JP2012001475A - Method for producing nitro compound - Google Patents

Method for producing nitro compound Download PDF

Info

Publication number
JP2012001475A
JP2012001475A JP2010137173A JP2010137173A JP2012001475A JP 2012001475 A JP2012001475 A JP 2012001475A JP 2010137173 A JP2010137173 A JP 2010137173A JP 2010137173 A JP2010137173 A JP 2010137173A JP 2012001475 A JP2012001475 A JP 2012001475A
Authority
JP
Japan
Prior art keywords
group
compound
salt
formula
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010137173A
Other languages
Japanese (ja)
Other versions
JP5560109B2 (en
Inventor
Kenji Suzuki
健治 鈴木
Shinichiro Shoji
信一郎 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaguchi Chemical Industry Co Ltd
Teijin Ltd
Original Assignee
Kawaguchi Chemical Industry Co Ltd
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010137173A priority Critical patent/JP5560109B2/en
Application filed by Kawaguchi Chemical Industry Co Ltd, Teijin Ltd filed Critical Kawaguchi Chemical Industry Co Ltd
Priority to PCT/JP2011/064193 priority patent/WO2011158958A1/en
Priority to US13/704,117 priority patent/US9428521B2/en
Priority to CN201180029335.0A priority patent/CN103025743B/en
Priority to EP11795860.3A priority patent/EP2583971B1/en
Priority to TW100120878A priority patent/TWI486351B/en
Priority to KR1020127032612A priority patent/KR20130129822A/en
Priority to ES11795860.3T priority patent/ES2538090T3/en
Publication of JP2012001475A publication Critical patent/JP2012001475A/en
Application granted granted Critical
Publication of JP5560109B2 publication Critical patent/JP5560109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an intermediate of a cyclic carbodiimide compound.SOLUTION: A compound (A) represented by o-halogen-substituted nitrobenzene or o-dinitrobenzene nitro, and pentaerythritol (B) are reacted together in the presence of a phase transfer catalyst and aqueous solution of an alkali metal hydroxide, to thereby acquire a nitro compound shown by a chemical formula (C). (In the formula, R is a hydrogen atom, or 1-6C alkyl group).

Description

本発明はニトロ体の製造方法に関する、さらに詳しくは特定のニトロ体の製造方法に関する。   The present invention relates to a method for producing a nitro body, and more particularly to a method for producing a specific nitro body.

ポリエステル等のエステル結合を有する化合物は、カルボキシル基等の極性基により加水分解が促進されるため、カルボキシル基の封止剤を適用して、カルボキシル基濃度を低減することが提案されている(特許文献1、特許文献2)。かかるカルボキシル基の封止剤として、カルボジイミド化合物が使用されている。
しかし、このカルボジイミド化合物は、いずれも線状の化合物であるため、使用時、揮発性のイソシアネート化合物が副生して、悪臭を発し、作業環境を悪化させるという欠点を有する。
そこで、出願人は、封止剤として、カルボキシル基と反応してもイソシアネート化合物が副生しない環状カルボジイミド化合物を見出し国際出願した(特許文献3)。しかし、この有用な環状カルボジイミド化合物およびその中間体の工業的な製造方法は確立されていない。
Since a compound having an ester bond such as polyester is accelerated by a polar group such as a carboxyl group, it has been proposed to reduce the carboxyl group concentration by applying a carboxyl group sealant (patent) Literature 1, Patent Literature 2). A carbodiimide compound is used as such a carboxyl group sealing agent.
However, since all of these carbodiimide compounds are linear compounds, a volatile isocyanate compound is produced as a by-product during use, and has a drawback of producing a bad odor and deteriorating the working environment.
Therefore, the applicant has found a cyclic carbodiimide compound as an encapsulant in which an isocyanate compound is not by-produced even if it reacts with a carboxyl group, and has filed an international application (Patent Document 3). However, an industrial production method for this useful cyclic carbodiimide compound and its intermediate has not been established.

特開2004−332166号公報JP 2004-332166 A 特開2005−350829号公報JP 2005-350829 A PCT/JP2009/071190PCT / JP2009 / 071190

本発明の目的は、下記式(A)で表わされる化合物(A)と下記式(B)で表わされる化合物(B)とを反応させて、下記式(C)で表わされるニトロ体を合成する際に、工業的により有利に適用可能な方法を用いて、反応収率を向上させることにある。   The object of the present invention is to synthesize a nitro compound represented by the following formula (C) by reacting the compound (A) represented by the following formula (A) with the compound (B) represented by the following formula (B). In this case, the reaction yield is improved by using a method that can be applied more advantageously industrially.

Figure 2012001475
Figure 2012001475

(式(A)中、Rは、水素原子、炭素原子数1〜6のアルキル基である。Xはハロゲン原子またはニトロ基である。) (In the formula (A), R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. X is a halogen atom or a nitro group.)

Figure 2012001475
Figure 2012001475

Figure 2012001475
Figure 2012001475

(式(C)中、Rは式(A)と同じである)
化合物(C)を得るために適用される一般的な方法は、化合物(B)に脱離基を導入し、置換o−ニトロフェノールと反応させる方法、および化合物(B)と置換o−ハロニトロベンゼンを反応させる方法が適用可能である。
(In formula (C), R is the same as formula (A))
General methods applied to obtain the compound (C) include a method in which a leaving group is introduced into the compound (B) and reacted with a substituted o-nitrophenol, and a compound (B) and a substituted o-halonitrobenzene. The method of reacting can be applied.

特に有用なのは後者であるが、一般には非プロトン性極性溶媒下、固体塩基性化合物を作用させる方法が用いられる。非プロトン性極性溶媒とは、N,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシドなどに代表される。これらは一般に高価であり、工業生産においては回収サイクルが必要である。しかしながら水と相溶性があり、また一般に高沸点であるため回収が困難かつ多大なエネルギーを必要とする。固体塩基性化合物とは、一般に炭酸カリウム、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム等で代表されるが、潮解性や、水素発生による爆発の危険、強アルカリ性の粉じんなど取り扱いに注意を必要とする場合が多い。   The latter is particularly useful, but generally a method in which a solid basic compound is allowed to act in an aprotic polar solvent is used. The aprotic polar solvent is represented by N, N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide and the like. These are generally expensive and require a recovery cycle in industrial production. However, since it is compatible with water and generally has a high boiling point, it is difficult to recover and requires a lot of energy. Solid basic compounds are generally represented by potassium carbonate, sodium hydride, sodium hydroxide, potassium hydroxide, etc., but care must be taken in handling deliquescence, danger of explosion due to hydrogen generation, strong alkaline dust, etc. In many cases.

本発明者らは、下記式(A)で表わされる化合物(A)と下記式(B)で表わされる化合物(B)とを反応させて、下記式(C)で表わされるニトロ体を合成する際、工業的により有利に適用可能な方法を用いて、反応収率を向上させる手段について検討した。その結果、反応に際し、特定の触媒とアルカリ金属水酸化物の水溶液とを組み合わせて存在させると、非プロトン性極性溶媒を用いずとも、高収率かつ高純度でニトロ体を製造可能であることを見出し、本発明を完成した。
即ち、本発明は、以下の発明を包含する。
1.下記式(A)で表わされる化合物(A)と下記式(B)で表わされる化合物(B)とを、相間移動触媒およびアルカリ金属水酸化物の水溶液の存在下で、反応させることを特徴とする、下記式(C)で表わされるニトロ体の製造方法。
The present inventors react a compound (A) represented by the following formula (A) with a compound (B) represented by the following formula (B) to synthesize a nitro form represented by the following formula (C). At the same time, means for improving the reaction yield were examined using a method that can be applied more advantageously industrially. As a result, in the reaction, when a specific catalyst and an aqueous solution of alkali metal hydroxide are present in combination, a nitro compound can be produced in high yield and high purity without using an aprotic polar solvent. The present invention has been completed.
That is, the present invention includes the following inventions.
1. A compound (A) represented by the following formula (A) and a compound (B) represented by the following formula (B) are reacted in the presence of a phase transfer catalyst and an aqueous solution of an alkali metal hydroxide. The manufacturing method of the nitro body represented by the following formula (C).

Figure 2012001475
Figure 2012001475

(式(A)中、Rは、水素原子、炭素原子数1〜6のアルキル基である。Xはハロゲン原子またはニトロ基である。) (In the formula (A), R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. X is a halogen atom or a nitro group.)

Figure 2012001475
Figure 2012001475

Figure 2012001475
Figure 2012001475

(式(C)中、Rは式(A)と同じである)
2.相間移動触媒は、下記式(i)で表される化合物である上記1記載の製造方法。
(In formula (C), R is the same as formula (A))
2. 2. The method according to 1 above, wherein the phase transfer catalyst is a compound represented by the following formula (i).

Figure 2012001475
Figure 2012001475

(式(i)中、R1〜R4各々独立に、炭素原子数1〜20のアルキル基、炭素原子数6〜20のアリール基、炭素原子数7〜20のアラルキル基から選ばれる基である。Aはハロゲンアニオンである)
3.相間移動触媒は、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ベンジルジメチルオクタデシルアンモニウム塩、ベンジルトリエチルアンモニウム塩、ベンジルトリメチルアンモニウム塩およびベンジルトリブチルアンモニウム塩からなる群より選ばれる少なくとも一種類の化合物である上記1記載の製造方法。
4.アルカリ金属水酸化物の水溶液は、水酸化ナトリウム水溶液または水酸化カリウム水溶液である上記1記載の製造方法。
(In formula (i), each of R1 to R4 is independently a group selected from an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. a - is a halogen anion)
3. The phase transfer catalyst is at least one selected from the group consisting of tetraethylammonium salt, tetrabutylammonium salt, trioctylmethylammonium salt, benzyldimethyloctadecylammonium salt, benzyltriethylammonium salt, benzyltrimethylammonium salt, and benzyltributylammonium salt. 2. The production method according to 1 above, which is a compound.
4). 2. The method according to 1 above, wherein the aqueous solution of the alkali metal hydroxide is an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.

本発明の製造方法によれば、環状カルボジイミド化合物の中間体として有用な、特定のニトロ体を高収率で製造することができる。   According to the production method of the present invention, a specific nitro compound useful as an intermediate of a cyclic carbodiimide compound can be produced in a high yield.

本発明は、下記式(A)で表わされる化合物(A)と下記式(B)で表わされる化合物(B)とを、相間移動触媒の存在下、アルカリ金属水酸化物の水溶液の存在下で、反応させて下記式(C)で表わされるニトロ体を得ることを特徴とする。   The present invention provides a compound (A) represented by the following formula (A) and a compound (B) represented by the following formula (B) in the presence of an aqueous solution of an alkali metal hydroxide in the presence of a phase transfer catalyst. To obtain a nitro compound represented by the following formula (C).

(化合物(A))
化合物(A)は下記式で表される。
(Compound (A))
Compound (A) is represented by the following formula.

Figure 2012001475
Figure 2012001475

式(A)中、Rは、水素原子、炭素原子数1〜6のアルキル基である。Xはハロゲン原子またはニトロ基である。炭素原子数1〜6のアルキル基として、メチル基、エチル基、n−プロピル基、sec−プロピル基、iso−プロピル基、n−ブチル基、tert−ブチル基、sec−ブチル基、iso−ブチル基、n−ペンチル基、sec−ペンチル基、iso−ペンチル基、n−ヘキシル基、sec−ヘキシル基、iso−ヘキシル基等が挙げられる。また、ハロゲン原子として、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
化合物(A)として、o−クロロニトロベンゼン、o−フロロニトロベンゼン、o−ジニトロベンゼンが好適に使用される。これらは置換されていても良い。
化合物(A)の量は、化合物(B)に対して、好ましくは4〜8当量、さらに好ましくは4〜6当量である。
In formula (A), R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. X is a halogen atom or a nitro group. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, sec-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group and iso-butyl. Group, n-pentyl group, sec-pentyl group, iso-pentyl group, n-hexyl group, sec-hexyl group, iso-hexyl group and the like. Moreover, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned as a halogen atom.
As the compound (A), o-chloronitrobenzene, o-fluoronitrobenzene, and o-dinitrobenzene are preferably used. These may be substituted.
The amount of compound (A) is preferably 4-8 equivalents, more preferably 4-6 equivalents, relative to compound (B).

(化合物(B))
化合物(B)は下記式にて示される、ペンタエリスリトールである。
(Compound (B))
Compound (B) is pentaerythritol represented by the following formula.

Figure 2012001475
Figure 2012001475

(ニトロ体)
ニトロ体は下記式(C)で表される。
(Nitro body)
The nitro form is represented by the following formula (C).

Figure 2012001475
Figure 2012001475

式(C)中、Rは式(A)と同じであり、水素原子または炭素原子数1〜6のアルキル基である。炭素原子数1〜6のアルキル基として、メチル基、エチル基、n−プロピル基、sec−プロピル基、iso−プロピル基、n−ブチル基、tert−ブチル基、sec−ブチル基、iso−ブチル基、n−ペンチル基、sec−ペンチル基、iso−ペンチル基、n−ヘキシル基、sec−ヘキシル基、iso−ヘキシル基等が挙げられる。   In the formula (C), R is the same as in the formula (A) and is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, sec-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group and iso-butyl. Group, n-pentyl group, sec-pentyl group, iso-pentyl group, n-hexyl group, sec-hexyl group, iso-hexyl group and the like.

(相間移動触媒)
本発明において特徴的なことは、相間移動触媒およびアルカリ金属水酸化物の水溶液の存在下で、上記化合物(A)と化合物(B)とを反応させることにある。
本発明において相間移動触媒は、下記式(i)で表される化合物であることが好ましい。
(Phase transfer catalyst)
What is characteristic in the present invention is that the compound (A) and the compound (B) are reacted in the presence of a phase transfer catalyst and an aqueous solution of an alkali metal hydroxide.
In the present invention, the phase transfer catalyst is preferably a compound represented by the following formula (i).

Figure 2012001475
Figure 2012001475

式(i)中、R1〜R4各々独立に、炭素原子数1〜20のアルキル基、炭素原子数6〜20のアリール基、炭素原子数7〜20のアラルキル基から選ばれる基である。Aはハロゲンアニオンである。 In formula (i), R1 to R4 are each independently a group selected from an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. A is a halogen anion.

炭素原子数1〜20のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、へキサデシル基、オクタデシル基、ノナデシル基等が挙げられる。炭素原子数6〜20のアリール基として、フェニル基、ナフチル基等が挙げられる。これらは、炭素原子数1〜10のアルキル基で置換されていても良い。置換基としての炭素原子数1〜10のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。炭素原子数7〜20のアラルキル基として、ベンジル基、フェネチル基、メチルベンジル基、ジフェニルメチル基等が挙げられる。Aのハロゲンアニオンとして、フッソイオン、塩素イオン、臭素イオン等が挙げられる。 Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, Examples include a tetradecyl group, a pentadecyl group, a hexadecyl group, an octadecyl group, and a nonadecyl group. Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group. These may be substituted with an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms as a substituent include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, phenethyl group, methylbenzyl group and diphenylmethyl group. Examples of the halogen anion for A include a fluorine ion, a chlorine ion, and a bromine ion.

相間移動触媒として、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ベンジルジメチルオクタデシルアンモニウム塩、ベンジルトリエチルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリブチルアンモニウム塩を挙げることができ、これらは単独で用いても二種以上を併用してもよい。相間移動触媒として4級アンモニウム塩等が適用可能である。化合物(B)に対して、0.1〜5当量が使用可能である。   Examples of the phase transfer catalyst include tetraethylammonium salt, tetrabutylammonium salt, trioctylmethylammonium salt, benzyldimethyloctadecylammonium salt, benzyltriethylammonium salt, benzyltrimethylammonium salt, and benzyltributylammonium salt. Two or more types may be used in combination. A quaternary ammonium salt or the like is applicable as a phase transfer catalyst. 0.1-5 equivalent can be used with respect to a compound (B).

(アルカリ金属水酸化物の水溶液)
アルカリ金属として、ナトリウム、カリウム等が挙げられる。アルカリ金属水酸化物の水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液が好ましく用いることができる。水溶液の濃度は、好ましくは60〜20重量パーセント、より好ましくは工業的に入手可能な48〜30重量パーセントである。
アルカリ金属水酸化物の水溶液として、水酸化ナトリウム水溶液または水酸化カリウム水溶液が好ましい。アルカリ金属水酸化物の水溶液は、連続に添加しても、分割に添加してもよい。アルカリ金属水酸化物の水溶液の使用量は、アルカリ金属水酸化物として、化合物(B)に対して4〜15当量の範囲、反応の進行および経済性を考慮すると4.5〜10当量が好ましい。
アルカリ金属水酸化物の水溶液は、炭酸カリウム、水素化ナトリウム、水酸化ナトリウム、水酸化カリウム等の固体塩基性化合物に比べ取り扱い易く、安価であるという利点を有する。
(Alkali metal hydroxide aqueous solution)
Examples of the alkali metal include sodium and potassium. As the aqueous solution of the alkali metal hydroxide, a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution can be preferably used. The concentration of the aqueous solution is preferably 60 to 20 weight percent, more preferably 48 to 30 weight percent, which is commercially available.
As the aqueous solution of the alkali metal hydroxide, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferable. The aqueous solution of alkali metal hydroxide may be added continuously or divided. The amount of the alkali metal hydroxide aqueous solution used is preferably 4 to 10 equivalents as the alkali metal hydroxide in consideration of the range of 4 to 15 equivalents, the progress of the reaction and the economy. .
An aqueous solution of an alkali metal hydroxide is advantageous in that it is easy to handle and inexpensive compared to solid basic compounds such as potassium carbonate, sodium hydride, sodium hydroxide, potassium hydroxide and the like.

(反応)
反応系には、化合物(A)の昇華性および融点の観点から、少量の有機溶媒を反応系に添加することもできるが、無論無溶媒でも実行可能である。反応終了後、反応液は強アルカリ性を示すが、酸で中和することも可能だが、しなくともよい。ろ過後の洗浄は、水溶性の不純物を洗い流すために水で洗浄することが好ましい。その後、原料等の不純物を洗い流すために有機溶媒で洗浄することができ、特に工業的に多用されているトルエンやメタノールが利用できる。またこれら有機溶媒は回収し、生産系へ戻すことが可能である。本反応系は高価な非プロトン性極性溶媒を使用しないため、当然その回収を必要とせず、工業的に有利に製造することができる。
(reaction)
A small amount of an organic solvent can be added to the reaction system from the viewpoint of the sublimability and melting point of the compound (A). After completion of the reaction, the reaction solution shows strong alkalinity, but it can be neutralized with an acid, but it is not necessary. Washing after filtration is preferably performed with water in order to wash away water-soluble impurities. Then, in order to wash away impurities, such as a raw material, it can wash | clean with an organic solvent, and especially toluene and methanol which are frequently used industrially can be utilized. These organic solvents can be recovered and returned to the production system. Since this reaction system does not use an expensive aprotic polar solvent, it naturally does not require recovery and can be produced industrially advantageously.

以下本発明を実施例によりさらに具体的に説明する。各値は以下の方法により求めた。   Hereinafter, the present invention will be described more specifically with reference to examples. Each value was determined by the following method.

(1)化合物の同定:
各化合物の同定は、NMR:日本電子(株)製JNR-EX270および質量分析計:(株)島津製作所製GCMS―QP5000で行なった。
(2)収量、収率:
合成したニトロ体の収量、収率は、化合物(B)を基準として算出した。
(3)LC純度:
LC純度は、高速液体クロマトグラフィーを用いた分析により確認し、溶媒および原料化合物(A)を除く各ピークの総面積値を100としたときの、化合物(C)の面積パーセントを示す。
(4)選択率:
選択率とは、テトラニトロ体の面積値/(テトラニトロ体の面積値+トリニトロモノハロゲン体の面積値)×100で示される。
なお、テトラニトロ体およびトリニトロモノハロゲン体の面積値は高速液体クロマトグラフィーを用いた分析により求めた。
(1) Identification of compound:
Each compound was identified by NMR: JNR-EX270 manufactured by JEOL Ltd. and mass spectrometer: GCMS-QP5000 manufactured by Shimadzu Corporation.
(2) Yield, yield:
The yield and yield of the synthesized nitro compound were calculated based on the compound (B).
(3) LC purity:
The LC purity is confirmed by analysis using high performance liquid chromatography, and indicates the area percentage of the compound (C) when the total area value of each peak excluding the solvent and the raw material compound (A) is 100.
(4) Selectivity:
The selectivity is represented by the area value of tetranitro body / (area value of tetranitro body + area value of trinitromonohalogen body) × 100.
The area values of the tetranitro body and trinitromonohalogen body were determined by analysis using high performance liquid chromatography.

[実施例1]
ペンタエリスリトール:4.08g、o−クロロニトロベンゼン:23.63g、トルエン:4ml、塩化ベンジルトリエチルアンモニウム:6.83gをガラス製反応機に仕込み、70〜85℃で48%水酸化カリウム水溶液:31.56gを5時間かけ添加した。その後、同温度で20時間反応させた。冷却後、水50gを添加し、塩酸で中和した。その後ろ過し、水60g、メタノール90mlで順次洗浄後、乾燥し化合物(C)を得た(収量:17.90g/収率:96.2%/LC純度:96.7%/選択率:97.7%)。
[Example 1]
Pentaerythritol: 4.08 g, o-chloronitrobenzene: 23.63 g, toluene: 4 ml, benzyltriethylammonium chloride: 6.83 g were charged into a glass reactor, and a 48% potassium hydroxide aqueous solution: 31.70 at 70 to 85 ° C. 56 g was added over 5 hours. Then, it was made to react at the same temperature for 20 hours. After cooling, 50 g of water was added and neutralized with hydrochloric acid. Thereafter, the mixture was filtered, washed successively with 60 g of water and 90 ml of methanol, and dried to obtain compound (C) (yield: 17.90 g / yield: 96.2% / LC purity: 96.7% / selectivity: 97). .7%).

[実施例2]
ペンタエリスリトール:4.08g、o−クロロニトロベンゼン:23.63g、トルエン:4ml、水4.5g、臭化テトラブチルアンモニウム:6.96gをガラス製反応機に仕込み、80〜84℃で48%水酸化ナトリウム水溶液:22.5gを4時間40分かけ添加した。その後、同温度で22時間反応させた。冷却後、水:40g、トルエン:4mlを添加し、塩酸で中和した。その後、ろ過し、水40g、メタノール60mlで順次洗浄後、乾燥し化合物(C)を得た(収量:17.89g/収率:96.1%/LC純度:95.9%/選択率:96.4%)。
[Example 2]
Pentaerythritol: 4.08 g, o-chloronitrobenzene: 23.63 g, toluene: 4 ml, water 4.5 g, tetrabutylammonium bromide: 6.96 g were charged into a glass reactor, and water was 48% at 80 to 84 ° C. Aqueous sodium oxide solution: 22.5 g was added over 4 hours and 40 minutes. Then, it was made to react at the same temperature for 22 hours. After cooling, 40 g of water and 4 ml of toluene were added and neutralized with hydrochloric acid. Thereafter, the mixture was filtered, washed successively with 40 g of water and 60 ml of methanol and dried to obtain compound (C) (yield: 17.89 g / yield: 96.1% / LC purity: 95.9% / selectivity: 96.4%).

[実施例3]
ペンタエリスリトール:1.36g、o−フロロニトロベンゼン:6.77g、トルエン:2.5ml、臭化テトラブチルアンモニウム:0.77g、48%水酸化カリウム:9.35gをガラス製反応機に仕込み、70℃で18時間反応させた。冷却後濃塩酸で中和し、トルエン:7.5mlを添加した。その後ろ過し、水:20ml、メタノール:60mlで洗浄後、乾燥し化合物(C)を得た(収量:6.18g/収率:99.6%/LC純度:99.9%/選択率:100%)。
[Example 3]
Pentaerythritol: 1.36 g, o-fluoronitrobenzene: 6.77 g, toluene: 2.5 ml, tetrabutylammonium bromide: 0.77 g, 48% potassium hydroxide: 9.35 g were charged into a glass reactor, 70 The reaction was carried out at 0 ° C. for 18 hours. After cooling, the mixture was neutralized with concentrated hydrochloric acid, and 7.5 ml of toluene was added. Thereafter, the mixture was filtered, washed with water: 20 ml, methanol: 60 ml and dried to obtain compound (C) (yield: 6.18 g / yield: 99.6% / LC purity: 99.9% / selectivity: 100%).

[実施例4]
ペンタエリスリトール:0.68g、o−ジニトロベンゼン:4.20g、トルエン:3ml、臭化テトラブチルアンモニウム:0.38g、48%水酸化ナトリウム:3.33gをガラス製反応機に仕込み、55℃で20時間反応させた。冷却後、水:10gを添加し濃塩酸で中和した。その後ろ過し、水:20ml、メタノール:30mlで洗浄後、乾燥し化合物(C)を得た(収量:2.80g/収率:90.2%/LC純度:99.8%)。
[Example 4]
Pentaerythritol: 0.68 g, o-dinitrobenzene: 4.20 g, toluene: 3 ml, tetrabutylammonium bromide: 0.38 g, 48% sodium hydroxide: 3.33 g were charged into a glass reactor at 55 ° C. The reaction was performed for 20 hours. After cooling, 10 g of water was added and neutralized with concentrated hydrochloric acid. Thereafter, the mixture was filtered, washed with 20 ml of water and 30 ml of methanol, and dried to obtain compound (C) (yield: 2.80 g / yield: 90.2% / LC purity: 99.8%).

[参考例](相間移動触媒未添加)
ペンタエリスリトール:0.68g、o−クロロニトロベンゼン:3.94g、トルエン:5ml、30%水酸化ナトリウム4.0gをガラス製反応機に仕込み、還流下24時間反応させた。目的とする化合物(C)は、全く得られなかった。
[Reference Example] (No phase transfer catalyst added)
Pentaerythritol: 0.68 g, o-chloronitrobenzene: 3.94 g, toluene: 5 ml, 30% sodium hydroxide 4.0 g were charged into a glass reactor and reacted under reflux for 24 hours. The target compound (C) was not obtained at all.

[比較例]
ペンタエリスリトール:1.36g、o−クロロニトロベンゼン:6.61g、N,N−ジメチルアセトアミド:13g、固体水酸化ナトリウム2.0gをガラス製反応機に仕込み、60℃で23時間反応させた。冷却後、水20gを添加し、上澄み液を廃棄後、メタノール30mlを添加し、結晶を分散させた。ろ過後、水30ml、メタノール30mlで洗浄し、乾燥後化合物(C)を得た(収量:4.51g/収率:72.7%/LC純度:77.4%/選択率:95.2%)。
[Comparative example]
Pentaerythritol: 1.36 g, o-chloronitrobenzene: 6.61 g, N, N-dimethylacetamide: 13 g, and 2.0 g of solid sodium hydroxide were charged into a glass reactor and reacted at 60 ° C. for 23 hours. After cooling, 20 g of water was added, the supernatant was discarded, and 30 ml of methanol was added to disperse the crystals. After filtration, the product was washed with 30 ml of water and 30 ml of methanol, and dried to obtain compound (C) (yield: 4.51 g / yield: 72.7% / LC purity: 77.4% / selectivity: 95.2). %).

本発明で得られる式(C)で表されるニトロ体は、ポリエステルの末端封止剤として有用な環状カルボジイミド化合物の中間体である。
The nitro body represented by the formula (C) obtained in the present invention is an intermediate of a cyclic carbodiimide compound that is useful as an end-capping agent for polyester.

Claims (4)

下記式(A)で表わされる化合物(A)と下記式(B)で表わされる化合物(B)とを、相間移動触媒およびアルカリ金属水酸化物の水溶液の存在下で、反応させることを特徴とする、下記式(C)で表わされるニトロ体の製造方法。
Figure 2012001475
(式(A)中、Rは、水素原子、炭素原子数1〜6のアルキル基である。Xはハロゲン原子またはニトロ基である。)
Figure 2012001475
Figure 2012001475
(式(C)中、Rは式(A)と同じである)
A compound (A) represented by the following formula (A) and a compound (B) represented by the following formula (B) are reacted in the presence of a phase transfer catalyst and an aqueous solution of an alkali metal hydroxide. The manufacturing method of the nitro body represented by the following formula (C).
Figure 2012001475
(In the formula (A), R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. X is a halogen atom or a nitro group.)
Figure 2012001475
Figure 2012001475
(In formula (C), R is the same as formula (A))
相間移動触媒は、下記式(i)で表される化合物である請求項1記載の製造方法。
Figure 2012001475
(式(i)中、R1〜R4各々独立に、炭素原子数1〜20のアルキル基、炭素原子数6〜20のアリール基、炭素原子数7〜20のアラルキル基から選ばれる基である。Aはハロゲンアニオンである)
The method according to claim 1, wherein the phase transfer catalyst is a compound represented by the following formula (i).
Figure 2012001475
(In formula (i), each of R1 to R4 is independently a group selected from an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. a - is a halogen anion)
相間移動触媒は、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ベンジルジメチルオクタデシルアンモニウム塩、ベンジルトリエチルアンモニウム塩、ベンジルトリメチルアンモニウム塩およびベンジルトリブチルアンモニウム塩からなる群より選ばれる少なくとも一種類の化合物である請求項1記載の製造方法。 The phase transfer catalyst is at least one selected from the group consisting of tetraethylammonium salt, tetrabutylammonium salt, trioctylmethylammonium salt, benzyldimethyloctadecylammonium salt, benzyltriethylammonium salt, benzyltrimethylammonium salt, and benzyltributylammonium salt. The production method according to claim 1, which is a compound. アルカリ金属水酸化物の水溶液は、水酸化ナトリウム水溶液または水酸化カリウム水溶液である請求項1記載の製造方法。
The method according to claim 1, wherein the aqueous solution of the alkali metal hydroxide is a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution.
JP2010137173A 2010-06-16 2010-06-16 Method for producing nitro compound Active JP5560109B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010137173A JP5560109B2 (en) 2010-06-16 2010-06-16 Method for producing nitro compound
US13/704,117 US9428521B2 (en) 2010-06-16 2011-06-15 Process for the production of a carbodiimide
CN201180029335.0A CN103025743B (en) 2010-06-16 2011-06-15 The manufacture method of carbon imide compound
EP11795860.3A EP2583971B1 (en) 2010-06-16 2011-06-15 Method for producing carbodiimide
PCT/JP2011/064193 WO2011158958A1 (en) 2010-06-16 2011-06-15 Method for producing carbodiimide
TW100120878A TWI486351B (en) 2010-06-16 2011-06-15 Production method of carbon imide body
KR1020127032612A KR20130129822A (en) 2010-06-16 2011-06-15 Method for producing carbodiimide
ES11795860.3T ES2538090T3 (en) 2010-06-16 2011-06-15 Process for the production of a carbodiimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137173A JP5560109B2 (en) 2010-06-16 2010-06-16 Method for producing nitro compound

Publications (2)

Publication Number Publication Date
JP2012001475A true JP2012001475A (en) 2012-01-05
JP5560109B2 JP5560109B2 (en) 2014-07-23

Family

ID=45533870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137173A Active JP5560109B2 (en) 2010-06-16 2010-06-16 Method for producing nitro compound

Country Status (1)

Country Link
JP (1) JP5560109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001476A (en) * 2010-06-16 2012-01-05 Kawaguchi Kagaku Kogyo Kk Method for producing carbodiimide compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429349A (en) * 1987-07-08 1989-01-31 Bayer Ag Aromatic polyisocyanates, preparation and use as component for adhesive
JPH0499755A (en) * 1990-08-15 1992-03-31 Honsyu Kagaku Kogyo Kk Production of 1,3-dinitro-4-(2',2',2'-trifluoroethoxy)benzene
WO2010071211A1 (en) * 2008-12-15 2010-06-24 帝人株式会社 Cyclic carbodiimide compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429349A (en) * 1987-07-08 1989-01-31 Bayer Ag Aromatic polyisocyanates, preparation and use as component for adhesive
JPH0499755A (en) * 1990-08-15 1992-03-31 Honsyu Kagaku Kogyo Kk Production of 1,3-dinitro-4-(2',2',2'-trifluoroethoxy)benzene
WO2010071211A1 (en) * 2008-12-15 2010-06-24 帝人株式会社 Cyclic carbodiimide compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001476A (en) * 2010-06-16 2012-01-05 Kawaguchi Kagaku Kogyo Kk Method for producing carbodiimide compound

Also Published As

Publication number Publication date
JP5560109B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
EP3381923B1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
JP5135926B2 (en) Process for producing 4-fluoro-1,3-dioxolan-2-one
JP2019194203A (en) Novel method for preparing febuxostat
JP5560109B2 (en) Method for producing nitro compound
CN104447367A (en) Preparation method of 1-amino-anthraquinone
EP2583971B1 (en) Method for producing carbodiimide
CN105315184A (en) Preparation method and intermediate of vortioxetine
CN110563606B (en) Synthesis method of (R) -2- [4- (4-cyano-2-fluorophenoxy) phenoxy ] propionic acid
CN112159388B (en) Preparation method of vinyl sulfate derivative
JP2006193444A (en) Method for producing 4,4'-dicarboxy-2,2'-bipyridine
JP5615051B2 (en) Method for producing carbodiimide body
JP2008526850A (en) Method for producing benzylated amines
JP2001261684A (en) Tetrakis (acyloxy) borate (1-) and method for synthesizing substituted onium tetrakis(acyloxy) borate (1-)
JP6512970B2 (en) Purification method of 6-hydroxy-2-naphthoic acid glycidyl ether ester
JP7297066B2 (en) Fluorescent compound, its production method and its use
JP2011162575A (en) Method for producing amino group-containing soluble monosubstituted phthalocyanine
JP6870967B2 (en) Manufacturing method of anhydrous lithium borofluoride
JP4495670B2 (en) Method for producing mercaptoalkylphosphonium compounds
CN112062723A (en) Preparation method of thiabendazole intermediate
CN111320616A (en) Racemization method of suvorexant intermediate
JP2010208974A (en) Fluorous condensation reagent and method for separating fluorine component
JP2012001477A (en) Method for producing thiourea compound
JP2018140954A (en) Method of manufacturing ylide compound and use thereof
JPH0892492A (en) Production of aminobenzanthrones
JPH08169868A (en) Production of 4-cyano-4'-hydroxybiphenyl

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250