JP2011508031A - Method and apparatus for separating low boiling components from hydrocarbon mixtures - Google Patents

Method and apparatus for separating low boiling components from hydrocarbon mixtures Download PDF

Info

Publication number
JP2011508031A
JP2011508031A JP2010540068A JP2010540068A JP2011508031A JP 2011508031 A JP2011508031 A JP 2011508031A JP 2010540068 A JP2010540068 A JP 2010540068A JP 2010540068 A JP2010540068 A JP 2010540068A JP 2011508031 A JP2011508031 A JP 2011508031A
Authority
JP
Japan
Prior art keywords
boiling fraction
temperature level
low
stage
condensation stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010540068A
Other languages
Japanese (ja)
Other versions
JP2011508031A5 (en
Inventor
メンツェル ヨハネス
ヴェンツェル ザシャ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of JP2011508031A publication Critical patent/JP2011508031A/en
Publication of JP2011508031A5 publication Critical patent/JP2011508031A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/09Purification; Separation; Use of additives by fractional condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

1つ以上の出発混合物を供給するための少なくとも1つの導管と低沸点画分のための排出管と高沸点画分のための排出管と加熱装置とを含む、出発混合物を連続的な運転形式で運転される蒸留装置中で高沸点画分と低沸点画分とに分離するための方法および装置であって、この蒸留装置は、それぞれ異なる少なくとも2つの温度水準を有する凝縮段階を含み、この場合蒸気の流れ方向にそれぞれ前接続された凝縮段階は、それぞれ後接続された凝縮段階よりもそれぞれ高い温度水準を有し、それぞれ分離作用を有する取付け物は、凝縮段階に中間接続されており、凝縮段階で部分凝縮が進行し、その際にそれぞれ凝縮されなかった部分量は、それぞれ低い温度水準を有する、それぞれ後接続された分離作用を有する取付け物または凝縮段階に供給され、それぞれ凝縮された部分量は、分離作用を有する取付け物を介して高沸点画分のための排出管の方向に導入され、本質的に蒸気状の媒体が最も低い温度水準を有する凝縮段階で生じ、そこで部分凝縮され、この場合前記媒体の凝縮されていない部分量は、低沸点画分のための排出管に返送され、凝縮された部分量は、最も低い温度水準を有する凝縮段階に前接続された、蒸留装置の範囲に返送され、および最も低い温度水準を有する凝縮段階は、−40℃の温度を有する、出発混合物を連続的な運転形式で運転される蒸留装置中で高沸点画分と低沸点画分とに分離するための前記の方法および装置。  Continuous operation of the starting mixture, comprising at least one conduit for supplying one or more starting mixtures, a discharge pipe for the low-boiling fraction, a discharge pipe for the high-boiling fraction and a heating device A method and apparatus for separating a high-boiling fraction and a low-boiling fraction in a distillation apparatus operated at a distillation stage comprising a condensation stage each having at least two different temperature levels, Each condensing stage pre-connected in the direction of steam flow has a higher temperature level than each condensing stage connected after each, and a separate attachment has an intermediate connection to the condensing stage, Partial condensation proceeds in the condensation stage, and the partial quantities that have not been condensed in this way are respectively attached to the separate attached attachment or condensation stage, each having a lower temperature level. The respective fractions fed and condensed are introduced in the direction of the discharge pipe for the high-boiling fraction via a separating attachment, and the essentially vapor-like medium is condensed with the lowest temperature level. Which occurs in the stage where it is partially condensed, in which case the uncondensed part of the medium is returned to the discharge line for the low-boiling fraction, the condensed part being the condensing stage having the lowest temperature level. The condensing stage, which was returned to the range of the distillation apparatus and connected with the lowest temperature level, was high in the distillation apparatus having a temperature of −40 ° C. and operated in a continuous mode of operation. The method and apparatus as described above for separating a boiling fraction and a low boiling fraction.

Description

本発明は、例えば低沸点の炭化水素の脱水素の際に、しかし、C1〜C4の範囲内の別の分離という課題の際にも低沸点成分を炭化水素流から分離するため、殊にC2画分を目的生成物として望ましいC3 +画分から分離するための方法および装置に関する。 The present invention is, for example, when the low-boiling dehydrogenation of hydrocarbons, however, since even when the problem of another separation in the range of C 1 -C 4 separating the low-boiling components from the hydrocarbon stream, Koto And relates to a method and apparatus for separating the C 2 fraction from the desired C 3 + fraction as the desired product.

通常、このような分離は、所謂"コールドボックス"と蒸留塔との組合せにより実施される。蒸留塔は、デエタナイザー(Deethanizer)として運転され、エタンの沸点より低いかまたはエタンの沸点に等しい沸点を有する全ての物質がこのデエタナイザー中で塔頂部を介して分離されるので、このように呼ばれる。   Such separation is usually carried out by a combination of so-called “cold boxes” and distillation columns. The distillation column is operated as a Deethanizer and is so called because all substances having a boiling point below or equal to the boiling point of ethane are separated through the top of the column in the deethanizer.

使用混合物は、コールドボックス中への侵入前に最初に約−25℃に冷却される。その際生じる凝縮物は、直接デエタナイザー中に導入される。凝縮されていない蒸気は、コールドボックス内でさらに約−90℃に冷却され、この場合、こうして生じる生成物に富んだ凝縮物は、熱交換後に同様にデエタナイザーに導かれる。従って、コールドボックスは、一段階の粗製分離である。   The use mixture is first cooled to about −25 ° C. before entering the cold box. The resulting condensate is introduced directly into the deethanizer. The non-condensed vapor is further cooled to about −90 ° C. in the cold box, in which case the product-rich condensate thus produced is likewise led to a deethanizer after heat exchange. The cold box is therefore a one-stage crude separation.

本質的に凝縮不可能な成分、例えば水素を含有する残留蒸気相は、熱交換後にコールドボックス中に侵入する流れに放圧される。この場合、ジュール−トムソン効果に基づいて、低沸点物は、約−110℃に冷却される。この温度水準は、コールドボックス中に侵入する流れを一部分凝縮するために利用される。凝縮されていない低沸点物は、本質的にC3 +成分を含有しない。 The remaining vapor phase containing essentially non-condensable components, such as hydrogen, is released into a stream that enters the cold box after heat exchange. In this case, based on the Joule-Thomson effect, the low boilers are cooled to about -110 ° C. This temperature level is used to partially condense the stream entering the cold box. Non-condensed low boilers are essentially free of C 3 + components.

最終的に生成物に富んだ全ての凝縮物相は、固有の微細分離のためにデエタナイザー中に導入され、このデエタナイザー中で残りの低沸点物は、高沸点の成分と分離される。このために、塔の塔頂部で約−20℃の温度が必要とされる。   Ultimately all the product-rich condensate phase is introduced into the deethanizer for inherent fine separation, in which the remaining low boilers are separated from the high boiling components. For this, a temperature of about −20 ° C. is required at the top of the column.

コールドボックスの運転のため、およびデエタナイザーの冷却のために、コールドボックスの前方で使用混合物を冷却するための冷却剤として、蒸発性のプロパンまたはプロペンが−30℃で使用されうる。   Evaporable propane or propene can be used at −30 ° C. as a coolant for cooling the use mixture in front of the cold box for cold box operation and for deethanizer cooling.

この種の方法のための冷却剤の製造は、極めて費用がかかる。従って、本発明の課題は、冷却剤の使用量を著しく減少させることができる方法および装置を提供することである。   The production of coolant for this type of process is very expensive. Accordingly, it is an object of the present invention to provide a method and apparatus that can significantly reduce the amount of coolant used.

本発明は、出発混合物を、
1つ以上の出発混合物を供給するための少なくとも1つの導管と低沸点画分のための排出管と高沸点画分のための排出管と加熱装置とを含む、連続的な運転形式で運転される蒸留装置中で高沸点画分と低沸点画分とに分離するための方法であって、この場合
この蒸留装置は、それぞれ異なる少なくとも2つの温度水準を有する凝縮段階を含み、
この場合蒸気の流れ方向にそれぞれ前接続された凝縮段階は、それぞれ後接続された凝縮段階よりもそれぞれ高い温度水準を有し、
それぞれ分離作用を有する取付け物は、凝縮段階に中間接続されており、
凝縮段階で部分凝縮が進行し、
その際にそれぞれ凝縮されなかった部分量は、それぞれ低い温度水準を有する、それぞれ後接続された分離作用を有する取付け物または凝縮段階に供給され、それぞれ凝縮された部分量は、分離作用を有する取付け物を介して高沸点画分のための排出管の方向に導入され、
本質的に蒸気状の媒体が最も低い温度水準を有する凝縮段階で生じ、そこで部分凝縮され、この場合
前記媒体の凝縮されていない部分量は、低沸点画分のための排出管に返送され、凝縮された部分量は、最も低い温度水準を有する凝縮段階に前接続された、蒸留装置の範囲に返送され、
および最も低い温度水準を有する凝縮段階は、−40℃の温度を有する、出発混合物を連続的な運転形式で運転される蒸留装置中で高沸点画分と低沸点画分とに分離するための方法が記載された独立請求項により前記課題を解決する。
The present invention provides a starting mixture
Operated in a continuous mode of operation, comprising at least one conduit for supplying one or more starting mixtures, a discharge pipe for the low-boiling fraction, a discharge pipe for the high-boiling fraction and a heating device. Method for separating a high-boiling fraction and a low-boiling fraction in a distillation apparatus comprising a condensation stage having at least two different temperature levels,
In this case, each condensation stage pre-connected in the direction of steam flow has a higher temperature level than each of the subsequent condensation stages,
Attachments each having a separating action are intermediately connected to the condensation stage,
Partial condensation proceeds at the condensation stage,
In this case, the respective uncondensed partial quantities are fed to a separately connected attachment or condensing stage, each having a low temperature level, and each condensed partial quantity is supplied to a separate installation. Introduced in the direction of the discharge pipe for the high-boiling fraction through the product,
The essentially vaporous medium occurs in the condensation stage having the lowest temperature level, where it is partially condensed, in which case the uncondensed part of the medium is returned to the discharge line for the low-boiling fraction, The condensed portion is returned to the range of the distillation apparatus, pre-connected to the condensation stage having the lowest temperature level,
And the condensation stage having the lowest temperature level is for separating the starting mixture into a high-boiling fraction and a low-boiling fraction in a distillation apparatus operating in a continuous mode of operation, having a temperature of −40 ° C. The object is solved by the independent claims which describe the method.

本発明の実施態様には、蒸留装置が3〜5個の順次に接続された、それぞれ異なる温度水準を有する凝縮段階を含むことが設けられている。   In an embodiment of the invention, it is provided that the distillation apparatus comprises 3 to 5 sequentially connected condensation stages each having a different temperature level.

更に、本発明の実施態様には、最も低い温度水準を有する凝縮段階が少なくとも2MPa(絶対)、特に少なくとも3MPaの圧力で−120℃〜−70℃の温度を有することが設けられている。   Furthermore, an embodiment of the present invention is provided that the condensation stage having the lowest temperature level has a temperature of -120 ° C. to -70 ° C. at a pressure of at least 2 MPa (absolute), in particular at least 3 MPa.

更に、本発明の実施態様には、低沸点画分として蒸留装置を離れる混合物が放圧され、その際この混合物は、ジュール−トムソン効果を利用しながらさらに冷却され、それによって最も低い温度水準を有する凝縮段階の冷却のために使用されることが設けられている。   Furthermore, in an embodiment of the present invention, the mixture leaving the distillation apparatus as a low-boiling fraction is released, wherein the mixture is further cooled using the Joule-Thomson effect, thereby lowering the lowest temperature level. It is provided that it is used for cooling of the condensing stage.

更に、本発明の実施態様には、放圧が放圧タービンを用いて実施されることが設けられている。   Furthermore, embodiments of the present invention provide that the pressure relief is performed using a pressure relief turbine.

更に、本発明の実施態様は、適した出発混合物の使用に関し、この出発混合物を用いると、本方法は、特に有利に利用可能な生成物の取得に使用されることができる。   Furthermore, embodiments of the present invention relate to the use of a suitable starting mixture, with which the process can be used with particular advantage in obtaining available products.

更に、本発明の実施態様において、本方法は、本質的に水素と2個までの炭素原子を有する炭化水素と少なくとも3個までの炭素原子を有する炭化水素とを含有する出発混合物に対して使用される。低沸点画分のための排出管では、本質的に水素と2個までの炭素原子を有する炭化水素とを含有する混合物が生じるが、この混合物は、本質的に少なくとも3個の炭素原子を有する炭化水素を含有しない。高沸点画分のための排出管では、少なくとも3個の炭素原子を有する炭化水素を含有する混合物が生じるが、この混合物は、本質的に水素を含有しないし、2個までの炭素原子を有する炭化水素を含有しない。   Furthermore, in an embodiment of the invention, the process is used for a starting mixture which essentially comprises hydrogen, a hydrocarbon having up to 2 carbon atoms and a hydrocarbon having at least 3 carbon atoms. Is done. In the discharge tube for the low-boiling fraction, a mixture containing essentially hydrogen and a hydrocarbon having up to 2 carbon atoms results, which mixture essentially has at least 3 carbon atoms. Contains no hydrocarbons. In the discharge tube for the high-boiling fraction, a mixture containing hydrocarbons with at least 3 carbon atoms results, which mixture is essentially free of hydrogen and has up to 2 carbon atoms. Contains no hydrocarbons.

更に、本発明の実施態様において、本方法は、それぞれ2モル%未満の二酸化炭素ならびに水または水蒸気を含有する出発混合物に対して使用される。   Furthermore, in an embodiment of the invention, the process is used for starting mixtures each containing less than 2 mol% of carbon dioxide and water or water vapor.

更に、本発明の実施態様において、出発混合物として反応混合物は、炭化水素の接触脱水素に使用される。   Furthermore, in an embodiment of the invention, the reaction mixture is used as a starting mixture for the catalytic dehydrogenation of hydrocarbons.

更に、本発明の実施態様において、蒸留装置のセグメントは、蒸留装置の流出部として存在し、このセグメントを介して、最も高い温度水準を有する凝縮段階で凝縮された、出発混合物の部分量は、高沸点画分のための排出管に供給される。   Furthermore, in an embodiment of the invention, a segment of the distillation apparatus is present as the outlet of the distillation apparatus, through which a portion of the starting mixture condensed in the condensation stage having the highest temperature level is Supplied to the discharge pipe for the high-boiling fraction.

更に、本発明の実施態様において、低沸点を有する比較的少ない含量の成分を有する出発混合物は、有利に最も高い温度水準を有する凝縮段階の下方に添加され、低沸点を有する比較的多い含量の成分を有する出発混合物は、有利に最も高い温度水準を有する凝縮段階の上方に添加されることが設けられている。   Furthermore, in an embodiment of the invention, the starting mixture with a relatively low content of components having a low boiling point is advantageously added below the condensation stage with the highest temperature level and a relatively high content with a low boiling point. It is provided that the starting mixture with the components is preferably added above the condensation stage with the highest temperature level.

更に、本発明の実施態様において、凝縮段階は、凝縮器として存在する。   Furthermore, in an embodiment of the invention, the condensation stage exists as a condenser.

更に、本発明の実施態様において、凝縮段階は、冷却水、蒸発性アンモニア、プロパン、プロペンで、および/またはジュール−トムソン効果の利用によってプロセスガスの放圧の際に冷却される。   Furthermore, in an embodiment of the invention, the condensation stage is cooled with cooling water, evaporative ammonia, propane, propene and / or upon release of the process gas by utilizing the Joule-Thomson effect.

更に、本発明の実施態様において、加熱装置は、外部の廃熱器を用いて運転される。   Furthermore, in an embodiment of the invention, the heating device is operated using an external waste heat generator.

また、本発明は、
1つ以上の出発混合物を供給するための1つ以上の導管、
低沸点画分のための排出管、
高沸点画分のための排出管、
少なくとも1つの加熱装置、
少なくとも2つの順次に接続された凝縮器および
凝縮器に中間接続された分離作用を有する取付け物を含む、出発混合物を分離するために適した蒸留装置で前記課題を解決する。
The present invention also provides:
One or more conduits for supplying one or more starting mixtures;
Discharge pipe for the low-boiling fraction,
Discharge pipe for the high-boiling fraction,
At least one heating device,
The problem is solved with a distillation apparatus suitable for separating the starting mixture, comprising at least two sequentially connected condensers and an attachment with a separating action intermediately connected to the condenser.

前記装置の他の選択可能な実施態様には、蒸留装置が唯一の蒸留塔の形で存在するか、または蒸留装置が複数の蒸留塔を含むカスケードとして存在することが設けられており、この複数の蒸留塔の場合、蒸留塔の間には、それぞれ凝縮器が設けられている。殊に、蒸留装置は、3、4または5個の順次に接続された、それぞれ異なる温度水準を有する凝縮器を有することが設けられていてよい。   Other selectable embodiments of the apparatus are provided in which the distillation apparatus exists in the form of a single distillation column, or the distillation apparatus exists as a cascade comprising a plurality of distillation columns. In the case of this distillation column, a condenser is provided between the distillation columns. In particular, the distillation apparatus may be provided with 3, 4 or 5 sequentially connected condensers each having a different temperature level.

即ち、これまで2つのプロセス工程で達成されたことは、本発明により今や前接続されたコールドボックスなしに1つの工程で実現させることができ、このことは、本発明の1つの利点である。   That is, what has been achieved in two process steps so far can now be realized in one step with the present invention without a pre-connected cold box, which is one advantage of the present invention.

異なる温度水準で作業する多数の凝縮器を蒸留装置を方法に応じて利用することにより、凝縮のための全ての冷却量を最も低い温度水準で、ひいては最も高い費用で準備する必要がないことが達成される。その代わりに、中間凝縮器は、約+45℃、+15℃または−30℃の温度で機能し、このことは、本発明のもう1つの利点である。   By utilizing a number of condensers operating at different temperature levels, depending on the method, it is not necessary to prepare all cooling amounts for condensation at the lowest temperature level and hence at the highest cost. Achieved. Instead, the intermediate condenser functions at a temperature of about + 45 ° C., + 15 ° C. or −30 ° C., which is another advantage of the present invention.

従って、このように使用される限り、塔内で上昇する蒸気の大部分は、塔頂凝縮器への到達前に既に凝縮され、液体として下向きに流れる。塔頂凝縮器の運転に必要とされる冷気水準、約−80℃、および必要とされる凝縮効率は、装置それ自体中での低沸点物の放圧によって形成させることができ、このことは、本発明のもう1つの利点である。   Therefore, as long as it is used in this way, the majority of the vapor rising in the column is already condensed before reaching the top condenser and flows downward as a liquid. The cold air level required for the operation of the overhead condenser, about -80 ° C, and the required condensation efficiency can be formed by the low boiler discharge pressure in the device itself, This is another advantage of the present invention.

蒸留装置が多数の中間凝縮器を有する唯一の蒸留塔からなる場合の本発明による方法を示す略図。1 schematically shows the process according to the invention when the distillation apparatus consists of only one distillation column with a number of intermediate condensers. 蒸留装置が互いに分かれた分離部と濃縮部とから構成されている場合の本発明による方法を示す略図。1 is a schematic diagram showing a method according to the present invention when a distillation apparatus is composed of a separation unit and a concentration unit separated from each other. 蒸留装置が3つの区間から構成されている場合の本発明による方法を示す略図。この場合前記区間の間には、それぞれ中間凝縮器が存在する。1 is a schematic diagram showing the method according to the invention when the distillation apparatus consists of three sections. In this case, intermediate condensers exist between the sections.

次に、本発明は、3つの例で詳細に説明される。   The invention will now be described in detail with three examples.

全部で3つの実施例において、蒸気状の使用混合物1は、例えばアンモニア蒸発器2中で最初に15℃に冷却されることができる。更に、熱交換器3において、取得されたC2画分に対してさらに約10℃に冷却されることができ、その際、蒸気の一部分は、凝縮する。蒸気相5と凝縮液6は、別々に蒸留装置中に到達する。出発混合物の組成に応じて、前記課題は、最も高い温度水準を有する凝縮工程の上方で行なうこともできる。 In all three embodiments, the vaporous use mixture 1 can first be cooled to 15 ° C., for example, in an ammonia evaporator 2. Furthermore, in the heat exchanger 3, the obtained C 2 fraction can be further cooled to about 10 ° C., with a portion of the vapor condensing. The vapor phase 5 and the condensate 6 reach the distillation apparatus separately. Depending on the composition of the starting mixture, the task can also be carried out above the condensation process with the highest temperature level.

図1に示した実施例において、液体は、蒸留塔7中で下向きに流れ、部分的に再び蒸発される。蒸発しなかった部分は、C3 +生成物8として蒸留塔7の塔底から取り出される。低沸点物は、蒸気として上向きに上昇し、装入床上に存在する、2つに分かれて形成された第1の凝縮器9によって一部分が凝縮され、この場合には、冷却剤として順次に冷却水およびアンモニアが使用される。更に、上昇する蒸気は、冷却剤のプロパンまたはプロペンと一緒に運転される第2の凝縮器10中で部分的に液化され、したがって僅かな部分の蒸気だけが塔頂凝縮器11に到達する。塔頂凝縮器11中で凝縮されなかった蒸気は、C2画分12および13を形成し、該画分は、凝縮に続いてエキスパンダ14中で放圧され、その際に前記画分は、約−125℃に冷却される。この冷却された蒸気15は、冷却媒体として塔頂凝縮器11の冷たい側で利用され、この場合には、約−50℃に昇温される。引続き、このC2画分4は、使用混合物1の冷却のためになお熱交換器3を通過する。 In the embodiment shown in FIG. 1, the liquid flows downward in the distillation column 7 and is partially evaporated again. The portion that has not evaporated is taken from the bottom of the distillation column 7 as C 3 + product 8. The low-boiling substances rise upward as vapor and are partially condensed by the first condenser 9 formed in two divided parts existing on the charging bed. In this case, the low-boiling substances are sequentially cooled as a coolant. Water and ammonia are used. Furthermore, the rising steam is partially liquefied in the second condenser 10 operated with the coolant propane or propene, so that only a small part of the steam reaches the top condenser 11. The vapor not condensed in the top condenser 11 forms C 2 fractions 12 and 13, which are released in the expander 14 following condensation, in which the fraction And cooled to about -125 ° C. The cooled steam 15 is used as a cooling medium on the cold side of the top condenser 11, and in this case, the temperature is raised to about -50 ° C. Subsequently, this C 2 fraction 4 still passes through the heat exchanger 3 for cooling of the use mixture 1.

図2に示した実施例において、液体は、分離部16中で下向きに流れ、部分的に再び蒸発される。蒸発しなかった部分は、C3 +生成物8として分離部16の塔底から取り出される。蒸気状の低沸点物17は、2つに分かれて形成された第1の凝縮器9中に流入し、そこで一部分が凝縮され、その際に冷却剤として順次に冷却水およびアンモニアが使用される。凝縮液18ならびに蒸気19は、濃縮部20中に供給される。濃縮部20の塔底物の一部分は、分離部16の塔頂装入物21として使用される。更に、上昇する蒸気は、冷却剤のプロパンと一緒に運転される第2の凝縮器10中で部分的に液化され、したがって僅かな部分の蒸気だけが塔頂凝縮器11に到達する。塔頂凝縮器11中で凝縮されなかった蒸気は、C2画分12および13を形成し、該画分は、凝縮に接続されてエキスパンダ14中で放圧され、その際に前記画分は、約−125℃に冷却される。この冷却された蒸気15は、冷却媒体として塔頂凝縮器11の冷たい側で利用され、この場合には、約−50℃に昇温される。引続き、このC2画分4は、使用混合物1の冷却のためになお熱交換器3を通過する。 In the embodiment shown in FIG. 2, the liquid flows downward in the separation part 16 and is partially evaporated again. The portion that has not evaporated is taken out from the bottom of the separation section 16 as C 3 + product 8. The vapor-like low boiling point substance 17 flows into the first condenser 9 formed in two parts, where a part is condensed, and at that time, cooling water and ammonia are sequentially used as a coolant. . The condensate 18 and the vapor 19 are supplied into the concentration unit 20. A part of the bottom of the concentrating part 20 is used as the top charge 21 of the separating part 16. Furthermore, the rising steam is partially liquefied in the second condenser 10 operated with the coolant propane, so that only a small part of the steam reaches the top condenser 11. Vapor that has not been condensed in the top condenser 11 forms C 2 fractions 12 and 13, which are connected to the condensation and released in the expander 14, in which case the fractions Is cooled to about −125 ° C. The cooled steam 15 is used as a cooling medium on the cold side of the top condenser 11, and in this case, the temperature is raised to about -50 ° C. Subsequently, this C 2 fraction 4 still passes through the heat exchanger 3 for cooling of the use mixture 1.

図3に示した実施例において、液体は、分離部16中で下向きに流れ、部分的に再び蒸発される。蒸発しなかった部分は、C3 +生成物8として分離部16の塔底から取り出される。蒸気状の低沸点物17は、2つに分かれて形成された第1の凝縮器9中に流入し、そこで一部分が凝縮され、その際に冷却剤として順次に冷却水およびアンモニアが使用される。凝縮液18ならびに蒸気19は、第1の濃縮部22中に供給される。第1の濃縮部22の塔底物の一部分は、分離部16の塔頂装入物21として使用される。更に、上昇する蒸気は、冷却剤のプロパンまたはプロペンと一緒に運転される第2の凝縮器10中で部分的に液化され、凝縮液ならびに蒸気は、第2の濃縮部23中に供給される。第2の濃縮部23の塔底物は、第1の濃縮部22の塔頂装入物として使用され、こうして蒸気の微少量分だけが凝縮器11に到達する。塔頂凝縮器11中で凝縮されなかった蒸気は、C2画分12および13を形成し、前記画分は、凝縮に続いてエキスパンダ14中で放圧され、その際に前記画分は、約−125℃に冷却される。この冷却された蒸気15は、冷却媒体として塔頂凝縮器11の冷たい側で利用され、この場合には、約−50℃に昇温される。引続き、このC2画分4は、使用混合物1の冷却のためになお熱交換器3を通過する。 In the embodiment shown in FIG. 3, the liquid flows downward in the separation part 16 and is partially evaporated again. The portion that has not evaporated is taken out from the bottom of the separation section 16 as C 3 + product 8. The vapor-like low boiling point substance 17 flows into the first condenser 9 formed in two parts, where a part is condensed, and at that time, cooling water and ammonia are sequentially used as a coolant. . The condensate 18 and the steam 19 are supplied into the first concentration unit 22. A part of the bottom of the first concentration unit 22 is used as the top charge 21 of the separation unit 16. Further, the rising vapor is partially liquefied in the second condenser 10 operated with the coolant propane or propene, and the condensate and vapor are fed into the second concentrator 23. . The bottom of the second concentrating unit 23 is used as the top charge of the first concentrating unit 22, and thus only a small amount of vapor reaches the condenser 11. Vapor that has not been condensed in the top condenser 11 forms C 2 fractions 12 and 13, which are released in the expander 14 following condensation, in which case the fraction is And cooled to about -125 ° C. The cooled steam 15 is used as a cooling medium on the cold side of the top condenser 11, and in this case, the temperature is raised to about -50 ° C. Subsequently, this C 2 fraction 4 still passes through the heat exchanger 3 for cooling of the use mixture 1.

この最後の変法は、先行した方法と比較して、第2の濃縮塔の上部だけが安定した低い温度に形成され、よりいっそう強力な絶縁部を装備しなければならず、熱吸収が阻止されるという利点を有し、このことは、本発明の利点の1つである。   In this last variant, compared to the previous method, only the upper part of the second concentrating tower is formed at a stable low temperature and must be equipped with a stronger insulation, preventing heat absorption. This is one of the advantages of the present invention.

実際に、全部で3つの実施例において、従来の公知技術水準と比較して蒸発器の運転のためによりいっそう大量の熱量が必要とされるが、しかし、この熱量は、約75℃でのみ必要とされ、そのために一般的に装置の複合部の別の処理位置からの廃熱が使用され、さもないとこの廃熱は、費用を掛けて空気冷却器により導出されなければならなかった。このことは、本発明のもう1つの利点である。その上、全体で実際によりいっそう大量の冷却性能が必要とされるが、しかし、熱は、よりいっそう有利な冷却水準で導出されることができ、このことは、本発明のもう1つの利点である。   In fact, in all three embodiments, a greater amount of heat is required for the operation of the evaporator compared to the prior art prior art, but this amount of heat is only required at about 75 ° C. For this purpose, waste heat from another processing position of the complex part of the apparatus is generally used, otherwise this waste heat has to be expelled by an air cooler. This is another advantage of the present invention. Moreover, overall a much larger amount of cooling performance is actually required, but heat can be derived at a more advantageous cooling level, which is another advantage of the present invention. is there.

更に、公知技術水準による冒頭に提示された方法と比較して本発明による方法の利点は、次の通りである:
冷却水を使用することによって、アンモニア冷却効率の約25%を節約することができ、したがって、よりいっそう小型のアンモニア冷却装置だけが必要とされる。プロパン冷却効率は、約55%だけ少なくなり、したがって、プロパン冷却循環路に必要とされる圧縮機効率は、約50%だけ少なくなり、圧縮機も相応して小型に寸法決定することができる。
Furthermore, the advantages of the method according to the invention compared to the method presented at the beginning according to the state of the art are as follows:
By using cooling water, it is possible to save about 25% of the ammonia cooling efficiency, so only a much smaller ammonia cooling device is required. The propane cooling efficiency is reduced by about 55%, so the compressor efficiency required for the propane cooling circuit is reduced by about 50% and the compressor can be sized accordingly.

1 蒸気状の使用混合物、 2 アンモニア蒸発器、 3 熱交換器、 5 蒸気相、 6、18 凝縮液、 7 蒸留塔、 8 C3 +生成物、 9 第1の凝縮器、 10 第2の凝縮器、 11 塔頂凝縮器、 4、12、13 C2画分、 14 エキスパンダ、 15、19 蒸気、 16 分離部、 17 蒸気状の低沸点物、 20 濃縮部、 21 塔頂装入物、 22 第1の濃縮部、 23 第2の濃縮部 1 Vapor use mixture, 2 Ammonia evaporator, 3 Heat exchanger, 5 Vapor phase, 6, 18 Condensate, 7 Distillation tower, 8 C 3 + product, 9 First condenser, 10 Second condensation , 11 overhead condenser, 4, 12, 13 C 2 fraction, 14 expander, 15, 19 steam, 16 separation part, 17 vapor-like low boiling point substance, 20 concentrating part, 21 overhead charge, 22 1st concentration part, 23 2nd concentration part

Claims (19)

1つ以上の出発混合物を供給するための少なくとも1つの導管と低沸点画分のための排出管と高沸点画分のための排出管と加熱装置とを含む連続的な運転形式で運転される蒸留装置中で、出発混合物を高沸点画分と低沸点画分とに分離するための方法において、
この蒸留装置は、それぞれ異なる少なくとも2つの温度水準を有する凝縮段階を含み、
この場合蒸気の流れ方向にそれぞれ前接続された凝縮段階は、それぞれ後接続された凝縮段階よりもそれぞれ高い温度水準を有し、
それぞれ分離作用を有する取付け物は、凝縮段階に中間接続されており、
凝縮段階で部分凝縮が進行し、
その際にそれぞれ凝縮されなかった部分量は、それぞれ低い温度水準を有する、それぞれ後接続された分離作用を有する取付け物または凝縮段階に供給され、それぞれ凝縮された部分量は、分離作用を有する取付け物を介して高沸点画分のための排出管の方向に導入され、
本質的に蒸気状の媒体が最も低い温度水準を有する凝縮段階で生じ、そこで部分凝縮され、この場合
前記媒体の凝縮されていない部分量は、低沸点画分のための排出管に返送され、凝縮された部分量は、最も低い温度水準を有する凝縮段階に前接続された、蒸留装置の範囲に返送され、
および最も低い温度水準を有する凝縮段階は、−40℃の温度を有することを特徴とする、出発混合物を連続的な運転形式で運転される蒸留装置中で高沸点画分と低沸点画分とに分離するための方法。
Operated in a continuous mode of operation comprising at least one conduit for supplying one or more starting mixtures, a discharge pipe for the low boiling fraction, a discharge pipe for the high boiling fraction and a heating device In a process for separating a starting mixture into a high-boiling fraction and a low-boiling fraction in a distillation apparatus,
The distillation apparatus includes a condensation stage having at least two different temperature levels,
In this case, each condensation stage pre-connected in the direction of steam flow has a higher temperature level than each of the subsequent condensation stages,
The attachments, each having a separating action, are intermediately connected to the condensation stage,
Partial condensation proceeds at the condensation stage,
In this case, the respective uncondensed partial quantities are fed to a separately connected attachment or condensing stage, each having a low temperature level, and each condensed partial quantity is supplied to a separate installation. Introduced in the direction of the discharge pipe for the high-boiling fraction through the product,
The essentially vaporous medium occurs in the condensation stage having the lowest temperature level, where it is partially condensed, in which case the uncondensed part of the medium is returned to the discharge line for the low-boiling fraction, The condensed portion is returned to the range of the distillation apparatus, pre-connected to the condensation stage with the lowest temperature level,
And the condensation stage having the lowest temperature level has a high boiling fraction and a low boiling fraction in a distillation apparatus wherein the starting mixture is operated in a continuous mode of operation, characterized in that it has a temperature of −40 ° C. Way to separate.
前記蒸留装置は、それぞれ異なる温度水準を有する、3〜5個の順次に接続された凝縮段階を含む、請求項1記載の方法。   The process according to claim 1, wherein the distillation apparatus comprises 3 to 5 sequentially connected condensation stages, each having a different temperature level. 最も低い温度水準を有する凝縮段階は、少なくとも2MPa(絶対)の圧力で−120℃〜−70℃の温度を有する、請求項1または2記載の方法。   The process according to claim 1 or 2, wherein the condensation stage having the lowest temperature level has a temperature of -120 ° C to -70 ° C at a pressure of at least 2 MPa (absolute). 最も低い温度水準を有する凝縮段階は、少なくとも3MPa(絶対)の圧力で−120℃〜−70℃の温度を有する、請求項3記載の方法。   The process according to claim 3, wherein the condensation stage having the lowest temperature level has a temperature of -120 ° C to -70 ° C at a pressure of at least 3 MPa (absolute). 低沸点画分として蒸留装置を離れる混合物が放圧され、その際この混合物は、ジュール−トムソン効果を利用しながらさらに冷却され、それによって最も低い温度水準を有する凝縮段階の冷却のために使用される、請求項1から4までのいずれか1項に記載の方法。   The mixture leaving the distillation unit is released as a low-boiling fraction, where it is further cooled using the Joule-Thomson effect and thereby used for cooling the condensation stage with the lowest temperature level. The method according to any one of claims 1 to 4. 放圧が放圧タービンを用いて実施される、請求項5記載の方法。   6. The method of claim 5, wherein the pressure relief is performed using a pressure relief turbine. 出発混合物として本質的に水素と2個までの炭素原子を有する炭化水素と少なくとも3個までの炭素原子を有する炭化水素とを含有する混合物を使用し、低沸点画分のための排出管で、本質的に少なくとも3個の炭素原子を有する炭化水素を含有しない、水素と2個までの炭素原子を有する炭化水素とを含有する混合物が生じ、および高沸点画分のための排出管で、本質的に水素を含有しないし、2個までの炭素原子を有する炭化水素を含有しない、少なくとも3個の炭素原子を有する炭化水素を含有する混合物が生じる、請求項1から6までのいずれか1項に記載の方法。   Using a mixture containing essentially hydrogen, a hydrocarbon having up to 2 carbon atoms and a hydrocarbon having at least 3 carbon atoms as the starting mixture, in the discharge pipe for the low-boiling fraction, A mixture containing hydrogen and a hydrocarbon having up to 2 carbon atoms is produced, essentially free of hydrocarbons having at least 3 carbon atoms, and in the discharge pipe for the high-boiling fraction, essentially 7. A mixture containing hydrocarbons having at least 3 carbon atoms, which does not contain hydrogen and which does not contain hydrocarbons having up to 2 carbon atoms, results in any one of claims 1 to 6. The method described in 1. 出発混合物として、それぞれ2モル%未満の二酸化炭素ならびに水または水蒸気を含有する混合物を使用する、請求項1から7までのいずれか1項に記載の方法。   8. The process as claimed in claim 1, wherein the starting mixture is a mixture containing less than 2 mol% of carbon dioxide and water or water vapor. 出発混合物として反応混合物は、炭化水素の接触脱水素に使用される、請求項1から8までのいずれか1項に記載の方法。   9. A process according to any one of claims 1 to 8, wherein the reaction mixture is used as a starting mixture for the catalytic dehydrogenation of hydrocarbons. 蒸留装置のセグメントは、蒸留装置の流出部として存在し、このセグメントを介して、最も高い温度水準を有する凝縮段階で凝縮された、出発混合物の部分量は、高沸点画分のための排出管に供給される、請求項1から9までのいずれか1項に記載の方法。   A segment of the distillation unit exists as an outlet of the distillation unit, through which a portion of the starting mixture condensed in the condensation stage with the highest temperature level is discharged into the discharge pipe for the high-boiling fraction. 10. A method according to any one of claims 1 to 9, wherein the method is supplied to 低沸点を有する比較的少ない含量の成分を有する出発混合物は、有利に最も高い温度水準を有する凝縮段階の下方に添加される、請求項1から10までのいずれか1項に記載の方法。   11. The process as claimed in claim 1, wherein the starting mixture having a relatively low content of components having a low boiling point is added below the condensation stage, which preferably has the highest temperature level. 低沸点を有する比較的多い含量の成分を有する出発混合物は、有利に最も高い温度水準を有する凝縮段階の上方に添加される、請求項1から11までのいずれか1項に記載の方法。   12. The process as claimed in claim 1, wherein the starting mixture having a relatively high content of components having a low boiling point is added above the condensation stage, which preferably has the highest temperature level. 凝縮段階は、凝縮器として存在する、請求項1から12までのいずれか1項に記載の方法。   13. A method according to any one of claims 1 to 12, wherein the condensation stage is present as a condenser. 凝縮段階は、冷却水、アンモニア、プロパン、プロペンで、および/またはジュール−トムソン効果の利用によって低沸点画分として蒸留装置を離れる混合物の放圧の際に冷却される、請求項1から13までのいずれか1項に記載の方法。   Condensation stage is cooled upon release of the mixture leaving the distillation apparatus with cooling water, ammonia, propane, propene and / or as a low-boiling fraction by use of the Joule-Thomson effect. The method of any one of these. 1つ以上の加熱装置は、外部の廃熱器を用いて運転される、請求項1から14までのいずれか1項に記載の方法。   15. A method according to any one of claims 1 to 14, wherein the one or more heating devices are operated using an external waste heatr. a)1つ以上の出発混合物を供給するための1つ以上の導管、
b)低沸点画分のための排出管、
c)高沸点画分のための排出管、
d)少なくとも1つの加熱装置、
e)少なくとも2つの順次に接続された凝縮器および
f)凝縮器に中間接続された分離作用を有する取付け物を含む、請求項1から15までのいずれか1項に記載の実施するための蒸留装置。
a) one or more conduits for supplying one or more starting mixtures;
b) discharge pipe for the low-boiling fraction,
c) discharge pipe for the high-boiling fraction,
d) at least one heating device;
16. Distillation for carrying out according to any one of the preceding claims, comprising e) at least two sequentially connected condensers and f) an attachment having a separating action intermediately connected to the condenser. apparatus.
蒸留装置が唯一の蒸留塔の形で存在する、請求項16記載の装置。   17. An apparatus according to claim 16, wherein the distillation apparatus is present in the form of a single distillation column. 蒸留装置が多数の蒸留塔を含むカスケードとして存在し、この場合、蒸留塔の間には、それぞれ凝縮器が設けられている、請求項16記載の装置。   17. The apparatus according to claim 16, wherein the distillation apparatus exists as a cascade comprising a number of distillation columns, wherein a condenser is provided between each distillation column. 蒸留装置が3、4または5個の順次に接続された、それぞれ異なる温度水準を有する凝縮器を有する、請求項16記載の装置。   17. An apparatus according to claim 16, wherein the distillation apparatus has 3, 4 or 5 sequentially connected condensers each having a different temperature level.
JP2010540068A 2007-12-28 2008-12-22 Method and apparatus for separating low boiling components from hydrocarbon mixtures Withdrawn JP2011508031A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007063347A DE102007063347A1 (en) 2007-12-28 2007-12-28 Process for the separation of low-boiling components from a hydrocarbon stream
PCT/EP2008/011049 WO2009083227A2 (en) 2007-12-28 2008-12-22 Method and device for separating off low-boiling components from hydrocarbon mixtures

Publications (2)

Publication Number Publication Date
JP2011508031A true JP2011508031A (en) 2011-03-10
JP2011508031A5 JP2011508031A5 (en) 2011-11-24

Family

ID=40690838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540068A Withdrawn JP2011508031A (en) 2007-12-28 2008-12-22 Method and apparatus for separating low boiling components from hydrocarbon mixtures

Country Status (12)

Country Link
US (1) US20110041550A1 (en)
EP (1) EP2225007A2 (en)
JP (1) JP2011508031A (en)
KR (1) KR20100125228A (en)
CN (1) CN101932368A (en)
BR (1) BRPI0821955A2 (en)
CA (1) CA2710776A1 (en)
DE (1) DE102007063347A1 (en)
EA (1) EA201070803A1 (en)
MX (1) MX2010007195A (en)
WO (1) WO2009083227A2 (en)
ZA (1) ZA201004516B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969746B1 (en) 2010-12-23 2014-12-05 Air Liquide CONDENSING A FIRST FLUID USING A SECOND FLUID
US10852060B2 (en) * 2011-04-08 2020-12-01 Pilot Energy Solutions, Llc Single-unit gas separation process having expanded, post-separation vent stream
BR112018012402A2 (en) * 2015-12-18 2018-12-04 Bechtel Hydrocarbon Technology Solutions Inc system and method for light hydrocarbon recovery.
CN109791018A (en) * 2016-08-25 2019-05-21 沙特基础工业全球技术公司 For the separation method more than low temperature of dehydrogenating propane reactor effluent
CN109722267A (en) * 2017-10-31 2019-05-07 珠海市启夏能源科技有限公司 A kind of tower tank combined type condensate gasification system and its production technology
CN111545086B (en) * 2020-05-27 2021-11-09 新疆大学 Reversible switch type foam system and preparation method thereof
FR3123971B1 (en) * 2021-06-09 2023-04-28 Air Liquide Cryogenic purification of biogas with withdrawal at an intermediate stage and external solidification of carbon dioxide.
FR3123969B1 (en) 2021-06-09 2023-04-28 Air Liquide Process for the separation and liquefaction of methane and carbon dioxide with pre-separation upstream of the distillation column
FR3123968B1 (en) * 2021-06-09 2023-04-28 Air Liquide Process for the separation and liquefaction of methane and CO2 comprising the withdrawal of steam from an intermediate stage of the distillation column
FR3123973B1 (en) 2021-06-09 2023-04-28 Air Liquide Cryogenic purification of biogas with pre-separation and external solidification of carbon dioxide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444696A (en) * 1967-02-10 1969-05-20 Stone & Webster Eng Corp Demethanization employing different temperature level refrigerants
IT1058546B (en) * 1976-03-26 1982-05-10 Snam Progetti PROCESS FOR CRACKING BY CRACKING GAS REFRIGERATION IN ETHYLENE PRODUCTION PLANTS
GB2205933A (en) * 1987-06-12 1988-12-21 Costain Petrocarbon Separation of hydrocarbon mixtures
IT1241471B (en) * 1990-07-06 1994-01-17 Tpl PROCESS AND EQUIPMENT FOR THE MAXIMUM RECOVERY OF ETHYLENE AND PROPYLENE FROM THE GAS PRODUCED BY HYDROCARBON PYROLYSIS.
US5361589A (en) * 1994-02-04 1994-11-08 Air Products And Chemicals, Inc. Precooling for ethylene recovery in dual demethanizer fractionation systems
US6560989B1 (en) * 2002-06-07 2003-05-13 Air Products And Chemicals, Inc. Separation of hydrogen-hydrocarbon gas mixtures using closed-loop gas expander refrigeration
US20070062216A1 (en) * 2003-08-13 2007-03-22 John Mak Liquefied natural gas regasification configuration and method

Also Published As

Publication number Publication date
BRPI0821955A2 (en) 2015-06-23
US20110041550A1 (en) 2011-02-24
WO2009083227A9 (en) 2009-11-05
WO2009083227A3 (en) 2009-09-17
ZA201004516B (en) 2011-03-30
EP2225007A2 (en) 2010-09-08
KR20100125228A (en) 2010-11-30
MX2010007195A (en) 2010-09-30
DE102007063347A1 (en) 2009-07-02
CN101932368A (en) 2010-12-29
CA2710776A1 (en) 2009-07-09
WO2009083227A2 (en) 2009-07-09
EA201070803A1 (en) 2011-02-28

Similar Documents

Publication Publication Date Title
JP2011508031A (en) Method and apparatus for separating low boiling components from hydrocarbon mixtures
US7310972B2 (en) Process and apparatus for separation of hydrocarbons from liquefied natural gas
JP4575459B2 (en) Methanol recovery method
JP6416264B2 (en) Hydrocarbon gas treatment
US5114450A (en) Method of recovering liquid hydrocarbons in a gaseous charge and plant for carrying out the method
SA110310707B1 (en) Hydrocarbon gas processing
JP2008530506A (en) Plant and method for liquefying natural gas
JP2011508031A5 (en)
KR20220041122A (en) Method for distilling a crude composition in a rectification plant comprising an indirect heat pump
JP5793139B2 (en) Hydrocarbon gas treatment
CN102099647A (en) Method for cooling a cryogenic exchange line
US20080302650A1 (en) Process to recover low grade heat from a fractionation system
JP6621415B2 (en) Separation of product stream of dimethyl ether reactor
US4664687A (en) Process for the separation of C2+, C3+ or C4+ hydrocarbons
JP5802259B2 (en) Hydrocarbon gas treatment
US10598432B2 (en) Process for the production of dilute ethylene
JP2000329457A (en) Manufacture of oxygen gas
JP7043126B6 (en) A device for separating and recovering multiple types of hydrocarbons from LNG
KR101758394B1 (en) Hydrocarbon gas processing
JP5552160B2 (en) Hydrocarbon gas treatment
RU2570540C1 (en) Low-temperature gas processing and installation for its implementation (versions)
KR101714101B1 (en) Hydrocarbon gas processing
JP2012529623A5 (en)
JP2002333270A (en) Method for cooling process flow and heat exchanger therefor
JP5870085B2 (en) Hydrocarbon gas treatment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111006

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120516