burned by a combustor, and the turbine is driven by the generated high-temperature and high-pressure working gas to convert it into energy such as electric power.

ガスタービンの作動ガス温度は、タービン翼材がガス温度に起因する熱応力に耐え得る能力によって制限される。タービン翼の耐用温度を満足させるため、タービン翼に中空部、すなわち冷却通路を設け、この通路内に空気や蒸気などの冷却媒体を流通させて翼を冷却する。具体的には、タービン翼の内部に一つあるいはそれ以上の通路を形成させ、冷却媒体を通過させることによってタービン翼を内部から冷却する。さらにタービン翼の表面,先端あるいは後縁に設けられた冷却孔から冷却媒体を翼外に排出して、冷却する方法もある。   The working gas temperature of a gas turbine is limited by the ability of the turbine blade material to withstand thermal stresses due to the gas temperature. In order to satisfy the service temperature of the turbine blade, a hollow portion, that is, a cooling passage is provided in the turbine blade, and a cooling medium such as air or steam is circulated in the passage to cool the blade. Specifically, one or more passages are formed inside the turbine blade, and the turbine blade is cooled from the inside by passing a cooling medium. Further, there is a method in which the cooling medium is discharged from the cooling holes provided on the surface, leading edge or trailing edge of the turbine blade to cool it.

本実施例では、冷却媒体として空気を用いる場合で説明する。冷却空気としては、例えば圧縮機中段または出口から抽気した空気の一部を利用する。このとき冷却空気を多量に消費すると燃焼用空気が少なくなり、ガスタービンの出力低下をまねく。また、冷却後の冷却空気を主流ガス中に排出する、オープンサイクルと呼ばれる冷却方式もある。この冷却方式を採用したガスタービンでは、冷却空気量の増加は主流ガス温度の低下につながり、ガスタービンの熱効率を低下させてしまう。したがって、より少ない冷却空気量で効率的に冷却することが望まれる。   In this embodiment, a case where air is used as a cooling medium will be described. As the cooling air, for example, a part of the air extracted from the middle stage or the outlet of the compressor is used. If a large amount of cooling air is consumed at this time, the combustion air is reduced, resulting in a decrease in the output of the gas turbine. There is also a cooling system called an open cycle in which the cooled air after cooling is discharged into the mainstream gas. In a gas turbine that employs this cooling method, an increase in the amount of cooling air leads to a decrease in the mainstream gas temperature, thereby reducing the thermal efficiency of the gas turbine. Therefore, it is desired to cool efficiently with a smaller amount of cooling air.

ガスタービンでは消費された燃料に対して得られる電力エネルギーはできるだけ多い方が望ましい。この点からガスタービンの効率向上が期待されている。この一つの手段として、作動ガスの高温化が進められている。一方、ガスタービンの排気ガスを利用する蒸気システムとのコンバインドプラントにおいて、ガスタービンと蒸気タービンとを含めた総合エネルギー変換効率の向上に大きな期待がよせられている。この効率の向上には、ガスタービンの作動ガスの高温化が大変有効である。作動ガスがより高温であるガスタービンを実現するためには、翼内部の伝熱性能を改善し、供給する冷却空気量に対する冷却効果、すなわち冷却効率を向上させることが効果的である。そのため、冷却面に対して様々な伝熱促進対策が施されている。   In a gas turbine, it is desirable to obtain as much power energy as possible with respect to the consumed fuel. From this point, an improvement in the efficiency of the gas turbine is expected. As one of the means, the working gas is being heated up. On the other hand, in a combined plant with a steam system that uses the exhaust gas of a gas turbine, great expectations are placed on improving the overall energy conversion efficiency including the gas turbine and the steam turbine. In order to improve this efficiency, it is very effective to raise the temperature of the working gas of the gas turbine. In order to realize a gas turbine having a higher working gas temperature, it is effective to improve the heat transfer performance inside the blades and improve the cooling effect on the amount of cooling air to be supplied, that is, the cooling efficiency. For this reason, various heat transfer promotion measures are taken on the cooling surface.

翼内部通路内における伝熱促進には、伝熱面表面の空気の流れを効果的な乱流とし、境界層の発達を抑制する方法などがある。これには翼内部の被冷却面に多数の突起を設けることが有効である。例えば、冷却リブを冷却空気の流れ方向に対して逆ハの字で互い違い、すなわち千鳥状に配置することで伝熱改善する方法がある。   In order to promote heat transfer in the blade internal passage, there is a method of suppressing the development of the boundary layer by making the air flow on the surface of the heat transfer surface an effective turbulent flow. For this purpose, it is effective to provide a large number of protrusions on the surface to be cooled inside the blade. For example, there is a method of improving heat transfer by arranging the cooling ribs alternately in a reverse C shape with respect to the flow direction of the cooling air, that is, in a staggered manner.

図9に冷却リブを有する冷却通路の一例を示す。内部に冷却流路を有する部材6の内部冷却通路7cの壁面であるリブ設置面23に、冷却空気の流れ方向15に対して傾斜配置した冷却リブ60a,60bが設けられている。本明細書中では、冷却リブの前面と仕切り壁との成す角66が0°より大きく90°より小さい冷却リブを、傾斜配置した冷却リブとよぶ。ただし、冷却リブの前面とは冷却リブの冷却媒体の流れ方向上流側の面であるとする。また、成す角66とは、リブ設置面と平行な面における冷却リブの前面と仕切り板との成す角のうち冷却媒体の流れ方向上流側の角であるとする。例えば、冷却リブ60aの前面と仕切り壁6cとの成す角66aが、0°より大きく90°より小さければ、冷却リブ60aは傾斜配置されているといえる。   FIG. 9 shows an example of a cooling passage having cooling ribs. Cooling ribs 60a and 60b that are inclined with respect to the flow direction 15 of the cooling air are provided on the rib installation surface 23, which is the wall surface of the internal cooling passage 7c of the member 6 having a cooling flow path therein. In this specification, a cooling rib having an angle 66 formed by the front surface of the cooling rib and the partition wall that is greater than 0 ° and smaller than 90 ° is referred to as an inclined cooling rib. However, the front surface of the cooling rib is assumed to be the upstream surface of the cooling rib in the flow direction of the cooling medium. Further, the formed angle 66 is an angle on the upstream side in the cooling medium flow direction among the angles formed by the front surface of the cooling rib and the partition plate in a plane parallel to the rib installation surface. For example, if the angle 66a formed by the front surface of the cooling rib 60a and the partition wall 6c is larger than 0 ° and smaller than 90 °, it can be said that the cooling rib 60a is inclined.

冷却リブ60a,60b周りの冷却媒体の流れを図10に示す。簡単のため、ここで冷却通路7cは4面に囲まれた略柱状であるとする。側壁である仕切り壁6b付近ではリブ設置面23から離れる方向に、冷却媒体の流路中央51付近ではリブ設置面23に向かう方向に二対の二次流れ52及び53が形成される。冷却媒体の流路中央51とは、冷却通路の、冷却媒体流れ方向に垂直な断面における中心点をつないだ線上の点を示している。リブ設置面23近傍では、リブの隙間であるリブ開放部80を這うような蛇行流れ55,リブに沿って側壁である仕切り壁6bに向かう流れ56とが形成される。ただし、リブの背後には伝熱に寄与しない比較的大きな剥離循環領域57が存在し、冷却通路全体としての熱伝達性能を下げている。   The flow of the cooling medium around the cooling ribs 60a and 60b is shown in FIG. For simplicity, it is assumed here that the cooling passage 7c has a substantially columnar shape surrounded by four surfaces. Two pairs of secondary flows 52 and 53 are formed in the direction away from the rib installation surface 23 in the vicinity of the partition wall 6b, which is a side wall, and in the direction toward the rib installation surface 23 in the vicinity of the flow path center 51 of the cooling medium. The flow path center 51 of the cooling medium indicates a point on a line connecting the central points in the cross section perpendicular to the cooling medium flow direction of the cooling passage. In the vicinity of the rib installation surface 23, a meandering flow 55 is formed so as to crawl the rib opening portion 80 that is a gap between the ribs, and a flow 56 is formed along the rib toward the partition wall 6 b that is a side wall. However, there is a relatively large separation circulation region 57 that does not contribute to heat transfer behind the rib, and the heat transfer performance of the entire cooling passage is lowered.

なお、冷却リブを傾斜配置する目的は、冷却媒体の蛇行流れ55の一部をリブによって冷却通路側壁方向に導くことである。この、リブ設置面側端側に向かう流れ56は効果的な乱流であり、冷却効率の向上に貢献する。したがって、上記目的を達成できるものであれば、傾斜配置された冷却リブの前面は必ずしも平面である必要はない。冷却リブの前面の一部もしくは全部が曲面や凹面,凸面であっても、さらには冷却リブの前面が複数の面から成るものであっても、流れ56を促進する効果を得ることができる面を有する冷却リブであれば、上述の傾斜配置された冷却リブと同種の効果を得ることができる。また、冷却リブの前面と仕切り壁との成す角が90°以上の部分があっても、それが局地的なものであれば上述の傾斜配置された冷却リブと同種の効果を得ることができる。このような理由により、本明細書で、傾斜配置された冷却リブとは、前述の冷却リブの前面と仕切り壁との成す角66が0°より大きく90°より小さい冷却リブだけでなく、流れ56を促進する効果を得ることができる冷却リブ全てをさすこととする。   The purpose of arranging the cooling ribs in an inclined manner is to guide a part of the meandering flow 55 of the cooling medium toward the side wall of the cooling passage by the ribs. This flow 56 toward the rib installation surface side end is an effective turbulent flow, which contributes to an improvement in cooling efficiency. Therefore, as long as the above object can be achieved, the front surfaces of the inclined cooling ribs are not necessarily flat. Even if a part or all of the front surface of the cooling rib is a curved surface, a concave surface, or a convex surface, and even if the front surface of the cooling rib is composed of a plurality of surfaces, the surface that can promote the flow 56 can be obtained. If it is a cooling rib which has this, the same kind of effect as the cooling rib arranged in the above-mentioned inclination can be acquired. Moreover, even if there is a portion where the angle between the front surface of the cooling rib and the partition wall is 90 ° or more, if it is local, the same kind of effect as the above-described inclined cooling rib can be obtained. it can. For this reason, in the present specification, the inclined cooling rib is not only a cooling rib having an angle 66 between the front surface of the cooling rib and the partition wall that is greater than 0 ° and smaller than 90 °, but also a flow. Suppose that all the cooling ribs which can acquire the effect which accelerates | stimulates 56 are shown.

本発明の各実施例では、冷却リブ表面上を流れる冷却媒体が冷却リブ表面上を這ってリブ設置面へと流動するようにリブを設置する、もしくは/かつ冷却リブにて剥離した冷却空気のリブ設置面への再付着までの距離を縮めるようにリブを設置する。再付着とは、リブから剥離した媒体が再びリブまたはリブ設置面上を這うように流動することを示している。これと、リブ設置面の中央付近を流れる冷却媒体の一部をリブ設置面の両側端へ流動させることを同時に行うことで、剥離循環領域を減らすことができる。これにより高い冷却熱伝達率を得て少ない冷却媒体量で部材を効率よく冷却することが可能となる。なお、リブ設置面の側端とは、リブが設置された壁面上における仕切り板方向の端のことである。   In each of the embodiments of the present invention, the cooling medium flowing on the cooling rib surface is installed so that the cooling medium flows over the cooling rib surface to the rib installation surface, and / or the cooling air separated by the cooling rib Ribs are installed so as to reduce the distance to reattachment to the rib installation surface. The reattachment means that the medium peeled from the ribs flows again so as to craw on the ribs or the rib installation surface. By simultaneously performing this and a part of the cooling medium flowing near the center of the rib installation surface to both ends of the rib installation surface, the separation circulation region can be reduced. As a result, a high cooling heat transfer coefficient can be obtained, and the member can be efficiently cooled with a small amount of cooling medium. The side end of the rib installation surface is an end in the partition plate direction on the wall surface on which the rib is installed.

本発明の実施例1を具体的に図2により説明する。図2は、本発明を実施したガスタービン翼の断面構造を示す図である。   Embodiment 1 of the present invention will be specifically described with reference to FIG. FIG. 2 is a view showing a cross-sectional structure of a gas turbine blade embodying the present invention.

図2に記載のガスタービン翼1において、シャンク部2,翼部3の内部に内部通路4および5が設けられている。内部通路4および5は、翼部3において仕切り壁6a,6b,6c,6d,6eにより仕切られ、冷却通路7a,7b,7c,7d,7e,7fを形成している。そして、先端曲部8a,8b,下部曲部9a,9bとともに折流通路を形成する。すなわち本実施例では、第一の通路4は冷却通路7a,先端曲部8a,冷却通路7b,下部曲部9a,冷却通路7c,吹出し孔11により構成されているリターンフロー型冷却通路である。第二の通路である内部通路5は、冷却通路7d,先端曲部8b,冷却通路7e,下部曲部9b,冷却通路7f、及び翼後縁12に設けられた吹出し部13から構成されているリターンフロー型冷却通路である。   In the gas turbine blade 1 shown in FIG. 2, internal passages 4 and 5 are provided inside the shank portion 2 and the blade portion 3. The internal passages 4 and 5 are partitioned by the partition walls 6a, 6b, 6c, 6d, and 6e in the wing portion 3 to form cooling passages 7a, 7b, 7c, 7d, 7e, and 7f. And a folding flow path is formed with the front curved parts 8a and 8b and the lower curved parts 9a and 9b. That is, in the present embodiment, the first passage 4 is a return flow type cooling passage constituted by the cooling passage 7a, the tip curved portion 8a, the cooling passage 7b, the lower curved portion 9a, the cooling passage 7c, and the blowout hole 11. The internal passage 5 that is the second passage is composed of a cooling passage 7d, a tip curved portion 8b, a cooling passage 7e, a lower curved portion 9b, a cooling passage 7f, and a blowout portion 13 provided at the blade trailing edge 12. It is a return flow type cooling passage.

冷却媒体としての空気は、例えばタービン翼1を保持するロータディスク等から供給部14に供給され、サーペンタイン通路である通路4及び5を通過する過程で翼を内部から冷却する。翼から熱を奪った空気は翼先先端壁10に設けた吹出し孔11および翼後縁12の吹出し部13から作動ガス中に吹出される。   Air as a cooling medium is supplied to the supply unit 14 from, for example, a rotor disk that holds the turbine blades 1, and cools the blades from the inside while passing through the passages 4 and 5 that are serpentine passages. The air deprived of heat from the blade is blown into the working gas from the blow hole 11 provided in the blade tip wall 10 and the blow portion 13 of the blade trailing edge 12.

冷却通路7b,7c,7d,7eの冷却壁面には乱流を促進する冷却リブが傾斜配置されている。この配置により、効果的な乱流を発生させて伝熱を促進し、翼の冷却効果を高めることができる。   Cooling ribs that promote turbulent flow are inclined on the cooling wall surfaces of the cooling passages 7b, 7c, 7d, and 7e. With this arrangement, effective turbulence can be generated to promote heat transfer, and the blade cooling effect can be enhanced.

図3は、図2のA−A線に沿うタービン翼1の断面を示している。図3において、20及び21はタービン翼1の翼部を構成する翼背側壁及び翼腹側壁を示し、冷却通路7a,7b,7c,7d,7e,7fはこの翼背側壁20,翼腹側壁21および仕切り壁6a,6b,6c,6d,6eにより形成される。たとえば冷却通路7cは、翼背側壁20,翼腹側壁21および仕切り壁6b,6cから構成される。冷却通路7cの背側冷却面であるリブ設置面23には翼背側壁20と一体構造の冷却リブ25a,25bが設けられ、その対向する腹側冷却面であるリブ設置面24には翼腹側壁21と一体構造の冷却リブ26a,26bが設けられている。なお、冷却通路7b,7d,7eに関しても7cと同様に、翼腹側壁21の腹側冷却面と翼背側壁20の背側冷却面にそれぞれ伝熱を促進する冷却リブが設けられている。   FIG. 3 shows a section of the turbine blade 1 along the line AA in FIG. In FIG. 3, reference numerals 20 and 21 denote blade back side walls and blade side walls constituting the blade portion of the turbine blade 1, and cooling passages 7 a, 7 b, 7 c, 7 d, 7 e, and 7 f denote the blade back side wall 20, blade front side wall. 21 and the partition walls 6a, 6b, 6c, 6d, 6e. For example, the cooling passage 7c includes a blade back side wall 20, a blade belly side wall 21, and partition walls 6b and 6c. The rib installation surface 23 that is the back side cooling surface of the cooling passage 7c is provided with cooling ribs 25a and 25b that are integrally formed with the blade back side wall 20, and the rib installation surface 24 that is the opposite abdominal side cooling surface is provided on the rib installation surface 24. Cooling ribs 26 a and 26 b that are integral with the side wall 21 are provided. As for the cooling passages 7b, 7d, and 7e, cooling ribs for promoting heat transfer are provided on the abdomen cooling surface of the blade abdominal side wall 21 and the back side cooling surface of the wing back side wall 20, respectively.

図4は、図3のB−B線に沿う冷却通路7cの断面を示している。図4は冷却通路の縦断面図であり、ここでは、翼背側壁20側を例にとって説明する。翼背側壁20の背側冷却面であるリブ設置面23に一体に設置された冷却リブは、対向する仕切り壁の6bと6cの中間付近から一方の仕切り壁6c側へのびつつ仕切り壁6c側の端の方がもう一方の端よりも冷却媒体の流れ方向下流側に位置する冷却リブ25aと、対向する仕切り壁の6bと6cの中間付近からもう一方の仕切り壁6b側へのびつつ仕切り壁6b側の端の方がもう一方の端よりも冷却媒体の流れ方向下流側に位置する冷却リブ25bが互い違いに複数配置されている。すなわち冷却リブは、背側冷却面であるリブ設置面23のほぼ中央から左右交互に、かつ冷却空気流れ方向に対して逆ハの字に千鳥状に配置されている。これらの冷却通路の平面形状は略矩形,台形,菱形などである。   FIG. 4 shows a cross section of the cooling passage 7c along the line BB in FIG. FIG. 4 is a longitudinal sectional view of the cooling passage. Here, the blade back side wall 20 side will be described as an example. The cooling ribs that are integrally installed on the rib installation surface 23 that is the back cooling surface of the blade back side wall 20 extend from the vicinity of the middle between the opposing partition walls 6b and 6c to the one partition wall 6c side while being on the partition wall 6c side. A cooling rib 25a positioned on the downstream side in the flow direction of the cooling medium relative to the other end, and a partition wall extending from the vicinity of the middle between the opposite partition walls 6b and 6c to the other partition wall 6b side A plurality of cooling ribs 25b are alternately arranged at the end on the 6b side on the downstream side in the flow direction of the cooling medium with respect to the other end. In other words, the cooling ribs are arranged in a zigzag pattern in an inverted C shape alternately with respect to the cooling air flow direction from the substantially center of the rib installation surface 23 which is the back side cooling surface. The planar shape of these cooling passages is substantially rectangular, trapezoidal, rhombus and the like.

本実施例の冷却リブ25a,25bは、それぞれ仕切り壁6c,6bとの境目での冷却リブの断面形状が、冷却通路形成方向に対して前面は壁面に対して垂直な直線であり、直線部最高位置から後方でリブ設置面23に到達する位置、つまり冷却リブの上面および背面は流線形状である。ここで流線形状とは、リブの、冷却空気流れ方向と垂直な面で切った断面形状が、複数の直線および/または関数等によって定義される曲線によって連続した傾きを有するものをいう。なお冷却リブの前面とは、主として流れ56の形成を促進させる効果を持った部分であり、背面とは冷却媒体の流れ方向下流側で、冷却媒体の流れに対して陰になっている部分である。上面とは、リブ設置面と平行か平行に近い面を含み、前面と背面をつなぐ面である。冷却リブの形状によっては、上面を有しないものもある。   In the cooling ribs 25a and 25b of the present embodiment, the cross-sectional shape of the cooling rib at the boundary with the partition walls 6c and 6b is a straight line whose front surface is perpendicular to the wall surface with respect to the cooling passage formation direction. The position reaching the rib installation surface 23 from the highest position to the rear, that is, the upper surface and the rear surface of the cooling rib are streamlined. Here, the streamline shape means that the cross-sectional shape of the rib cut by a plane perpendicular to the cooling air flow direction has a continuous inclination by a curve defined by a plurality of straight lines and / or functions. The front surface of the cooling rib is a portion mainly having an effect of promoting the formation of the flow 56, and the rear surface is a portion downstream of the cooling medium in the flow direction and hidden behind the flow of the cooling medium. is there. The top surface is a surface that includes a surface that is parallel or nearly parallel to the rib installation surface and connects the front surface and the back surface. Some cooling ribs do not have an upper surface.

図4には、図2において冷却媒体流れが上昇流となる冷却通路7cについて示す。例えば7bや7dのように冷却媒体の流れが下降流となる冷却通路の場合でも、冷却空気流れ方向に対して逆ハの字に互い違いに冷却リブを配置して、冷却リブの上面および背面を流線形状にすることは冷却通路7cの場合と同様である。   FIG. 4 shows the cooling passage 7c in which the cooling medium flow is an upward flow in FIG. For example, even in the case of a cooling passage in which the flow of the cooling medium is a downward flow, such as 7b and 7d, the cooling ribs are alternately arranged in a reverse letter C shape with respect to the cooling air flow direction, and the upper and rear surfaces of the cooling ribs The streamline shape is the same as in the cooling passage 7c.

次に、図1を用いて冷却通路7c内における冷却リブ25a,25b周辺の冷却空気の流れについて説明する。なお、図1では、冷却リブ25a,25bを有するリブ設置面23に対向する壁面であるリブ設置面24と、ここに存在する冷却リブ26a,26b、さらには仕切り壁6cの図示を省略している。   Next, the flow of cooling air around the cooling ribs 25a and 25b in the cooling passage 7c will be described with reference to FIG. In FIG. 1, illustration of the rib installation surface 24 that is a wall surface facing the rib installation surface 23 having the cooling ribs 25a and 25b, the cooling ribs 26a and 26b, and the partition wall 6c existing therein is omitted. Yes.

冷却通路7c内には、流路側壁に相当する仕切り壁6b及び6c付近では冷却面から離れる方向に、流路中央51付近ではリブ設置面に向かうように二対の二次流れ52及び53が形成される。また、伝熱を促進する冷却リブ25a,25bの近傍では、リブ設置面23のうちの冷却リブが設置されていない部分であるリブ開放部80を這うような蛇行流れ55と、蛇行流れ55から分岐しリブに沿って仕切り壁6b,6cに向かう流れ56とが形成される。   In the cooling passage 7c, there are two pairs of secondary flows 52 and 53 in a direction away from the cooling surface in the vicinity of the partition walls 6b and 6c corresponding to the flow path side walls and toward the rib installation surface in the vicinity of the flow path center 51. It is formed. Further, in the vicinity of the cooling ribs 25 a and 25 b that promote heat transfer, from the meandering flow 55 that crawls the rib opening portion 80 that is a portion of the rib installation surface 23 where the cooling rib is not installed, and the meandering flow 55. A flow 56 is formed which branches and flows along the rib toward the partition walls 6b and 6c.

冷却空気は流路中央51付近を流れているときには部材の冷却にあまり貢献しない。一方、背側冷却面であるリブ設置面23及び腹側冷却面であるリブ設置面24近傍を流れる冷却媒体は高温の部材と熱交換し、部材を冷却する。したがって、流路中央51付近の冷却媒体は、冷却通路7c内の外側の冷却媒体よりも比較的温度が低い。   When the cooling air flows in the vicinity of the flow path center 51, it does not contribute much to the cooling of the member. On the other hand, the cooling medium flowing in the vicinity of the rib installation surface 23 that is the back side cooling surface and the rib installation surface 24 that is the abdominal side cooling surface exchanges heat with the high temperature member to cool the member. Therefore, the temperature of the cooling medium in the vicinity of the flow path center 51 is relatively lower than that of the cooling medium outside the cooling passage 7c.

本実施例では、リブ設置面23の中央から、リブ設置面23の側端である仕切り壁6c,6bとの境界に向かう流れ56を引き起こすように伝熱促進する冷却リブ25aおよび25bを配置する。さらに、腹側冷却面であるリブ設置面24上にも同様の流れを引き起こすような冷却リブを配置する。その結果、二対の二次流れ52,53の形成が促進される。この二対の二次流れ52,53により、流路中央51付近の低温の冷却媒体と、リブ設置面23及び24付近の高温の冷却媒体を循環させることができる。そのため、低温の冷却媒体が必要な背側冷却面であるリブ設置面23近傍及び腹側冷却面であるリブ設置面24近傍に、より温度が低い冷却媒体を供給することが可能になる。   In the present embodiment, cooling ribs 25a and 25b that promote heat transfer are arranged so as to cause a flow 56 from the center of the rib installation surface 23 toward the boundary with the partition walls 6c and 6b that are the side ends of the rib installation surface 23. . Further, cooling ribs that cause a similar flow are also arranged on the rib installation surface 24 that is the ventral cooling surface. As a result, formation of two pairs of secondary flows 52 and 53 is promoted. By the two pairs of secondary flows 52 and 53, a low-temperature cooling medium near the flow path center 51 and a high-temperature cooling medium near the rib installation surfaces 23 and 24 can be circulated. Therefore, it is possible to supply a cooling medium having a lower temperature to the vicinity of the rib installation surface 23 that is a back side cooling surface that requires a low-temperature cooling medium and the vicinity of the rib installation surface 24 that is a ventral side cooling surface.

上記理由から蛇行流れ55は、二次流れ52により流路中央51の温度の低い冷たい空気15bがもたらされるような乱流構造となる。そのためリブ設置面23上の特に流路中央部、さらには冷却リブ25aおよび25bの流路中央側部分の冷却効果を高める。   For the above reason, the meandering flow 55 has a turbulent flow structure in which the cold air 15b having a low temperature at the flow path center 51 is provided by the secondary flow 52. Therefore, the cooling effect on the rib installation surface 23 in particular, the center portion of the flow path, and further the flow path center side portion of the cooling ribs 25a and 25b is enhanced.

一方、冷却媒体の流れ方向に対する冷却リブ25aおよび25bの背後には、伝熱にはほとんど寄与しない剥離循環領域57が形成される可能性がある。流体はリブ上を通過する際、その流れはリブから剥離しやすく、流体の流れに対して陰になる部分、すなわちリブの背後にあたる領域には流体が届きにくくなる。この領域は剥離循環領域と呼ばれる。剥離循環領域では領域外からの流体の流入はほとんどなく、領域内の流体の大部分は領域内で循環を続ける。なお、流体がリブ設置面から剥離する際には大きな圧力損失が発生する。   On the other hand, a separation circulation region 57 that hardly contributes to heat transfer may be formed behind the cooling ribs 25a and 25b in the flow direction of the cooling medium. When the fluid passes over the rib, the flow is easily separated from the rib, and the fluid does not easily reach a portion that is shaded by the fluid flow, that is, a region behind the rib. This area is called a peeling circulation area. In the separation circulation region, there is almost no inflow of fluid from outside the region, and most of the fluid in the region continues to circulate within the region. In addition, when a fluid peels from a rib installation surface, a big pressure loss generate | occur | produces.

本実施例では、冷却リブの上面および背面を流線形状としている。そのため、リブに導かれ仕切り板へ向かう流れ56の一部を含む、冷却リブを超えようとする流れ58は、リブ上面および背面を這ってリブ後方へと流れる。これにより、リブ上での冷却媒体の剥離を抑制でき、冷却空気の圧力損失を減少させると同時に剥離循環領域57を縮小することができる。   In this embodiment, the upper surface and the rear surface of the cooling rib are streamlined. For this reason, the flow 58 including the part of the flow 56 that is guided to the ribs and goes to the partition plate and exceeds the cooling rib flows to the rear of the rib over the rib upper surface and the rear surface. Thereby, peeling of the cooling medium on the rib can be suppressed, and the pressure circulation loss 57 can be reduced at the same time as the pressure loss of the cooling air is reduced.

剥離循環領域57では、部材の熱を奪って昇温した空気が循環しているため、この領域を減らすことは、部材の冷却効率を高めることに大きく貢献する。さらに、従来よりも循環領域が減少した部分には、二次流れ52にのって流路中央51の温度の低い空気15bが蛇行流れ55,仕切り板へ向かう流れ56として供給され、部材を冷却する。   In the separation circulation region 57, air heated by removing heat from the member circulates. Therefore, reducing this region greatly contributes to increasing the cooling efficiency of the member. Further, in the portion where the circulation region is reduced as compared with the conventional case, the air 15b having a low temperature in the flow path center 51 along the secondary flow 52 is supplied as a meandering flow 55 and a flow 56 toward the partition plate to cool the member. To do.

つまり本実施例では、冷却リブ25a及び25bの上面および背面を滑らかにしたことによる剥離循環領域57の削減と、二次流れ52により流路中央51の低温空気を蛇行流れ55に導く、さらには剥離による冷却媒体の圧力損失を削減するという三つの効果を得ることができる。これらの相乗効果によって、本実施例のガスタービン翼は、効率的に冷却することができる。   In other words, in this embodiment, the separation circulation region 57 is reduced by smoothing the upper and rear surfaces of the cooling ribs 25a and 25b, and the low-temperature air in the flow path center 51 is guided to the meandering flow 55 by the secondary flow 52. Three effects of reducing the pressure loss of the cooling medium due to peeling can be obtained. By these synergistic effects, the gas turbine blade of the present embodiment can be efficiently cooled.

なお本実施例中で、冷却リブ26aおよび26bの説明を一部省略したが、冷却リブ
26aおよび26bは、背側冷却面であるリブ設置面23に設置された伝熱促進リブ25aおよび25bと同様に、腹側冷却面であるリブ設置面24に設置され同様の効果を奏することはいうまでもない。
In the present embodiment, a part of the description of the cooling ribs 26a and 26b is omitted, but the cooling ribs 26a and 26b are the heat transfer promotion ribs 25a and 25b installed on the rib installation surface 23 which is the back cooling surface. Similarly, it goes without saying that it is installed on the rib installation surface 24 which is the ventral cooling surface and has the same effect.

また本実施例では、冷却媒体のリブ上での剥離を抑えるためにリブの上面および背面の形状を流線形状とする例を示したが、本実施例で得られる効果は流線形状に限定されたものではない。従来の直方体状のリブなどと比べ、冷却媒体がリブの上面および背面を這う距離をのばせるもの、冷却媒体の剥離の程度を軽くさせるものであれば同種の効果を得ることができる。すなわち、冷却リブの表面上を流れる冷却媒体がリブ表面上を這ってリブ設置面へと流動するように促進する形状であればよい。このような、流線形状に準ずる形状には、短冊状の平面を何枚も組み合わせたものを流線形状に沿って設置したもの等がある。   In the present embodiment, an example in which the shape of the upper surface and the rear surface of the rib is a streamline shape is shown in order to suppress separation of the cooling medium on the rib, but the effect obtained in this embodiment is limited to the streamline shape. It is not what was done. Compared with a conventional rectangular parallelepiped rib or the like, the same kind of effect can be obtained as long as the cooling medium can extend the distance over the upper surface and the rear surface of the rib, or can reduce the degree of peeling of the cooling medium. That is, any shape that promotes the cooling medium flowing on the surface of the cooling rib to flow over the rib surface to the rib installation surface may be used. Examples of the shape conforming to the streamline shape include those obtained by combining a plurality of strip-shaped planes along the streamline shape.

図5に、本実施例における伝熱特性の傾向を示す。図5では、縦軸を、熱の流れ状況を示す無次元値平均ヌッセルト数と、比較例として用いた図9及び図10のリブを用いたリブ設置面のヌッセルト数との比とし、横軸を冷却空気の流れ状況を示す無次元レイノルズ数とした。この図において縦軸の値が大きいほど冷却性能が良いことを示す。図に示されるように、比較例の構造よりも本実施例構造の伝熱性能の方が高い傾向にある。   In FIG. 5, the tendency of the heat transfer characteristic in a present Example is shown. In FIG. 5, the vertical axis represents the ratio between the dimensionless average Nusselt number indicating the heat flow state and the Nusselt number of the rib installation surface using the ribs of FIGS. 9 and 10 used as a comparative example. Is a dimensionless Reynolds number indicating the flow of cooling air. In this figure, the larger the value on the vertical axis, the better the cooling performance. As shown in the figure, the heat transfer performance of the structure of this example tends to be higher than the structure of the comparative example.

続いて本発明の実施例2を、図6および図7を用いて説明する。図6,図7において、それぞれ図3,図4と共通の部分については同じ記号を付し、説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. 6 and 7, the same symbols are assigned to portions common to FIGS. 3 and 4, and the description thereof is omitted.

図6は冷却通路の縦断面図である。ここでは、翼背側壁20側を例にとって説明する。背側冷却面であるリブ設置面23の伝熱促進リブ30a,30bは、リブ設置面23上のリブ未設置面である仕切り壁6b,6cとの境界からの等距離線付近から左右交互に、かつ冷却空気流れ方向に対して異なる角度で配置されている。すなわち、乱流を促進する冷却リブ30a及び30bは、流れに対し逆ハの字にかつ互い違いの千鳥に配置されている。従来の乱流促進リブにおいては、どの冷却空気流れ方向断面においても冷却リブの断面は同じ形状であることが多かった。しかしながら、本実施例における冷却リブ30aにおいては、リブ30aの背面70bは、流路中央から側壁である仕切り壁6cに向かうに従ってリブの流れ方向長さが徐々に長くなり、また冷却空気流れ方向に向かうに従ってリブ高さが低くなり、後方の仕切り壁6b手前でリブ高さがゼロとなっている。   FIG. 6 is a longitudinal sectional view of the cooling passage. Here, the blade back side wall 20 side will be described as an example. The heat transfer promotion ribs 30a and 30b of the rib installation surface 23 which is the back cooling surface are alternately left and right from the vicinity of the equidistant line from the boundary with the partition walls 6b and 6c which are the rib non-installation surfaces on the rib installation surface 23. And at different angles to the cooling air flow direction. In other words, the cooling ribs 30a and 30b that promote turbulent flow are arranged in an inverted cross-section and staggered with respect to the flow. In conventional turbulent flow promoting ribs, the cross-section of the cooling rib is often the same in any cross-section in the cooling air flow direction. However, in the cooling rib 30a in the present embodiment, the back surface 70b of the rib 30a gradually increases in length in the flow direction of the rib from the center of the flow path toward the partition wall 6c that is the side wall, and in the cooling air flow direction. The height of the rib decreases as it goes, and the rib height is zero in front of the rear partition wall 6b.

図7に冷却リブを配置した冷却通路7cにおけるリブまわりの流れの様子を示す。本実施例では、冷却空気流れに直交する方向にリブの断面を変化させ、リブの下流側であるリブ背面70bに斜面を形成させている。これによって、リブに沿って仕切り壁6bおよび6cに向かう流れ56の一部でありリブを超える流れ58の伝熱面への再付着が早まる。つまり、冷却空気がリブから剥離している距離を短くすることができる。したがって循環領域57を縮小することができる。   FIG. 7 shows the flow around the ribs in the cooling passage 7c where the cooling ribs are arranged. In the present embodiment, the cross section of the rib is changed in a direction perpendicular to the cooling air flow, and a slope is formed on the rib back surface 70b on the downstream side of the rib. This accelerates the reattachment of the flow 58 that is a part of the flow 56 toward the partition walls 6b and 6c along the ribs to the heat transfer surface beyond the ribs. That is, the distance that the cooling air is peeled from the rib can be shortened. Therefore, the circulation area 57 can be reduced.

つまり本実施例では、冷却リブ30aおよび30bの背面を、リブの上面を通過した冷却空気がリブ設置面23に再付着しやすい形状として、再付着するまでの距離を短縮したことによる剥離循環領域57の削減という効果が得られる。また、二次流れ52により流路中央51の低温空気を蛇行流れ55に導くという効果も得ることができる。これらの相乗効果によって、本実施例のガスタービン翼も実施例1のものと同様、従来のものと比べてより効率的な冷却を施すことができる。   In other words, in this embodiment, the back surface of the cooling ribs 30a and 30b has a shape in which the cooling air that has passed through the upper surface of the rib is easily reattached to the rib installation surface 23, and the separation circulation region is obtained by reducing the distance until reattachment The effect of 57 reduction is obtained. Further, the effect of guiding the low-temperature air in the flow path center 51 to the meandering flow 55 by the secondary flow 52 can also be obtained. Due to these synergistic effects, the gas turbine blade of this embodiment can be cooled more efficiently than the conventional one as in the first embodiment.

本実施例の特徴的な構成は、リブ背面を斜面とすることで、剥離した冷却媒体のリブへの再付着を促進し、剥離循環領域57を小さくできる点である。したがって、冷却媒体の再付着を促進させる形状の冷却リブであれば、本実施例で示したものでなくても構わない。   The characteristic configuration of the present embodiment is that the rear surface of the rib is an inclined surface, whereby the reattachment of the separated cooling medium to the rib is promoted, and the separation circulation region 57 can be reduced. Therefore, the cooling rib having a shape that promotes the reattachment of the cooling medium may not be the one shown in the present embodiment.

図8には、本発明の実施例3を示す。図8は図1,図7と同様、冷却促進リブ構造を配置した冷却通路7cにおけるリブまわりの流れの様子である。ここでも翼背側壁20側を例にとって説明する。リブ設置面23の冷却リブ31a,31bはリブ設置面23の中央辺りから左右交互に、かつ冷却空気流れ方向に対して異なる角度で配置されている。すなわち、冷却リブ31a及び31bは、流れに対し逆ハの字にかつ互い違いに配置されている。しかしながら、本実施例における冷却リブ31aはリブの前面が冷却通路形成方向断面に流線形状であると同時に、リブ31aのリブ背面71bは、流路中央から側壁である仕切り壁6cに向かうに従ってリブの流れ方向長さが徐々に長くなり、また冷却空気流れ方向に向かうに従ってリブ高さが低くなり、後方のリブ手前でリブ高さがゼロとなっている。すなわち本実施例の冷却リブは、実施例1の流線型のリブに実施例2のリブの形を適用したものといえる。   FIG. 8 shows a third embodiment of the present invention. FIG. 8 shows the flow around the ribs in the cooling passage 7c where the cooling promotion rib structure is arranged, as in FIGS. Here, the blade back side wall 20 side will be described as an example. The cooling ribs 31a and 31b of the rib installation surface 23 are alternately arranged on the left and right from the center of the rib installation surface 23 and at different angles with respect to the cooling air flow direction. That is, the cooling ribs 31a and 31b are arranged in an inverted C shape and alternately with respect to the flow. However, in the present embodiment, the cooling rib 31a has a streamlined front surface in the cooling passage formation direction, and the rib back surface 71b of the rib 31a moves from the center of the flow path toward the partition wall 6c as a side wall. The length in the flow direction gradually increases, the rib height decreases as it goes in the cooling air flow direction, and the rib height is zero before the rear rib. That is, it can be said that the cooling rib of the present embodiment is obtained by applying the shape of the rib of the second embodiment to the streamlined rib of the first embodiment.

このように冷却促進リブを形成することで、実施例1の効果、すなわちリブ上面での剥離を抑制することにより循環領域を縮小させる効果,圧力損失を低減する効果と、実施例2の効果、すなわち再付着を早めて循環領域を縮小させる効果とを相乗させることが可能となる。これが、二次流れ52により流路中央51の低温空気を蛇行流れ55に導く構成とあいまって、循環領域を更に縮小もしくは無くすことができ、高い熱伝達効果を得ることができる。   By forming the cooling promotion rib in this way, the effect of Example 1, that is, the effect of reducing the circulation region by suppressing the separation on the rib upper surface, the effect of reducing the pressure loss, and the effect of Example 2, That is, it is possible to synergize with the effect of shortening the circulation region by speeding the reattachment. This, combined with the configuration in which the low-temperature air in the center 51 of the flow path is guided to the meandering flow 55 by the secondary flow 52, can further reduce or eliminate the circulation region and obtain a high heat transfer effect.

なお、本実施例では冷却リブを、仕切り板表面と平行な面で切ったリブの断面を流線型としつつ、背面になだらかな傾斜を持たせたものとしている。しかし、この他にも、冷却リブでの冷却媒体の剥離を抑制するとともに、リブで剥離した冷却媒体の再付着を促進させる効果を持つ形状であればかまわない。このような形状の冷却リブは、本実施例の冷却リブと同種の効果を得ることができるためである。   In the present embodiment, the cooling rib is formed with a gentle slope on the back surface while the cross section of the rib cut by a plane parallel to the partition plate surface is streamlined. However, any other shape may be used as long as the cooling medium is prevented from being peeled off by the cooling ribs and the reattachment of the cooling medium peeled off by the ribs is promoted. This is because the cooling rib having such a shape can obtain the same type of effect as the cooling rib of the present embodiment.

各実施例は、本発明の基本構成を説明したものであるが、このほかにも種々の実施例,変形例,応用例が考えられることはいうまでもない。   Each embodiment describes the basic configuration of the present invention, but it goes without saying that various embodiments, modifications, and application examples can be considered.

以上、本発明の実施例を説明してきたが、リブの形状は各リブに対し一つに限定されるものではなく、複数としても同様の効果があり、特に限定されるものではない。なお、冷却リブの設置位置について、リブ設置面の中央付近から側端に向かってのびるように設置するとした。しかし、リブ設置面上で蛇行流が形成される程度であれば、冷却媒体の流れに対して垂直な方向において、本実施例のものより長くても短くても構わない。   As mentioned above, although the Example of this invention was described, the shape of a rib is not limited to one with respect to each rib, Even if it has multiple, there exists the same effect and it does not specifically limit. In addition, about the installation position of the cooling rib, it was installed so that it might extend toward the side edge from the center vicinity of a rib installation surface. However, as long as the meandering flow is formed on the rib installation surface, it may be longer or shorter than that of the present embodiment in the direction perpendicular to the flow of the cooling medium.

また、ガスタービン翼は翼を出来るだけ一様温度にすることが強度上望ましい。一方、タービン翼の外部熱的条件は翼周囲で異なる。従って翼を一様温度に冷却するには、翼の背側,腹側および仕切り壁の冷却リブ構造を外部熱的条件に合致した構造にすることが適切である。具体的には前記各実施例に示した、あるいは他に考えられる冷却リブの構造,形状,配置仕様を各冷却面の要求に合わせて採用する。   Further, it is desirable in terms of strength that the temperature of the gas turbine blade is as uniform as possible. On the other hand, the external thermal conditions of the turbine blade are different around the blade. Therefore, in order to cool the blade to a uniform temperature, it is appropriate to make the cooling rib structure on the back side, the ventral side, and the partition wall of the blade match the external thermal conditions. Specifically, the structure, shape, and arrangement specifications of the cooling rib shown in each of the above-described embodiments or considered elsewhere are adopted according to the requirements of each cooling surface.

以上の説明ではガスタービンを例にとって説明してきたが、前述したように本発明はガスタービンに限らず、内部に冷却通路を有する部材であれば適用可能である。また実施例中では2本の内部構造を有したリターンフロー型構造を例にとって示したが、本発明の適用に冷却通路数の限定を与えるものではない。また、冷却媒体を空気として説明したが蒸気等他の媒体でも良い。なお、本発明構造を採用したガスタービン翼は、構成簡単であり現状の精密鋳造方法にても製作可能である。   In the above description, the gas turbine has been described as an example. However, as described above, the present invention is not limited to the gas turbine, and can be applied to any member having a cooling passage inside. In the embodiments, a return flow type structure having two internal structures is shown as an example. However, the application of the present invention is not limited to the number of cooling passages. Further, although the cooling medium has been described as air, other medium such as steam may be used. The gas turbine blade adopting the structure of the present invention has a simple configuration and can be manufactured by the current precision casting method.

1…ガスタービン翼、2…シャンク部、3…翼部、4,5…通路、6…部材、6a,6b,6c,6d,6e…仕切り壁、7a,7b,7c,7d,7e,7f…冷却通路、8a,8b…先端曲部、9a,9b…下部曲部、10…先端壁、11…吹出し孔、12…翼後縁、13…吹出し部、14…供給部、15…冷却空気の流れ方向、15b…空気、20…翼背側壁、21…翼腹側壁、23,24…リブ設置面、25a,25b,26a,26b,30a,30b,31a,32b,60a,60b…リブ、51…流路中央、52,53…二次流れ、55…蛇行流れ、56,58…流れ、57…循環領域、66…角、70a,71a…リブ前面、70b,71b…リブ背面、80…リブ開放部。   DESCRIPTION OF SYMBOLS 1 ... Gas turbine blade, 2 ... Shank part, 3 ... Blade part, 4, 5 ... Passage, 6 ... Member, 6a, 6b, 6c, 6d, 6e ... Partition wall, 7a, 7b, 7c, 7d, 7e, 7f ... Cooling passages, 8a, 8b ... curved tip, 9a, 9b ... lower curved part, 10 ... tip wall, 11 ... blow hole, 12 ... blade trailing edge, 13 ... blown part, 14 ... supply part, 15 ... cooling air 15b ... air, 20 ... blade back side wall, 21 ... blade ventral side wall, 23,24 ... rib installation surface, 25a, 25b, 26a, 26b, 30a, 30b, 31a, 32b, 60a, 60b ... rib, 51 ... Center of flow path, 52, 53 ... Secondary flow, 55 ... Meandering flow, 56, 58 ... Flow, 57 ... Circulation region, 66 ... Corner, 70a, 71a ... Front of rib, 70b, 71b ... Back of rib, 80 ... Rib opening.

Claims (1)

冷却リブが設けられた壁面を有する冷却通路を内部に備え、前記壁面に冷却媒体を流通
させて冷却を行う、内部に冷却通路を有する部材において、
前記冷却リブは、前記冷却流路の前記壁面の中央付近を流れる前記冷却媒体の一部を前
記壁面両側端側へ流動するように配置されるとともに、前記冷却リブ表面上を流れる前記
冷却媒体の一部は前記冷却リブ表面上を前記壁面へと流動するように設置され、
前記冷却リブのリブ前面が前記冷却通路形成方向断面に流線形状であり、
前記冷却リブのリブ背面は、前記壁面の中央から前記壁面両端側に向かうにしたがって前記冷却リブの流れ方向長さが長くなり、冷却空気流れ方向に向かうに従って前記冷却リブの高さが低くなり、後方のリブ手前で前記冷却リブ高さがゼロになることを特徴とする内部に冷却通路を有する部材。
In a member having a cooling passage inside, provided with a cooling passage having a wall surface provided with cooling ribs inside, for cooling by circulating a cooling medium on the wall surface,
The cooling rib is disposed so that a part of the cooling medium flowing near the center of the wall surface of the cooling flow path flows to both ends of the wall surface, and the cooling medium flowing on the surface of the cooling rib. Some are installed on the cooling rib surface to flow to the wall surface,
The rib front surface of the cooling rib has a streamline shape in the cooling passage forming direction cross section,
The rib back surface of the cooling rib has a longer length in the flow direction of the cooling rib as it goes from the center of the wall surface to both ends of the wall surface, and the height of the cooling rib becomes lower as it goes in the direction of cooling air flow, A member having a cooling passage inside, wherein the cooling rib height becomes zero before the rear rib.
JP2011186723A 2011-08-30 2011-08-30 Member having a cooling passage inside Active JP5041093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186723A JP5041093B2 (en) 2011-08-30 2011-08-30 Member having a cooling passage inside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186723A JP5041093B2 (en) 2011-08-30 2011-08-30 Member having a cooling passage inside

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006031807A Division JP4887812B2 (en) 2006-02-09 2006-02-09 Member having cooling passage inside and cooling method for member having cooling passage inside

Publications (2)

Publication Number Publication Date
JP2012002228A true JP2012002228A (en) 2012-01-05
JP5041093B2 JP5041093B2 (en) 2012-10-03

Family

ID=45534461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186723A Active JP5041093B2 (en) 2011-08-30 2011-08-30 Member having a cooling passage inside

Country Status (1)

Country Link
JP (1) JP5041093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021881A (en) * 2016-08-05 2018-02-08 株式会社八神製作所 Target and cooling structure for neutron generator
CN107785595A (en) * 2017-09-28 2018-03-09 江苏科技大学 One proton exchanging film fuel battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312002A (en) * 1992-05-11 1993-11-22 Mitsubishi Heavy Ind Ltd Gas turbine blade
JPH07189603A (en) * 1993-12-28 1995-07-28 Toshiba Corp Turbine cooled blade and cooling member
JP2000282804A (en) * 1999-03-30 2000-10-10 Toshiba Corp Gas turbine blade
JP2002129903A (en) * 2000-10-27 2002-05-09 Mitsubishi Heavy Ind Ltd Structure of cooling gas turbine blade

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312002A (en) * 1992-05-11 1993-11-22 Mitsubishi Heavy Ind Ltd Gas turbine blade
JPH07189603A (en) * 1993-12-28 1995-07-28 Toshiba Corp Turbine cooled blade and cooling member
JP2000282804A (en) * 1999-03-30 2000-10-10 Toshiba Corp Gas turbine blade
JP2002129903A (en) * 2000-10-27 2002-05-09 Mitsubishi Heavy Ind Ltd Structure of cooling gas turbine blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021881A (en) * 2016-08-05 2018-02-08 株式会社八神製作所 Target and cooling structure for neutron generator
CN107785595A (en) * 2017-09-28 2018-03-09 江苏科技大学 One proton exchanging film fuel battery

Also Published As

Publication number Publication date
JP5041093B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4887812B2 (en) Member having cooling passage inside and cooling method for member having cooling passage inside
JP3006174B2 (en) Member having a cooling passage inside
US8167560B2 (en) Turbine airfoil with an internal cooling system having enhanced vortex forming turbulators
JP5327294B2 (en) Member having a cooling passage inside
US7806658B2 (en) Turbine airfoil cooling system with spanwise equalizer rib
US10711619B2 (en) Turbine airfoil with turbulating feature on a cold wall
JP4341248B2 (en) Crossover cooled airfoil trailing edge
US10494931B2 (en) Internally cooled turbine airfoil with flow displacement feature
US9551227B2 (en) Component cooling channel
US8721281B2 (en) Cooled blade for a gas turbine
US9145773B2 (en) Asymmetrically shaped trailing edge cooling holes
US20070258815A1 (en) Turbine blade with wavy squealer tip rail
KR101509385B1 (en) Turbine blade having swirling cooling channel and method for cooling the same
KR20130116323A (en) Turbine blade
US8708645B1 (en) Turbine rotor blade with multi-vortex tip cooling channels
JP2009041433A (en) Gas turbine blade
JP5041093B2 (en) Member having a cooling passage inside
JP4872410B2 (en) Member having cooling passage inside and cooling method thereof
JP2017089601A (en) Cooling structure and gas turbine
US10900361B2 (en) Turbine airfoil with biased trailing edge cooling arrangement
JPH08338202A (en) Rotor blade of gas turbine
WO2017105379A1 (en) Turbine airfoil with profiled flow blocking feature for enhanced near wall cooling
JP2010190198A (en) Turbine blade
US10208606B2 (en) Airfoil for turbomachine and airfoil cooling method
JPH0828205A (en) Stationary blade of gas turbine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R151 Written notification of patent or utility model registration

Ref document number: 5041093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250