JP2012000160A - Endoscope apparatus - Google Patents

Endoscope apparatus Download PDF

Info

Publication number
JP2012000160A
JP2012000160A JP2010135559A JP2010135559A JP2012000160A JP 2012000160 A JP2012000160 A JP 2012000160A JP 2010135559 A JP2010135559 A JP 2010135559A JP 2010135559 A JP2010135559 A JP 2010135559A JP 2012000160 A JP2012000160 A JP 2012000160A
Authority
JP
Japan
Prior art keywords
light
endoscope
endoscope apparatus
living body
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010135559A
Other languages
Japanese (ja)
Inventor
Hiroaki Yasuda
裕昭 安田
Naoyuki Morita
直之 森田
Takayuki Iida
孝之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010135559A priority Critical patent/JP2012000160A/en
Publication of JP2012000160A publication Critical patent/JP2012000160A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an endoscope apparatus in which a palpation to a specified site in a body cavity is performed, and based on this result, an illumination is automatically changed to such an illumination light that can observe the condition of the affected part in more detail to support a diagnosis by the endoscope.SOLUTION: The endoscope apparatus 100 irradiates an illuminative light from the tip of an endoscope inserting part 19 and takes an image of an object to be observed by an photographing element 21 to acquire image taking information. The endoscope apparatus 100 includes: a light source part 45 for selectively emitting a white light, and a special light with a spectrum different from the white light; a pressing member 41 projecting a contactor 75 formed on one end from the tip of the endoscope inserting part 19 and pressing the same on the surface of a living body of the object to be observed; a characteristic quantity detecting part 67 for detecting the characteristic quantity of the surface of the living body from the image taking information which is photographed by pressing the contactor 75 of the pressing member 41 on the surface of the living body; and an observing mode switching part for switching to either an ordinary observation mode or a special light observation mode in accordance with the detected characteristic quantity.

Description

本発明は、内視鏡装置に関する。   The present invention relates to an endoscope apparatus.

一般的な内視鏡装置は、内視鏡挿入部の先端の観察窓から生体組織を観察するように構成されている。しかし、近年の内視鏡診断の高度化に伴い、患部を観察するだけでなく、患部の弾力や硬化の確認等、触診を行いたい要求が強まっている。特に、患部に腫瘍が存在するときは、その腫瘍の領域が周囲より硬化する等、観察だけでは知り得ない病状の進行度合いが触診によって正確に診断できる。そこで、押圧手段により観察中の体腔内部を所定の圧力で押圧し、この押圧による組織の変位量を検出することで、組織の硬さを検出する内視鏡装置が提案されている(特許文献1)。この内視鏡装置によれば、体腔内の特定部位に対する硬度を測定することができる。   A general endoscope apparatus is configured to observe a living tissue from an observation window at the tip of an endoscope insertion portion. However, with the recent advancement of endoscopic diagnosis, there is an increasing demand for palpation not only for observing the affected area but also for confirming the elasticity and hardening of the affected area. In particular, when a tumor is present in the affected area, the degree of progression of a disease state that cannot be known only by observation, such as hardening of the tumor area from the surroundings, can be accurately diagnosed by palpation. Therefore, an endoscope apparatus that detects the hardness of the tissue by pressing the inside of the body cavity under observation with a predetermined pressure by the pressing means and detecting the displacement of the tissue due to the pressing has been proposed (Patent Document). 1). According to this endoscope apparatus, the hardness with respect to the specific site | part in a body cavity can be measured.

しかし、この内視鏡装置による診断では、単に患部の硬さを測定するに留まり、この患部を更に詳細に観察することができない。即ち、特定波長の狭帯域光の照射により特殊光観察を行うことで、組織表層の毛細血管の状態やピットパターンを診断しやすくなるが、このような特殊光観察を行うには、上記内視鏡装置を体腔内から抜き取った後、特殊光観察用の内視鏡装置を体腔内に再挿入する等、手技が煩雑となる。   However, in the diagnosis using the endoscope apparatus, the hardness of the affected area is merely measured, and the affected area cannot be observed in more detail. That is, by performing special light observation by irradiation of narrow band light of a specific wavelength, it becomes easy to diagnose the state of capillaries and pit patterns on the tissue surface layer. After removing the mirror device from the body cavity, the procedure becomes complicated, for example, by reinserting the endoscope device for special light observation into the body cavity.

特開昭63−186621号公報JP-A 63-186621

本発明は、体腔内の特定部位に対する触診を行い、その結果に基づいて患部の状態をより詳細に観察できる観察モードに自動的に変更して、内視鏡診断を支援する内視鏡装置を提供することを目的とする。   The present invention provides an endoscopic device that supports endoscopic diagnosis by performing palpation on a specific part in a body cavity and automatically changing to an observation mode in which the state of an affected part can be observed in more detail based on the result. The purpose is to provide.

本発明は下記構成からなる。
生体内に挿入される内視鏡挿入部の先端から、照明光を生体内の被観察対象に向けて照射するとともに、前記被観察対象を撮像素子により撮像して撮像画像情報を取得する内視鏡装置であって、
白色光、及び白色光とは異なるスペクトルの特殊光を選択的に出射する光源部と、
前記内視鏡挿入部の先端から、その一端に形成された触子部を突出させて前記被観察対象の生体表面に押し当てる押し当て部材と、
前記押し当て部材の触子部を生体表面に押し当てて撮像した撮像画像情報から前記生体表面の特徴量を検出する特徴量検出部と、
前記特徴量検出部により検出された特徴量に応じて、前記白色光を照明光として観察する通常観察モード、前記特殊光を含む光を照明光として観察する特殊光観察モードのいずれかに切り替える観察モード切換部と、
を備えた内視鏡装置。
The present invention has the following configuration.
An endoscope that irradiates illumination light toward an object to be observed in the living body from the distal end of an endoscope insertion portion that is inserted into the living body, and obtains imaged image information by imaging the object to be observed with an image sensor. A mirror device,
A light source unit that selectively emits white light and special light having a spectrum different from that of white light;
A pressing member that protrudes from the distal end of the endoscope insertion portion and presses the contact portion formed at one end thereof against the surface of the subject to be observed;
A feature amount detection unit that detects a feature amount of the living body surface from captured image information obtained by pressing the contact portion of the pressing member against the living body surface; and
Observation switching to either a normal observation mode in which the white light is observed as illumination light or a special light observation mode in which light including the special light is observed as illumination light according to the feature amount detected by the feature amount detection unit A mode switching unit;
An endoscopic apparatus comprising:

本発明の内視鏡装置によれば、体腔内の特定部位に対する触診を行い、その結果に基づいて患部の状態をより詳細に観察できる観察モードに自動的に変更して、内視鏡診断を支援することができる。   According to the endoscope apparatus of the present invention, palpation of a specific part in the body cavity is performed, and based on the result, the state of the affected part is automatically changed to an observation mode that can be observed in more detail, and endoscopic diagnosis is performed. Can help.

本発明の実施形態を説明するための図で、内視鏡装置の概念的なブロック構成図である。It is a figure for demonstrating embodiment of this invention, and is a notional block block diagram of an endoscope apparatus. 図1に示す内視鏡装置の一例としての外観図である。It is an external view as an example of the endoscope apparatus shown in FIG. 光源部による照明光の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the illumination light by a light source part. 押し当て部材の一部破断側面図である。It is a partially broken side view of a pressing member. 押し当て部材による正常な生体表面の観察時における外観図である。It is an external view at the time of observation of the normal biological body surface by a pressing member. 押し当て部材による生体表面の病変部の観察時における外観図である。It is an external view at the time of the observation of the lesioned part of the biological body surface by a pressing member. 図5の観察画像である。It is an observation image of FIG. 図7の観察画像である。It is the observation image of FIG. (A)、(B),(C)は病変部の大きさに応じて特徴量の算出する様子を示す説明図である。(A), (B), (C) is explanatory drawing which shows a mode that a feature-value is calculated according to the magnitude | size of a lesioned part. 内視鏡装置による触診観察の手順を説明するフローチャートである。It is a flowchart explaining the procedure of palpation observation by an endoscope apparatus. 通常観察モードと特殊光観察モードとの照明光の切り換えの様子を示す説明図である。It is explanatory drawing which shows the mode of switching of the illumination light in normal observation mode and special light observation mode. 照明光の切り換えの様子を示す説明図である。It is explanatory drawing which shows the mode of switching of illumination light. 光源部の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of a light source part. 光源部の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of a light source part. 光源部の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of a light source part. 光源部の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of a light source part. (A)は光源部の他の構成例を示すブロック図、(B)は(A)に適用される回転フィルタの正面図である。(A) is a block diagram which shows the other structural example of a light source part, (B) is a front view of the rotary filter applied to (A).

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、内視鏡装置の概念的なブロック構成図、図2は図1に示す内視鏡装置の一例としての外観図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram for explaining an embodiment of the present invention, and is a conceptual block diagram of an endoscope apparatus. FIG. 2 is an external view as an example of the endoscope apparatus shown in FIG.

図1、図2に示すように、内視鏡装置100は、内視鏡11と、この内視鏡11が接続される制御装置13と、画像情報等を表示するモニタ等の表示部15と、キーボード等の入力操作を受け付ける入力部17とを備える。   As shown in FIGS. 1 and 2, an endoscope apparatus 100 includes an endoscope 11, a control device 13 to which the endoscope 11 is connected, a display unit 15 such as a monitor that displays image information and the like. And an input unit 17 for receiving an input operation such as a keyboard.

内視鏡11は、内視鏡挿入部19の先端から照明光を出射する照明光学系と、被観察領域を撮像する撮像素子21(図1参照)を含む撮像光学系とを有する電子内視鏡である。内視鏡11は、被検体内に挿入される内視鏡挿入部19と、内視鏡挿入部19の先端の湾曲操作や観察のための操作を行う操作部23(図2参照)と、内視鏡11を制御装置13に着脱自在に接続するコネクタ部25,27とを備える。内視鏡挿入部19は、その先端に、生体表面に押し当てる押し当て部材41が配置されている。なお、図示はしないが、操作部23及び内視鏡挿入部19の内部には、組織採取用処置具等を挿入する鉗子チャンネルや、送気・送水用のチャンネル等、各種のチャンネルが設けられる。   The endoscope 11 includes an electronic optical system including an illumination optical system that emits illumination light from the distal end of the endoscope insertion unit 19 and an imaging optical system that includes an imaging element 21 (see FIG. 1) that captures an observation region. It is a mirror. The endoscope 11 includes an endoscope insertion portion 19 inserted into a subject, an operation portion 23 (see FIG. 2) for performing a bending operation and an observation operation of the distal end of the endoscope insertion portion 19, and Connector portions 25 and 27 for detachably connecting the endoscope 11 to the control device 13 are provided. The endoscope insertion portion 19 is provided with a pressing member 41 that presses against the living body surface at the tip thereof. Although not shown, various channels such as a forceps channel for inserting a tissue collection treatment instrument and the like, a channel for air supply / water supply, and the like are provided inside the operation unit 23 and the endoscope insertion unit 19. .

内視鏡挿入部19は、可撓性を持つ軟性部29と、湾曲部31と、先端部(以降、内視鏡先端部とも呼称する)33とから構成される。内視鏡先端部33には、図1に示すように、被観察領域へ光を照射する照射口35,37と、被観察領域の画像情報を取得するCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子21が配置されている。撮像素子21の受光面には対物レンズユニット39が配置されている。   The endoscope insertion portion 19 includes a flexible soft portion 29, a bending portion 31, and a distal end portion (hereinafter also referred to as an endoscope distal end portion) 33. As shown in FIG. 1, the endoscope distal end portion 33 has irradiation ports 35 and 37 for irradiating light to the observation region, a CCD (Charge Coupled Device) image sensor or CMOS for acquiring image information of the observation region. (Complementary Metal-Oxide Semiconductor) An image sensor 21 such as an image sensor is disposed. An objective lens unit 39 is disposed on the light receiving surface of the image sensor 21.

湾曲部31は、軟性部29と先端部33との間に設けられ、操作部23に配置されたアングルノブ43の回動操作により湾曲自在にされている。この湾曲部31は、内視鏡11が使用される被検体の部位等に応じて、任意の方向、任意の角度に湾曲でき、内視鏡先端部33の照射口35,37及び撮像素子21の観察方向を、所望の観察部位に向けることができる。   The bending portion 31 is provided between the soft portion 29 and the distal end portion 33, and can be bent by a turning operation of an angle knob 43 disposed in the operation portion 23. The bending portion 31 can be bent in an arbitrary direction and an arbitrary angle according to a part of the subject in which the endoscope 11 is used, and the irradiation ports 35 and 37 of the endoscope distal end portion 33 and the imaging element 21. Can be directed to a desired observation site.

制御装置13は、内視鏡先端部33の照射口35,37に供給する照明光を発生する光源部45、撮像素子21からの画像信号を画像処理するプロセッサ47を備え、コネクタ部25,27を介して内視鏡11と接続される。また、プロセッサ47には、前述の表示部15と入力部17とが接続されている。プロセッサ47は、内視鏡11の操作部23や入力部17からの指示に基づいて、内視鏡11から伝送されてくる撮像信号を画像処理し、表示部15へ表示用画像を生成して供給する。   The control device 13 includes a light source unit 45 that generates illumination light to be supplied to the irradiation ports 35 and 37 of the endoscope distal end 33, and a processor 47 that performs image processing on an image signal from the imaging device 21, and the connector units 25 and 27. It is connected to the endoscope 11 via. Further, the display unit 15 and the input unit 17 are connected to the processor 47. The processor 47 performs image processing on the imaging signal transmitted from the endoscope 11 based on an instruction from the operation unit 23 or the input unit 17 of the endoscope 11, and generates a display image on the display unit 15. Supply.

光源部45は、中心波長405nmの紫色レーザ光源(特殊光光源)LD1と、中心波長445nmの青色レーザ光源(白色照明用光源)LD2とを発光源として備えている。これら各光源LD1,LD2の半導体発光素子からの発光は、光源制御部49により個別に制御されており、紫色レーザ光源LD1の出射光と、青色レーザ光源LD2の出射光との光量比は変更自在になっている。つまり、光源部45は、白色光源、及び白色光源より狭帯域のスペクトル光を出射する特殊光光源を含む複数の光源からの光を選択的に出射することができる。   The light source unit 45 includes a violet laser light source (special light source) LD1 having a center wavelength of 405 nm and a blue laser light source (white illumination light source) LD2 having a center wavelength of 445 nm as light sources. Light emission from the semiconductor light emitting elements of these light sources LD1 and LD2 is individually controlled by the light source control unit 49, and the light quantity ratio between the emitted light of the violet laser light source LD1 and the emitted light of the blue laser light source LD2 is freely changeable. It has become. That is, the light source unit 45 can selectively emit light from a plurality of light sources including a white light source and a special light source that emits spectrum light in a narrower band than the white light source.

紫色レーザ光源LD1及び青色レーザ光源LD2は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としてもよい。   As the violet laser light source LD1 and the blue laser light source LD2, a broad area type InGaN laser diode can be used, and an InGaNAs laser diode or a GaNAs laser diode can also be used. In addition, a light-emitting body such as a light-emitting diode may be used as the light source.

これら各光源LD1,LD2から出射されるレーザ光は、集光レンズ(図示略)によりそれぞれ光ファイバに入力され、合波器であるコンバイナ51と、分波器であるカプラ53とを介してコネクタ部25に伝送される。なお、これに限らず、コンバイナ51とカプラ53とを用いずに各光源LD1,LD2からのレーザ光をコネクタ部25に直接送出する構成であってもよい。   Laser light emitted from each of the light sources LD1 and LD2 is input to an optical fiber by a condenser lens (not shown), and is connected to a connector via a combiner 51 as a multiplexer and a coupler 53 as a demultiplexer. Is transmitted to the unit 25. However, the present invention is not limited to this, and a configuration in which the laser light from each of the light sources LD1 and LD2 is directly transmitted to the connector unit 25 without using the combiner 51 and the coupler 53 may be employed.

中心波長445nmの青色レーザ光、及び中心波長405nmの紫色レーザ光が合波され、コネクタ部25まで伝送されたレーザ光は、光ファイバ55,57によって、それぞれ内視鏡11の内視鏡先端部33まで伝搬される。そして、青色レーザ光は、内視鏡先端部33の光ファイバ55,57の光出射端に配置された波長変換部材である蛍光体59を励起して蛍光を発光させる。また、一部の青色レーザ光は、そのまま蛍光体59を透過する。紫色レーザ光は、蛍光体59を強く励起させることなく透過して、狭帯域波長の照明光となる。   The laser beam combined with the blue laser beam having the center wavelength of 445 nm and the violet laser beam having the center wavelength of 405 nm and transmitted to the connector unit 25 is transmitted through the optical fibers 55 and 57 to the distal end portion of the endoscope 11. Up to 33. Then, the blue laser light excites the phosphor 59 which is a wavelength conversion member disposed at the light emitting end of the optical fibers 55 and 57 of the endoscope distal end portion 33 to emit fluorescence. Some of the blue laser light passes through the phosphor 59 as it is. The violet laser light is transmitted without strongly exciting the phosphor 59 and becomes illumination light with a narrow band wavelength.

光ファイバ55,57は、マルチモードファイバであり、一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3〜0.5mmの細径なファイバケーブルを使用できる。   The optical fibers 55 and 57 are multimode fibers. For example, a thin fiber cable having a core diameter of 105 μm, a cladding diameter of 125 μm, and a diameter of 0.3 to 0.5 mm including a protective layer serving as an outer shell can be used. .

蛍光体59は、青色レーザ光の一部を吸収して緑色〜黄色に励起発光する複数種の蛍光体(例えばYAG系蛍光体、或いはBAM(BaMgAl1017)等の蛍光体)を含んで構成される。これにより、青色レーザ光を励起光とする緑色〜黄色の励起光と、蛍光体59により吸収されず透過した青色レーザ光とが合わされて、白色(疑似白色)の照明光となる。本構成例のように、半導体発光素子を励起光源として用いれば、高い発光効率で高強度の白色光が得られ、白色光の強度を容易に調整できる上に、白色光の色温度、色度の変化を小さく抑えることができる。 The phosphor 59 includes a plurality of types of phosphors (for example, a YAG phosphor or a phosphor such as BAM (BaMgAl 10 O 17 )) that absorbs a part of the blue laser light and emits light by excitation from green to yellow. Composed. As a result, green to yellow excitation light using blue laser light as excitation light and blue laser light that is transmitted without being absorbed by the phosphor 59 are combined into white (pseudo-white) illumination light. If a semiconductor light-emitting element is used as an excitation light source as in this configuration example, high-intensity white light can be obtained with high luminous efficiency, the intensity of white light can be easily adjusted, and the color temperature and chromaticity of white light can be adjusted. Can be kept small.

上記の蛍光体59は、レーザ光の可干渉性により生じるスペックルに起因して、撮像の障害となるノイズの重畳や、動画像表示を行う際のちらつきの発生を防止できる。また、蛍光体59は、蛍光体を構成する蛍光物質と、充填剤となる固定・固化用樹脂との屈折率差を考慮して、蛍光物質そのものと充填剤に対する粒径を、赤外域の光に対して吸収が小さく、かつ散乱が大きい材料で構成することが好ましい。これにより、赤色や赤外域の光に対して光強度を落とすことなく散乱効果が高められ、光学的損失が小さくなる。   The phosphor 59 described above can prevent noise superposition and flickering when performing moving image display due to speckle caused by the coherence of laser light. In addition, the phosphor 59 takes into account the difference in refractive index between the phosphor constituting the phosphor and the fixing / solidifying resin serving as the filler, and changes the particle size relative to the phosphor itself and the filler to light in the infrared region. In contrast, it is preferable to use a material that has low absorption and high scattering. This enhances the scattering effect without reducing the light intensity for red or infrared light, and reduces the optical loss.

青色レーザ光と蛍光体59からの励起発光光による白色光、及び紫色レーザ光による狭帯域光からなる照明光は、内視鏡11の先端部33から被検体の被観察領域に向けて照射される。そして、照明光が照射された被観察領域の様子を対物レンズユニット39により撮像素子21の受光面上に結像させて撮像する。   Illumination light composed of blue laser light and white light generated by excitation light emitted from the phosphor 59 and narrow-band light generated by violet laser light is emitted from the distal end portion 33 of the endoscope 11 toward the observation region of the subject. The Then, the state of the observation area irradiated with the illumination light is imaged on the light receiving surface of the image sensor 21 by the objective lens unit 39 and imaged.

撮像後に撮像素子21から出力される撮像画像の画像信号は、スコープケーブル61を通じてA/D変換器63に伝送されてデジタル信号に変換され、コネクタ部25を介してプロセッサ47の画像処理部65に入力される。画像処理部65は、詳細は後述するが、入力されたデジタル画像信号を画像データに変換して所望の出力用画像情報を制御部69に出力する。特徴量検出部67は、光源部45から白色光を出射させると共に、押し当て部材41が有する触子部75を生体表面に押し当てた状態で、撮像素子21により撮像した撮像画像情報から生体表面の特徴量を検出する。光源制御部49は、特徴量検出部67により検出された特徴量に応じて光源部45からの出射光を変化させる。   An image signal of a captured image output from the image sensor 21 after imaging is transmitted to the A / D converter 63 through the scope cable 61 and converted into a digital signal, and is transmitted to the image processing unit 65 of the processor 47 via the connector unit 25. Entered. Although described in detail later, the image processing unit 65 converts the input digital image signal into image data and outputs desired output image information to the control unit 69. The feature amount detection unit 67 emits white light from the light source unit 45 and the living body surface from the captured image information captured by the imaging element 21 in a state where the contact portion 75 included in the pressing member 41 is pressed against the living body surface. The feature amount of is detected. The light source control unit 49 changes the emitted light from the light source unit 45 according to the feature amount detected by the feature amount detection unit 67.

制御部69に入力された出力用画像情報は、内視鏡観察画像として表示部15に表示され、必要に応じて、メモリやストレージ装置からなる記憶部71に記憶される。また、内視鏡11には、手動にて観察モードを変更するモード変更ボタン73が配置され、モード変更ボタン73からの切り替え信号は制御部69に入力される。モード変更ボタン73は、押下動作の度に後述する観察モードを切り替える。   The output image information input to the control unit 69 is displayed on the display unit 15 as an endoscopic observation image, and is stored in a storage unit 71 including a memory or a storage device as necessary. The endoscope 11 is provided with a mode change button 73 for manually changing the observation mode, and a switching signal from the mode change button 73 is input to the control unit 69. The mode change button 73 switches an observation mode to be described later every time the pressing operation is performed.

図3は、紫色レーザ光源LD1からの紫色レーザ光と、青色レーザ光源LD2からの青色レーザ光及び青色レーザ光が蛍光体59により波長変換された発光スペクトルとを示すグラフである。紫色レーザ光は、中心波長405nmの輝線で表される。また、青色レーザ光は、中心波長445nmの輝線で表され、青色レーザ光による蛍光体59からの励起発光光は、概ね450nm〜700nmの波長帯域で発光強度が増大する分光強度分布となる。この励起発光光と青色レーザ光とによって前述した白色光が形成される。   FIG. 3 is a graph showing the violet laser light from the violet laser light source LD1, the blue laser light from the blue laser light source LD2, and the emission spectrum obtained by wavelength conversion of the blue laser light by the phosphor 59. The violet laser beam is represented by an emission line having a center wavelength of 405 nm. The blue laser light is represented by a bright line having a center wavelength of 445 nm, and the excitation light emitted from the phosphor 59 by the blue laser light has a spectral intensity distribution in which the emission intensity increases in a wavelength band of approximately 450 nm to 700 nm. The white light described above is formed by the excitation light and the blue laser light.

ここで、本明細書でいう白色光とは、厳密に可視光の全ての波長成分を含むものに限らず、例えばR,G,B等、特定の波長帯の光を含むものであればよく、例えば、緑色から赤色にかけての波長成分を含む光や、青色から緑色にかけての波長成分を含む光等も広義に含むものとする。   Here, the white light referred to in this specification is not limited to one that strictly includes all wavelength components of visible light, and may be any light that includes light in a specific wavelength band such as R, G, and B, for example. For example, light including a wavelength component from green to red, light including a wavelength component from blue to green, and the like are included in a broad sense.

この内視鏡装置100では、紫色レーザ光源LD1からの紫色レーザ光と、青色レーザ光源LD2からの青色レーザ光との発光強度を光源制御部49により相対的に増減制御して、任意の輝度バランスの照明光を生成することができる。   In the endoscope apparatus 100, the light intensity of the violet laser light from the violet laser light source LD1 and the blue laser light from the blue laser light source LD2 is relatively increased and decreased by the light source control unit 49, and an arbitrary luminance balance is obtained. The illumination light can be generated.

図4に押し当て部材41の一部破断側面図を示す。押し当て部材41は、先端部の触子部75と、触子部75に接続されたワイヤ76と、ワイヤ76の外周をワイヤ76が進退自在となるように覆うシース78と、基端部の操作部79とを有する。操作部79は、ワイヤ76に接続された固定部79Aと、シース78に接続された可動部79Bからなり、可動部79Bを固定部79Aに対して牽引することで、触子部75がシース78の先端から突出する。押し当て部材41は、内視鏡挿入部19の軸方向に沿って形成された鉗子孔に挿通され、進退自在な触子部75を生体表面に押し当てることにより生体表面を陥没させる。押し当て部材41の触子部75は、操作部79からの操作により、内視鏡挿入部19の先端部からの微妙な突出加減を調整することができる。また、病変部において触診を行う以前に触子部75を退避させておくことにより、他の生体表面における観察の邪魔になることがない。   FIG. 4 shows a partially broken side view of the pressing member 41. The pressing member 41 includes a contact portion 75 at the distal end portion, a wire 76 connected to the contact portion 75, a sheath 78 that covers the outer periphery of the wire 76 so that the wire 76 can move forward and backward, and a proximal end portion. And an operation unit 79. The operation portion 79 includes a fixed portion 79A connected to the wire 76 and a movable portion 79B connected to the sheath 78. By pulling the movable portion 79B with respect to the fixed portion 79A, the tentacle portion 75 is moved to the sheath 78. Protrudes from the tip of the. The pressing member 41 is inserted into a forceps hole formed along the axial direction of the endoscope insertion portion 19, and the living body surface is depressed by pressing the movable and retractable contact portion 75 against the living body surface. The touch part 41 of the pressing member 41 can adjust a slight protrusion and subtraction from the distal end of the endoscope insertion part 19 by an operation from the operation part 79. Further, by retracting the palpation part 75 before performing palpation at the lesioned part, observation on other biological surfaces is not obstructed.

なお、押し上げ部材41は、内視鏡の鉗子孔から挿入する処置具として設ける他にも、内視鏡先端部に触子部を突設しておく構成としてもよい。   Note that the push-up member 41 may be configured to project a contact portion at the distal end portion of the endoscope in addition to being provided as a treatment instrument inserted from the forceps hole of the endoscope.

ここで、押し当て部材41による触診について説明する。
生体組織の粘膜表層は、粘膜深層の血管から樹脂状血管網等の毛細血管が粘膜表層までの間に形成され、生体組織の病変は、その毛細血管等の微細構造に現れることが報告されている。そこで、内視鏡診察においては、粘膜表層の毛細血管を画像強調して観察し、微小病変の早期発見や、病変範囲の診断が試みられている。特に、生体表面に生成される病変部は、例えば石灰化した場合のように、周囲の生体表面と比べて硬く変質していることが報告されている。そのため、硬く変質した病変部に対して押し当て部材41の触子部75を押し当てることにより、硬化した病変部が一体となって陥没する。
Here, palpation by the pressing member 41 will be described.
It has been reported that the mucosal surface layer of living tissue is formed between blood vessels in the deep mucosa and capillaries such as resinous vascular networks from the mucosal surface layer, and lesions in living tissue appear in the fine structures such as capillaries. Yes. Therefore, in endoscopic examinations, capillary blood vessels on the mucosal surface layer are image-enhanced and observed, and early detection of micro-lesions and diagnosis of lesion areas have been attempted. In particular, it has been reported that the lesioned part generated on the surface of the living body is hard and altered compared to the surrounding living body surface, for example, when calcified. Therefore, the hardened lesioned part is depressed integrally by pressing the contact part 75 of the pressing member 41 against the hardened and altered lesioned part.

図5に押し当て部材41による正常な生体表面の観察時における外観図、図6に押し当て部材41による生体表面の病変部の観察時における外観図を示した。図5に示すように、正常な生体組織に押し当て部材41の触子部75を押し当てると、生体表面Bが柔軟であるため触子部75を覆うように生体組織が局所的に窪む。一方、図6に示すように病変部Aが存在する場合、触子部75を生体表面Bに押し当てると、生体表面Bから硬化した病変部A全体が一体となって窪み、陥没領域が大きくなる。   FIG. 5 shows an external view when observing a normal living body surface with the pressing member 41, and FIG. 6 shows an external view when observing a lesion on the living body surface with the pressing member 41. As shown in FIG. 5, when the contact portion 75 of the pressing member 41 is pressed against a normal living tissue, the living tissue is locally recessed so as to cover the contact portion 75 because the living body surface B is flexible. . On the other hand, when the lesioned part A exists as shown in FIG. 6, when the contact part 75 is pressed against the living body surface B, the entire lesioned part A cured from the living body surface B is integrally depressed and the depressed area is large. Become.

このような陥没した様子を上方から観察することにより、病変部Aの硬化領域の大きさを確認できる。図7は図5に示す場合の観察画像、図8は図6に示す場合の観察画像を示している。病変部Aの硬化度合いは、陥没した領域の縦横寸法や面積を検出することで評価できる。つまり、図9(A)〜(C)に示すように、病変部(硬化領域)の大きさは、陥没した領域の大きさとして観察できる。図9(A)のように正常な生体表面Bの状態から、図9(B)、(C)といった病変部Aが存在する状態までの間で、病変部Aの大きさを、水平方向の直径dah、垂直方向の直径dav、又は、陥没した領域の面積A1,A2を画像解析により求める。これらのパラメータが、病変部Aの大きさを表す特徴量となる。   By observing such a depressed state from above, the size of the hardened region of the lesion A can be confirmed. FIG. 7 shows an observation image in the case shown in FIG. 5, and FIG. 8 shows an observation image in the case shown in FIG. The degree of hardening of the lesion A can be evaluated by detecting the vertical and horizontal dimensions and area of the depressed area. That is, as shown in FIGS. 9A to 9C, the size of the lesion (cured region) can be observed as the size of the depressed region. Between the state of the normal biological surface B as shown in FIG. 9A and the state where the lesion A is present as shown in FIGS. 9B and 9C, the size of the lesion A is changed in the horizontal direction. The diameter dah, the diameter dav in the vertical direction, or the areas A1 and A2 of the depressed area are obtained by image analysis. These parameters are feature amounts representing the size of the lesion A.

更に詳述すると、病変部Aによる陥没領域の大きさは、押し当て部材41の触子部75の近傍とその周囲における生体表面Bの色調又は輝度の変化量に関連して求めることができる。例えば、平均化処理や二値化処理等の周知の画像処理技術を利用することで、病変部Aの実態に相当する特徴量を正確に求めることができる。また、病変部の特徴量の検出においては、光切断法を利用する等して凹凸状態を三次元的に解析し、病変部の体積等の三次元量を特徴量としてもよい。   More specifically, the size of the depressed area due to the lesioned part A can be obtained in relation to the amount of change in the color tone or luminance of the living body surface B in the vicinity of and around the touching part 75 of the pressing member 41. For example, by using a well-known image processing technique such as an averaging process or a binarization process, a feature amount corresponding to the actual state of the lesion A can be accurately obtained. In detecting the feature amount of the lesioned part, the uneven state may be analyzed three-dimensionally by using a light cutting method or the like, and a three-dimensional quantity such as the volume of the lesioned part may be used as the feature quantity.

上記の病変部Aの観察には、可視短波長の狭帯域光を照射すると、組織表層のより詳細な情報が得られることが分かっている。
生体組織に照明光が入射されると、入射光は生体組織内を拡散的に伝播するが、生体組織の吸収・散乱特性は波長依存性を有しており、短波長ほど散乱特性が強くなる傾向がある。つまり、照明光の波長によって光の深達度が変化する。そのため、照明光が400nm付近の波長域では粘膜表層の毛細血管からの血管情報が得られ、波長500nm付近の波長域では、更に深層の血管を含む血管情報が得られるようになる。病変部Aの組織表層の情報を得るためには、中心波長360〜800nm、好ましくは365〜515nmの光源を用いる。特に表層血管の観察には、中心波長360〜470nm、好ましくは360〜450nmの光源を用いる。
In observing the above lesion A, it is known that more detailed information on the tissue surface layer can be obtained by irradiating narrow-band light with a visible short wavelength.
When illumination light enters a living tissue, the incident light propagates diffusively through the living tissue, but the absorption and scattering characteristics of the living tissue have wavelength dependence, and the shorter the wavelength, the stronger the scattering characteristics. Tend. That is, the depth of light changes depending on the wavelength of illumination light. Therefore, blood vessel information from capillaries on the surface of the mucosa is obtained when the illumination light is in the wavelength region near 400 nm, and blood vessel information including deeper blood vessels is obtained in the wavelength region near the wavelength of 500 nm. In order to obtain information on the surface layer of the lesion A, a light source having a central wavelength of 360 to 800 nm, preferably 365 to 515 nm is used. In particular, for observation of superficial blood vessels, a light source having a central wavelength of 360 to 470 nm, preferably 360 to 450 nm is used.

このように、可視短波長の狭帯域光を照明光とした場合の観察画像では、粘膜表層の微細な毛細血管、また、ピットパターンが鮮明に見えるようになる。また、照明光を白色光とした場合の観察画像では、組織深層に近い血管像までが得られるようになる。   Thus, in the observation image when the narrow band light of visible short wavelength is used as the illumination light, fine capillaries and pit patterns on the mucous membrane surface layer can be seen clearly. Further, in the observation image when the illumination light is white light, a blood vessel image close to the tissue deep layer can be obtained.

上記のように、白色光による観察画像に加え、狭帯域光による観察画像を合成した画像を生成することで、生体組織の粘膜表層の微細血管が強調された患部の診断がしやすい画像にできる。本構成の内視鏡装置100においては、内視鏡先端部33から出射する白色光及び狭帯域光の各出射光量を、それぞれ独立して連続変化可能に構成することで、1フレームの撮像画像を、片方の照明光のみ照射した観察画像や、双方の照明光による光成分が含まれる観察画像にすることが自在に行える。   As described above, by generating an image obtained by synthesizing the observation image by narrow band light in addition to the observation image by white light, it is possible to make the image easy to diagnose the affected part in which the microvessel of the mucosal surface layer of the living tissue is emphasized. . In the endoscope apparatus 100 of the present configuration, one frame of the captured image is configured such that the emitted light amounts of the white light and the narrowband light emitted from the endoscope distal end portion 33 can be independently and continuously changed. Can be freely made into an observation image irradiated with only one illumination light, or an observation image containing light components of both illumination lights.

次に、内視鏡装置を用いた触診と観察の手順について説明する。
図10に内視鏡装置100による触診観察の手順を説明するフローチャートを示す。まず、青色レーザ光源LD2からの青色レーザ光と蛍光体59からの励起発光光による白色光を照射する(S1)。白色光を照射している状態で、生体表面Bに押し当て部材41の触子部75を押し当てる(S2)。なお、観察したい病変部の位置が既知である場合は、その病変部に触子部75を押し当てるようにする。
Next, a procedure for palpation and observation using the endoscope apparatus will be described.
FIG. 10 shows a flowchart for explaining the procedure of palpation observation by the endoscope apparatus 100. First, white light is emitted by blue laser light from the blue laser light source LD2 and excitation light emitted from the phosphor 59 (S1). In a state where white light is irradiated, the contact portion 75 of the pressing member 41 is pressed against the living body surface B (S2). In addition, when the position of the lesioned part to be observed is known, the touch part 75 is pressed against the lesioned part.

そして、生体表面Bに触子部75を押し当てた後、対物レンズユニット39を通じて、照明光が照射された生体表面Bの様子を撮像素子21により撮像する(S3)。   Then, after pressing the touch part 75 against the living body surface B, the state of the living body surface B irradiated with the illumination light is imaged by the imaging element 21 through the objective lens unit 39 (S3).

次に、特徴量の検出を行う(S4)。押し当て部材41の触子部75を生体表面Bに対して垂直方向に押し当てた際、触子部75が押し当てられた生体表面Bが正常であって病変部が存在しないか、存在しても微小である場合(図7、図9(A)参照)、生体表面Bの陥没領域の大きさが小さいことが観察される。この場合は、病変部の特徴量が所定範囲内であるために、観察モード切替部である制御部69は、観察モードを通常観察モードに設定する(S5,S6)。通常観察モードでは、青色レーザ光源LD2からの青色レーザ光と蛍光体59からの励起発光光とによる白色光が照射される。   Next, the feature amount is detected (S4). When the touch part 75 of the pressing member 41 is pressed in the direction perpendicular to the living body surface B, the living body surface B to which the touch part 75 is pressed is normal and no lesion exists or exists. Even if it is very small (see FIGS. 7 and 9A), it is observed that the size of the depressed area of the biological surface B is small. In this case, since the feature amount of the lesioned part is within the predetermined range, the control unit 69 serving as the observation mode switching unit sets the observation mode to the normal observation mode (S5, S6). In the normal observation mode, white light is emitted by the blue laser light from the blue laser light source LD2 and the excitation light emitted from the phosphor 59.

一方、押し当て部材41の触子部75を生体表面Bに対して垂直方向に押し当てた際、触子部75が押し当てられた生体表面Bに大きい病変部Aが確認された場合(図8、図9(B),(C)参照)、病変部Aの特徴量が所定範囲を超えているため、制御部69は、観察モードを特殊光観察モードに設定する(S7)。このとき、特徴量検出部67から出力される切り換え指令信号に応じて、制御部69を介して光源制御部49が紫色レーザ光源LD1、青色レーザ光源LD2をそれぞれ制御して、紫色レーザ光源LD1の光のみを出射させる。これにより、可視短波長の狭帯域光により撮像された画像情報が制御部69に入力されて、内視鏡観察画像として表示部15に表示される。   On the other hand, when a large lesioned part A is confirmed on the living body surface B against which the touching part 75 is pressed when the touching part 75 of the pressing member 41 is pressed in a direction perpendicular to the living body surface B (see FIG. 8, see FIGS. 9B and 9C), since the feature amount of the lesion A exceeds the predetermined range, the controller 69 sets the observation mode to the special light observation mode (S7). At this time, the light source control unit 49 controls the violet laser light source LD1 and the blue laser light source LD2 via the control unit 69 in accordance with the switching command signal output from the feature amount detection unit 67, and the violet laser light source LD1. Only light is emitted. As a result, image information picked up by visible short wavelength narrowband light is input to the control unit 69 and displayed on the display unit 15 as an endoscopic observation image.

上記の通常観察モードと特殊光観察モードとの照明光の切り換えの様子を図11に示す。病変部Aの特徴量の検出において、押し当て部材41の触子部75を生体表面Bに押し当てて生体表面Bを陥没させた際、生体表面Bの陥没領域の大きさが特徴量閾値C1を超えていないことが特徴量検出部67により検出されると、青色レーザ光源LD2からの青色レーザ光と蛍光体59からの励起発光光による白色光が照射される通常観察モードとなる。   FIG. 11 shows how illumination light is switched between the normal observation mode and the special light observation mode. In detecting the feature amount of the lesioned part A, when the contact part 75 of the pressing member 41 is pressed against the living body surface B and the living body surface B is depressed, the size of the depressed area of the living body surface B is the feature amount threshold value C1. Is detected by the feature amount detection unit 67, the normal observation mode in which white light is emitted by the blue laser light from the blue laser light source LD2 and the excitation light emitted from the phosphor 59 is set.

一方、特徴量閾値C1を超えていることが特徴量検出部67により検出されると、光源制御部49により紫色レーザ光源LD1からの光が病変部Aに照射された観察画像が得られる。   On the other hand, when the feature amount detection unit 67 detects that the feature amount threshold C1 is exceeded, the light source control unit 49 obtains an observation image in which light from the violet laser light source LD1 is irradiated onto the lesioned part A.

このように、観察画像の特徴量に応じて観察モードが自動的に切り替わるので、内視鏡の術者は、病変部の触診と病変部の詳細な観察とを、手動操作を伴うことなく連続して行うことができ、手技を円滑に行うことができる。また、観察モードが自動的に切り替わることで、病変部があった場合に、モニタに映出される観察画像が変化するため、術者はこの視覚的な変化に気付きやすくなり、問題のある病変部をより確実に認知できる。よって、病変部の見逃し防止に寄与できる。また、所望の観察対象に内視鏡先端部の位置を合わせて触診する以外にも、体腔内で無作為に触診して病変部を探索する場合に、病変部の存在によってモニタ映出の画像が切り替わるので、術者による病変部の発見が容易となり、診断精度が向上する。   In this way, since the observation mode is automatically switched according to the feature amount of the observation image, the endoscopic surgeon continuously performs palpation of the lesion and detailed observation of the lesion without manual operation. The procedure can be performed smoothly. In addition, since the observation mode is automatically switched, the observation image displayed on the monitor changes when there is a lesion, so the surgeon is more likely to notice this visual change, and there is a problem lesion. Can be recognized more reliably. Therefore, it can contribute to prevention of overlooking of the lesioned part. In addition to palpating by aligning the position of the distal end of the endoscope with the desired observation target, when searching for a lesion by palpating randomly within the body cavity, the image displayed on the monitor due to the presence of the lesion Therefore, it becomes easy for an operator to find a lesion, and diagnostic accuracy is improved.

次に、上記構成の変形例を説明する。
図12は照明光の切り換えの様子を示す説明図である。制御パターンP1で示すように、検出した特徴量が閾値C2を超えていない場合は、紫色レーザ光源LD1と青色レーザ光源LD2との光量比を1:4に設定する。また、特徴量が閾値C2を超えている場合は、紫色レーザ光源LD1と青色レーザ光源LD2との光量比を7:1に設定する。
Next, a modified example of the above configuration will be described.
FIG. 12 is an explanatory diagram showing how illumination light is switched. As indicated by the control pattern P1, when the detected feature amount does not exceed the threshold C2, the light quantity ratio between the violet laser light source LD1 and the blue laser light source LD2 is set to 1: 4. When the feature amount exceeds the threshold C2, the light amount ratio between the violet laser light source LD1 and the blue laser light source LD2 is set to 7: 1.

上記2段階の制御パターンP1の他、制御パターンP2に示すように、特徴量の大きさに応じて紫色レーザ光源LD1と青色レーザ光源LD2との光量比を連続的に変化させるように設定してもよい。連続的に変化させる場合には、病変部の状態に応じた適切な照明光で観察することができる。   In addition to the two-stage control pattern P1, as shown in the control pattern P2, the light quantity ratio between the violet laser light source LD1 and the blue laser light source LD2 is set to change continuously according to the size of the feature amount. Also good. When changing continuously, it can observe with the appropriate illumination light according to the state of a lesioned part.

光源部45は、次に示す構成にすることもできる。
図13に光源部45の他の構成例を示す。同図に示すように光源部45は、中心波長405nmの紫色レーザ光源LD1と、中心波長445nmの青色レーザ光源LD2に加え、中心波長405nmのレーザ光源LD3を備える。光源制御部49は、中心波長405nmのレーザ光源LD3からの光を、光ファイバを通じて、内視鏡先端部に配置される拡散板77から被観察領域に照射する。この構成によれば、LD3からのレーザ光を蛍光体を介さずに出射できるため、中心波長405nmの狭帯域光が他の波長帯の光(蛍光体の発光等)による外乱なく生体に照射できる。そのため、生体内に存在するコラーゲン等の蛍光物質からの微弱な自家蛍光の観察画像や、光線力学的診断(Photodynamic Diagnosis:PDD)用の微弱な発光強度の観察画像がS/Nを高めた状態で得られる。表1にPDD励起光(照射光)、PDD蛍光(発光)、及び参考のため光線力学的治療(Photodynamic Therapy:PDT)光(照射光)の波長を薬剤毎に示すように、PDD励起光としては、フォトフリン、レザフィリン、5−ALAのいずれの蛍光薬剤を使用した場合でも中心波長405nmのレーザ光が利用可能である。
The light source unit 45 can be configured as follows.
FIG. 13 shows another configuration example of the light source unit 45. As shown in the figure, the light source unit 45 includes a laser light source LD3 having a central wavelength of 405 nm in addition to a purple laser light source LD1 having a central wavelength of 405 nm and a blue laser light source LD2 having a central wavelength of 445 nm. The light source control unit 49 irradiates the observation region with light from the laser light source LD3 having a center wavelength of 405 nm from the diffusion plate 77 disposed at the distal end portion of the endoscope through an optical fiber. According to this configuration, since the laser light from the LD 3 can be emitted without passing through the phosphor, the narrow band light having the center wavelength of 405 nm can be irradiated to the living body without disturbance due to light in other wavelength bands (e.g., light emission of the phosphor). . Therefore, the observation image of weak autofluorescence from a fluorescent substance such as collagen existing in the living body and the observation image of weak emission intensity for photodynamic diagnosis (PDD) have increased S / N. It is obtained by. As shown in Table 1, PDD excitation light (irradiation light), PDD fluorescence (luminescence), and for reference, the wavelength of photodynamic therapy (PDT) light (irradiation light) is shown for each drug as PDD excitation light. Can use laser light having a central wavelength of 405 nm regardless of the use of photofluorin, resaphyrin, or 5-ALA.

Figure 2012000160
Figure 2012000160

その他、LD3の中心波長を780nmとすれば、インドシアニン・グリーン(ICG)を励起して、近赤外(820nm)の蛍光の観察を行うことができ、LD3の中心波長を375nmとすれば、ルシフェラーゼを励起して、490nmの蛍光の観察を行うことができる。   In addition, if the center wavelength of LD3 is 780 nm, indocyanine green (ICG) can be excited to observe near-infrared (820 nm) fluorescence. If the center wavelength of LD3 is 375 nm, The fluorescence at 490 nm can be observed by exciting the luciferase.

図14に光源部45の他の構成例を示す。同図に示すように光源部45は、内視鏡先端部に配置された白色LED101と、λa、λb、λcの各色波長を発光するLED103,105,107を制御する光源制御部49を備える。各LED103,105,107は、中心波長が405nm、445nm、473nm、665nm,785nm等の各種の発光素子からなる。これら発光素子を観察目的や上記の特徴量に応じていずれかを選択的に点灯駆動し、所望の観察像を形成することで、内視鏡診断の利便性を高められる。また、発光素子として汎用のLED発光素子を利用するため、経済的に有利に製造でき、消費電力も抑えられる。   FIG. 14 shows another configuration example of the light source unit 45. As shown in the figure, the light source unit 45 includes a white LED 101 disposed at the distal end portion of the endoscope and a light source control unit 49 that controls the LEDs 103, 105, and 107 that emit light of each wavelength of λa, λb, and λc. Each LED 103, 105, 107 is composed of various light emitting elements having center wavelengths of 405 nm, 445 nm, 473 nm, 665 nm, 785 nm, and the like. One of these light emitting elements is selectively turned on according to the purpose of observation or the above-described feature amount to form a desired observation image, thereby enhancing the convenience of endoscopic diagnosis. Moreover, since a general-purpose LED light-emitting element is used as the light-emitting element, it can be manufactured economically and power consumption can be suppressed.

図15に光源部45の他の構成例を示す。同図に示すように光源部45は、キセノンランプやメタルハライドランプ等の白色照明用の白色光源109と、特殊光観察用のレーザ光源LDを備える。光源制御部49は、白色光源109からの光を多数本の光ファイバからなるファイババンドル111を通じて、内視鏡先端部から拡散板117から出射させる。また、光源制御部49は、レーザ光源LD113からの光を一本の光ファイバ115で導光し、内視鏡先端部の拡散板117を透過させて出射させる。この構成によれば、広く利用されている白色光源109を用いた白色照明系をそのまま利用して、LD113の特殊光照明系を追加するだけで、上記した種々の観察目的に対応した照明光学系を簡単に構築できる。   FIG. 15 shows another configuration example of the light source unit 45. As shown in the figure, the light source unit 45 includes a white light source 109 for white illumination such as a xenon lamp or a metal halide lamp, and a laser light source LD for special light observation. The light source control unit 49 causes the light from the white light source 109 to be emitted from the diffuser plate 117 from the distal end portion of the endoscope through the fiber bundle 111 including a plurality of optical fibers. Further, the light source control unit 49 guides the light from the laser light source LD 113 through the single optical fiber 115 and transmits the light through the diffusion plate 117 at the distal end portion of the endoscope. According to this configuration, the illumination optical system corresponding to the above-mentioned various observation purposes can be obtained by simply using the white illumination system using the widely used white light source 109 and adding the special light illumination system of the LD 113. Can be built easily.

図16に光源部45の他の構成例を示す。同図に示すように光源部45は特殊光観察用のレーザ光源LD123を備える。光源制御部49は、信号線121を通じて内視鏡先端部に配置されたR、G、B色を発光する各LED119に接続され、内視鏡先端部から各LED119からの混色による白色光を照射させる。また、光源制御部49は、LD123を駆動して、所望の波長の特殊光を光ファイバ115を通じて、内視鏡先端部の拡散板117から出射させる。この構成によれば、照明光学系の小型化が図れ、また、内視鏡先端部に対して信号線121と光ファイバ115で接続することで済み、内視鏡挿入部の細径化が図れる。   FIG. 16 shows another configuration example of the light source unit 45. As shown in the figure, the light source unit 45 includes a laser light source LD123 for special light observation. The light source control unit 49 is connected to each LED 119 that emits R, G, and B colors disposed at the distal end portion of the endoscope through the signal line 121, and irradiates white light by color mixture from each LED 119 from the distal end portion of the endoscope. Let Further, the light source control unit 49 drives the LD 123 to emit special light having a desired wavelength from the diffusion plate 117 at the distal end portion of the endoscope through the optical fiber 115. According to this configuration, it is possible to reduce the size of the illumination optical system and to connect the signal line 121 and the optical fiber 115 to the distal end portion of the endoscope, thereby reducing the diameter of the endoscope insertion portion. .

図17(A),(B)に光源部45の他の構成例を示す。図17(A)に示すように光源部45は、白色光源129と、モータ131により回転駆動される回転フィルタ133と、白色光源129とモータ131を制御する光源制御部49とを備える。回転フィルタ133は、図17(B)に示すように、赤色光を取り出すためのRフィルタ135と、緑色光を取り出すためのGフィルタ137と、青色光を取り出すためのBフィルタ139と、前述した特殊光を取り出すための特殊光フィルタ141とを円周方向に並べて配置している。本構成例は、回転フィルタ133の回転に同期して撮像することで、R画像、G画像、B画像、特殊光画像をそれぞれ順次取得し、これら画像(R画像+G画像+B画像、G画像+特殊光画像 等)を同時化処理して一枚のカラー画像を生成する面順次式である。   FIGS. 17A and 17B show another configuration example of the light source unit 45. As shown in FIG. 17A, the light source unit 45 includes a white light source 129, a rotary filter 133 that is rotationally driven by the motor 131, and a light source control unit 49 that controls the white light source 129 and the motor 131. As shown in FIG. 17B, the rotary filter 133 includes an R filter 135 for extracting red light, a G filter 137 for extracting green light, and a B filter 139 for extracting blue light. Special light filters 141 for extracting special light are arranged in the circumferential direction. In this configuration example, an R image, a G image, a B image, and a special light image are sequentially acquired by capturing images in synchronization with the rotation of the rotation filter 133, and these images (R image + G image + B image, G image + This is a frame-sequential type that generates a single color image by synchronizing special light images.

以上説明した各構成例の内視鏡装置100によれば、体腔内の特定部位に対する触診を行い、その結果に基づいて患部の状態をより詳細に観察できる観察モードに自動的に変更して、内視鏡による診断を円滑に支援することができる。   According to the endoscopic device 100 of each configuration example described above, palpation of a specific part in the body cavity is performed, and automatically changed to an observation mode in which the state of the affected part can be observed in more detail based on the result, Diagnosis with an endoscope can be smoothly supported.

また、本発明は上記の実施形態に限定されるものではなく、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
例えば、押し当て部材41の触子部75が生体表面に接触し、触子部75が押し戻されたときのストローク量に応じて、観察モードを変更することもできる。押し当て部材41の触子部75が生体表面に当接する場合は、内視鏡先端部が生体表面に近く、近景撮影される場合とみなせる。このような場合には、組織表層の毛細血管情報が強調されるように特殊光観察モードで観察するとよい。これにより、病変部の詳細が容易に観察できるようになる。一方、押し当て部材41の触子部75が生体表面に当接せず、触子部75が押し戻されない場合は、内視鏡先端部と生体表面との距離があり、遠景撮影される場合とみなせる。このような場合には、体腔内の奥までを広範囲で照明する通常観察モードで観察するよい。
In addition, the present invention is not limited to the above-described embodiment, and those skilled in the art can modify and apply the present invention based on the description of the specification and well-known techniques, and seek protection. Included in the range.
For example, the observation mode can be changed according to the stroke amount when the touch part 75 of the pressing member 41 contacts the living body surface and the touch part 75 is pushed back. When the contact portion 75 of the pressing member 41 abuts on the surface of the living body, it can be considered that the distal end portion of the endoscope is close to the surface of the living body and the foreground is photographed. In such a case, it is preferable to observe in the special light observation mode so that the capillary blood vessel information on the tissue surface layer is emphasized. Thereby, the details of the lesioned part can be easily observed. On the other hand, when the contact portion 75 of the pressing member 41 does not contact the living body surface and the contact portion 75 is not pushed back, there is a distance between the distal end portion of the endoscope and the living body surface, and a distant view is photographed. Can be considered. In such a case, the observation may be performed in the normal observation mode in which the back of the body cavity is illuminated in a wide range.

また、触子部75が生体表面に接触して押し戻されるストローク量が多いほど、特殊光観察モードにおける紫色レーザ光(中心波長405nm)による狭帯域光成分を多くし、ストローク量が少ないほど、青色レーザ光(中心波長445nm)による白色光成分を多くする制御を行うことが好ましい。この場合には、モード切り替えの前後で観察画像が急峻に切り替わることがなく、ストローク量に応じて滑らかに切り替わることで連続観察に適した画像表示が行える。   Further, the larger the stroke amount that the touch part 75 is pushed back in contact with the surface of the living body, the more the narrow-band light component due to the violet laser light (center wavelength 405 nm) in the special light observation mode is increased. It is preferable to perform control to increase the white light component by laser light (center wavelength 445 nm). In this case, the observation image does not change sharply before and after the mode switching, and an image display suitable for continuous observation can be performed by switching smoothly according to the stroke amount.

なお、触子部75のストローク量は、触子部75又はこれに接続されるワイヤ76(図4参照)の移動量を検知する位置センサ(図示せず)をシース78や操作部79に設けて、測定することができる。位置センサ以外にも、移動の加速度を検出する加速度センサ、外力を受けて接点が切り替わる電気スイッチ素子、圧力や歪みを電圧変化により検出するストレインゲージ等で構成してもよい。これら各検出素子が、触子部75の進退移動を検出する触子部移動検出部として機能する。   As for the stroke amount of the touch part 75, a position sensor (not shown) for detecting the movement amount of the touch part 75 or the wire 76 (see FIG. 4) connected thereto is provided in the sheath 78 and the operation part 79. Can be measured. In addition to the position sensor, an acceleration sensor that detects the acceleration of movement, an electrical switch element that switches contacts when receiving an external force, a strain gauge that detects pressure and strain by a voltage change, and the like may be used. Each of these detection elements functions as a touch part movement detection unit that detects the forward and backward movement of the touch part 75.

更に、この場合の触子部75の形状は、球形に限らず、観察視野に影響を及ぼさない円筒状の部材としてもよい。即ち、内視鏡挿入部の先端に装着する内視鏡用フードに上記色部移動検出部の機能を付与してもよい。   Further, the shape of the contact portion 75 in this case is not limited to a spherical shape, and may be a cylindrical member that does not affect the observation visual field. That is, the function of the color part movement detection unit may be added to an endoscope hood attached to the distal end of the endoscope insertion unit.

以上の通り、本明細書には次の事項が開示されている。
(1) 生体内に挿入される内視鏡挿入部の先端から、照明光を生体内の被観察対象に向けて照射するとともに、前記被観察対象を撮像素子により撮像して撮像画像情報を取得する内視鏡装置であって、
白色光、及び白色光とは異なるスペクトルの特殊光を選択的に出射する光源部と、
前記内視鏡挿入部の先端から、その一端に形成された触子部を突出させて前記被観察対象の生体表面に押し当てる押し当て部材と、
前記押し当て部材の触子部を生体表面に押し当てて撮像した撮像画像情報から前記生体表面の特徴量を検出する特徴量検出部と、
前記特徴量検出部により検出された特徴量に応じて、前記白色光を照明光として観察する通常観察モード、前記特殊光を含む光を照明光として観察する特殊光観察モードのいずれかに切り替える観察モード切換部と、
を備えた内視鏡装置。
この内視鏡装置によれば、押し当て部材の触子部を生体表面に押し当て、撮像素子により撮像した撮像画像情報から生体表面の特徴量を検出し、その特徴量に応じて観察モードを自動的に切り替えることで、病変部の状態をより詳細に観察できる照明光に変更して、内視鏡による診断を円滑に行うことができる。
As described above, the following items are disclosed in this specification.
(1) Irradiating illumination light toward the object to be observed in the living body from the tip of the endoscope insertion part inserted into the living body, and capturing the image information by capturing the object to be observed with an image sensor An endoscope device for
A light source unit that selectively emits white light and special light having a spectrum different from that of white light;
A pressing member that protrudes from the distal end of the endoscope insertion portion and presses the contact portion formed at one end thereof against the surface of the subject to be observed;
A feature amount detection unit that detects a feature amount of the living body surface from captured image information obtained by pressing the contact portion of the pressing member against the living body surface; and
Observation switching to either a normal observation mode in which the white light is observed as illumination light or a special light observation mode in which light including the special light is observed as illumination light according to the feature amount detected by the feature amount detection unit A mode switching unit;
An endoscopic apparatus comprising:
According to this endoscope apparatus, the touch part of the pressing member is pressed against the surface of the living body, the feature amount of the living body surface is detected from the captured image information captured by the image sensor, and the observation mode is set according to the feature amount. By switching automatically, the state of the lesioned part can be changed to illumination light that can be observed in more detail, and the diagnosis by the endoscope can be performed smoothly.

(2) (1)の内視鏡装置であって、
前記光源部が、白色照明光を生成するための白色光用光源、及び前記白色照明光より狭帯域のスペクトル光を発生する特殊光光源を含む複数の光源を含んで構成され、前記複数の光源からの光を所定の光量比で合波して出射する内視鏡装置。
この内視鏡装置によれば、照明光を、複数の光源からの光を所定の光量比で合波して生成することで、観察に適した任意の照明光を簡単に得ることができる。
(2) The endoscope apparatus according to (1),
The light source unit includes a plurality of light sources including a light source for white light for generating white illumination light and a special light source that generates spectrum light in a narrower band than the white illumination light, and the plurality of light sources Endoscope apparatus that combines and emits light from a light at a predetermined light quantity ratio.
According to this endoscope apparatus, it is possible to easily obtain arbitrary illumination light suitable for observation by generating illumination light by combining light from a plurality of light sources with a predetermined light amount ratio.

(3) (2)記載の内視鏡装置であって、
前記観察モード切換部が、前記特徴量検出部により検出された特徴量に応じて前記所定の光量比を変化させる内視鏡装置。
この内視鏡装置によれば、通常観察モードと特殊光観察モードが、各光源からの光の光量比を調整することで、観察に適した照明光を生成できる。
(3) The endoscope apparatus according to (2),
An endoscope apparatus in which the observation mode switching unit changes the predetermined light amount ratio in accordance with a feature amount detected by the feature amount detection unit.
According to this endoscope apparatus, the normal observation mode and the special light observation mode can generate illumination light suitable for observation by adjusting the light quantity ratio of light from each light source.

(4) (1)〜(3)のいずれか1項記載の内視鏡装置であって、
前記特徴量が、前記生体表面に前記押し当て部材の触子部を押し当てて陥没させたときの、前記生体表面の陥没領域の大きさに関連した特徴量である内視鏡装置。
この内視鏡装置によれば、生体表面の陥没領域が大きく、求めた特徴量が予め定めた閾値を超えていることが特徴量検出部により検出された場合に、通常観察モードから特殊光観察モードに切り替えられる。これにより、被観察領域の特定部位に対する触診結果に基づいて、観察モードが適切に切り替えられる。
(4) The endoscope apparatus according to any one of (1) to (3),
An endoscope apparatus, wherein the feature amount is a feature amount related to a size of a depressed region of the living body surface when the contact portion of the pressing member is pressed against the living body surface to be depressed.
According to this endoscope apparatus, when the feature amount detection unit detects that the depressed area on the surface of the living body is large and the obtained feature amount exceeds a predetermined threshold value, the special light observation is performed from the normal observation mode. Switch to mode. Thereby, based on the palpation result with respect to the specific site | part of a to-be-observed area | region, observation mode is switched appropriately.

(5) (4)の内視鏡装置であって、
前記特徴量が、前記押し当て部材の触子部の周囲における前記生体表面の色調、輝度の少なくともいずれかの変化量である内視鏡装置。
この内視鏡装置によれば、押し当て部材による病変部の形状変化が、色調や輝度変化の情報として抽出できる。
(5) The endoscope apparatus according to (4),
The endoscope apparatus, wherein the feature amount is a change amount of at least one of a color tone and a luminance of the living body surface around a touch part of the pressing member.
According to this endoscope apparatus, a change in the shape of a lesion caused by a pressing member can be extracted as information on a color tone or luminance change.

(6) (1)〜(5)のいずれか1つの内視鏡装置であって、
前記押し当て部材が、前記触子部を前記生体表面に対して面垂直方向に押し当て可能に、前記内視鏡挿入部の先端から突出された内視鏡装置。
この内視鏡装置によれば、押し当て部材の触子部を生体表面に対して垂直方向に押し当てることにより、病変部の存在を確認しやすくなる。
(6) The endoscope apparatus according to any one of (1) to (5),
An endoscope apparatus in which the pressing member protrudes from a distal end of the endoscope insertion portion so as to be able to press the touch portion in a direction perpendicular to the surface of the living body.
According to this endoscope apparatus, it becomes easy to confirm the presence of a lesioned part by pressing the contact portion of the pressing member in a direction perpendicular to the surface of the living body.

(7) (1)〜(6)のいずれか1つの内視鏡装置であって、
前記押し当て部材が、前記内視鏡挿入部の軸方向に沿って形成された鉗子チャンネルに進退自在に挿通される内視鏡装置。
この内視鏡装置によれば、押し当て部材の触子部が、内視鏡挿入部の軸方向に沿って形成された鉗子チャンネルに進退自在であるために、微妙な突出加減を調整することができると共に、病変部において触診を行うとき以外は触子部を退避させておくことにより、観察の邪魔になることがない。
(7) The endoscope apparatus according to any one of (1) to (6),
An endoscope apparatus in which the pressing member is inserted through a forceps channel formed along the axial direction of the endoscope insertion portion so as to be able to advance and retract.
According to this endoscope apparatus, since the tentacle portion of the pressing member can freely advance and retreat to the forceps channel formed along the axial direction of the endoscope insertion portion, it is possible to adjust subtle protrusion adjustment. In addition, the palpation part is retracted except when palpation is performed at the lesioned part, so that observation is not disturbed.

(8) (1)〜(7)のいずれか1つの内視鏡装置であって、
前記特殊光源の出射光の中心波長が、360nm乃至470nmの波長域に含まれる内視鏡装置。
この内視鏡装置によれば、中心発光波長の下限値が360nmであることにより、半導体発光素子の市販品による入手が容易となる。中心発光波長の上限値が470nm以下となることにより、照明光が粘膜組織表層の微細構造を強調する狭帯域光観察に適した波長範囲となる。
(8) The endoscope apparatus according to any one of (1) to (7),
An endoscope apparatus in which a center wavelength of emitted light of the special light source is included in a wavelength range of 360 nm to 470 nm.
According to this endoscope apparatus, since the lower limit value of the central emission wavelength is 360 nm, it is easy to obtain a commercially available semiconductor light emitting element. When the upper limit value of the central emission wavelength is 470 nm or less, the illumination light has a wavelength range suitable for narrowband light observation that emphasizes the fine structure of the mucosal tissue surface layer.

<付記>
(A) 生体内に挿入される内視鏡挿入部の先端から、照明光を生体内の被観察対象に向けて照射するとともに、前記被観察対象を撮像素子により撮像して撮像画像情報を取得する内視鏡装置であって、
白色光、及び白色光とは異なるスペクトルの特殊光を選択的に出射する光源部と、
前記内視鏡挿入部の先端から、その一端に形成された触子部を進退自在に突出させて前記被観察対象の生体表面に押し当てる押し当て部材と、
前記触子部の進退移動を検出する触子部移動検出部と、
前記押し当て部材の触子部が生体表面に接触して押し戻されたときのストローク量に応じて前記光源部からの出射光を変化させる光源制御部と、
を備えた内視鏡装置。
(B) (A)記載の内視鏡装置であって、
前記光源制御部が、前記白色光と前記特殊光との出射光量比を調整するものである内視鏡装置。
<Appendix>
(A) Irradiating illumination light toward the object to be observed in the living body from the distal end of the endoscope insertion portion inserted into the living body, and capturing the image information by capturing the object to be observed with an image sensor An endoscope device for
A light source unit that selectively emits white light and special light having a spectrum different from that of white light;
A pressing member that protrudes from the distal end of the endoscope insertion portion so that the contact portion formed at one end of the endoscope insertion portion can freely advance and retreat and press against the biological surface of the observation target;
A tactile part movement detecting unit for detecting advancing and retreating movement of the tentacle part;
A light source control unit that changes the emitted light from the light source unit according to the stroke amount when the contact part of the pressing member is pushed back in contact with the surface of the living body;
An endoscopic apparatus comprising:
(B) The endoscope apparatus according to (A),
An endoscope apparatus in which the light source control unit adjusts an outgoing light amount ratio between the white light and the special light.

19 内視鏡挿入部
21 撮像素子
41 押し当て部材
45 光源部
49 光源制御部
67 特徴量検出部
100 内視鏡装置
LD1 青色レーザ光源(白色照明用光源、白色光源)
LD2 紫色レーザ光源(特殊光光源)
DESCRIPTION OF SYMBOLS 19 Endoscope insertion part 21 Image pick-up element 41 Pushing member 45 Light source part 49 Light source control part 67 Feature-value detection part 100 Endoscope apparatus LD1 Blue laser light source (light source for white illumination, white light source)
LD2 Purple laser light source (special light source)

Claims (8)

生体内に挿入される内視鏡挿入部の先端から、照明光を生体内の被観察対象に向けて照射するとともに、前記被観察対象を撮像素子により撮像して撮像画像情報を取得する内視鏡装置であって、
白色光、及び白色光とは異なるスペクトルの特殊光を選択的に出射する光源部と、
前記内視鏡挿入部の先端から、その一端に形成された触子部を突出させて前記被観察対象の生体表面に押し当てる押し当て部材と、
前記押し当て部材の触子部を生体表面に押し当てて撮像した撮像画像情報から前記生体表面の特徴量を検出する特徴量検出部と、
前記特徴量検出部により検出された特徴量に応じて、前記白色光を照明光として観察する通常観察モード、前記特殊光を含む光を照明光として観察する特殊光観察モードのいずれかに切り替える観察モード切換部と、
を備えた内視鏡装置。
An endoscope that irradiates illumination light toward an object to be observed in the living body from the distal end of an endoscope insertion portion that is inserted into the living body, and obtains imaged image information by imaging the object to be observed with an image sensor. A mirror device,
A light source unit that selectively emits white light and special light having a spectrum different from that of white light;
A pressing member that protrudes from the distal end of the endoscope insertion portion and presses the contact portion formed at one end thereof against the surface of the subject to be observed;
A feature amount detection unit that detects a feature amount of the living body surface from captured image information obtained by pressing the contact portion of the pressing member against the living body surface; and
Observation switching to either a normal observation mode in which the white light is observed as illumination light or a special light observation mode in which light including the special light is observed as illumination light according to the feature amount detected by the feature amount detection unit A mode switching unit;
An endoscopic apparatus comprising:
請求項1記載の内視鏡装置であって、
前記光源部が、白色照明光を生成するための白色光用光源、及び前記白色照明光より狭帯域のスペクトル光を発生する特殊光光源を含む複数の光源を含んで構成され、前記複数の光源からの光を所定の光量比で合波して出射する内視鏡装置。
The endoscope apparatus according to claim 1,
The light source unit includes a plurality of light sources including a light source for white light for generating white illumination light and a special light source that generates spectrum light in a narrower band than the white illumination light, and the plurality of light sources Endoscope apparatus that combines and emits light from a light at a predetermined light quantity ratio.
請求項2記載の内視鏡装置であって、
前記観察モード切換部が、前記特徴量検出部により検出された特徴量に応じて前記所定の光量比を変化させる内視鏡装置。
The endoscope apparatus according to claim 2, wherein
An endoscope apparatus in which the observation mode switching unit changes the predetermined light amount ratio in accordance with a feature amount detected by the feature amount detection unit.
請求項1〜請求項3のいずれか1項記載の内視鏡装置であって、
前記特徴量が、前記生体表面に前記押し当て部材の触子部を押し当てて陥没させたときの、前記生体表面の陥没領域の大きさに関連した特徴量である内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 3,
An endoscope apparatus, wherein the feature amount is a feature amount related to a size of a depressed region of the living body surface when the contact portion of the pressing member is pressed against the living body surface to be depressed.
請求項4記載の内視鏡装置であって、
前記特徴量が、前記押し当て部材の触子部の周囲における前記生体表面の色調、輝度の少なくともいずれかの変化量である内視鏡装置。
The endoscope apparatus according to claim 4, wherein
The endoscope apparatus, wherein the feature amount is a change amount of at least one of a color tone and a luminance of the living body surface around a touch part of the pressing member.
請求項1〜請求項5のいずれか1項記載の内視鏡装置であって、
前記押し当て部材が、前記触子部を前記生体表面に対して面垂直方向に押し当て可能に、前記内視鏡挿入部の先端から突出された内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 5,
An endoscope apparatus in which the pressing member protrudes from a distal end of the endoscope insertion portion so as to be able to press the touch portion in a direction perpendicular to the surface of the living body.
請求項1〜請求項6のいずれか1項記載の内視鏡装置であって、
前記押し当て部材が、前記内視鏡挿入部の軸方向に沿って形成された鉗子チャンネルに進退自在に挿通される内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 6,
An endoscope apparatus in which the pressing member is inserted through a forceps channel formed along the axial direction of the endoscope insertion portion so as to be able to advance and retract.
請求項1〜請求項7のいずれか1項記載の内視鏡装置であって、
前記特殊光源の出射光の中心波長が、360nm乃至470nmの波長域に含まれる内視鏡装置。
The endoscope apparatus according to any one of claims 1 to 7,
An endoscope apparatus in which a center wavelength of emitted light of the special light source is included in a wavelength range of 360 nm to 470 nm.
JP2010135559A 2010-06-14 2010-06-14 Endoscope apparatus Pending JP2012000160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135559A JP2012000160A (en) 2010-06-14 2010-06-14 Endoscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135559A JP2012000160A (en) 2010-06-14 2010-06-14 Endoscope apparatus

Publications (1)

Publication Number Publication Date
JP2012000160A true JP2012000160A (en) 2012-01-05

Family

ID=45532859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135559A Pending JP2012000160A (en) 2010-06-14 2010-06-14 Endoscope apparatus

Country Status (1)

Country Link
JP (1) JP2012000160A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150713A (en) * 2012-01-25 2013-08-08 Fujifilm Corp Endoscope system, processor device for endoscope system, and image processing method
JP2014023626A (en) * 2012-07-25 2014-02-06 Fujifilm Corp Endoscope system
JP2015186556A (en) * 2014-03-27 2015-10-29 富士フイルム株式会社 Endoscope apparatus and control method therefor
JP2015530893A (en) * 2012-07-26 2015-10-29 オリーブ・メディカル・コーポレーション Continuous video in poor light environment
US10084944B2 (en) 2014-03-21 2018-09-25 DePuy Synthes Products, Inc. Card edge connector for an imaging sensor
US10277875B2 (en) 2012-07-26 2019-04-30 DePuy Synthes Products, Inc. YCBCR pulsed illumination scheme in a light deficient environment
WO2019208011A1 (en) * 2018-04-24 2019-10-31 オリンパス株式会社 Endoscope system
WO2020054255A1 (en) 2018-09-12 2020-03-19 富士フイルム株式会社 Endoscope device, endoscope processor, and endoscope device operation method
US10631721B2 (en) 2016-11-01 2020-04-28 Olympus Corporation Living body observation system
CN111212591A (en) * 2017-10-17 2020-05-29 富士胶片株式会社 Medical image processing apparatus and endoscope apparatus
US10670248B2 (en) 2013-03-15 2020-06-02 DePuy Synthes Products, Inc. Controlling the integral light energy of a laser pulse
WO2020171012A1 (en) * 2019-02-19 2020-08-27 富士フイルム株式会社 Endoscope system
WO2020174572A1 (en) * 2019-02-26 2020-09-03 オリンパス株式会社 Endoscope device and program
JPWO2019093356A1 (en) * 2017-11-13 2020-11-19 富士フイルム株式会社 Endoscopic system and how to operate it
US10917562B2 (en) 2013-03-15 2021-02-09 DePuy Synthes Products, Inc. Super resolution and color motion artifact correction in a pulsed color imaging system
CN113015554A (en) * 2018-11-19 2021-06-22 奥林巴斯株式会社 Endoscope cover and endoscope system
WO2021131468A1 (en) * 2019-12-26 2021-07-01 富士フイルム株式会社 Endoscope system and method for operating same
US11185213B2 (en) 2013-03-15 2021-11-30 DePuy Synthes Products, Inc. Scope sensing in a light controlled environment

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150713A (en) * 2012-01-25 2013-08-08 Fujifilm Corp Endoscope system, processor device for endoscope system, and image processing method
US10299666B2 (en) 2012-07-25 2019-05-28 Fujifilm Corporation Endoscope system
JP2014023626A (en) * 2012-07-25 2014-02-06 Fujifilm Corp Endoscope system
US10785461B2 (en) 2012-07-26 2020-09-22 DePuy Synthes Products, Inc. YCbCr pulsed illumination scheme in a light deficient environment
US11070779B2 (en) 2012-07-26 2021-07-20 DePuy Synthes Products, Inc. YCBCR pulsed illumination scheme in a light deficient environment
US10277875B2 (en) 2012-07-26 2019-04-30 DePuy Synthes Products, Inc. YCBCR pulsed illumination scheme in a light deficient environment
JP2015530893A (en) * 2012-07-26 2015-10-29 オリーブ・メディカル・コーポレーション Continuous video in poor light environment
US11863878B2 (en) 2012-07-26 2024-01-02 DePuy Synthes Products, Inc. YCBCR pulsed illumination scheme in a light deficient environment
US10568496B2 (en) 2012-07-26 2020-02-25 DePuy Synthes Products, Inc. Continuous video in a light deficient environment
US11083367B2 (en) 2012-07-26 2021-08-10 DePuy Synthes Products, Inc. Continuous video in a light deficient environment
US10670248B2 (en) 2013-03-15 2020-06-02 DePuy Synthes Products, Inc. Controlling the integral light energy of a laser pulse
US11185213B2 (en) 2013-03-15 2021-11-30 DePuy Synthes Products, Inc. Scope sensing in a light controlled environment
US10917562B2 (en) 2013-03-15 2021-02-09 DePuy Synthes Products, Inc. Super resolution and color motion artifact correction in a pulsed color imaging system
US10084944B2 (en) 2014-03-21 2018-09-25 DePuy Synthes Products, Inc. Card edge connector for an imaging sensor
US11438490B2 (en) 2014-03-21 2022-09-06 DePuy Synthes Products, Inc. Card edge connector for an imaging sensor
US10911649B2 (en) 2014-03-21 2021-02-02 DePuy Synthes Products, Inc. Card edge connector for an imaging sensor
JP2015186556A (en) * 2014-03-27 2015-10-29 富士フイルム株式会社 Endoscope apparatus and control method therefor
US10631721B2 (en) 2016-11-01 2020-04-28 Olympus Corporation Living body observation system
CN111212591A (en) * 2017-10-17 2020-05-29 富士胶片株式会社 Medical image processing apparatus and endoscope apparatus
US11089943B2 (en) 2017-11-13 2021-08-17 Fujifilm Corporation Endoscope system and method of operating the same
JPWO2019093356A1 (en) * 2017-11-13 2020-11-19 富士フイルム株式会社 Endoscopic system and how to operate it
JPWO2019208011A1 (en) * 2018-04-24 2021-02-25 オリンパス株式会社 Endoscope system and control method of endoscopic system
JP7105300B2 (en) 2018-04-24 2022-07-22 オリンパス株式会社 Endoscopic system and method of operating the endoscopic system
US11915413B2 (en) 2018-04-24 2024-02-27 Olympus Corporation Endoscope system and method of controlling endoscope system
WO2019208011A1 (en) * 2018-04-24 2019-10-31 オリンパス株式会社 Endoscope system
CN111989027A (en) * 2018-04-24 2020-11-24 奥林巴斯株式会社 Endoscope system
CN112689469A (en) * 2018-09-12 2021-04-20 富士胶片株式会社 Endoscope device, endoscope processor, and method for operating endoscope device
WO2020054255A1 (en) 2018-09-12 2020-03-19 富士フイルム株式会社 Endoscope device, endoscope processor, and endoscope device operation method
CN113015554A (en) * 2018-11-19 2021-06-22 奥林巴斯株式会社 Endoscope cover and endoscope system
CN113015554B (en) * 2018-11-19 2023-07-28 奥林巴斯株式会社 Endoscope cover and endoscope system
CN113454514A (en) * 2019-02-19 2021-09-28 富士胶片株式会社 Endoscope system
WO2020171012A1 (en) * 2019-02-19 2020-08-27 富士フイルム株式会社 Endoscope system
JPWO2020171012A1 (en) * 2019-02-19 2021-12-02 富士フイルム株式会社 Endoscope system
CN113454514B (en) * 2019-02-19 2023-11-07 富士胶片株式会社 endoscope system
JP7171885B2 (en) 2019-02-19 2022-11-15 富士フイルム株式会社 endoscope system
WO2020174572A1 (en) * 2019-02-26 2020-09-03 オリンパス株式会社 Endoscope device and program
JP7137684B2 (en) 2019-02-26 2022-09-14 オリンパス株式会社 Endoscope device, program, control method and processing device for endoscope device
JPWO2020174572A1 (en) * 2019-02-26 2021-12-16 オリンパス株式会社 Endoscope equipment, programs, control methods and processing equipment for endoscope equipment
JP7362778B2 (en) 2019-12-26 2023-10-17 富士フイルム株式会社 Endoscope system and its operating method
WO2021131468A1 (en) * 2019-12-26 2021-07-01 富士フイルム株式会社 Endoscope system and method for operating same

Similar Documents

Publication Publication Date Title
JP2012000160A (en) Endoscope apparatus
JP5606120B2 (en) Endoscope device
US10231658B2 (en) Endoscope system, processor device for endoscope system, operation method for endoscope system, and operation method for processor device
JP5405445B2 (en) Endoscope device
JP5159904B2 (en) Endoscopic diagnosis device
JP5767775B2 (en) Endoscope device
JP5634755B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
JP2011206227A (en) Endoscopic system
JP2011147757A (en) Medical apparatus and endoscope apparatus
JP2012016545A (en) Endoscope apparatus
JP6492187B2 (en) Endoscope device
JP2012130429A (en) Endoscope apparatus
JP2011104199A (en) Endoscope apparatus
JP2011092683A (en) Electronic endoscope
WO2015029709A1 (en) Endoscope system
JP2012152460A (en) Medical system, processing unit therefor, and method of generating image
JP2012050641A (en) Endoscope system
JP2022179746A (en) Medical control apparatus, medical observation system, control apparatus, and observation system
JP2012070839A (en) Light source device and endoscopic diagnostic system
JP2012075561A (en) Endoscope light source device and endoscope apparatus using the same
US20230000330A1 (en) Medical observation system, medical imaging device and imaging method
JP5844447B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
JP2012070822A (en) Light source device and endoscopic diagnostic systen
JP5897663B2 (en) Endoscope device
US10537225B2 (en) Marking method and resecting method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121005