JP2012000624A - Molding die - Google Patents

Molding die Download PDF

Info

Publication number
JP2012000624A
JP2012000624A JP2010136198A JP2010136198A JP2012000624A JP 2012000624 A JP2012000624 A JP 2012000624A JP 2010136198 A JP2010136198 A JP 2010136198A JP 2010136198 A JP2010136198 A JP 2010136198A JP 2012000624 A JP2012000624 A JP 2012000624A
Authority
JP
Japan
Prior art keywords
outer peripheral
heat transfer
mold
inner member
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010136198A
Other languages
Japanese (ja)
Inventor
Hisashi Kobayashi
恒 小林
Toru Onozaki
徹 小野崎
Koichi Konishi
功一 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2010136198A priority Critical patent/JP2012000624A/en
Publication of JP2012000624A publication Critical patent/JP2012000624A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding die having good coolability and free from a decline of strength in a small male molding die having a risk of lack of strength to a machining pressure caused by molding since the thickness of the die becomes thin because of a hollow structure such as a flow path for cooling or a heat pipe disposed inside.SOLUTION: An outer circumferential member 2 constituting the outer circumferential part of the molding die 1 and an inner member 3 constituting the inside of the molding die 1 are made to be separate members and are made to be a combination of members where the thermal conductivity and the linear expansion coefficient of the outer circumferential member 2 are smaller than those of the inner member 3. At a temperature during molding of a workpiece, the molding die is so configured that the inner diameter dimension of the outer circumferential member 2 is smaller than the outer diameter dimension of the inner member 3.

Description

本発明は、成形型に関するものであり、詳しくは温間鍛造もしくは熱間鍛造用型の冷却と寿命向上に関するものである。   The present invention relates to a forming die, and more particularly, to cooling of a warm forging or hot forging die and improvement of life.

温間鍛造や熱間鍛造では型の温度上昇による寿命低下や熱膨張による精度低下を防止するため型の冷却をしている。冷却方法は型内部に通路を形成し、通路内に冷却流体を循環させ、外部に設けた冷却装置により冷却流体の熱を除去するものである。
また、金型内部にヒートパイプなどの熱伝達柱を多数埋め込み金型を冷却する従来技術(特許文献1参照)がある。
In warm forging and hot forging, the mold is cooled in order to prevent a decrease in life due to a rise in mold temperature and a decrease in accuracy due to thermal expansion. In the cooling method, a passage is formed inside a mold, a cooling fluid is circulated in the passage, and heat of the cooling fluid is removed by a cooling device provided outside.
In addition, there is a conventional technique (see Patent Document 1) in which a large number of heat transfer columns such as heat pipes are embedded in the mold to cool the mold.

特開2005−138366号公報JP 2005-138366 A

小型の雄型の成形型の場合、内部に冷却用の流路やヒートパイプのような中空構造を設けると型の肉厚が薄くなり成形に伴う加工圧に対する強度が不足する恐れがある。そのため、図5に示すように冷却流路54を備えた雌型53は充分に冷却されるが、雄型の成形型51の冷却部52は工作物Wの成型部から離れた位置に配置されるので成形型51の冷却性が低かった。
本発明は上記事情に鑑みてなされたものであり、冷却性が良く強度低下のない雄型の鍛造型を安価に提供することを目的とする。
In the case of a small male mold, if a cooling channel or a hollow structure such as a heat pipe is provided inside, the thickness of the mold becomes thin, and the strength against the processing pressure associated with molding may be insufficient. Therefore, as shown in FIG. 5, the female mold 53 provided with the cooling flow path 54 is sufficiently cooled, but the cooling part 52 of the male mold 51 is arranged at a position away from the molding part of the workpiece W. Therefore, the cooling property of the mold 51 was low.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a male forging die having good cooling performance and no strength reduction at low cost.

上記の課題を解決するため、請求項1に係る発明の特徴は、工作物を成型する雄型の成形型において、前記成形型の外周部を構成する外周部材と前記成形型の内部を構成する内部部材を別部材とし、前記外周部材の熱伝導より前記内部部材の熱伝導性を高くし、前記外周部材と前記内部部材の接触部の所定熱伝達部における、前記外周部材の表面粗さと前記内部部材の表面粗さを所定値以下とし、前記所定熱伝達部の見掛けの面積に対する前記所定熱伝達部の真実接触面の面積の比率である接触比率を所定値以上とし、前記内部部材の前記所定熱伝達部と反対の端部に冷却部を設けたことである。   In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that, in a male mold for molding a workpiece, an outer peripheral member constituting an outer peripheral portion of the mold and an inside of the mold are formed. The internal member is a separate member, the thermal conductivity of the internal member is made higher than the thermal conductivity of the outer peripheral member, and the surface roughness of the outer peripheral member and the surface roughness of the predetermined heat transfer portion at the contact portion between the outer peripheral member and the internal member The surface roughness of the internal member is set to a predetermined value or less, a contact ratio that is a ratio of the area of the real contact surface of the predetermined heat transfer unit to the apparent area of the predetermined heat transfer unit is set to a predetermined value or more, and the internal member The cooling part is provided at the end opposite to the predetermined heat transfer part.

請求項2に係る発明の特徴は、請求項1に係る発明において、前記所定熱伝達部を少なくも連続して並ぶ交差点群で囲まれた閉曲面とし、
前記交差点群を、前記工作物の成型時に前記工作物が接触する前記成形型の表面部位の外縁部と前記外周部材と前記内部部材の接触面を最短で結ぶ直線が、前記接触面に交差する点とすることである。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the predetermined heat transfer portion is a closed curved surface surrounded by a group of intersections arranged at least continuously.
In the intersection group, a straight line connecting the outer edge portion of the surface portion of the mold, which is in contact with the workpiece when the workpiece is molded, and the contact surface of the outer peripheral member and the inner member intersects the contact surface. It is to make a point.

請求項3に係る発明の特徴は、請求項1または請求項2に係る発明において、前記冷却部と前記所定熱伝達部の距離をL(m)とし、前記外周部材の熱伝導率をλ1(W・m−1・k−1)とし、前記内部部材の熱伝導率をλ(W・m−1・k−1)とし、空気の熱伝導率をλ(W・m−1・k−1)とし、前記所定熱伝達部の前記外周部材の表面粗さをδ(μmRz)とし、前記所定熱伝達部の前記内部部材の表面粗さをδ(μmRz)とし、前記接触比率をηとしたとき、
170000・η/((δ+23)/λ+(δ+23)/λ)+1000000・λ/(δ+δ)>λ・λ/(L・(λ−λ))が成り立つことである。
A feature of the invention according to claim 3 is that, in the invention according to claim 1 or 2, the distance between the cooling part and the predetermined heat transfer part is L (m), and the thermal conductivity of the outer peripheral member is λ1 ( W · m −1 · k −1 ), the thermal conductivity of the internal member is λ 2 (W · m −1 · k −1 ), and the thermal conductivity of air is λ 0 (W · m −1 · k −1 ), the surface roughness of the outer peripheral member of the predetermined heat transfer portion is δ 1 (μmRz), the surface roughness of the inner member of the predetermined heat transfer portion is δ 2 (μmRz), and the contact When the ratio is η,
170000 · η / ((δ 1 +23) / λ 1 + (δ 2 +23) / λ 2 ) + 1000000 · λ 0 / (δ 1 + δ 2 )> λ 1 · λ 2 / (L · (λ 2 −λ 1 )).

請求項4に係る発明の特徴は、請求項1ないし請求項3のいずれか1項に係る発明において、前記内部部材の線膨張率を前記外周部材の線膨張率より大きくし、
所定温度において、前記外周部材が前記内部部材の熱膨張による膨張力を受けることである。
A feature of the invention according to claim 4 is that, in the invention according to any one of claims 1 to 3, the linear expansion coefficient of the inner member is larger than the linear expansion coefficient of the outer peripheral member,
The outer peripheral member receives an expansion force due to thermal expansion of the inner member at a predetermined temperature.

請求項5に係る発明の特徴は、請求項4に係る発明において、前記所定温度が前記工作物を成型する時の雄型の成形型の温度であることである。   A feature of the invention according to claim 5 is that, in the invention according to claim 4, the predetermined temperature is a temperature of a male mold when the workpiece is molded.

請求項1ないし請求項3に係る発明によれば、内部部材の熱伝導が大きいので外部部材単独で製作した成形型より冷却性がよく成形型の温度を低くできるので、より高温の素材を成型でき成形性がよくなる、また成形型の寿命が長くなる。   According to the inventions according to claims 1 to 3, since the heat conduction of the internal member is large, the cooling property is better than the mold manufactured by the external member alone and the temperature of the mold can be lowered. The moldability is improved and the life of the mold is increased.

請求項4、請求項5に係る発明によれば、成型時に成形型の外部部材に加わる圧縮力を内部部材の膨張力により外部部材に加わる引張力が相殺するため、外部部材に加わる最大圧縮力を低減できる。このため、成型圧力を高くでき生産性がよくなる。   According to the inventions according to claims 4 and 5, the compressive force applied to the external member of the mold during molding cancels out the tensile force applied to the external member by the expansion force of the internal member, and therefore the maximum compressive force applied to the external member. Can be reduced. For this reason, the molding pressure can be increased and the productivity is improved.

本実施形態の成形型の断面を示す概略図である。It is the schematic which shows the cross section of the shaping | molding die of this embodiment. 本実施形態の成形型を用いた成型の断面を示す概略図である。It is the schematic which shows the cross section of shaping | molding using the shaping | molding die of this embodiment. 冷却性の差を説明する模式図である。It is a schematic diagram explaining the difference in cooling property. 本実施形態の変形態様の成形型を用いた成型の断面を示す概略図である。It is the schematic which shows the cross section of shaping | molding using the shaping | molding die of the deformation | transformation aspect of this embodiment. 従来の成形型を用いた成型の断面を示す概略図である。It is the schematic which shows the cross section of shaping | molding using the conventional shaping | molding die.

以下、本発明の実施の形態を図1〜図3に基づき説明する。
図1に示すように、成形型1は外周部材2の内部に内部部材3を配置した2層構造で、内部部材3は押しねじ4により外周部材2に押付けられ接触固定されている。工作物が成型時に接触するA部と反対の内部部材3の端部に液室5を設け、液室5に冷却媒体を供給する供給流路6と、液室5から冷却媒体を排出する排出流路7を備えている。
外周部材2の材料は工具鋼で、内部部材3の材料は高熱伝導体(銅やアルミニウムまたはそれらの合金が好適)である。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the mold 1 has a two-layer structure in which an inner member 3 is disposed inside an outer peripheral member 2, and the inner member 3 is pressed against the outer peripheral member 2 by a push screw 4 and fixed in contact therewith. A liquid chamber 5 is provided at the end of the internal member 3 opposite to the A portion where the workpiece contacts during molding, a supply flow path 6 for supplying a cooling medium to the liquid chamber 5, and a discharge for discharging the cooling medium from the liquid chamber 5. A flow path 7 is provided.
The material of the outer peripheral member 2 is tool steel, and the material of the inner member 3 is a high thermal conductor (copper, aluminum, or an alloy thereof is preferable).

工作物Wの成型作動について図2に基づき説明する。
金型1は固定具8により供給流路6と排出流路7が座板9の流路91、92に連通されるように座板9に固定される。座板9は駆動軸10により上下に往復可動に支持されている。成形型1に対向した下部に雌型11が固定されて配置される。
工作物Wの成型は、所定の温度に保持された工作物Wの素材を雌型11内に挿入し、成形型1を所定の位置まで下降させることで成型する。成型された工作物Wは図示しない取り出し装置で雌型11から取り出される。
The molding operation of the workpiece W will be described with reference to FIG.
The mold 1 is fixed to the seat plate 9 by the fixture 8 so that the supply channel 6 and the discharge channel 7 are communicated with the channels 91 and 92 of the seat plate 9. The seat plate 9 is supported by the drive shaft 10 so as to reciprocate up and down. A female die 11 is fixed and arranged at the lower part facing the mold 1.
The workpiece W is molded by inserting the material of the workpiece W maintained at a predetermined temperature into the female mold 11 and lowering the molding die 1 to a predetermined position. The molded workpiece W is taken out from the female die 11 by a take-out device (not shown).

上記の2層構造の熱の伝達性について図3の模式図で原理を説明する。
外周部材21の熱伝導率をλとし、内部部材22の熱伝導率をλとし、外部部材21から内部部材22への熱伝達率をhとする。工作物接触部側をB端として、冷却側をC端とし、B−C間の距離をLとする。外部部材21の熱伝達はB端の温度をTとし、C端の温度をTとしBからCへの熱伝達以外に熱の伝達はないと仮定する。内部部材22の熱伝達はB端の外部部材21の温度をTとし、B端の内部部材22の温度をTとし、C端の温度をTとしBからCへの熱伝達以外に熱の伝達はないと仮定する。
外部部材21の単位断面積あたりの熱伝達量QはQ=λ1・(T−T)/Lとなり、内部部材22の単位断面積あたりの熱伝達量QはQ=λ・(T−T)/Lとなる。また、Bにおける外部部材21から内部部材22への単位断面積あたりの熱伝達量QはQ=h・(T−T)となり、定常状態ではQ=Qなのでλ・(T−T)/L=h・(T−T)となる。
2層構造の内部部材22の熱伝達量が外部部材21の一体物より大きくなる限界はQ≧Qであり、λ・(T−T)/L≧λ・(T−T)/LからT≧T+(T−T)・λ/λとなればよい。Tは式λ・(T−T)/L=h・(T−T)を変形して、T=(h・T+λ・T/L)/(λ/L+h)となるので(h・T+λ・T/L)/(λ/L+h)≧T+(T−T)・λ/λが内部部材22の熱伝達量が外部部材21の一体物より大きくなる条件を示す式となる。hについて式を整理するとh≧λ・λ/(L・(λ−λ))となり、外部部材21から内部部材22への熱伝達率がこの式で示されるhであれば2層構造の熱伝達が一体物より大きくなる。
The principle of the heat transferability of the above two-layer structure will be described with reference to the schematic diagram of FIG.
The thermal conductivity of the outer peripheral member 21 and lambda 1, the thermal conductivity of the inner member 22 and lambda 2, the heat transfer rate from the outer member 21 to the inner member 22 and h. The workpiece contact portion side is the B end, the cooling side is the C end, and the distance between B and C is L. The heat transfer of the outer member 21 is the temperature of the B-end and T 1, it is assumed that there is no transfer of heat in addition to heat transfer to C from the temperature of the C-terminal and T 3 B. The heat transfer inside the member 22 is the temperature of the outer member 21 of the B-end and T 1, the temperature of the inner member 22 of the B-end and T 2, the temperature of the C-terminal in addition to heat transfer from the T 3 B to C Assume that there is no heat transfer.
The heat transfer amount Q 1 per unit cross-sectional area of the external member 21 is Q 1 = λ1 · (T 1 −T 3 ) / L, and the heat transfer amount Q 2 per unit cross-sectional area of the internal member 22 is Q 2 = λ 2 · (T 2 −T 3 ) / L. Further, the heat transfer amount Q 3 per unit cross-sectional area from the outer member 21 to the inner member 22 in B is Q 3 = h · (T 1 −T 2 ), and in a steady state, Q 2 = Q 3, so λ 2 · (T 2 −T 3 ) / L = h · (T 1 −T 2 ).
The limit at which the heat transfer amount of the internal member 22 having the two-layer structure is larger than that of the integrated member of the external member 21 is Q 2 ≧ Q 1 , and λ 2 · (T 2 −T 3 ) / L ≧ λ 1 · (T 1 -T 3) / L from T 2 ≧ T 3 + (T 1 -T 3) · λ 1 / λ 2 and may be accustomed. T 2 is a modification of the formula λ 2 · (T 2 −T 3 ) / L = h · (T 1 −T 2 ), and T 2 = (h · T 1 + λ 2 · T 3 / L) / (λ 2 / L + h) (h · T 1 + λ 2 · T 3 / L) / (λ 2 / L + h) ≧ T 3 + (T 1 −T 3 ) · λ 1 / λ 2 is the heat of the internal member 22 This is an expression indicating a condition that the transmission amount is larger than that of the integrated member of the external member 21. By arranging the formula for h, h ≧ λ 1 · λ 2 / (L · (λ 2 −λ 1 )). If the heat transfer coefficient from the external member 21 to the internal member 22 is h represented by this formula, 2 The heat transfer of the layer structure is larger than that of the unitary structure.

ここで、2つの固体の接触面における熱伝達率hは以下の式となることが知られている。
空気の熱伝導率をλとし、外周部材21の表面粗さをδとし、内部部材22の表面粗さをδとし、所定熱伝達部の見掛けの面積に対する所定熱伝達部の真実接触面の面積の比率である接触比率をηとしたとき、接触面における熱伝達率hは、
h=170000・η/((δ+23)/λ+(δ+23)/λ)+1000000・λ/(δ+δ)となることが知られている。
ここで、微細な凹凸を持つ2面が接触しているとき凸部同士が接触し凹部は隙間が空いた状態となり接触しない、このときの実際に接触している凸部の面積の総和を真実接触面の面積とし、接触していない凹部の面積の総和と真実接触面積の和を見掛けの面積とする。
Here, it is known that the heat transfer coefficient h at the contact surfaces of the two solids is represented by the following equation.
The air thermal conductivity is λ 0 , the surface roughness of the outer peripheral member 21 is δ 1 , the surface roughness of the internal member 22 is δ 2, and the true contact of the predetermined heat transfer portion with respect to the apparent area of the predetermined heat transfer portion When the contact ratio, which is the ratio of the area of the surface, is η, the heat transfer coefficient h at the contact surface is
It is known that h = 170000 · η / ((δ 1 +23) / λ 1 + (δ 2 +23) / λ 2 ) + 1000000 · λ 0 / (δ 1 + δ 2 ).
Here, when the two surfaces with fine irregularities are in contact, the convex portions are in contact with each other, and the concave portion is in a gap state and does not come into contact. The total sum of the areas of the actually contacting convex portions at this time is true Let the area of the contact surface be the apparent area of the sum of the areas of the recesses that are not in contact with the sum of the real contact areas.

以上より、式170000・η/((δ+23)/λ+(δ+23)/λ)+1000000・λ/(δ+δ)≧λ・λ/(L・(λ−λ))を満足するように、外周部材21の表面粗さδと熱伝導率λ、内部部材22の表面粗さδと熱伝導率λ、工作物成型部と冷却部の距離L、真実接触面の接触比率ηを選択すれば2層構造の成形型の冷却効果が一体物より高くなる。 From the above, the expression 170000 · η / ((δ 1 +23) / λ 1 + (δ 2 +23) / λ 2 ) + 1000000 · λ 0 / (δ 1 + δ 2 ) ≧ λ 1 · λ 2 / (L · (λ 2− λ 1 )), the surface roughness δ 1 and the thermal conductivity λ 1 of the outer peripheral member 21, the surface roughness δ 2 and the thermal conductivity λ 2 of the inner member 22, the workpiece molding part and the cooling If the distance L of the part and the contact ratio η of the true contact surface are selected, the cooling effect of the mold having the two-layer structure becomes higher than that of the one-piece.

以下に、本実施例の作動機能について図1に基づき、外周部材2に工具鋼を使用し内部部材3に銅を用いた例について詳細に説明する。
はじめに、冷却性の向上について説明する。温度が800kにおける工具鋼のλは34(W・m−1・k−1)、線膨張率は14×10−6(k−1)である。温度が800kにおける銅のλは370(W・m−1・k−1)、線膨張率は20×10−6(k−1)である。Lを0.03(m)、λを0.05(W・m−1・k−1)、外周部材の表面粗さδを30(μmRz)、内部部材の表面粗さδを30(μmRz)とすると、170000・η/1.675+1000≧1248.016となる。式を整理するとη≧0.0041であれば冷却効果が一体物より高くなる。Lは図1に示すように工作物接触部の上端から冷却部までの距離とする。
ここで、接触比率ηを接触部材の押付圧をP(Mp)とし、やわらかい材料の硬度をH(Hv)としたとき、η=0.6・P/Hとなることが知られているので、0.6・P/H≧0.0041とすればよい。銅のHを50(Hv)とすると、P≧0.34(Mp)となり、銅製の内部部材を0.34Mp以上の圧力で外周部材に押し付けることで必要な接触比率ηを実現できる。
Below, based on FIG. 1, the operation function of a present Example is demonstrated in detail about the example which used tool steel for the outer peripheral member 2 and used copper for the internal member 3. FIG.
First, the improvement in cooling performance will be described. Λ 1 of the tool steel at a temperature of 800 k is 34 (W · m −1 · k −1 ), and the linear expansion coefficient is 14 × 10 −6 (k −1 ). The λ 1 of copper at a temperature of 800 k is 370 (W · m −1 · k −1 ), and the linear expansion coefficient is 20 × 10 −6 (k −1 ). L is 0.03 (m), λ 0 is 0.05 (W · m −1 · k −1 ), the outer member has a surface roughness δ 1 of 30 (μmRz), and the inner member has a surface roughness δ 2 . If 30 (μmRz), 170000 · η / 1.675 + 1000 ≧ 1248.016. If the equation is arranged, if η ≧ 0.0041, the cooling effect is higher than that of the single body. L is a distance from the upper end of the workpiece contact portion to the cooling portion as shown in FIG.
Here, it is known that η = 0.6 · P / H when the contact ratio η is the pressing pressure of the contact member is P (Mp) and the hardness of the soft material is H (Hv). 0.6 · P / H ≧ 0.0041. When H of copper is 50 (Hv), P ≧ 0.34 (Mp), and the required contact ratio η can be realized by pressing the copper inner member against the outer member with a pressure of 0.34 Mp or more.

次に、成形圧力により外周部材2に作用する圧縮力を軽減する作用について説明する。
工作物を成形していない状態では、外周部材2が内部部材3により膨張力を与えられ引張応力が作用し、内部部材3は反作用の圧縮応力が作用するように相互寸法を定める。図1において、D部の寸法で具体的に説明する。
工作物成型時の最低温度をTとし、最高温度をTとする。相互に組み合せられていない状態で、温度がT場合の、外周部材2の内径寸法をEとし、内部部材3の外形寸法をFとすると、E≦Fに設定する。外周部材2の温度がTからTまでの平均線膨張率をαとし、内部部材3の温度がTからTまでの平均線膨張率をαとすると、最高温度Tのときの、外周部材2の内径寸法はE・α・(T−T)となり、内部部材3の外形寸法はF・α・(T−T)となる。よって、温度上昇による締め代(直径)の増加は(F・α−E・α)・(T−T)となる。この締め代の増加による外周部材2に作用する引張応力が外周部材2の許容応力を越えないように最高温度Tを設定する。
以上のように外周部材2の内径寸法と、内部部材3の外形寸法を設定することで、工作物成型時に作用する外周部材2への圧縮応力を低減できる。
Next, the effect | action which reduces the compressive force which acts on the outer peripheral member 2 by shaping | molding pressure is demonstrated.
In a state where the workpiece is not molded, the outer peripheral member 2 is given an expansion force by the inner member 3 and a tensile stress acts, and the inner member 3 determines the mutual dimension so that the reaction compressive stress acts. In FIG. 1, it demonstrates concretely by the dimension of D part.
Let TL be the minimum temperature when molding a workpiece, and TH be the maximum temperature. If the inner diameter dimension of the outer peripheral member 2 is E and the outer dimension of the inner member 3 is F when the temperature is TL in a state where they are not combined with each other, E ≦ F is set. When the temperature of the outer member 2 is the average linear expansion coefficient from T L to T H and alpha 1, the temperature of the inner member 3 is the mean linear expansion coefficient from T L to T H and alpha 2, the maximum temperature T H when, the inner diameter of the outer member 2 dimensions of E · α 1 · (T H -T L) , and the inner member 3 is the F · α 2 · (T H -T L). Therefore, an increase in interference (diameter) due to the temperature rise becomes (F · α 2 -E · α 1) · (T H -T L). The maximum temperature TH is set so that the tensile stress acting on the outer peripheral member 2 due to the increase in the tightening margin does not exceed the allowable stress of the outer peripheral member 2.
By setting the inner diameter dimension of the outer peripheral member 2 and the outer dimension of the inner member 3 as described above, it is possible to reduce the compressive stress to the outer peripheral member 2 that acts during workpiece molding.

上記の実施例では外部部材に工具鋼を用いた例を述べたが、セラミックス等の金属以外の材料を用いてもよい。   In the above embodiment, an example in which tool steel is used for the external member has been described, but materials other than metals such as ceramics may be used.

<本実施形態の変形態様>
上記の実施形態では、液室4に冷却媒体を流通させる構造について説明したが、これに限定されるものではない。
図4に示すように、内部部材33の冷却端を基台8に接触させて熱を基台8側に逃すことで冷却をしてもよい。工作物Wが小型で冷却する熱量が小さな場合はこの構造で効果を得ることができる。
<Deformation of this embodiment>
In the above embodiment, the structure in which the cooling medium is circulated in the liquid chamber 4 has been described, but the present invention is not limited to this.
As shown in FIG. 4, the cooling may be performed by bringing the cooling end of the internal member 33 into contact with the base 8 and releasing heat to the base 8 side. When the workpiece W is small and the amount of heat to be cooled is small, the effect can be obtained with this structure.

1:型 2:外部部材 3:内部部材 4:押しねじ 5:液室 6:供給流路 7:排出流路 8:固定具 9:基台 10:駆動軸 11:雌型 1: Mold 2: External member 3: Internal member 4: Push screw 5: Liquid chamber 6: Supply flow path 7: Discharge flow path 8: Fixing tool 9: Base 10: Drive shaft 11: Female mold

Claims (5)

工作物を成型する雄型の成形型において、前記成形型の外周部を構成する外周部材と前記成形型の内部を構成する内部部材を別部材とし、前記外周部材の熱伝導より前記内部部材の熱伝導性を高くし、前記外周部材と前記内部部材の接触部の所定熱伝達部における、前記外周部材の表面粗さと前記内部部材の表面粗さを所定値以下とし、前記所定熱伝達部の見掛けの面積に対する前記所定熱伝達部の真実接触面の面積の比率である接触比率を所定値以上とし、前記内部部材の前記所定熱伝達部と反対の端部に冷却部を設けた成形型。   In the male mold for molding a workpiece, an outer peripheral member constituting the outer peripheral portion of the mold and an inner member constituting the inner part of the mold are separated from each other, and the inner member is formed by heat conduction of the outer peripheral member. The heat conductivity is increased, and the surface roughness of the outer peripheral member and the surface roughness of the inner member in the predetermined heat transfer portion of the contact portion between the outer peripheral member and the inner member are set to a predetermined value or less, and the predetermined heat transfer portion A molding die in which a contact ratio, which is a ratio of an area of a real contact surface of the predetermined heat transfer portion to an apparent area, is equal to or greater than a predetermined value, and a cooling portion is provided at an end opposite to the predetermined heat transfer portion of the internal member. 前記所定熱伝達部を少なくも連続して並ぶ交差点群で囲まれた閉曲面とし、
前記交差点群を、前記工作物の成型時に前記工作物が接触する前記成形型の表面部位の外縁部と前記外周部材と前記内部部材の接触面を最短で結ぶ直線が、前記接触面に交差する点とする請求項1に記載の成形型。
The predetermined heat transfer portion is a closed curved surface surrounded by a group of intersections lined up at least continuously,
In the intersection group, a straight line connecting the outer edge portion of the surface portion of the mold, which is in contact with the workpiece when the workpiece is molded, and the contact surface of the outer peripheral member and the inner member intersects the contact surface. The mold according to claim 1, which is a point.
前記冷却部と前記所定熱伝達部の距離をL(m)とし、前記外周部材の熱伝導率をλ1(W・m−1・k−1)とし、前記内部部材の熱伝導率をλ(W・m−1・k−1)とし、空気の熱伝導率をλ(W・m−1・k−1)とし、前記所定熱伝達部の前記外周部材の表面粗さをδ(μmRz)とし、前記所定熱伝達部の前記内部部材の表面粗さをδ(μmRz)とし、前記接触比率をηとしたとき、
170000・η/((δ+23)/λ+(δ+23)/λ)+1000000・λ/(δ+δ)>λ・λ/(L・(λ−λ))が成り立つ請求項1または請求項2に記載の成形型。
The distance between the cooling unit and the predetermined heat transfer unit is L (m), the thermal conductivity of the outer peripheral member is λ1 (W · m −1 · k −1 ), and the thermal conductivity of the inner member is λ 2. (W · m −1 · k −1 ), the thermal conductivity of air is λ 0 (W · m −1 · k −1 ), and the surface roughness of the outer peripheral member of the predetermined heat transfer portion is δ 1. (ΜmRz), when the surface roughness of the internal member of the predetermined heat transfer portion is δ 2 (μmRz), and the contact ratio is η,
170000 · η / ((δ 1 +23) / λ 1 + (δ 2 +23) / λ 2 ) + 1000000 · λ 0 / (δ 1 + δ 2 )> λ 1 · λ 2 / (L · (λ 2 −λ 1 The mold according to claim 1 or 2, wherein:
前記内部部材の線膨張率を前記外周部材の線膨張率より大きくし、
所定温度において、前記外周部材が前記内部部材の熱膨張による膨張力を受ける請求項1ないし請求項3のいずれか1項に記載の成形型。
The linear expansion coefficient of the inner member is larger than the linear expansion coefficient of the outer peripheral member,
The mold according to any one of claims 1 to 3, wherein the outer peripheral member receives an expansion force due to thermal expansion of the inner member at a predetermined temperature.
前記所定温度が前記工作物を成型する時の雄型の成形型の温度である請求項4に記載の成形型。   The mold according to claim 4, wherein the predetermined temperature is a temperature of a male mold when the workpiece is molded.
JP2010136198A 2010-06-15 2010-06-15 Molding die Pending JP2012000624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136198A JP2012000624A (en) 2010-06-15 2010-06-15 Molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136198A JP2012000624A (en) 2010-06-15 2010-06-15 Molding die

Publications (1)

Publication Number Publication Date
JP2012000624A true JP2012000624A (en) 2012-01-05

Family

ID=45533240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136198A Pending JP2012000624A (en) 2010-06-15 2010-06-15 Molding die

Country Status (1)

Country Link
JP (1) JP2012000624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506918B1 (en) * 2013-08-29 2015-03-31 주식회사 태웅 Apparatus for forming hollow shaft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121916A (en) * 1984-11-19 1986-06-09 Sumitomo Heavy Ind Ltd Mold for molding
WO2008146359A1 (en) * 2007-05-29 2008-12-04 Hirata Corporation Mold container and tire vulcanization apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121916A (en) * 1984-11-19 1986-06-09 Sumitomo Heavy Ind Ltd Mold for molding
WO2008146359A1 (en) * 2007-05-29 2008-12-04 Hirata Corporation Mold container and tire vulcanization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506918B1 (en) * 2013-08-29 2015-03-31 주식회사 태웅 Apparatus for forming hollow shaft

Similar Documents

Publication Publication Date Title
US8047037B2 (en) Shaping tool
EP1418366A1 (en) Fluid cooled diaphragm
JPWO2010032722A1 (en) Seal plate, seal member used for seal plate, and manufacturing method thereof
JP2008529803A (en) Extrusion of copper and zinc containing alloys
JP5256376B2 (en) Method of manufacturing cooling element for dry metallurgical reactor and cooling element
JP2012000624A (en) Molding die
JP5259522B2 (en) Thermal transfer device
JP2014069224A (en) Casting apparatus, method of manufacturing casting apparatus, and method of manufacturing cast article
CN110732595B (en) Mould for hot forming and/or press hardening of sheet metal and method for producing cooling tool section
JP2009056490A (en) Casting mold for continuous casting
KR102398651B1 (en) Cooling apparatus for die-casting die
US20130168054A1 (en) Heat pipe and method for manufacturing the same
KR101581940B1 (en) a hot-stamping mold with improved cooling perfomance
KR20080093721A (en) Forging metal mold having for coling pathway
JPH11226716A (en) Metallic mold for casting
KR101365195B1 (en) Hot press metallic mold reinforced heat transfer performance
JP4611350B2 (en) Continuous casting mold
JP4611349B2 (en) Continuous casting mold
JP4684345B2 (en) Mold for scroll member
WO2018138076A1 (en) Pressing tool for press hardening and the use thereof for production of press hardened sheet metal components
US10252311B2 (en) Forming tool for shaping a workpiece, and method for positioning a temperature control device on a forming tool
JPH07214279A (en) Horizontal type sleeve for die casting machine
RU2709300C1 (en) Piston unit of injection moulding machine
US7445746B2 (en) Temperable member
JP4847105B2 (en) Injection mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805