JP2012002203A - Ocean current power generation system - Google Patents

Ocean current power generation system Download PDF

Info

Publication number
JP2012002203A
JP2012002203A JP2010140218A JP2010140218A JP2012002203A JP 2012002203 A JP2012002203 A JP 2012002203A JP 2010140218 A JP2010140218 A JP 2010140218A JP 2010140218 A JP2010140218 A JP 2010140218A JP 2012002203 A JP2012002203 A JP 2012002203A
Authority
JP
Japan
Prior art keywords
power generation
generation system
current power
ocean current
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010140218A
Other languages
Japanese (ja)
Inventor
Sadao Kurosawa
澤 貞 男 黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010140218A priority Critical patent/JP2012002203A/en
Publication of JP2012002203A publication Critical patent/JP2012002203A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ocean current power generation system that reduces a fatality rate due to a collision of fishes and gives little influence to the environment.SOLUTION: The ocean current power generation system includes blades 2 for converting the current of seawater into rotational energy and an electric generator for generating electricity by being given the converted rotational energy via a rotating shaft, and further includes an elastic member for covering a surface of the blades which is produced by an elastic material. The elastic member is detachably fixed by fixing fastening bolts to helical holes provided at a plurality of places of the blades.

Description

本発明は、海流発電システムに関する。   The present invention relates to an ocean current power generation system.

水を用いた発電システムには、ダム等の高低差を利用した水車、海の波力、潮汐を用いた発電、浸透膜や温度差を用いた発電等、数多く存在する。高低差を利用する発電システム以外で容易に大容量のエネルギを得ることのできる発電システムは、潮流や海流の流れのエネルギを用いた発電システムである。しかし、大容量機に関してはまだ一般的ではなく、欧州の一部で先行して開発が進められている。   There are many power generation systems using water, such as water turbines using height differences such as dams, ocean wave power, power generation using tides, power generation using osmotic membranes and temperature differences. A power generation system that can easily obtain large-capacity energy other than a power generation system that uses a difference in height is a power generation system that uses energy of tidal currents or ocean currents. However, large-capacity machines are not yet common and are being developed ahead of parts of Europe.

図6に、係留式海流発電システムの概略構成を示し、その基礎概念について述べる。このシステムは、流れを回転エネルギに変換する翼102と、翼102に接続された箇所がキャップ106で覆われ回転エネルギを発電機に伝える回転軸とを有し、発電機がナセル101に内包されている。ナセル101は構造部材103により支持され、構造部材103は係留ワイヤ104を介して海底にアンカー105により固定されている。   FIG. 6 shows a schematic configuration of a mooring type ocean current power generation system, and a basic concept thereof will be described. This system includes a blade 102 that converts a flow into rotational energy, a rotating shaft that covers the portion connected to the blade 102 with a cap 106 and transmits the rotational energy to the generator, and the generator is included in the nacelle 101. ing. The nacelle 101 is supported by a structural member 103, and the structural member 103 is fixed to the sea floor by an anchor 105 via a mooring wire 104.

図7に、固定式海流発電システムの概略構成を示す。翼102やナセル101に関しては図6に示された係留式海流発電システムにおけるものと同様の構造であるが、ナセル101を海底に固定するために支柱109が用いられる。係留式、固定式の両方の海流発電システムにおいて、風車でよく見られるように図示されたような形状を有するキャップ106が用いられていることが多い。   FIG. 7 shows a schematic configuration of the fixed ocean current power generation system. The wings 102 and the nacelle 101 have the same structure as that in the mooring type ocean current power generation system shown in FIG. 6, but a column 109 is used to fix the nacelle 101 to the seabed. In both mooring and stationary ocean current power generation systems, a cap 106 having a shape as illustrated is often used as often seen in wind turbines.

日本近海で海流発電を実施できる地点は限られており、主に黒潮、対馬海流、親潮等が挙げられる。これに対して潮流発電は潮の流れを利用するものであり、鳴門海峡のうず潮が最大級である。しかし、潮流・海流発電システムは共に周辺環境に対する影響が非常に大きく、またこれらの地点は豊富なプランクトンに支えられる漁場として利用されている。このため、新たな発電システムを構築する際には、漁業を生業としている生活者に対し、生態系の混乱等を伴う環境破壊が起こらないように十分な考慮が必要である。   The locations where ocean current power generation can be carried out in the waters near Japan are limited, and mainly include the Kuroshio Current, Tsushima Current, Oyashio Current, etc. On the other hand, tidal current power generation uses the flow of the tide, and the tide in the Naruto Strait is the largest. However, both tidal current and ocean current power generation systems have a great impact on the surrounding environment, and these points are used as fishing grounds supported by abundant plankton. For this reason, when constructing a new power generation system, it is necessary to give sufficient consideration to those who live in the fishery industry so that environmental destruction caused by ecosystem disruption does not occur.

米国特許第7530224号公報US Pat. No. 7,530,224 米国特許第7425772号公報US Pat. No. 7,425,772

上述のように、環境影響の少ない海流発電システムを構築する必要があり、特に配慮すべきは生態系への影響である。   As described above, it is necessary to construct an ocean current power generation system with little environmental impact, and the impact on the ecosystem is particularly important.

通常の発電システムにおける風車を海流発電に応用した場合、発電システムに魚類が衝突して死亡すること、魚類が死亡したことにより、その上位捕食者の衰退等、生態系へ及ぼす影響が考えられる。   When a windmill in a normal power generation system is applied to ocean current power generation, the impact on the ecosystem, such as the decline of the top predators, can be considered due to the fish colliding with the power generation system and dying.

本発明は上記事情に鑑みてなされたものであり、魚類が衝突して死亡することを低減し環境影響の少ない海流発電システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a ocean current power generation system that reduces the collision and death of fish and has less environmental impact.

本発明の海流発電システムは、海水の流れを回転エネルギに変換する翼と、変換された前記回転エネルギを回転軸を介して与えられて発電を行う発電機とを備える海流発電システムにおいて、前記翼の表面を覆う弾性部材をさらに備えることを特徴とする。   The ocean current power generation system according to the present invention includes a blade that converts a flow of seawater into rotational energy, and a generator that generates electric power by applying the converted rotational energy via a rotating shaft. It further comprises an elastic member covering the surface.

また本発明の海流発電システムは、海水の流れを回転エネルギに変換する翼と、変換された前記回転エネルギを回転軸を介して与えられて発電を行う発電機とを備え、弾性材料が用いて作製され、前記翼の上流側にいて前記回転軸に取り付けられた柱状部材をさらに備えることを特徴とする。   Moreover, the ocean current power generation system of the present invention includes a wing that converts the flow of seawater into rotational energy, and a generator that generates electric power by being supplied with the converted rotational energy via a rotating shaft, and an elastic material is used. A columnar member that is manufactured and is provided on the upstream side of the blade and attached to the rotating shaft is further provided.

本発明の海流発電システムによれば、魚類の衝突による死亡率を低減し環境に与える影響が少ない海流発電システムを提供することができる。   According to the ocean current power generation system of the present invention, it is possible to provide a ocean current power generation system that reduces the mortality due to the collision of fish and has little influence on the environment.

本発明の実施の形態1による海流発電システムの構成を示した正面図。The front view which showed the structure of the ocean current power generation system by Embodiment 1 of this invention. 同実施の形態1による海流発電システムにおける翼の断面形状を示した縦断面図。The longitudinal cross-sectional view which showed the cross-sectional shape of the wing | blade in the ocean current power generation system by the same Embodiment 1. FIG. 本発明の実施の形態2による海流発電システムにおける翼の断面形状を示した縦断面図。The longitudinal cross-sectional view which showed the cross-sectional shape of the wing | blade in the ocean current power generation system by Embodiment 2 of this invention. 本発明の実施の形態3による海流発電システムにおける翼の断面形状を示した縦断面図。The longitudinal cross-sectional view which showed the cross-sectional shape of the wing | blade in the ocean current power generation system by Embodiment 3 of this invention. 本発明の実施の形態4による海流発電システムの構成を示した正面図。The front view which showed the structure of the ocean current power generation system by Embodiment 4 of this invention. 係留式海流発電システムの概略構成を示した斜視図。The perspective view which showed schematic structure of the mooring type ocean current power generation system. 固定式海流発電システムの概略構成を示した正面図。The front view which showed schematic structure of the fixed type ocean current power generation system.

以下、本発明の実施の形態による海流発電システム(潮流発電システムを含む)について、図面を参照して説明する。   Hereinafter, ocean current power generation systems (including tidal current power generation systems) according to embodiments of the present invention will be described with reference to the drawings.

(1)実施の形態1
図1、図2を用いて、本発明の実施の形態1による海流発電システムについて説明する。
(1) Embodiment 1
The ocean current power generation system according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2.

図1に、海流発電システムにおける主要な構成要素を示す。このシステムは、矢印で示された海流の流れを回転エネルギに変換する翼2と、翼2に取り付けられた箇所がキャップ6で覆われており変換された回転エネルギを発電機に伝える回転軸と、回転軸に接続され回転エネルギから発電する発電機とを備え、発電機はナセル1に内包されている。   FIG. 1 shows main components in the ocean current power generation system. This system includes a wing 2 that converts ocean current flow indicated by an arrow into rotational energy, and a rotary shaft that covers the portion attached to the wing 2 with a cap 6 and transmits the converted rotational energy to a generator. The generator is connected to the rotating shaft and generates electric power from the rotational energy. The generator is included in the nacelle 1.

図2に、海流の流れ方向と翼2の回転方向とに対する翼2の断面形状を示す。本実施の形態1は、翼2の表面がゴム等の高分子材料から成る弾性材料が用いられて形成された弾性部材7により覆われている点に特徴がある。ここで、翼2の表面を覆うように弾性部材7を設ける手法はいかなるものであってもよく限定されない。   In FIG. 2, the cross-sectional shape of the wing | blade 2 with respect to the flow direction of an ocean current and the rotation direction of the wing | blade 2 is shown. The first embodiment is characterized in that the surface of the blade 2 is covered with an elastic member 7 formed using an elastic material made of a polymer material such as rubber. Here, the method of providing the elastic member 7 so as to cover the surface of the blade 2 may be any method and is not limited.

このように、翼2の表面が弾性部材7で覆われていることにより、魚類が翼2に衝突したとしても弾性部材7により衝撃力が弱められる。この結果、魚類の殺傷確率が低減され、海流発電システムが与える下流生態系への影響が低減され、魚類の死亡によるその上位捕食者の衰退等、生態系へ与える影響を減少させることができる。   Thus, since the surface of the wing 2 is covered with the elastic member 7, even if fish collides with the wing 2, the impact force is weakened by the elastic member 7. As a result, the killing probability of the fish is reduced, the influence on the downstream ecosystem caused by the ocean current power generation system is reduced, and the influence on the ecosystem such as the decline of the upper predator due to the death of the fish can be reduced.

(2)実施の形態2
本発明の実施の形態2による海流発電システムについて、図3を用いて説明する。尚、上記実施の形態1と同一の構成要素には同一の符号を付し、重複する説明は省略する。
(2) Embodiment 2
An ocean current power generation system according to Embodiment 2 of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the component same as the said Embodiment 1, and the overlapping description is abbreviate | omitted.

本実施の形態2では、弾性部材7に切れ目11が形成されており、翼2に弾性部材7が覆うように取り付けられた状態で、翼2の複数箇所に設けられた螺旋状の穴に締結ボルト8を固定することにより脱着可能に固定される構造を備えている。ここで、締結ボルト8で弾性部材7を翼2に締結する箇所は、圧力面2bに設けられている。原理的に魚類が衝突するのは、翼2の前縁から負圧面2aまでの範囲であると考えられる。そこで、翼2の前縁から負圧面2aには凹凸が生じないように、圧力面2bにおいて締結を行っている。   In the second embodiment, the cut 11 is formed in the elastic member 7, and the elastic member 7 is attached to the wing 2 so as to cover the elastic member 7. The bolt 8 is fixed so as to be detachable. Here, the place which fastens the elastic member 7 to the wing | blade 2 with the fastening bolt 8 is provided in the pressure surface 2b. In principle, it is considered that fish collide in the range from the leading edge of the wing 2 to the suction surface 2a. Therefore, fastening is performed on the pressure surface 2b so that unevenness does not occur from the leading edge of the blade 2 to the suction surface 2a.

一般に、弾性部材7は海水中に置かれると反発力が劣化する。そこで、定期的に弾性部材7を交換することにより、弾性部材7が有する反発性能を維持することができる。   Generally, when the elastic member 7 is placed in seawater, the repulsive force deteriorates. Therefore, the resilience performance of the elastic member 7 can be maintained by periodically replacing the elastic member 7.

上述のように、本実施の形態2によれば弾性部材7を翼2に対して容易に脱着が可能である。従って、弾性部材7の定期的な交換が可能であり、半永久的に魚類の殺傷確率を低減した状態で海流発電システムを運用することができる。   As described above, according to the second embodiment, the elastic member 7 can be easily detached from the blade 2. Therefore, the elastic member 7 can be periodically replaced, and the ocean current power generation system can be operated in a state where the probability of killing fish is semipermanently reduced.

(3)実施の形態3
本発明の実施の形態3による海流発電システムについて、図4を用いて説明する。上記実施の形態1、2と同一の構成要素には同一の符号を付し、重複する説明は省略する。
(3) Embodiment 3
An ocean current power generation system according to Embodiment 3 of the present invention will be described with reference to FIG. The same components as those in the first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.

本実施の形態3では、図4に示されたように、弾性部材7が翼2の前縁から負圧面2aを覆うように取り付けられ、圧力面2bにおいて締結ボルト8により固定されている。   In the third embodiment, as shown in FIG. 4, the elastic member 7 is attached so as to cover the suction surface 2a from the front edge of the blade 2, and is fixed by the fastening bolt 8 on the pressure surface 2b.

上記実施の形態2において説明したように、原理的には魚類が衝突するのは翼2の前縁から負圧面2aまでの範囲である。そこで本実施の形態3では、この範囲に弾性部材7を翼2に取り付けることで、魚類の殺傷確率を十分に低減することができる。   As described in the second embodiment, in principle, fish collide within the range from the leading edge of the wing 2 to the suction surface 2a. Therefore, in the third embodiment, the probability of killing fish can be sufficiently reduced by attaching the elastic member 7 to the wing 2 in this range.

また、弾性部材7を定期的に交換することを考慮した場合、本実施の形態3では翼7を弾性部材7で覆う面積を必要最小限にすることにより、コスト低減に寄与することができる。   In consideration of periodically replacing the elastic member 7, the third embodiment can contribute to cost reduction by minimizing the area in which the blade 7 is covered with the elastic member 7.

(4)実施の形態4
本発明の実施の形態4による海流発電システムについて、図5を用いて説明する。上記実施の形態1と同一の構成には同一の符号を付し、重複する説明は省略する。
(4) Embodiment 4
An ocean current power generation system according to Embodiment 4 of the present invention will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図5に示されたように、本実施の形態4では矢印で示された海流の流れ方向における翼2の上流側に、ゴム等の高分子材料から成る弾性材料が用いられて作製された円柱状の柱状部材9が回転軸に取り付けられている。   As shown in FIG. 5, in the fourth embodiment, a circle formed by using an elastic material made of a polymer material such as rubber on the upstream side of the wing 2 in the flow direction of the ocean current indicated by an arrow. A columnar columnar member 9 is attached to the rotating shaft.

ここで、柱状部材9は少なくとも1本取り付けられていればよいが、本数には限定されず任意の数だけ取り付けることができる。この柱状部材9は回転軸の回転に伴い、翼2と共に回転する。   Here, it is sufficient that at least one columnar member 9 is attached, but the number is not limited to the number, and an arbitrary number can be attached. The columnar member 9 rotates together with the blade 2 as the rotation shaft rotates.

翼2に魚類が進入する前に柱状部材9に衝突するが、柱状部材9が弾性材料により製作されている。このため、魚類は死傷することなく危険を察して海流発電システムから遠ざかる。この結果、本実施の形態4によれば魚類が翼2に衝突することがなくなり、殺傷確率を低減することが可能となる。   Before the fish enters the wing 2, it collides with the columnar member 9, and the columnar member 9 is made of an elastic material. For this reason, fish can be in danger without being injured and move away from the ocean current power generation system. As a result, according to the fourth embodiment, fish do not collide with the wing 2 and the killing probability can be reduced.

尚、翼2は通常の材料で作製され弾性部材で覆われていないものであってもよく、あるいは上記実施の形態1〜3のいずれかのように弾性部材で覆われていてもよい。   The blade 2 may be made of a normal material and not covered with an elastic member, or may be covered with an elastic member as in any of the first to third embodiments.

上述した実施の形態はいずれも一例であって、本発明を限定するものではなく本発明の技術的範囲内において様々に変形することが可能である。   The above-described embodiments are merely examples, and the present invention is not limited thereto, and various modifications can be made within the technical scope of the present invention.

また、ナセル1を海底に設置する手法は、図5に示されたように支柱10を用いる固定式や、構造部材や係留ワイヤ等を用いて海底にアンカリングにより固定する係留式等、いずれの手法を用いてもよい。   Further, the nacelle 1 can be installed on the seabed by any of the fixed type using the support column 10 as shown in FIG. 5 and the mooring type fixed to the seabed by anchoring using a structural member or a mooring wire. A technique may be used.

1 ナセル
2 翼
2a 負圧面
2b 圧力面
6 キャップ
7 弾性部材
8 締結ボルト
9 柱状部材
DESCRIPTION OF SYMBOLS 1 Nacelle 2 Wing | blade 2a Negative pressure surface 2b Pressure surface 6 Cap 7 Elastic member 8 Fastening bolt 9 Columnar member

Claims (6)

海水の流れを回転エネルギに変換する翼と、
変換された前記回転エネルギを回転軸を介して与えられて発電を行う発電機と、
を備える海流発電システムにおいて、
前記翼の表面を覆う弾性部材をさらに備えることを特徴とする海流発電システム。
A wing that converts the flow of seawater into rotational energy;
A generator for generating electric power by receiving the converted rotational energy via a rotary shaft;
In the ocean current power generation system comprising
An ocean current power generation system further comprising an elastic member that covers a surface of the wing.
前記弾性部材が、前記翼の表面に着脱可能に固定された構造を有することを特徴とする請求項1に記載の海流発電システム。   The ocean current power generation system according to claim 1, wherein the elastic member has a structure that is detachably fixed to a surface of the wing. 前記弾性部材は、前記翼の表面における少なくとも圧力面において前記ボルトにより締結されていることを特徴とする請求項2に記載の海流発電システム。   The ocean current power generation system according to claim 2, wherein the elastic member is fastened by the bolt at least at a pressure surface on a surface of the wing. 前記弾性部材が、少なくとも前記翼の前縁から負圧面を覆うように設けられていることを特徴とする請求項1乃至3のいずれか一に記載の海流発電システム。   4. The ocean current power generation system according to claim 1, wherein the elastic member is provided so as to cover a suction surface from at least a leading edge of the wing. 5. 弾性材料が用いて作製され、前記翼の上流側において前記回転軸に取り付けられた柱状部材をさらに備えることを特徴とする請求項1乃至4のいずれか一に記載の海流発電システム。   The ocean current power generation system according to any one of claims 1 to 4, further comprising a columnar member made of an elastic material and attached to the rotary shaft on the upstream side of the blade. 海水の流れを回転エネルギに変換する翼と、
変換された前記回転エネルギを回転軸を介して与えられて発電を行う発電機と、
を備える海流発電システムにおいて、
弾性材料が用いて作製され、前記翼の上流側にいて前記回転軸に取り付けられた柱状部材をさらに備えることを特徴とする海流発電システム。
A wing that converts the flow of seawater into rotational energy;
A generator for generating electric power by receiving the converted rotational energy via a rotary shaft;
In the ocean current power generation system comprising
An ocean current power generation system, further comprising a columnar member made of an elastic material and attached to the rotary shaft on the upstream side of the wing.
JP2010140218A 2010-06-21 2010-06-21 Ocean current power generation system Withdrawn JP2012002203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140218A JP2012002203A (en) 2010-06-21 2010-06-21 Ocean current power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140218A JP2012002203A (en) 2010-06-21 2010-06-21 Ocean current power generation system

Publications (1)

Publication Number Publication Date
JP2012002203A true JP2012002203A (en) 2012-01-05

Family

ID=45534444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140218A Withdrawn JP2012002203A (en) 2010-06-21 2010-06-21 Ocean current power generation system

Country Status (1)

Country Link
JP (1) JP2012002203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074577B2 (en) 2013-03-15 2015-07-07 Dehlsen Associates, Llc Wave energy converter system
CN114088888A (en) * 2021-12-01 2022-02-25 杭电(海宁)信息科技研究院有限公司 Fishery carbon sink metering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074577B2 (en) 2013-03-15 2015-07-07 Dehlsen Associates, Llc Wave energy converter system
CN114088888A (en) * 2021-12-01 2022-02-25 杭电(海宁)信息科技研究院有限公司 Fishery carbon sink metering device
CN114088888B (en) * 2021-12-01 2023-10-10 杭电(海宁)信息科技研究院有限公司 Fishery carbon sink metering device

Similar Documents

Publication Publication Date Title
EP3536600B1 (en) Underwater turbine
US7997870B2 (en) Turbine rotor for electrical power generation
JP5985494B2 (en) Turbine system and method
CA3003658C (en) Turbine system for submersed use in electrical generation and methods
JP6706049B2 (en) Ocean current generator
KR101620900B1 (en) Sea floating wind generating deice with tidal adaptation
US20120019003A1 (en) Ocean Current-Based Hydroelectric Power Generation System
JP2012041920A (en) Ocean-current power generation system
JP2012002203A (en) Ocean current power generation system
JP6726740B2 (en) Hydroelectric energy system
CN202348546U (en) Hard moving vane sea wave power generator
JP2014148984A (en) Wind turbine rotational blade and wind turbine generating apparatus having the same
KR101691933B1 (en) Tidal Current Generator
JP5863575B2 (en) Water current generator
US20100001528A1 (en) Underwater generator
KR101372128B1 (en) Rotating axis converting-type tidal current power generating system
KR101390866B1 (en) Floating wind power generator
KR101594754B1 (en) A water wheel for power generation
KR101318480B1 (en) Multi-stage tidal current power plant with high efficiency
US9284941B2 (en) Natural energy extraction apparatus
US20210363964A1 (en) Energy collecting systems of the marine, river and wind currents
JP5638429B2 (en) Ocean current power generation system
JP2013181428A (en) Wave-power device
JP5073087B1 (en) Water current generator, tidal current generator and tidal current power generation method using the same
KR20050122146A (en) The wings automatic action conversion a tide and wind force generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903