JP2012002094A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2012002094A
JP2012002094A JP2010135892A JP2010135892A JP2012002094A JP 2012002094 A JP2012002094 A JP 2012002094A JP 2010135892 A JP2010135892 A JP 2010135892A JP 2010135892 A JP2010135892 A JP 2010135892A JP 2012002094 A JP2012002094 A JP 2012002094A
Authority
JP
Japan
Prior art keywords
exhaust
passage
bypass
turbine
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010135892A
Other languages
Japanese (ja)
Inventor
Naruto Yamane
成人 山根
Koichi Akita
浩市 秋田
Keiji Yotsueda
啓二 四重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010135892A priority Critical patent/JP2012002094A/en
Publication of JP2012002094A publication Critical patent/JP2012002094A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a technique that heats an exhaust gas cleaning catalyst early when it needs warming-up, and avoids overheating the exhaust gas cleaning catalyst when it is overheated.SOLUTION: An internal combustion engine includes: a turbine 4 of a supercharger 2 provided in an exhaust passage 3 in the internal combustion engine 1; the exhaust gas cleaning catalyst 7 provided in the exhaust passage 3 that is more downstream than the turbine 4; a bypass passage 8 that causes exhaust in the exhaust passage 3 that is more upstream than the turbine 4 to bypass the turbine 4, and flows the exhaust into the exhaust passage 3 that is more downstream than; and a bypass valve 10 that controls the flow rate of the exhaust discharged from the bypass passage 8 and that is controlled by an opening degree based on which the exhaust emitted from the bypass passage 8 collides with a passage wall when the exhaust gas cleaning catalyst 7 is likely to be overheated.

Description

本発明は、タービンをバイパスするバイパス通路から排出される排気の流量を調節するバイパス弁を備えた内燃機関に関する。   The present invention relates to an internal combustion engine including a bypass valve that adjusts the flow rate of exhaust gas discharged from a bypass passage that bypasses a turbine.

過給機のタービンを備えた内燃機関において、内燃機関の排気通路の排気にタービンをバイパスさせるバイパス通路を備える技術が開示されている(例えば特許文献1参照)。特許文献1の技術では、タービンよりも下流の排気通路に設けられた排気浄化触媒が早期暖機の必要な温度領域にあるときは、バイパス通路へ排気を流すことにより、排気の熱がタービンで奪われることなく排気が排気浄化触媒に流入し、排気浄化触媒の早期昇温を図ることができる。   In an internal combustion engine provided with a turbocharger turbine, a technology is disclosed that includes a bypass passage that bypasses the turbine to the exhaust passage of the internal combustion engine (see, for example, Patent Document 1). In the technique of Patent Document 1, when the exhaust purification catalyst provided in the exhaust passage downstream of the turbine is in a temperature region where early warm-up is required, the exhaust heat is caused to flow in the turbine by flowing the exhaust through the bypass passage. The exhaust flows into the exhaust purification catalyst without being taken away, and the exhaust purification catalyst can be raised in temperature early.

特開平05−044448号公報Japanese Patent Laid-Open No. 05-044448 特開2003−254051号公報JP 2003-240551 A 特開2002−195046号公報JP 2002-195046 A 特開2006−022738号公報JP 2006-022738 A

上記した特許文献1では、バイパス通路から高温の排気を供給して排気浄化触媒の暖機を図ることができる。しかし、排気浄化触媒が過昇温するおそれがある場合、例えば、過給状態で且つスロットル全開の高負荷領域で長時間走行した場合には、バイパス通路を閉じてタービンに排気を通過させても、タービンが高温になっておりタービンが排気の熱を奪えないので排気が冷却されないため、排気浄化触媒に冷却した排気を供給することはできない。   In Patent Document 1 described above, it is possible to warm up the exhaust purification catalyst by supplying high-temperature exhaust gas from the bypass passage. However, if there is a possibility that the exhaust purification catalyst may overheat, for example, if the vehicle is in a supercharged state and travels in a high load region where the throttle is fully open for a long time, the exhaust gas may be allowed to pass through the turbine by closing the bypass passage. Since the turbine is at a high temperature and the turbine cannot take the heat of the exhaust gas, the exhaust gas is not cooled. Therefore, the cooled exhaust gas cannot be supplied to the exhaust purification catalyst.

本発明は上記問題点に鑑みたものであり、本発明の目的は、内燃機関において、排気浄化触媒の暖機が必要な場合には、排気浄化触媒の早期昇温を図る一方、排気浄化触媒が過昇温するおそれがある場合には、排気浄化触媒の過昇温を回避する技術を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to quickly raise the temperature of an exhaust purification catalyst when the exhaust purification catalyst needs to be warmed up in an internal combustion engine. In the case where there is a risk of overheating of the exhaust gas, it is an object to provide a technique for avoiding overheating of the exhaust purification catalyst.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の排気通路に設けられる過給機のタービンと、
前記タービンよりも下流の前記排気通路に設けられる排気浄化触媒と、
前記タービンよりも上流の前記排気通路の排気に前記タービンをバイパスさせるバイパス通路と、
前記バイパス通路から排出される排気の流量を調節するバイパス弁であって、前記排気浄化触媒が過昇温するおそれがある場合には、前記バイパス通路から排出される排気を通路壁面へ衝突させる開度に制御されるバイパス弁と、
を備えたことを特徴とする内燃機関である。
In the present invention, the following configuration is adopted. That is, the present invention
A turbocharger turbine provided in an exhaust passage of the internal combustion engine;
An exhaust purification catalyst provided in the exhaust passage downstream of the turbine;
A bypass passage for bypassing the turbine to the exhaust of the exhaust passage upstream of the turbine;
A bypass valve that adjusts the flow rate of the exhaust gas discharged from the bypass passage, and when the exhaust purification catalyst may be overheated, the exhaust valve that collides the exhaust gas discharged from the bypass passage with the passage wall surface. A bypass valve controlled at a time,
An internal combustion engine characterized by comprising:

本発明では、排気浄化触媒が過昇温するそれがある場合には、バイパス弁を、バイパス通路から排出される排気を通路壁面へ衝突させる開度に制御する。ここで、通路壁面は熱容量が大きく放熱し易い。これによると、バイパス通路から排出される排気は、バイパス
弁によって通路壁面に衝突し、排気の熱が熱容量の大きい通路壁面に伝わり放熱され、排気が冷却される。よって、排気浄化触媒には冷却された排気が流入するので、排気浄化触媒の過昇温を回避することができる。
In the present invention, when the exhaust purification catalyst is excessively heated, the bypass valve is controlled to an opening degree at which the exhaust discharged from the bypass passage collides with the passage wall surface. Here, the passage wall surface has a large heat capacity and easily dissipates heat. According to this, the exhaust discharged from the bypass passage collides with the passage wall surface by the bypass valve, and the heat of the exhaust is transmitted to the passage wall surface having a large heat capacity to be dissipated to cool the exhaust. Therefore, since the cooled exhaust gas flows into the exhaust purification catalyst, it is possible to avoid overheating of the exhaust purification catalyst.

前記バイパス弁は、前記排気浄化触媒の暖機が必要な場合には、前記バイパス通路から排出される排気を通路壁面へ衝突させない開度に制御されるとよい。ここでは、排気浄化触媒の暖機が必要な場合には、バイパス弁を、バイパス通路から排出される排気を通路壁面へ衝突させない開度に制御する。これによると、バイパス通路から排出される排気は通路壁面に衝突せず、排気の熱が熱容量の大きい通路壁面に伝わらないので、排気が高温に維持される。よって、排気浄化触媒には高温の排気が流入するので、排気浄化触媒の早期昇温を図ることができる。   When the exhaust purification catalyst needs to be warmed up, the bypass valve may be controlled to an opening degree that does not cause the exhaust discharged from the bypass passage to collide with the passage wall surface. Here, when the exhaust purification catalyst needs to be warmed up, the bypass valve is controlled to an opening degree at which the exhaust discharged from the bypass passage does not collide with the passage wall surface. According to this, the exhaust discharged from the bypass passage does not collide with the passage wall surface, and the exhaust heat is not transmitted to the passage wall surface having a large heat capacity, so that the exhaust is maintained at a high temperature. Therefore, since high-temperature exhaust gas flows into the exhaust purification catalyst, the exhaust purification catalyst can be raised in temperature early.

前記バイパス弁は、前記タービンから排出される排気の流量を調節できる開度に制御されるとよい。これによると、バイパス弁一つで、バイパス通路及びタービンから排出される排気の流量を調節できるので、弁を複数設ける必要が無く、低コスト化を図ることができる。   The bypass valve may be controlled to an opening degree capable of adjusting a flow rate of exhaust gas discharged from the turbine. According to this, since the flow rate of the exhaust gas discharged from the bypass passage and the turbine can be adjusted with one bypass valve, it is not necessary to provide a plurality of valves, and the cost can be reduced.

前記バイパス弁は、前記排気浄化触媒の暖機が必要な場合には、前記タービンから排気を排出させない開度に制御されるとよい。これによると、排気浄化触媒の暖機が必要な場合には、タービンから排気を排出させず、バイパス通路から排気の全量を排出させることにより、排気の温度低下を最小限にすることができる。よって、排気浄化触媒には最小限の温度低下しかしていない排気が流入するので、排気浄化触媒の早期昇温を行うことができる。   When the exhaust purification catalyst needs to be warmed up, the bypass valve may be controlled to an opening degree that does not exhaust exhaust from the turbine. According to this, when the exhaust purification catalyst needs to be warmed up, exhaust temperature is not exhausted from the turbine, but exhaust gas is exhausted from the bypass passage, thereby minimizing the temperature drop of the exhaust. Therefore, since the exhaust gas having a minimum temperature drop flows into the exhaust purification catalyst, the exhaust purification catalyst can be raised in temperature early.

本発明によると、内燃機関において、排気浄化触媒の暖機が必要な場合には、排気浄化触媒の早期昇温を図ることができ、排気浄化触媒が過昇温するおそれがある場合には、排気浄化触媒の過昇温を回避することができる。   According to the present invention, in the internal combustion engine, when the exhaust purification catalyst needs to be warmed up, the exhaust purification catalyst can be quickly heated, and when the exhaust purification catalyst may overheat, An excessive temperature rise of the exhaust purification catalyst can be avoided.

本発明の実施例1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. 実施例1に係るバイパス弁の開度を制御した様子を示す図である。It is a figure which shows a mode that the opening degree of the bypass valve which concerns on Example 1 was controlled. 実施例1に係るバイパス弁の開度に対する背圧を示す図である。It is a figure which shows the back pressure with respect to the opening degree of the bypass valve which concerns on Example 1. FIG. 実施例1に係る機関負荷及び機関回転速度に応じたバイパス弁の開度制御を示す図である。It is a figure which shows the opening degree control of a bypass valve according to the engine load and engine speed which concern on Example 1. FIG. 実施例1に係るバイパス弁の開度と排気流量との関係を示す図である。It is a figure which shows the relationship between the opening degree of the bypass valve which concerns on Example 1, and exhaust gas flow volume. 実施例2に係るバイパス弁の開度を制御した様子を示す図である。It is a figure which shows a mode that the opening degree of the bypass valve which concerns on Example 2 was controlled. 実施例3に係るバイパス弁の開度を制御した様子を示す図である。It is a figure which shows a mode that the opening degree of the bypass valve which concerns on Example 3 was controlled. 実施例4に係るバイパス弁の開度を制御した様子を示す図である。It is a figure which shows a mode that the opening degree of the bypass valve which concerns on Example 4 was controlled. 実施例5に係るバイパス弁の開度を制御した様子を示す図である。It is a figure which shows a mode that the opening degree of the bypass valve which concerns on Example 5 was controlled. 実施例6に係るバイパス弁の開度を制御した様子を示す図である。It is a figure which shows a mode that the opening degree of the bypass valve which concerns on Example 6 was controlled.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本発明の実施例1に係る内燃機関の概略構成を示す図である。図1に示す内燃機関1は、気筒を4つ備える4ストロークサイクルのディーゼルエンジンである。内燃機関1には、ターボチャージャ等の過給機2が搭載される。過給機2は、内燃機関1の排気通路3を流通する排気のエネルギを用いてタービン4を回転させ、タービン4の回転力を
コンプレッサ5に伝達し、内燃機関1の吸気通路6を流通する吸気をコンプレッサ5で過給する。
<Example 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. An internal combustion engine 1 shown in FIG. 1 is a four-stroke cycle diesel engine having four cylinders. The internal combustion engine 1 is equipped with a supercharger 2 such as a turbocharger. The supercharger 2 rotates the turbine 4 using the energy of the exhaust gas flowing through the exhaust passage 3 of the internal combustion engine 1, transmits the rotational force of the turbine 4 to the compressor 5, and flows through the intake passage 6 of the internal combustion engine 1. The intake air is supercharged by the compressor 5.

タービン4よりも下流の排気通路3には、排気浄化触媒7が配置される。排気浄化触媒7としては、例えば、酸化触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒等があり、所定温度領域でその機能を発揮する。このため、冷間時等の排気浄化触媒7が所定温度領域よりも低温の場合には、機能を発揮させるために暖機が必要となる。一方、過昇温時といった排気浄化触媒7が所定温度領域よりも高温の場合には、熱劣化を引き起こすので、過昇温を回避する必要がある。   An exhaust purification catalyst 7 is disposed in the exhaust passage 3 downstream of the turbine 4. Examples of the exhaust purification catalyst 7 include an oxidation catalyst, a storage reduction type NOx catalyst, a selective reduction type NOx catalyst, and the like, and perform their functions in a predetermined temperature range. For this reason, when the exhaust gas purification catalyst 7 is colder than a predetermined temperature range, such as when it is cold, warm-up is necessary to exert its function. On the other hand, when the exhaust purification catalyst 7 is at a temperature higher than the predetermined temperature range, such as when the temperature is excessively high, it causes thermal deterioration, and thus it is necessary to avoid the excessive temperature increase.

タービン4は、タービンハウジング内に備えられる。タービンハウジングも排気通路3の一部である。このタービンハウジングには、タービン4よりも上流の排気通路3の排気にタービン4をバイパスさせてタービン4よりも下流の排気通路3へ流すバイパス通路8が設けられている。バイパス通路8及びタービン4よりも下流の排気通路3の排気流通方向は、バイパス通路8から排出された排気がそのまま下流の排気浄化触媒7へ向かう方向に設定されている。タービンハウジングには、バイパス通路8に並列してタービン4から排出される排気を流通させるタービン出口通路9が設けられる。   The turbine 4 is provided in a turbine housing. The turbine housing is also a part of the exhaust passage 3. The turbine housing is provided with a bypass passage 8 that causes the exhaust of the exhaust passage 3 upstream of the turbine 4 to bypass the turbine 4 and flow to the exhaust passage 3 downstream of the turbine 4. The exhaust flow direction of the exhaust passage 3 downstream of the bypass passage 8 and the turbine 4 is set to a direction in which the exhaust discharged from the bypass passage 8 directly goes to the downstream exhaust purification catalyst 7. The turbine housing is provided with a turbine outlet passage 9 through which exhaust gas discharged from the turbine 4 flows in parallel with the bypass passage 8.

バイパス通路8の下流端開口には、バイパス通路8から排出される排気の流量を調節可能なバイパス弁10が設けられる。なお、バイパス弁10とは、一般的なウェイストゲートバルブを示す。バイパス弁10は、板状であり、バイパス通路8の下流端開口とタービン出口通路9の下流端開口との間に軸支されて回動可能となっている。このため、バイパス弁10は、ECU11からの指令によって、バイパス通路8の下流端開口を塞ぐ状態(閉弁状態:開度0°)から、タービン出口通路9の下流端開口を塞ぐ状態(開度略180°)まで開度を制御可能である。バイパス弁10は、バイパス通路8の下流端開口を塞ぐ面を表面とすると、タービン出口通路9の下流端開口を塞ぐ面が表面の真裏の裏面となる。   A bypass valve 10 capable of adjusting the flow rate of the exhaust gas discharged from the bypass passage 8 is provided at the downstream end opening of the bypass passage 8. The bypass valve 10 is a general waste gate valve. The bypass valve 10 has a plate shape and is pivotally supported between the downstream end opening of the bypass passage 8 and the downstream end opening of the turbine outlet passage 9 so as to be rotatable. For this reason, the bypass valve 10 is in a state of closing the downstream end opening of the turbine outlet passage 9 from a state of closing the downstream end opening of the bypass passage 8 (closed state: opening degree 0 °) according to a command from the ECU 11 (opening degree). The opening degree can be controlled up to approximately 180 °. When the bypass valve 10 has a surface that closes the downstream end opening of the bypass passage 8 as a surface, the surface that closes the downstream end opening of the turbine outlet passage 9 is the back surface on the back of the surface.

このように本実施例のバイパス弁10は、バイパス通路8及びタービン出口通路9のどちらかから排出される排気の流量を調節できる開度に制御される。これによると、バイパス弁一つで、バイパス通路8及びタービン4から排出される排気の流量を調節できるので、弁を複数設ける必要が無く、低コスト化を図ることができる。   Thus, the bypass valve 10 of the present embodiment is controlled to an opening that can adjust the flow rate of the exhaust gas discharged from either the bypass passage 8 or the turbine outlet passage 9. According to this, since the flow rate of the exhaust gas discharged from the bypass passage 8 and the turbine 4 can be adjusted with one bypass valve, there is no need to provide a plurality of valves, and the cost can be reduced.

図2は、本実施例に係るバイパス弁10の開度を制御した様子を示す図である。図2(a)は、バイパス弁10がバイパス通路8の下流端開口を塞いだ開度0°の閉弁状態を示す図である。図2(a)に示す閉弁状態にバイパス弁10の開度を制御すると、排気はバイパス通路8を流通できないので、排気の全量でタービン4を駆動することになる。タービン4を駆動した排気は、タービン出口通路9から下流の排気通路3へ排出される。   FIG. 2 is a diagram illustrating a state in which the opening degree of the bypass valve 10 according to the present embodiment is controlled. FIG. 2A is a view showing a closed state of the opening degree 0 ° in which the bypass valve 10 closes the downstream end opening of the bypass passage 8. If the opening degree of the bypass valve 10 is controlled in the valve-closed state shown in FIG. 2A, the exhaust cannot flow through the bypass passage 8, so that the turbine 4 is driven with the entire amount of exhaust. The exhaust that has driven the turbine 4 is discharged from the turbine outlet passage 9 to the downstream exhaust passage 3.

図2(b)は、バイパス弁10がバイパス通路8から排出される排気を通路壁面へ衝突させる開度の状態を示す図である。図2(b)に示す状態にバイパス弁10の開度を制御すると、バイパス弁10からの排気が通路壁面へ向い、排気浄化触媒7が過昇温するおそれがある場合に、バイパス通路8から排出される排気をタービンハウジング等の排気通路3の通路壁面へ衝突させることができる。ここで、通路壁面は熱容量が大きく放熱し易い。これによると、バイパス通路8から排出される排気は、バイパス弁10によって通路壁面に衝突し、排気の熱が熱容量の大きい通路壁面に伝わり放熱され、排気が冷却される。よって、排気浄化触媒7には、冷却された排気が流入するので、排気浄化触媒7の過昇温を回避することができる。   FIG. 2B is a view showing a state of the opening degree at which the bypass valve 10 causes the exhaust gas discharged from the bypass passage 8 to collide with the passage wall surface. When the opening degree of the bypass valve 10 is controlled in the state shown in FIG. 2B, when the exhaust from the bypass valve 10 is directed to the passage wall surface and the exhaust purification catalyst 7 may be overheated, the bypass passage 8 The discharged exhaust gas can collide with the passage wall surface of the exhaust passage 3 such as the turbine housing. Here, the passage wall surface has a large heat capacity and easily dissipates heat. According to this, the exhaust gas discharged from the bypass passage 8 collides with the passage wall surface by the bypass valve 10, the heat of the exhaust gas is transmitted to the passage wall surface having a large heat capacity, and is radiated to cool the exhaust gas. Therefore, since the cooled exhaust gas flows into the exhaust purification catalyst 7, an excessive temperature rise of the exhaust purification catalyst 7 can be avoided.

図2(c)は、バイパス弁10がバイパス通路8及びタービン出口通路9の両方を塞が
ない開度の状態を示す図である。図2(c)に示す状態にバイパス弁10の開度を制御すると、排気はバイパス通路8及びタービン4の両方に流れ、タービン4を予回転させ加速に備えつつ、排気がバイパス通路8を流れることからタービン4での背圧を下げて内燃機関1のポンプ損失を減らして燃費を向上することができる。図3は、バイパス弁10の開度に対する背圧を示す図である。図3に示すように、図2(c)に示す状態であると、後述する図2(d)に示す状態よりも背圧が低く背圧が最も低下する。
FIG. 2C is a view showing a state where the bypass valve 10 does not block both the bypass passage 8 and the turbine outlet passage 9. When the opening degree of the bypass valve 10 is controlled in the state shown in FIG. 2C, the exhaust flows through both the bypass passage 8 and the turbine 4, and the exhaust flows through the bypass passage 8 while pre-rotating the turbine 4 to prepare for acceleration. Therefore, the back pressure in the turbine 4 can be lowered to reduce the pump loss of the internal combustion engine 1 and the fuel efficiency can be improved. FIG. 3 is a diagram illustrating the back pressure with respect to the opening degree of the bypass valve 10. As shown in FIG. 3, in the state shown in FIG. 2C, the back pressure is lower than the state shown in FIG.

図2(d)は、バイパス弁10がタービン出口通路9を塞いだ開度の状態を示す図である。この状態は、バイパス通路8から排出される排気を通路壁面へ衝突させない開度の状態である。図2(d)に示す状態にバイパス弁10の開度を制御すると、排気をタービン4から排出できなくなるので、排気の全量がバイパス通路8を流通することになる。これによると、排気浄化触媒7の暖機が必要な場合には、タービン4から排気を排出させず、バイパス通路8から排気の全量を排出させることにより、排気の温度低下を最小限にすることができる。またこのとき、バイパス通路8から排出される排気は、その排気流通方向がそのまま下流の排気浄化触媒7へ向かう方向であるので、通路壁面に衝突せず、排気の熱が通路壁面に奪われ難い。よって、排気浄化触媒7には、最小限の温度低下しかしていない排気、すなわち高温の排気が流入するので、排気浄化触媒7の早期昇温を行うことができる。   FIG. 2 (d) is a view showing a state of the opening degree where the bypass valve 10 blocks the turbine outlet passage 9. This state is a state in which the exhaust gas discharged from the bypass passage 8 does not collide with the wall surface of the passage. If the opening degree of the bypass valve 10 is controlled to the state shown in FIG. 2D, the exhaust gas cannot be discharged from the turbine 4, so that the entire amount of the exhaust gas flows through the bypass passage 8. According to this, when the exhaust purification catalyst 7 needs to be warmed up, the exhaust gas is not exhausted from the turbine 4 and the exhaust gas is exhausted from the bypass passage 8 to minimize the exhaust gas temperature drop. Can do. Further, at this time, the exhaust gas discharged from the bypass passage 8 does not collide with the passage wall surface and the heat of the exhaust is not easily taken away by the passage wall surface because the exhaust flow direction is the direction toward the downstream exhaust purification catalyst 7 as it is. . Therefore, the exhaust gas that has undergone only a minimum temperature drop, that is, high-temperature exhaust gas, flows into the exhaust purification catalyst 7, so that the exhaust purification catalyst 7 can be raised in temperature early.

図4は、機関負荷及び機関回転速度に応じたバイパス弁10の開度制御を示す図である。図1に示すアクセルポジションセンサ12及びクランクポジションセンサ13の検出値をECU11に取り込み、ECU11は機関負荷及び機関回転速度に応じて図4に示す領域A〜Eでバイパス弁10の開度を切り替えて制御する。図4に示す触媒昇温域である領域A及び機関冷却水が低温の領域Bでは、排気浄化触媒7の暖機が必要であるので、バイパス弁10を図2(d)に示す状態に制御する。非過給域である領域Cでは、バイパス弁10を図2(c)に示す状態に制御する。これにより、領域Cでは燃費も向上する。過給域である領域Dでは、バイパス弁10を図2(a)に示す状態に制御する。ウェイストゲート域(過給圧調整域)である領域Eでは、排気浄化触媒7が過昇温するおそれがあるので、バイパス弁10を図2(b)に示す状態に制御する。これにより、排気浄化触媒7に流入させる排気を冷却する。   FIG. 4 is a diagram showing the opening degree control of the bypass valve 10 according to the engine load and the engine speed. The detected values of the accelerator position sensor 12 and the crank position sensor 13 shown in FIG. 1 are taken into the ECU 11, and the ECU 11 switches the opening degree of the bypass valve 10 in the areas A to E shown in FIG. 4 according to the engine load and the engine speed. Control. In the region A where the catalyst temperature rises as shown in FIG. 4 and the region B where the engine coolant is low, the exhaust purification catalyst 7 needs to be warmed up, so the bypass valve 10 is controlled to the state shown in FIG. To do. In region C, which is a non-supercharging region, the bypass valve 10 is controlled to the state shown in FIG. Thereby, in the area C, fuel consumption is also improved. In region D, which is a supercharging region, the bypass valve 10 is controlled to the state shown in FIG. In the region E which is the waste gate region (supercharging pressure adjustment region), the exhaust purification catalyst 7 may be overheated, so the bypass valve 10 is controlled to the state shown in FIG. Thereby, the exhaust gas flowing into the exhaust purification catalyst 7 is cooled.

なお、バイパス弁10は必ずしも図2に示す4つの開度の状態だけに制御されるものではない。図5は、バイパス弁10の開度と排気流量との関係を示す図である。図5に示すように、機関負荷が高負荷の時は、タービン4を流通する排気流量を、バイパス通路8を流通する排気流量よりも多くする領域Xのように、バイパス弁10の開度を制御してもよい。一方、冷間時等の機関負荷が低負荷の時は、バイパス通路8を流通する排気流量を、タービン4を流通する排気流量よりも多くする領域Yのように、バイパス弁10の開度を制御してもよい。   The bypass valve 10 is not necessarily controlled only by the four opening states shown in FIG. FIG. 5 is a diagram showing the relationship between the opening degree of the bypass valve 10 and the exhaust gas flow rate. As shown in FIG. 5, when the engine load is high, the opening degree of the bypass valve 10 is increased as in the region X in which the exhaust flow rate flowing through the turbine 4 is made larger than the exhaust flow rate flowing through the bypass passage 8. You may control. On the other hand, when the engine load is low, such as when the engine is cold, the opening degree of the bypass valve 10 is increased as in the region Y in which the exhaust flow rate flowing through the bypass passage 8 is larger than the exhaust flow rate flowing through the turbine 4. You may control.

<実施例2>
図6は、実施例2に係るバイパス弁10aの開度を制御した様子を示す図である。本実施例のバイパス弁10aは、実施例1と同じ作用を奏するが、構成が異なる。バイパス弁10aは、中間に屈曲部10a1を有し、先端部10a2が根元部10a3からバイパス通路8側に屈曲している。バイパス弁10aは、バイパス通路8の下流端開口を塞ぐ面を先端部10a2の表面とすると、タービン出口通路9の下流端開口を塞ぐ面が根元部10a3の裏面となる。このため、バイパス弁10aの回動角が小さくて済む。
<Example 2>
FIG. 6 is a diagram illustrating a state in which the opening degree of the bypass valve 10a according to the second embodiment is controlled. The bypass valve 10a of the present embodiment has the same effect as that of the first embodiment, but has a different configuration. The bypass valve 10a has a bent portion 10a1 in the middle, and a tip portion 10a2 is bent from the root portion 10a3 to the bypass passage 8 side. In the bypass valve 10a, when the surface that closes the downstream end opening of the bypass passage 8 is the surface of the tip portion 10a2, the surface that closes the downstream end opening of the turbine outlet passage 9 is the back surface of the root portion 10a3. For this reason, the rotation angle of the bypass valve 10a may be small.

図6(a)は、図2(a)に対応し、バイパス弁10aが先端部10a2の表面でバイパス通路8の下流端開口を塞いだ開度0°の閉弁状態を示す図である。図6(b)は、図2(b)に対応し、バイパス弁10aがバイパス通路8から排出される排気を通路壁面へ
衝突させる開度の状態を示す図である。図6(c)は、図2(c)に対応し、バイパス弁10aがバイパス通路8及びタービン出口通路9の両方を塞がない開度の状態を示す図である。図6(d)は、図2(d)に対応し、バイパス弁10aが根元部10a3の裏面でタービン出口通路9を塞いだ開度の状態を示す図である。この状態は、バイパス通路8から排出される排気を通路壁面へ衝突させない開度の状態である。
FIG. 6 (a) corresponds to FIG. 2 (a), and shows a closed state of 0 ° opening degree in which the bypass valve 10a closes the downstream end opening of the bypass passage 8 with the surface of the tip portion 10a2. FIG. 6B corresponds to FIG. 2B, and shows a state of an opening degree at which the bypass valve 10 a causes the exhaust gas discharged from the bypass passage 8 to collide with the passage wall surface. FIG. 6C corresponds to FIG. 2C, and shows a state in which the bypass valve 10 a has an opening degree that does not block both the bypass passage 8 and the turbine outlet passage 9. FIG. 6D corresponds to FIG. 2D, and shows a state in which the bypass valve 10 a has an opening degree in which the turbine outlet passage 9 is blocked by the back surface of the root portion 10 a 3. This state is a state in which the exhaust gas discharged from the bypass passage 8 does not collide with the wall surface of the passage.

<実施例3>
図7は、実施例3に係るバイパス弁10bの開度を制御した様子を示す図である。本実施例のバイパス弁10bは、実施例1,2と異なりタービン出口通路9を塞ぐことができない。バイパス弁10bは、バイパス通路8を塞ぐ部位(弁部10b1)が断面半円形状をしており、少なくとも1つのリンク機構10b2を有しており、上下に移動可能である。
<Example 3>
FIG. 7 is a diagram illustrating a state in which the opening degree of the bypass valve 10b according to the third embodiment is controlled. Unlike the first and second embodiments, the bypass valve 10b of the present embodiment cannot block the turbine outlet passage 9. The bypass valve 10b has a semicircular cross-section at a portion (valve portion 10b1) that closes the bypass passage 8, has at least one link mechanism 10b2, and is movable up and down.

図7(a)は、図2(a)に対応し、バイパス弁10bがバイパス通路8の下流端開口を塞いだ開度の閉弁状態を示す図である。図7(b)は、図2(b)に対応し、バイパス弁10bが下方へ回動してバイパス通路8から排出される排気を通路壁面へ衝突させる開度の状態を示す図である。図7(c)は、図2(c)に対応し、バイパス弁10bが上方へ回動してバイパス通路8及びタービン出口通路9の両方を塞がない開度の状態を示す図である。   FIG. 7A corresponds to FIG. 2A and is a diagram showing a closed state of the opening degree in which the bypass valve 10 b blocks the downstream end opening of the bypass passage 8. FIG. 7B is a diagram corresponding to FIG. 2B, showing a state of an opening degree at which the bypass valve 10 b rotates downward to collide exhaust discharged from the bypass passage 8 with the passage wall surface. FIG. 7C corresponds to FIG. 2C, and shows a state in which the bypass valve 10 b rotates upward and does not block both the bypass passage 8 and the turbine outlet passage 9.

<実施例4>
図8は、実施例4に係るバイパス弁10cの開度を制御した様子を示す図である。本実施例のバイパス弁10cは、実施例1,2と異なりタービン出口通路9を塞ぐことができない。バイパス弁10cは、バイパス通路8を塞ぐ部位(弁部10c1)が断面半円形状をしており、水平に動くことができるリンク機構10c2及び弁部10c1を上下に動かせるリンク機構10c3を有しており、開弁時は閉弁時よりもバイパス通路8の下流端開口から離れることができる。
<Example 4>
FIG. 8 is a diagram illustrating a state in which the opening degree of the bypass valve 10 c according to the fourth embodiment is controlled. Unlike the first and second embodiments, the bypass valve 10c of the present embodiment cannot block the turbine outlet passage 9. The bypass valve 10c includes a link mechanism 10c2 that can move horizontally and a link mechanism 10c3 that can move the valve part 10c1 up and down, with a portion (valve part 10c1) that closes the bypass passage 8 having a semicircular cross section. Thus, when the valve is opened, it can be further away from the downstream end opening of the bypass passage 8 than when the valve is closed.

図8(a)は、図2(a)に対応し、バイパス弁10cがバイパス通路8の下流端開口を塞いだ開度の閉弁状態を示す図である。図8(b)は、図2(b)に対応し、バイパス弁10cが下方へ回動してバイパス通路8から排出される排気を通路壁面へ衝突させる開度の状態を示す図である。図8(c)は、図2(c)に対応し、バイパス弁10cが上方へ回動してバイパス通路8及びタービン出口通路9の両方を塞がない開度の状態を示す図である。   FIG. 8A corresponds to FIG. 2A and is a diagram showing a closed state of the opening degree in which the bypass valve 10 c blocks the downstream end opening of the bypass passage 8. FIG. 8B corresponds to FIG. 2B, and is a view showing a state of an opening degree at which the bypass valve 10 c rotates downward and causes the exhaust discharged from the bypass passage 8 to collide with the passage wall surface. FIG. 8C corresponds to FIG. 2C, and shows a state in which the bypass valve 10c rotates upward and does not block both the bypass passage 8 and the turbine outlet passage 9.

<実施例5>
図9は、実施例5に係るバイパス弁10dの開度を制御した様子を示す図である。本実施例のバイパス弁10dは、実施例1,2と異なりタービン出口通路9を塞ぐことができない。バイパス通路8は上下に2分割され、バイパス弁10dも上下に弁部10d1,10d2を2つ有し、2つの弁部10d1,10d2がU字型の部材10d3に取り付けられ、水平に動くことができるリンク機構10d4及び2つの弁部10d1,10d2を傾かせるように動かせるリンク機構10d5を有しており、開弁時は上下方向のどちらかに排気流れを向かわせるようにバイパス弁10dを傾けることができる。
<Example 5>
FIG. 9 is a diagram illustrating a state in which the opening degree of the bypass valve 10d according to the fifth embodiment is controlled. Unlike the first and second embodiments, the bypass valve 10d of the present embodiment cannot block the turbine outlet passage 9. The bypass passage 8 is vertically divided into two parts, and the bypass valve 10d also has two valve parts 10d1 and 10d2 above and below, and the two valve parts 10d1 and 10d2 are attached to a U-shaped member 10d3 and can move horizontally. A link mechanism 10d4 and a link mechanism 10d5 that can move the two valve portions 10d1 and 10d2 to tilt, and when the valve is opened, the bypass valve 10d is tilted so that the exhaust flow is directed in either the vertical direction. Can do.

図9(a)は、図2(a)に対応し、バイパス弁10dがバイパス通路8の下流端開口を塞いだ開度の閉弁状態を示す図である。図9(b)は、図2(b)に対応し、バイパス弁10dが上方側を広く空けるように傾いてバイパス通路8から排出される排気を通路壁面へ衝突させる開度の状態を示す図である。図8(c)は、図2(c)に対応し、バイパス弁10dが下方側を広く空けるように傾いてバイパス通路8及びタービン出口通路9の両方を塞がない開度の状態を示す図である。   FIG. 9A corresponds to FIG. 2A, and shows a closed state of the opening degree in which the bypass valve 10 d blocks the downstream end opening of the bypass passage 8. FIG. 9B corresponds to FIG. 2B, and shows a state of an opening degree at which the bypass valve 10 d is inclined so as to widen the upper side and the exhaust discharged from the bypass passage 8 collides with the passage wall surface. It is. FIG. 8 (c) corresponds to FIG. 2 (c), and shows a state in which the bypass valve 10d is tilted so as to widen the lower side and does not block both the bypass passage 8 and the turbine outlet passage 9. It is.

<実施例6>
図10は、実施例6に係るバイパス弁10eの開度を制御した様子を示す図である。本実施例のバイパス弁10eは、実施例1,2と異なりタービン出口通路9を塞ぐことができない。バイパス通路8は上下に2分割され、バイパス弁10eも上下に2つの弁部10e1,10e2を有し、2つの弁部10e1,10e2が夫々独立して動くことができる。2つの弁部10e1,10e2の両方とも、バイパス通路8を2分割する中間の仕切部に軸支されている。
<Example 6>
FIG. 10 is a diagram illustrating a state in which the opening degree of the bypass valve 10e according to the sixth embodiment is controlled. Unlike the first and second embodiments, the bypass valve 10e of the present embodiment cannot close the turbine outlet passage 9. The bypass passage 8 is vertically divided into two, and the bypass valve 10e also has two valve portions 10e1 and 10e2 above and below, and the two valve portions 10e1 and 10e2 can move independently. Both of the two valve portions 10e1 and 10e2 are pivotally supported by an intermediate partition portion that divides the bypass passage 8 into two.

図10(a)は、図2(a)に対応し、バイパス弁10eがバイパス通路8の下流端開口を塞いだ開度の閉弁状態を示す図である。この状態では、2つの弁部10e1,10e2が閉弁している。図10(b)は、図2(b)に対応し、上側の弁部10e1が幾分開度を少なめに開いてバイパス通路8から排出される排気を通路壁面へ衝突させる開度の状態を示す図である。この状態では、下側の弁部10e2は閉じたままである。図10(c)は、図2(c)に対応し、2つの弁部10e1,10e2の両方が広く開いてバイパス通路8及びタービン出口通路9の両方を塞がない開度の状態を示す図である。上記のような状態に制御できるように、弁部10e1だけが中間開度に制御でき、弁部10e2は開閉だけの2開度のみに制御されるものでもよい。または、2つの弁部10e1,10e2の両方とも、細かく中間開度にまで制御できるものでもよい。   FIG. 10A corresponds to FIG. 2A and is a view showing a closed state of the opening degree in which the bypass valve 10e blocks the downstream end opening of the bypass passage 8. FIG. In this state, the two valve portions 10e1 and 10e2 are closed. FIG. 10 (b) corresponds to FIG. 2 (b), and shows a state in which the upper valve portion 10e1 opens a little so that the exhaust discharged from the bypass passage 8 collides with the passage wall surface. FIG. In this state, the lower valve portion 10e2 remains closed. FIG. 10C corresponds to FIG. 2C, and shows a state in which both of the two valve portions 10e1 and 10e2 are wide open so as not to block both the bypass passage 8 and the turbine outlet passage 9. It is. Only the valve portion 10e1 can be controlled to an intermediate opening degree, and the valve portion 10e2 can be controlled to only two opening positions for opening and closing so that the above state can be controlled. Alternatively, both of the two valve portions 10e1 and 10e2 may be finely controlled to an intermediate opening.

<その他>
本発明に係る内燃機関は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。上記実施例では、各センサで機関負荷及び機関回転速度といった内燃機関1の運転状態を検知して排気浄化触媒7の、過昇温のおそれや暖機が必要な場合を推定していたがこれに限られない。例えば、排気浄化触媒7の床温を温度センサで直接検知してもよいし、排気温度等から推定してもよい。
<Others>
The internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention. In the above-described embodiment, the operation state of the internal combustion engine 1 such as the engine load and the engine speed is detected by each sensor, and the exhaust purification catalyst 7 is estimated to be overheated or needs to be warmed up. Not limited to. For example, the bed temperature of the exhaust purification catalyst 7 may be directly detected by a temperature sensor, or may be estimated from the exhaust temperature or the like.

1:内燃機関、2:過給機、3:排気通路、4:タービン、5:コンプレッサ、6:吸気通路、7:排気浄化触媒、8:バイパス通路、9:タービン出口通路、10,10a〜10e:バイパス弁、10a1:屈曲部、10a2:先端部、10a3:根元部、10b1:弁部、10b2:リンク機構、10c1:弁部、10c2:リンク機構、10c3:リンク機構、10d1,10d2:弁部、10d3:U字型の部材、10d4:リンク機構、10d5:リンク機構、10e1,10e2:弁部、12:アクセルポジションセンサ、13:クランクポジションセンサ 1: internal combustion engine, 2: supercharger, 3: exhaust passage, 4: turbine, 5: compressor, 6: intake passage, 7: exhaust purification catalyst, 8: bypass passage, 9: turbine outlet passage, 10, 10a to 10e: bypass valve, 10a1: bent portion, 10a2: tip portion, 10a3: root portion, 10b1: valve portion, 10b2: link mechanism, 10c1: valve portion, 10c2: link mechanism, 10c3: link mechanism, 10d1, 10d2: valve Part, 10d3: U-shaped member, 10d4: link mechanism, 10d5: link mechanism, 10e1, 10e2: valve part, 12: accelerator position sensor, 13: crank position sensor

Claims (4)

内燃機関の排気通路に設けられる過給機のタービンと、
前記タービンよりも下流の前記排気通路に設けられる排気浄化触媒と、
前記タービンよりも上流の前記排気通路の排気に前記タービンをバイパスさせるバイパス通路と、
前記バイパス通路から排出される排気の流量を調節するバイパス弁であって、前記排気浄化触媒が過昇温するおそれがある場合には、前記バイパス通路から排出される排気を通路壁面へ衝突させる開度に制御されるバイパス弁と、
を備えたことを特徴とする内燃機関。
A turbocharger turbine provided in an exhaust passage of the internal combustion engine;
An exhaust purification catalyst provided in the exhaust passage downstream of the turbine;
A bypass passage for bypassing the turbine to the exhaust of the exhaust passage upstream of the turbine;
A bypass valve that adjusts the flow rate of the exhaust gas discharged from the bypass passage, and when the exhaust purification catalyst may be overheated, the exhaust valve that collides the exhaust gas discharged from the bypass passage with the passage wall surface. A bypass valve controlled at a time,
An internal combustion engine comprising:
前記バイパス弁は、前記排気浄化触媒の暖機が必要な場合には、前記バイパス通路から排出される排気を通路壁面へ衝突させない開度に制御されることを特徴とする請求項1に記載の内燃機関。   2. The bypass valve according to claim 1, wherein when the exhaust purification catalyst needs to be warmed up, the bypass valve is controlled to have an opening degree that does not cause the exhaust discharged from the bypass passage to collide with the passage wall surface. Internal combustion engine. 前記バイパス弁は、前記タービンから排出される排気の流量を調節できる開度に制御されることを特徴とする請求項1又は2に記載の内燃機関。   3. The internal combustion engine according to claim 1, wherein the bypass valve is controlled to have an opening degree capable of adjusting a flow rate of exhaust gas discharged from the turbine. 前記バイパス弁は、前記排気浄化触媒の暖機が必要な場合には、前記タービンから排気を排出させない開度に制御されることを特徴とする請求項3に記載の内燃機関。   The internal combustion engine according to claim 3, wherein the bypass valve is controlled to an opening degree that does not discharge exhaust gas from the turbine when the exhaust purification catalyst needs to be warmed up.
JP2010135892A 2010-06-15 2010-06-15 Internal combustion engine Withdrawn JP2012002094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135892A JP2012002094A (en) 2010-06-15 2010-06-15 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135892A JP2012002094A (en) 2010-06-15 2010-06-15 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012002094A true JP2012002094A (en) 2012-01-05

Family

ID=45534365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135892A Withdrawn JP2012002094A (en) 2010-06-15 2010-06-15 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012002094A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120203446A1 (en) * 2010-10-13 2012-08-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
WO2013145278A1 (en) * 2012-03-30 2013-10-03 トヨタ自動車 株式会社 Control device for internal combustion engine
JP2014105674A (en) * 2012-11-29 2014-06-09 Daihatsu Motor Co Ltd Internal combustion engine with exhaust turbo-supercharger
JP2015021486A (en) * 2013-07-23 2015-02-02 愛三工業株式会社 Control device of engine with supercharger
FR3018854A3 (en) * 2014-03-20 2015-09-25 Renault Sa INTEGRATED DEFLECTOR IN THE TURBOCHARGER HOUSING
WO2016005370A1 (en) * 2014-07-09 2016-01-14 Jaguar Land Rover Limited Wastegate valve
FR3032230A1 (en) * 2015-02-04 2016-08-05 Peugeot Citroen Automobiles Sa EXHAUST GAS DEFLECTOR ASSEMBLY LOCATED OUT OF TURBOCOMPRESSOR TURBINE
JP2016160785A (en) * 2015-02-27 2016-09-05 株式会社デンソー Intake/exhaust system for internal combustion engine
JP2016160823A (en) * 2015-03-02 2016-09-05 株式会社デンソー Turbo charger
JP2017082762A (en) * 2015-10-30 2017-05-18 アイシン高丘株式会社 Turbine housing
JP2017096158A (en) * 2015-11-24 2017-06-01 トヨタ自動車株式会社 Control device of internal combustion engine
JP2017194010A (en) * 2016-04-20 2017-10-26 トヨタ自動車株式会社 Exhaust passage for internal combustion engine
JP2018071431A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Exhauster warm-up system
JP2018135872A (en) * 2017-02-24 2018-08-30 トヨタ自動車株式会社 Exhaust system of internal combustion engine
DE102012020828B4 (en) * 2012-09-07 2019-01-03 Technische Universität Dresden Internal combustion engine with two-stage supercharging and an integrated oxidation catalytic converter
JP2019011746A (en) * 2017-07-03 2019-01-24 トヨタ自動車株式会社 Exhaust system of internal combustion engine
JP2019138216A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US10519851B2 (en) 2017-09-08 2019-12-31 Toyota Jidosha Kabushiki Kaisha Turbocharger
EP4141234A1 (en) * 2021-08-31 2023-03-01 Garrett Transportation I Inc. Turbocharger turbine rotary bypass valve providing waste gate regulation and full turbine bypass functions

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120203446A1 (en) * 2010-10-13 2012-08-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
WO2013145278A1 (en) * 2012-03-30 2013-10-03 トヨタ自動車 株式会社 Control device for internal combustion engine
CN104204447A (en) * 2012-03-30 2014-12-10 丰田自动车株式会社 Control device for internal combustion engine
EP2832968A4 (en) * 2012-03-30 2015-07-08 Toyota Motor Co Ltd Control device for internal combustion engine
DE102012020828B4 (en) * 2012-09-07 2019-01-03 Technische Universität Dresden Internal combustion engine with two-stage supercharging and an integrated oxidation catalytic converter
JP2014105674A (en) * 2012-11-29 2014-06-09 Daihatsu Motor Co Ltd Internal combustion engine with exhaust turbo-supercharger
JP2015021486A (en) * 2013-07-23 2015-02-02 愛三工業株式会社 Control device of engine with supercharger
FR3018854A3 (en) * 2014-03-20 2015-09-25 Renault Sa INTEGRATED DEFLECTOR IN THE TURBOCHARGER HOUSING
WO2016005370A1 (en) * 2014-07-09 2016-01-14 Jaguar Land Rover Limited Wastegate valve
CN106662005A (en) * 2014-07-09 2017-05-10 捷豹路虎有限公司 Wastegate valve
GB2530140B (en) * 2014-07-09 2019-01-09 Jaguar Land Rover Ltd An exhaust system comprising a wastegate valve
FR3032230A1 (en) * 2015-02-04 2016-08-05 Peugeot Citroen Automobiles Sa EXHAUST GAS DEFLECTOR ASSEMBLY LOCATED OUT OF TURBOCOMPRESSOR TURBINE
JP2016160785A (en) * 2015-02-27 2016-09-05 株式会社デンソー Intake/exhaust system for internal combustion engine
JP2016160823A (en) * 2015-03-02 2016-09-05 株式会社デンソー Turbo charger
JP2017082762A (en) * 2015-10-30 2017-05-18 アイシン高丘株式会社 Turbine housing
JP2017096158A (en) * 2015-11-24 2017-06-01 トヨタ自動車株式会社 Control device of internal combustion engine
US10458348B2 (en) 2015-11-24 2019-10-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine
JP2017194010A (en) * 2016-04-20 2017-10-26 トヨタ自動車株式会社 Exhaust passage for internal combustion engine
CN108019261A (en) * 2016-10-28 2018-05-11 丰田自动车株式会社 The pre-heating system of exhaust apparatus
JP2018071431A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Exhauster warm-up system
JP2018135872A (en) * 2017-02-24 2018-08-30 トヨタ自動車株式会社 Exhaust system of internal combustion engine
US10385763B2 (en) 2017-02-24 2019-08-20 Toyota Jidosha Kabushiki Kaisha Exhaust system of internal combustion engine
JP2019011746A (en) * 2017-07-03 2019-01-24 トヨタ自動車株式会社 Exhaust system of internal combustion engine
US10557396B2 (en) * 2017-07-03 2020-02-11 Toyota Jidosha Kabushiki Kaisha Exhaust system for an internal combustion engine
US10519851B2 (en) 2017-09-08 2019-12-31 Toyota Jidosha Kabushiki Kaisha Turbocharger
JP2019138216A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
EP4141234A1 (en) * 2021-08-31 2023-03-01 Garrett Transportation I Inc. Turbocharger turbine rotary bypass valve providing waste gate regulation and full turbine bypass functions

Similar Documents

Publication Publication Date Title
JP2012002094A (en) Internal combustion engine
JP6051989B2 (en) Engine cooling system
EP2085602B1 (en) Engine intake air temperature management system
JP5580151B2 (en) Engine waste heat recovery and cooling system
US6543427B2 (en) Exhaust gas recirculation system provided in an engine system
JP5438686B2 (en) Internal combustion engine for vehicle and control method thereof
JP6182965B2 (en) vehicle
JP5262788B2 (en) Control device for an internal combustion engine with a supercharger
GB2466722A (en) Exhaust manifold with a cooling path and a non-cooling path
JP2006207382A (en) Surging prevention device for turbocharger
JP2012241619A (en) Internal combustion engine with turbocharger
JP6737918B2 (en) Temperature control throttle device
JP5617721B2 (en) Control device for supercharged engine with EGR device
WO2013011768A1 (en) Engine cooling circuit
JP2020180574A (en) Cooling device for internal combustion engine
EP1445454A1 (en) Temperature control for an engine intake system
JP7172577B2 (en) Intake air temperature control device for supercharged engine
JP2005002975A (en) Exhaust purification device for engine
JP4670737B2 (en) Engine cooling system
JP6511952B2 (en) Engine cooling system and engine cooling method
US20240093629A1 (en) Cooling mechanism
JP2016142192A (en) Intake/exhaust device for internal combustion engine
JP7460029B2 (en) vehicle cooling system
JP7273572B2 (en) warming device
EP1447549A2 (en) Temperature control for an engine intake system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903