JP2012000353A - Clothes treatment apparatus - Google Patents

Clothes treatment apparatus Download PDF

Info

Publication number
JP2012000353A
JP2012000353A JP2010140089A JP2010140089A JP2012000353A JP 2012000353 A JP2012000353 A JP 2012000353A JP 2010140089 A JP2010140089 A JP 2010140089A JP 2010140089 A JP2010140089 A JP 2010140089A JP 2012000353 A JP2012000353 A JP 2012000353A
Authority
JP
Japan
Prior art keywords
frequency
induction motor
setting means
voltage
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010140089A
Other languages
Japanese (ja)
Inventor
Tomohiro Fujii
友弘 藤井
Kazuhiko Asada
和彦 麻田
Koji Kameda
晃史 亀田
Taketoshi Sato
武年 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010140089A priority Critical patent/JP2012000353A/en
Publication of JP2012000353A publication Critical patent/JP2012000353A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2613Household appliance in general
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2633Washing, laundry

Landscapes

  • Control Of Washing Machine And Dryer (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the vibration and noise of a casing by controlling the driving of a washing motor.SOLUTION: A clothes treatment apparatus includes a casing 1, a rotary drum 3 provided in the casing 1 for containing clothes or the like, an induction motor 12 for driving the rotary drum 3, and a control section 13 for supplying variable-frequency power to the induction motor 12 to drive the induction motor 12. The control section 13 performs the control by preventing the variable frequency or its harmonics from coinciding with the resonance frequency of the casing 1 and by setting a driving frequency so as to maximize the efficiency of the induction motor 12 at a frequency other than the resonance frequency. Thus, the vibration and noise of the casing can be suppressed.

Description

本発明は、衣類の洗濯等をおこなう衣類処理装置に関するものである。   The present invention relates to a clothing processing apparatus that performs laundry washing and the like.

従来、この種の衣類処理装置は、脱水運転時の振動および騒音の低減を図りつつ、能率よく洗濯がおこなえるようにすることが考えられている(例えば、特許文献1参照)。図5は、特許文献1に記載された洗濯機のDCブラシレスモータの駆動制御系統例を示すブロック回路図である。   Conventionally, it has been considered that this type of clothing processing apparatus can efficiently perform washing while reducing vibration and noise during dehydration operation (see, for example, Patent Document 1). FIG. 5 is a block circuit diagram showing an example of a drive control system of a DC brushless motor of a washing machine described in Patent Document 1.

図5に示すように、振動検知センサ(A)24および振動検知センサ(B)25をドラム式洗濯機の外槽に設けてその振動振幅値を検知し、振動振幅値が所定値以下なら脱水回転に移行し、所定値以上なら低速でバランス回転制御による回転を継続する。また、脱水回転では、脱水時間の経過にともない洗濯ドラムの速度が上昇する。その時、洗濯ドラムが大きく振動する一次共振点や二次共振点がある。この一次共振点および二次共振点の振動周波数は、外槽および外枠が有する固有振動周波数などによって定まる。   As shown in FIG. 5, the vibration detection sensor (A) 24 and the vibration detection sensor (B) 25 are provided in the outer tub of the drum type washing machine to detect the vibration amplitude value. If the vibration amplitude value is equal to or less than a predetermined value, dehydration is performed. Shift to rotation, and if it exceeds the predetermined value, the rotation by the balance rotation control is continued at a low speed. Further, in the dewatering rotation, the speed of the washing drum increases as the dewatering time elapses. At that time, there is a primary resonance point and a secondary resonance point at which the washing drum vibrates greatly. The vibration frequency of the primary resonance point and the secondary resonance point is determined by the natural vibration frequency of the outer tank and the outer frame.

二次共振点での振動は、振動検知センサ(A)24および振動検知センサ(B)25で検知して算出処理される。高速回転のための振動の規定値と比較し、振動がそれ以下であると判定されると、高速回転を行う。振動が高速回転のための振動の既定値より大きく、中速回転のための振動の規定値以下であると判定されると、中速回転を行う。振動が中速回転のための振動の既定値よりも大きい場合、低速回転を行う。   The vibration at the secondary resonance point is detected and calculated by the vibration detection sensor (A) 24 and the vibration detection sensor (B) 25. When it is determined that the vibration is lower than the prescribed value of vibration for high speed rotation, high speed rotation is performed. When it is determined that the vibration is larger than a predetermined vibration value for high-speed rotation and equal to or less than a predetermined value for vibration for medium-speed rotation, medium-speed rotation is performed. If the vibration is larger than the default vibration value for medium speed rotation, low speed rotation is performed.

このようにアンバランス振動検知をおこない、脱水回転に移行し、二次共振点での振動を更に検知して高速、中速または低速の回転速度が選ばれ、脱水回転制御が行なわれるようにしたものである。   In this way, unbalanced vibration detection is performed, and the process shifts to dehydration rotation. Further, vibration at the secondary resonance point is further detected to select high speed, medium speed, or low speed, and dehydration rotation control is performed. Is.

特開2008−61856号公報JP 2008-61856 A

しかしながら、前記従来の構成では、振動検知センサで検知した振動振幅が所定値以上である場合、低速回転での運転を継続するため、洗濯から脱水工程への移行が遅くなり、洗濯乾燥機の動作時間が長くなり、運転時間および消費電力が増加するという課題があった。   However, in the conventional configuration, when the vibration amplitude detected by the vibration detection sensor is greater than or equal to the predetermined value, the operation at the low speed rotation is continued, so the transition from the washing to the dehydration process is delayed, and the operation of the washing dryer There was a problem that the time was increased, and the operation time and power consumption increased.

また、前記従来の構成では、洗濯物等がドラム内で偏りが生じるとアンバランスが発生し、振動振幅が所定値以上となることでの動作制限をおこなうものであるが、洗濯モータの駆動周波数による機体への振動および騒音の制限をおこなうものではなく、一般的には振動および騒音を防止するために緩衝材等を筐体の外壁等へ設け、外部に漏らさないようにすることが多く、経済性や騒音および振動の解決に課題があった。   Further, in the above-described conventional configuration, when the laundry or the like is biased in the drum, imbalance occurs, and the operation is limited when the vibration amplitude exceeds a predetermined value. It is not intended to limit vibration and noise to the fuselage, and in general, in order to prevent vibration and noise, cushioning materials etc. are often provided on the outer wall of the housing, etc. so as not to leak outside, There were challenges in solving economics and noise and vibration.

本発明は、前記従来の課題を解決するもので、洗濯モータの駆動を制御し、筐体の振動および騒音を抑制する衣類処理装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a clothing processing apparatus that controls driving of a washing motor and suppresses vibration and noise of the casing.

前記従来の課題を解決するために、本発明の衣類処理装置は、筐体と、前記筐体内に設けた衣類等を収容する回転ドラムと、前記回転ドラムを駆動する誘導モータと、前記誘導モータに可変周波数の電力を供給して駆動する制御部とを備え、前記制御部は、可変周波数もしくはその高調波が前記筐体の共振周波数を避け、その避けた周波数以外では、前記誘導モータが最大効率となる駆動周波数で制御するようにしたものである。   In order to solve the above-described conventional problems, a clothing processing apparatus according to the present invention includes a housing, a rotating drum that accommodates clothing or the like provided in the housing, an induction motor that drives the rotating drum, and the induction motor. And a control unit that drives by supplying variable frequency power to the control unit, wherein the control unit avoids the resonance frequency of the housing with the variable frequency or its harmonics, and the induction motor is at a maximum other than the avoided frequency. The control is performed at a driving frequency that is efficient.

これによって、回転ドラムを駆動する誘導モータの駆動周波数を筐体の振動周波数およびその高調波と重ならない周波数で動作することで、筐体の振動および騒音を最小限に抑制し、その周波数以外では、誘導モータを最大効率で運転することができるとともに、省エネ、低騒音、低振動の衣類処理装置を提供することができる。   As a result, the drive frequency of the induction motor that drives the rotating drum is operated at a frequency that does not overlap with the vibration frequency of the case and its harmonics, thereby suppressing the vibration and noise of the case to a minimum. In addition to being able to operate the induction motor with maximum efficiency, it is possible to provide an energy-saving, low noise, low vibration clothing processing apparatus.

本発明の衣類処理装置は、モータの駆動周波数を筐体の振動周波数を避けて筐体の振動および騒音を抑制するとともに、その抑制状態以外ではモータの最大効率とする動作をすることができる。   The clothing processing apparatus according to the present invention can suppress the vibration and noise of the housing by avoiding the vibration frequency of the housing as the driving frequency of the motor, and can operate with the maximum efficiency of the motor except in the suppressed state.

本発明の実施の形態1における衣類処理装置の構成図Configuration diagram of a clothing processing apparatus according to Embodiment 1 of the present invention. 同衣類処理装置の制御部のブロック図Block diagram of the control unit of the clothing processing apparatus 同衣類処理装置の制御部の動作を示すフローチャートThe flowchart which shows operation | movement of the control part of the clothing processing apparatus. 同衣類処理装置の回転数と印加電圧の関係図Relationship diagram between rotation speed and applied voltage of the clothing processing equipment 従来の洗濯機のブロック回路図Block diagram of a conventional washing machine

第1の発明は、筐体と、前記筐体内に設けた衣類等を収容する回転ドラムと、前記回転ドラムを駆動する誘導モータと、前記誘導モータに可変周波数の電力を供給して駆動する制御部とを備え、前記制御部の可変周波数およびその高調波は、前記筐体の共振周波数を避け、その共振周波数以外では、前記誘導モータが最大効率となる駆動周波数で制御するようにしたことにより、誘導モータを最大効率で運転するとともに、振動、騒音を抑制することができる。   The first invention includes a housing, a rotating drum that accommodates clothing or the like provided in the housing, an induction motor that drives the rotating drum, and a control that drives the induction motor by supplying variable frequency power. The variable frequency of the control unit and its harmonics avoid the resonance frequency of the housing, and other than the resonance frequency, the induction motor is controlled at the drive frequency at which maximum efficiency is achieved. In addition to operating the induction motor with maximum efficiency, vibration and noise can be suppressed.

第2の発明は、特に、第1の発明の制御部は、誘導モータへの印加電圧を設定する電圧設定手段と、駆動周波数を設定する駆動周波数設定手段と、回転ドラムの実回転数周波数と前記駆動周波数設定手段との差分周波数を設定する滑り周波数設定手段を有し、制御部の駆動周波数およびその高調波は、筐体の共振周波数を避け、その共振周波数以外では、誘導モータが最大効率とする電圧設定手段の印加電圧とすべり周波数設定手段のすべり周波数に調整することにより、滑り周波数を算出することで簡単な構成で所望のドラム回転数を維持するとともに、振動および騒音となる駆動周波数を避けることができ、筐体の共振周波数以外での動作では、誘導モータの最大効率を実現することができる。   In the second invention, in particular, the control unit of the first invention includes a voltage setting means for setting an applied voltage to the induction motor, a driving frequency setting means for setting a driving frequency, and an actual rotational frequency of the rotating drum. It has slip frequency setting means for setting a difference frequency with the drive frequency setting means, and the drive frequency of the control unit and its harmonics avoid the resonance frequency of the casing, and the induction motor has the maximum efficiency other than the resonance frequency. By adjusting the applied voltage of the voltage setting means and the slip frequency of the slip frequency setting means to calculate the slip frequency, the desired drum rotation speed can be maintained with a simple configuration, and the driving frequency that causes vibration and noise In the operation other than the resonance frequency of the housing, the maximum efficiency of the induction motor can be realized.

第3の発明は、特に、第2の発明の電圧設定手段の印加電圧を所望電圧より小さく、滑り周波数設定手段の滑り周波数を所望周波数より大きく設定し、制御部の駆動周波数およびその高調波が筐体の共振周波数より高周波側へ移行することにより、駆動周波数を高周波数側に移行するとともに回転ドラムの回転数を目標回転数とすることができ、筐体の振動、騒音の共振点を避けることができる。また、印加電圧を低下させる場合においても電流値を低減する滑り周波数値を設定することで、省エネ効果を高めることができる。   In particular, the third invention sets the applied voltage of the voltage setting means of the second invention to be smaller than the desired voltage, sets the slip frequency of the slip frequency setting means to be larger than the desired frequency, and sets the drive frequency of the control unit and its harmonics to By shifting to the high frequency side from the resonance frequency of the housing, the drive frequency can be shifted to the high frequency side and the rotation speed of the rotating drum can be set to the target rotation speed, avoiding resonance points of vibration and noise of the housing. be able to. Even when the applied voltage is lowered, the energy saving effect can be enhanced by setting the slip frequency value for reducing the current value.

第4の発明は、特に、第1〜第3のいずれか1つの発明の制御部は、インバータ回路のキャリア信号を設定するキャリア周波数設定手段を有し、前記キャリア周波数設定手段のキャリア周波数およびその高調波は、筐体の共振周波数と重ならないキャリア周波数とし
たことにより、キャリア周波数による筐体の振動、騒音を抑制することができる。
According to a fourth aspect of the invention, in particular, the control unit of any one of the first to third aspects has carrier frequency setting means for setting a carrier signal of the inverter circuit, and the carrier frequency of the carrier frequency setting means and its carrier frequency By setting the harmonics to a carrier frequency that does not overlap with the resonance frequency of the casing, vibration and noise of the casing due to the carrier frequency can be suppressed.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における洗濯、すすぎ、脱水、乾燥までをおこなう衣類処理装置としての洗濯乾燥機の構成図、図2は、同洗濯乾燥機の制御部のブロック図を示すものである。
(Embodiment 1)
FIG. 1 is a configuration diagram of a washing / drying machine as a clothing processing apparatus that performs washing, rinsing, dehydration, and drying in the first embodiment of the present invention, and FIG. 2 is a block diagram of a control unit of the washing / drying machine. Is shown.

図1および図2において、内部に衣類等の洗濯物を収容し回転させる回転ドラム3と、回転ドラム3を駆動する誘導モータ12と、誘導モータ12のモータ軸に取り付けたモータプーリ5と、ベルト6を介して回転ドラム3の回転軸に取り付けたドラムプーリ4に動力を伝達し、回転ドラム3を回転駆動する構成としている。回転ドラム3はダンパ7によって弾性支持された受筒8内に回転可能に設けられ、これらは洗濯乾燥機の筐体1内に設けられている。   1 and 2, a rotating drum 3 that accommodates and rotates laundry such as clothes, an induction motor 12 that drives the rotating drum 3, a motor pulley 5 attached to a motor shaft of the induction motor 12, and a belt 6 The power is transmitted to the drum pulley 4 attached to the rotating shaft of the rotating drum 3 via the shaft, and the rotating drum 3 is rotationally driven. The rotary drum 3 is rotatably provided in a receiving cylinder 8 that is elastically supported by a damper 7, and these are provided in a housing 1 of the washing / drying machine.

誘導モータ12は、制御部13からの駆動信号16の指令により動作し、その回転動作時の回転数を回転数検知部15で検出する構成としている。誘導モータ12は、三相誘導モータで、毎分1万回転以上の高速運転する2極(極対数=1)のモータとしているが、4極(極対数=2)などでもよい。また、乾燥運転時は、乾燥ファン2をファンモータ11により駆動し、その送風が回転ドラム3内に送り込まれる構成としている。   The induction motor 12 is configured to operate according to a command of a drive signal 16 from the control unit 13, and to detect the rotation speed at the time of the rotation operation by the rotation speed detection unit 15. The induction motor 12 is a three-phase induction motor, which is a two-pole (number of pole pairs = 1) motor that operates at a high speed of 10,000 revolutions per minute, but may be four poles (number of pole pairs = 2). Further, during the drying operation, the drying fan 2 is driven by the fan motor 11 so that the blown air is sent into the rotary drum 3.

制御部13は、洗濯乾燥機の筐体1の共振周波数をあらかじめ記録している記録手段131と、回転数検知部15で検知した誘導モータ12の回転数を取込み、速度制御をおこなう速度制御部132と、速度制御部132からの指令により滑り周波数を設定する滑り周波数設定手段133と、滑り周波数設定値から誘導モータ12への駆動周波数の指令値を決定する駆動周波数設定手段135と印加電圧値を決定する電圧設定手段134と、その指令値からインバータ137への指令値を算出するベクトル変換部136と、インバータ137と、インバータ137から誘導モータ12への動作電流を検知する電流検知手段138とから構成している。   The control unit 13 takes in the recording means 131 that records the resonance frequency of the casing 1 of the washing / drying machine in advance and the speed of the induction motor 12 detected by the speed detection unit 15 and performs speed control. 132, a slip frequency setting means 133 for setting a slip frequency according to a command from the speed control unit 132, a drive frequency setting means 135 for determining a drive frequency command value to the induction motor 12 from the slip frequency setting value, and an applied voltage value Voltage setting means 134 for determining the voltage, a vector converter 136 for calculating a command value for the inverter 137 from the command value, an inverter 137, and a current detection means 138 for detecting an operating current from the inverter 137 to the induction motor 12. Consists of.

インバータ137は、駆動する信号周波数発生部の周波数発生部137Aと、駆動回路137Bと、キャリア周波数を設定するキャリア周波数設定手段137Cとから構成している。インバータ137は、一般的な3相6石のIGBT、および駆動回路などを収めたインバータモジュールとし、3相の各電圧指令信号を受け、キャリア周波数設定手段137Cの周波数の三角キャリア波を用いたパルス幅変調(PWM)を使用するものとする。   The inverter 137 includes a frequency generator 137A of a signal frequency generator to be driven, a drive circuit 137B, and carrier frequency setting means 137C for setting a carrier frequency. The inverter 137 is an inverter module containing a general three-phase six-stone IGBT, a drive circuit, and the like. The inverter 137 receives each three-phase voltage command signal and uses a triangular carrier wave having a frequency of the carrier frequency setting means 137C. Width modulation (PWM) shall be used.

図3は、実回転数および指令回転数と印加電圧の関係を示したものである。横軸に回転ドラム3の回転数(r/min)、縦軸に誘導モータ12への印加電圧を示す。   FIG. 3 shows the relationship between the actual rotational speed, the command rotational speed, and the applied voltage. The horizontal axis represents the number of rotations (r / min) of the rotary drum 3, and the vertical axis represents the voltage applied to the induction motor 12.

まず、滑り周波数設定手段133で設定する滑り周波数B1の時の誘導モータ12の回転数−モータ印加電圧の曲線C1を示し、その時の電圧設定手段134の指令値V1(160V)で、その時の駆動周波数設定手段135の指令値回転数A2とした場合に、回転ドラム3の実回転数A1を示している。   First, the curve C1 of the rotation speed of the induction motor 12 at the slip frequency B1 set by the slip frequency setting means 133-motor applied voltage is shown, and the command value V1 (160V) of the voltage setting means 134 at that time is used to drive at that time. When the command value rotation speed A2 of the frequency setting means 135 is used, the actual rotation speed A1 of the rotary drum 3 is shown.

また、滑り周波数設定手段133で設定する滑り周波数B2の時の誘導モータ12の回転数−モータ印加電圧の曲線C2を示し、その時の電圧設定手段134の指令値V2(140V)と駆動周波数設定手段135の指令値回転数A3とした場合に、回転ドラム3の実回転数A1を示している。   Further, a curve C2 of the rotational speed of the induction motor 12 at the slip frequency B2 set by the slip frequency setting means 133-motor applied voltage C2 is shown, and the command value V2 (140 V) of the voltage setting means 134 at that time and the drive frequency setting means When the command value rotational speed A3 is 135, the actual rotational speed A1 of the rotary drum 3 is shown.

以上のように構成された洗濯乾燥機について、以下その動作、作用を説明する。まず、図1に示す洗濯乾燥機は、洗濯、すすぎ、脱水、乾燥の各工程をおこなう際に、制御部13は、各工程の動作に応じた回転ドラム3の回転数および負荷トルクに応じて、誘導モータ12が最大効率となる滑り周波数を滑り周波数設定手段133で算出し、さらに、その滑り周波数値から、駆動周波数設定手段135で駆動周波数と電圧設定手段134で印加電圧を算出し、駆動信号16により誘導モータ12に入力することで制御をおこなう。   The operation and action of the washing / drying machine configured as described above will be described below. First, when the washing / drying machine shown in FIG. 1 performs washing, rinsing, dehydration, and drying processes, the control unit 13 responds to the rotational speed and load torque of the rotating drum 3 according to the operation of each process. Then, the slip frequency at which the induction motor 12 has the maximum efficiency is calculated by the slip frequency setting means 133. Further, from the slip frequency value, the drive frequency and the voltage setting means 134 calculate the drive frequency and the applied voltage by the drive frequency setting means 135. Control is performed by inputting the signal 16 to the induction motor 12.

ここで、滑り周波数設定手段133で設定する最大効率となる滑り周波数の算出については、例えば、ベクトル制御として、電流検知手段138により誘導モータ12への供給電流を検知し、その電流値が最小とする滑り周波数の条件を、磁束電流(磁化電流)成分とそれに直交する電流成分(トルク電流)に分け、算出する方法としている。   Here, regarding the calculation of the slip frequency that is the maximum efficiency set by the slip frequency setting means 133, for example, as the vector control, the current detection means 138 detects the supply current to the induction motor 12, and the current value is minimized. The slip frequency condition to be calculated is divided into a magnetic flux current (magnetization current) component and a current component (torque current) orthogonal to the magnetic flux current (magnetization current) component.

例えば、トルク指令値T*、磁束指令値φ2*、誘導モータ12の相互インダクタンスM、誘導モータ12のインダクタンスL2、二次抵抗r2、極対数pとした場合に、あらかじめ誘導モータ12の既知のデータとして、所望の回転数とトルクの組合せ条件においての最大効率となる磁束指令値φ2*を複数の条件でのデータを滑り周波数設定手段133に保持している。   For example, when the torque command value T *, the magnetic flux command value φ2 *, the mutual inductance M of the induction motor 12, the inductance L2 of the induction motor 12, the secondary resistance r2, and the number of pole pairs p are known data of the induction motor 12 in advance. As described above, the slip frequency setting means 133 holds the magnetic flux command value φ2 *, which is the maximum efficiency under the combination conditions of the desired rotational speed and torque, under a plurality of conditions.

図4に示す、制御部13の駆動周波数設定フローチャートにおいて、実際の動作時の実回転数(S01)と、その時のモータ電流の電流値(S02)から磁束指令値およびトルク指令値を算出し(S03)、その指令値により、磁束電流iγはiγ=φ2*/M+L2/(M×r2)×dφ2*/dt、トルク電流iδはiδ=L2×T*/(p×M×φ2*)として算出し、さらに、滑り周波数WsをWs=M×r2/(L2×φ2*)×iδとして求めることができる(S04)。   In the drive frequency setting flowchart of the control unit 13 shown in FIG. 4, the magnetic flux command value and the torque command value are calculated from the actual rotational speed (S01) during actual operation and the current value (S02) of the motor current at that time ( S03), according to the command value, the magnetic flux current iγ is iγ = φ2 * / M + L2 / (M × r2) × dφ2 * / dt, and the torque current iδ is iδ = L2 × T * / (p × M × φ2 *). Further, the slip frequency Ws can be obtained as Ws = M × r2 / (L2 × φ2 *) × iδ (S04).

このように算出した滑り周波数から駆動周波数設定手段135で設定する駆動周波数、電圧設定手段134で電圧を設定し(S05)、駆動周波数設定手段135では、設定された駆動周波数が共振周波数と一致するかどうかを判断し(S06)、一致する場合は、駆動周波数を一定値、高周波域とするように、前記算出式から滑り周波数設定手段133で再度算出し(S07)、再度、駆動周波数設定手段135の駆動周波数を変更設定する。   The drive frequency set by the drive frequency setting means 135 and the voltage set by the voltage setting means 134 are set from the slip frequency calculated in this way (S05). In the drive frequency setting means 135, the set drive frequency matches the resonance frequency. (S06), if they match, the slip frequency setting means 133 calculates again from the calculation formula so that the drive frequency is a constant value and a high frequency range (S07), and again the drive frequency setting means The drive frequency 135 is changed and set.

共振周波数と一致しない場合は、駆動周波数設定手段135で設定した駆動周波数と電圧設定手段134で設定した電圧で誘導モータ12を最大効率で動作させる(S08)。   If the resonance frequency does not coincide with the resonance frequency, the induction motor 12 is operated at the maximum efficiency with the drive frequency set by the drive frequency setting means 135 and the voltage set by the voltage setting means 134 (S08).

したがって、滑り周波数の算出後、共振周波数と駆動周波数が一致する場合にのみ駆動周波数を一定値、高周波域にずらし、誘導モータ12の効率は最大とならないが、その場合であっても回転数と必要トルクの組合せ条件に応じた磁束指令値に変更し、滑り周波数を算出し直すことで、共振周波数近傍であってもスムーズに安定したトルク制御をおこなうことができる。   Therefore, after the slip frequency is calculated, the drive frequency is shifted to a constant value and a high frequency range only when the resonance frequency and the drive frequency coincide with each other, and the efficiency of the induction motor 12 is not maximized. By changing to the magnetic flux command value according to the combination condition of the necessary torque and recalculating the slip frequency, the torque control can be performed smoothly and stably even near the resonance frequency.

あらかじめ既知となっている誘導モータ12のモータプーリ5とドラムプーリ4との減速比を考慮した回数数検知部15の回転数値から、誘導モータ12の駆動周波数および印加電圧の設定をおこなう。その結果、減速比を考慮した誘導モータ12の速度およびトルク制御をおこなうことで、回転ドラム3の回転数およびトルクを所望の値とすることができる。   The drive frequency and applied voltage of the induction motor 12 are set from the rotational value of the number-of-times detecting unit 15 taking into consideration the reduction ratio between the motor pulley 5 and the drum pulley 4 of the induction motor 12 that is known in advance. As a result, by controlling the speed and torque of the induction motor 12 in consideration of the reduction ratio, the rotational speed and torque of the rotating drum 3 can be set to desired values.

例えば、モータプーリ5とドラムプーリ4の減速比が8の場合は、回転数検知部15の検出値が400r/minの場合、回転ドラム3の回転数は50r/minとなり、回転
ドラム3の負荷トルクが16Nmの場合、誘導モータ12の負荷トルクは2Nmとなり、誘導モータ12は、回転数400r/min、負荷トルク2Nmとなる速度およびトルク制御をおこなうものである。
For example, when the reduction ratio of the motor pulley 5 and the drum pulley 4 is 8, when the detection value of the rotation speed detector 15 is 400 r / min, the rotation speed of the rotation drum 3 is 50 r / min, and the load torque of the rotation drum 3 is In the case of 16 Nm, the load torque of the induction motor 12 is 2 Nm, and the induction motor 12 performs speed and torque control at a rotational speed of 400 r / min and a load torque of 2 Nm.

洗濯工程から脱水工程へ移行する場合、回転ドラム3を停止状態からゆっくり回転数を上昇し、高速回転へ移行する。その際も制御部13は、誘導モータ12が最大効率となる駆動周波数および印加電圧を算出して動作させる。その脱水動作の所望の回転数へ到達するまでに筐体1の共振周波数が複数存在する場合、共振周波数をあらかじめ記録している記録手段131の値と照合をおこない、その値を避ける周波数に駆動周波数設定手段135の駆動周波数を設定することで速度制御部132は誘導モータ12の制御をおこなう。その場合においては、モータの最大効率の条件よりも共振周波数を避ける周波数および電圧値を優先する。   When shifting from the washing process to the dehydration process, the rotational speed of the rotating drum 3 is slowly increased from the stopped state, and the rotation is shifted to high speed rotation. Also at that time, the control unit 13 calculates and operates the drive frequency and applied voltage at which the induction motor 12 has the maximum efficiency. When there are a plurality of resonance frequencies of the housing 1 before reaching the desired number of rotations of the dehydration operation, the resonance frequency is checked against the value of the recording means 131 that has been recorded in advance, and driven to a frequency that avoids that value. The speed control unit 132 controls the induction motor 12 by setting the drive frequency of the frequency setting means 135. In that case, priority is given to the frequency and voltage value that avoids the resonance frequency over the condition of the maximum efficiency of the motor.

速度制御部132は、誘導モータ12の回転数を回転数検知部15から検出し、回転ドラム3の実回転数を換算する。さらに誘導モータ12へのインバータ137からの動作電流を電流検知手段138で検出し、その電流値と回転数検知部15から換算した回転ドラム3の実回転数から必要な二次磁束およびトルク電流を算出し、滑り周波数の指令値を滑り周波数設定手段133で設定する。その結果、必要なトルクと供給する滑り周波数の電流値を動作条件に応じて算出し、制御をおこなうことで、安定動作と余分な消費電力を抑制することができる。   The speed control unit 132 detects the rotational speed of the induction motor 12 from the rotational speed detection unit 15 and converts the actual rotational speed of the rotary drum 3. Further, the operating current from the inverter 137 to the induction motor 12 is detected by the current detecting means 138, and the necessary secondary magnetic flux and torque current are calculated from the current value and the actual rotational speed of the rotating drum 3 converted from the rotational speed detecting section 15. The slip frequency command value is calculated and set by the slip frequency setting means 133. As a result, stable operation and excessive power consumption can be suppressed by calculating the necessary torque and the current value of the slip frequency to be supplied according to the operating conditions and performing control.

さらに、設定した滑り周波数値から磁束電流およびトルク電流値を算出し、その磁束電流とトルク電流のベクトル和が誘導モータ12への供給電流となるため、その供給電流値となるように電圧設定手段134で電圧値を算出する。さらに、滑り周波数値と実回転数値から設定する駆動周波数を駆動周波数設定手段135により設定をおこない、ベクトル変換部136で、二相‐三相変換やインバータ137へ供給する周波数および印加電圧を算出する。   Further, the magnetic flux current and the torque current value are calculated from the set slip frequency value, and the vector sum of the magnetic flux current and the torque current becomes the supply current to the induction motor 12, so that the voltage setting means is set so as to be the supply current value. At 134, the voltage value is calculated. Further, the drive frequency set from the slip frequency value and the actual rotation value is set by the drive frequency setting means 135, and the vector converter 136 calculates the two-phase to three-phase conversion and the frequency and applied voltage supplied to the inverter 137. .

インバータ137は、ベクトル変換部136で算出された駆動周波数および印加電圧を周波数発生部137Aで三相の駆動信号を発生させ、キャリア周波数設定手段137Cで設定した周波数(例えば15kHz)に三角キャリア波を用いたパルス幅変調(PWM)を発生させ、その信号を3相6石のIGBTおよび駆動回路を収めたインバータモジュールである駆動回路137Bへ入力する。   The inverter 137 generates a three-phase drive signal from the drive frequency and applied voltage calculated by the vector converter 136 by the frequency generator 137A, and generates a triangular carrier wave at the frequency (for example, 15 kHz) set by the carrier frequency setting means 137C. The used pulse width modulation (PWM) is generated, and the signal is input to a drive circuit 137B which is an inverter module containing a 3-phase 6-stone IGBT and a drive circuit.

そのインバータ137からの印加電圧により、誘導モータ12は所望の回転数、トルクで動作をする。その結果、誘導モータ12の軸にあるモータプーリ5とドラムプーリ4とをベルト6を介して回転ドラム3を回転させる。   By the applied voltage from the inverter 137, the induction motor 12 operates at a desired rotational speed and torque. As a result, the rotating drum 3 is rotated by the motor pulley 5 and the drum pulley 4 on the shaft of the induction motor 12 via the belt 6.

したがって、脱水工程において徐々に回転数を上昇する際に、記録手段131にあらかじめ設定している洗濯乾燥機の筐体1の共振周波数近傍になった場合、滑り周波数設定手段133の値を所望値より大きく設定することで、駆動周波数設定手段135の周波数を所望値より高く設定し、電圧設定手段134の電圧値を所望値より低く設定することで、回転ドラム3の回転数を所望値にすると同時に、駆動周波数を筐体1の共振周波数を避けて高周波側に移行することができる。   Therefore, when the rotational speed is gradually increased in the dehydration step, if the resonance frequency of the case 1 of the washing / drying machine preset in the recording unit 131 is reached, the value of the slip frequency setting unit 133 is set to a desired value. By setting the frequency higher, the frequency of the drive frequency setting means 135 is set higher than the desired value, and the voltage value of the voltage setting means 134 is set lower than the desired value, so that the rotational speed of the rotary drum 3 is set to the desired value. At the same time, the drive frequency can be shifted to the high frequency side while avoiding the resonance frequency of the housing 1.

この場合も共振周波数を避けることを優先するための滑り周波数値、電圧値を選択するため、モータの効率は最大とならない。しかし、共振周波数ではない周波数ではモータの最大効率となる滑り周波数と電圧値を選定した動作をおこなう。   In this case as well, since the slip frequency value and voltage value for giving priority to avoiding the resonance frequency are selected, the efficiency of the motor is not maximized. However, at a frequency other than the resonance frequency, an operation is performed by selecting a slip frequency and a voltage value that are the maximum efficiency of the motor.

滑り周波数Wsは、設定周波数W2と実回転数周波数Wmの差分(Ws=W2−Wm)
であり、図3に示すように、例えば、回転ドラム3の実回転数A1とする場合、印加電圧と実回転数曲線の動作曲線C1の場合に、滑り周波数設定手段133の指令値を指令値B1とすると、電圧設定手段134の指令値が電圧V1(160V)と駆動周波数設定手段135の指令値が回転数A2として算出され、誘導モータ12は動作をする。
The slip frequency Ws is the difference between the set frequency W2 and the actual rotational frequency Wm (Ws = W2−Wm).
As shown in FIG. 3, for example, when the actual rotational speed A1 of the rotating drum 3 is set, the command value of the slip frequency setting means 133 is set to the command value in the case of the operation curve C1 of the applied voltage and the actual rotational speed curve. Assuming B1, the command value of the voltage setting means 134 is calculated as the voltage V1 (160V) and the command value of the drive frequency setting means 135 is calculated as the rotation speed A2, and the induction motor 12 operates.

次に、同じ回転ドラム3の実回転数A1とする印加電圧と実回転数曲線の動作曲線C2の場合では、滑り周波数設定手段133の指令値を指令値B2とすると、電圧設定手段134の指令値が電圧V2(140V)と駆動周波数設定手段135の指令値が回転数A3として算出され、誘導モータ12は動作をする。   Next, in the case of the applied voltage with the actual rotational speed A1 of the same rotating drum 3 and the operation curve C2 of the actual rotational speed curve, if the command value of the slip frequency setting means 133 is the command value B2, the command of the voltage setting means 134 The value is the voltage V2 (140V) and the command value of the drive frequency setting means 135 is calculated as the rotation speed A3, and the induction motor 12 operates.

このように滑り周波数を変えることにより、印加電圧を下げ、駆動周波数をA2からA3へ高周波側に移行することができるため、洗濯乾燥機の筐体1の共振周波数を避ける制御をおこなうことができる。つまり、滑り周波数を可変することで誘導モータ12への印加電圧と駆動周波数とを変化させ、所望の回転数で回転ドラム3を動作させ、かつ、筐体1の共振周波数を避けることができる。これらをあらかじめ記録手段131で記録している周波数に適応して動作をおこなうことで、洗濯乾燥機の筐体1の振動や騒音を抑制することができる。   By changing the slip frequency in this way, the applied voltage can be lowered and the drive frequency can be shifted from A2 to A3 to the high frequency side, so that control to avoid the resonance frequency of the casing 1 of the washing / drying machine can be performed. . That is, by changing the slip frequency, the voltage applied to the induction motor 12 and the drive frequency can be changed, the rotating drum 3 can be operated at a desired rotational speed, and the resonance frequency of the housing 1 can be avoided. By operating these in accordance with the frequency recorded in advance by the recording means 131, vibrations and noises of the casing 1 of the washer / dryer can be suppressed.

さらに、駆動周波数を高周波側へ移行し、印加電圧を下げることで誘導モータ12への電流値を低減することができるため、効率向上となり省エネ性能を維持した制御をすることができる。   Furthermore, since the current value to the induction motor 12 can be reduced by shifting the drive frequency to the high frequency side and lowering the applied voltage, the efficiency can be improved and control with energy saving performance maintained.

また、本実施の形態においては、誘導モータ12に供給する電流を磁束電流とトルク電流に分けて制御する、いわゆるベクトル制御としており、電圧設定手段134はベクトル制御が行われた結果、筐体1の共振周波数を避け、その共振周波数以外では前記誘導モータ12が最大効率となる条件の実現が可能な値をとるものとなる。   In the present embodiment, so-called vector control is performed in which the current supplied to the induction motor 12 is controlled by dividing the current into magnetic flux current and torque current. As a result of the vector control being performed, the case 1 The resonance frequency is avoided, and values other than the resonance frequency can take values that enable the induction motor 12 to achieve the maximum efficiency.

よって、特に本実施の形態では、ベクトル制御を行うことにより、過渡的な負荷変動に対しても応答性の優れた対応も可能であり、洗濯性能として優れたものが得られる効果もあるが、必ずしも誘導モータ12の電流を磁束電流とトルク電流を制御するベクトル制御を構成することが必要であるというわけではなく、筐体1の共振周波数を避けるように滑り周波数を決め、電圧設定手段134は、その滑り周波数において適度なトルクが確保できる電圧を出力し、筐体1の共振周波数以外では前記誘導モータ12の最大効率が実現できる条件を滑り周波数設定手段133、および電圧設定手段134から出力させることができるものであれば、例えばVF方式でもかまわない。   Therefore, particularly in this embodiment, by performing vector control, it is possible to cope with transient load fluctuations with excellent responsiveness, and there is an effect that an excellent washing performance can be obtained. It is not always necessary to configure the vector control for controlling the magnetic flux current and the torque current with respect to the current of the induction motor 12, but the slip frequency is determined so as to avoid the resonance frequency of the casing 1, and the voltage setting means 134 A voltage that can ensure an appropriate torque at the slip frequency is output, and a condition that can achieve the maximum efficiency of the induction motor 12 other than the resonance frequency of the housing 1 is output from the slip frequency setting means 133 and the voltage setting means 134. For example, the VF method may be used as long as it can be used.

また、ここではキャリア周波数設定手段137Cのキャリア周波数を15kHzとしているが、同等の性能となる周波数であれば他の周波数でもかまわない。   Here, the carrier frequency of the carrier frequency setting means 137C is 15 kHz, but any other frequency may be used as long as the frequency is equivalent.

また、記録手段131に記録している周波数が、キャリア周波数設定手段137Cのキャリア周波数の値またはその高調波と一致する場合には、キャリア周波数設定手段137Cの値を別の周波数に変更してインバータ137の駆動をおこなう。このようにキャリア周波数値を変更することにより、洗濯乾燥機の筐体1の共振周波数とキャリア周波数が一致するような場合でも振動を避けることができ、安定動作および騒音抑制をすることができる。   Further, when the frequency recorded in the recording means 131 matches the carrier frequency value of the carrier frequency setting means 137C or its harmonic, the value of the carrier frequency setting means 137C is changed to another frequency and the inverter 137 is driven. By changing the carrier frequency value in this way, vibration can be avoided even when the resonance frequency of the casing 1 of the washing / drying machine matches the carrier frequency, and stable operation and noise suppression can be achieved.

また、洗濯用のメインモータである誘導モータ12についてここでは説明をおこなっているが、乾燥用のファンモータ11についても乾燥用ファンモータの駆動をおこなう制御部を設けた構成とするため、その制御部でファンモータを駆動する駆動周波数が洗濯乾燥機の筐体1の共振周波数と一致する可能性もあり、その場合であっても本発明と同等の方
法で振動、騒音の防止をすることができる。
Although the induction motor 12 which is a main motor for washing is described here, the drying fan motor 11 is also provided with a control unit for driving the drying fan motor. There is a possibility that the driving frequency for driving the fan motor in the section matches the resonance frequency of the case 1 of the washing / drying machine. Even in this case, vibration and noise can be prevented by the same method as the present invention. it can.

また、ここでは、ドラム式洗濯乾燥機で説明をおこなったが、ドラム式洗濯機や、縦型洗濯機および縦型洗濯乾燥機、ドラム式乾燥機等の衣類処理装置においても、同様に駆動周波数と筐体の共振周波数による振動、騒音の抑制をすることができ、同じ効果、作用、性能が得られる。   Although the drum type washing and drying machine has been described here, the driving frequency is similarly applied to the drum type washing machine and the clothing processing apparatus such as the vertical washing machine and the vertical washing and drying machine and the drum drying machine. The vibration and noise due to the resonance frequency of the housing can be suppressed, and the same effect, function and performance can be obtained.

以上のように、本発明にかかる衣類処理装置は、モータの駆動周波数を筐体の振動周波数を避けて筐体の振動および騒音を抑制するとともに、その抑制状態以外ではモータの最大効率とする動作をすることができるので、衣類処理装置として有用である。   As described above, the garment processing apparatus according to the present invention suppresses the vibration and noise of the housing while avoiding the vibration frequency of the housing as the motor driving frequency, and operates with the maximum efficiency of the motor except in the suppressed state. Therefore, it is useful as a clothing processing apparatus.

1 筐体
3 回転ドラム
12 誘導モータ
13 制御部
133 滑り周波数設定手段
134 電圧設定手段
135 駆動周波数設定手段
DESCRIPTION OF SYMBOLS 1 Case 3 Rotating drum 12 Induction motor 13 Control part 133 Sliding frequency setting means 134 Voltage setting means 135 Driving frequency setting means

Claims (4)

筐体と、前記筐体内に設けた衣類等を収容する回転ドラムと、前記回転ドラムを駆動する誘導モータと、前記誘導モータに可変周波数の電力を供給して駆動する制御部とを備え、前記制御部は、可変周波数もしくはその高調波が前記筐体の共振周波数を避け、その避けた周波数以外では、前記誘導モータが最大効率となる駆動周波数で制御するようにした衣類処理装置。 A housing, a rotating drum that houses clothing or the like provided in the housing, an induction motor that drives the rotating drum, and a controller that drives the induction motor by supplying variable frequency power, The control unit is a garment processing apparatus in which a variable frequency or a harmonic thereof avoids a resonance frequency of the casing, and controls the induction motor at a driving frequency at which the induction motor has a maximum efficiency except for the avoided frequency. 制御部は、誘導モータへの印加電圧を設定する電圧設定手段と、駆動周波数を設定する駆動周波数設定手段と、回転ドラムの実回転数周波数と前記駆動周波数設定手段との差分周波数を設定する滑り周波数設定手段を有し、筐体の共振周波数以外では、誘導モータが最大効率とする電圧設定手段の印加電圧と滑り周波数設定手段の滑り周波数に調整するようにした請求項1記載の衣類処理装置。 The control unit includes a voltage setting unit that sets an applied voltage to the induction motor, a driving frequency setting unit that sets a driving frequency, and a slip that sets a differential frequency between the actual rotation frequency of the rotating drum and the driving frequency setting unit. 2. A clothing processing apparatus according to claim 1, further comprising a frequency setting means, wherein the applied voltage of the voltage setting means and the slip frequency of the slip frequency setting means are adjusted so that the induction motor has a maximum efficiency other than the resonance frequency of the housing. . 電圧設定手段の印加電圧を所望電圧より小さく、滑り周波数設定手段の滑り周波数を所望周波数より大きく設定し、制御部の駆動周波数およびその高調波が筐体の共振周波数より高周波側へ移行するようにした請求項2記載の衣類処理装置。 The applied voltage of the voltage setting means is set to be smaller than the desired voltage, the slip frequency of the slip frequency setting means is set to be higher than the desired frequency, and the drive frequency of the control unit and its harmonics are shifted to the higher frequency side than the resonance frequency of the housing. The clothing processing apparatus according to claim 2. 制御部は、インバータ回路のキャリア信号を設定するキャリア周波数設定手段を有し、前記キャリア周波数設定手段のキャリア周波数およびその高調波は、筐体の共振周波数と重ならないキャリア周波数とした請求項1〜3のいずれか1項に記載の衣類処理装置。 The control unit has carrier frequency setting means for setting a carrier signal of the inverter circuit, and the carrier frequency of the carrier frequency setting means and its harmonics are carrier frequencies that do not overlap with the resonance frequency of the housing. 4. The clothing processing apparatus according to any one of 3 above.
JP2010140089A 2010-06-21 2010-06-21 Clothes treatment apparatus Pending JP2012000353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140089A JP2012000353A (en) 2010-06-21 2010-06-21 Clothes treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140089A JP2012000353A (en) 2010-06-21 2010-06-21 Clothes treatment apparatus

Publications (1)

Publication Number Publication Date
JP2012000353A true JP2012000353A (en) 2012-01-05

Family

ID=45533027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140089A Pending JP2012000353A (en) 2010-06-21 2010-06-21 Clothes treatment apparatus

Country Status (1)

Country Link
JP (1) JP2012000353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104746297A (en) * 2013-12-26 2015-07-01 东部大宇电子株式会社 Apparatus And Method Of Reducing Vibrations In Washing Machine
WO2020060297A1 (en) 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Electronic device and method for controlling thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104746297A (en) * 2013-12-26 2015-07-01 东部大宇电子株式会社 Apparatus And Method Of Reducing Vibrations In Washing Machine
WO2020060297A1 (en) 2018-09-21 2020-03-26 Samsung Electronics Co., Ltd. Electronic device and method for controlling thereof
CN112740542A (en) * 2018-09-21 2021-04-30 三星电子株式会社 Electronic device and control method thereof
EP3818627A4 (en) * 2018-09-21 2021-09-01 Samsung Electronics Co., Ltd. Electronic device and method for controlling thereof
US11531360B2 (en) * 2018-09-21 2022-12-20 Samsung Electronics Co., Ltd. Electronic device and method for controlling thereof
CN112740542B (en) * 2018-09-21 2024-06-04 三星电子株式会社 Electronic apparatus and control method thereof

Similar Documents

Publication Publication Date Title
US11566361B2 (en) Drain pump driving apparatus and laundry treatment machine including the same
US7818983B2 (en) Driving device of a washing machine and a method of driving a washing machine with the same
US10214843B2 (en) Control method of washing machine
US9637852B2 (en) Laundry treatment machine and method of operating the same to determine laundry position
KR101709475B1 (en) Motor driving device and laundry treatment machine including the same
KR102596976B1 (en) Washing machine and method for controlling the same
US11236460B2 (en) Drain pump driving apparatus and laundry treatment machine including the same
US11459685B2 (en) Laundry treatment device
JP2017093534A (en) Washing machine
KR101100317B1 (en) Washing machine and method for controlling washing machine
JP2012000353A (en) Clothes treatment apparatus
JP2017029491A (en) Washing machine
JP2013081320A (en) Motor drive unit
KR102522304B1 (en) Laundry treatment machine and method for the same
US11811341B2 (en) Motor drive apparatus and home appliance having same
CN112654741B (en) Laundry treatment apparatus
JP3861967B2 (en) Washing machine control device
KR102463316B1 (en) Laundry treating appratus and controlling method thereof
JP3751302B2 (en) Control device for drum type washing machine
JP2013085797A (en) Washing machine
JP4430356B2 (en) Motor drive device and washing machine and dryer using the same
KR102325966B1 (en) Laundry treatment machine
JP2009297122A (en) Drum-type washing machine
KR20100105200A (en) Washing machine