JP2011504493A - Organic electroluminescent compound and display device including the same - Google Patents

Organic electroluminescent compound and display device including the same Download PDF

Info

Publication number
JP2011504493A
JP2011504493A JP2010534861A JP2010534861A JP2011504493A JP 2011504493 A JP2011504493 A JP 2011504493A JP 2010534861 A JP2010534861 A JP 2010534861A JP 2010534861 A JP2010534861 A JP 2010534861A JP 2011504493 A JP2011504493 A JP 2011504493A
Authority
JP
Japan
Prior art keywords
group
organic electroluminescent
aromatic ring
compound
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010534861A
Other languages
Japanese (ja)
Inventor
シン,ヒョ−ニム
チェ,イル・ウォン
クォン,ヒョク−チュー
チョー,ヤン−チュン
キム,ボン・オク
キム,ソン−ミン
ユーン,スン・スー
Original Assignee
グラセル・ディスプレイ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グラセル・ディスプレイ・インコーポレーテッド filed Critical グラセル・ディスプレイ・インコーポレーテッド
Publication of JP2011504493A publication Critical patent/JP2011504493A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems

Abstract

本発明は、有機電界発光化合物およびこれを使用した表示素子に関する。本発明による有機電界発光化合物は、発光効率がよくて、物質の寿命特性に優れ、よって、駆動寿命が非常に良好なOLED素子を製造することができる。
【代表図】なし
The present invention relates to an organic electroluminescent compound and a display device using the same. The organic electroluminescent compound according to the present invention can produce an OLED device having good luminous efficiency and excellent material life characteristics, and thus a very good driving life.
[Representative] None

Description

本発明は、示される新規な有機電界発光化合物およびこれを使用している表示素子に関する。   The present invention relates to the novel organic electroluminescent compounds shown and display elements using the same.

高効率かつ長寿命の有機電界発光(electroluminescent;EL)素子の開発において最も重要な要素は、高性能の電界発光物質の開発である。   The most important factor in the development of a high-efficiency and long-life organic electroluminescence (EL) device is the development of a high-performance electroluminescent material.

青色発光の場合には、発光波長が長波長側に少し移動したら、発光効率の観点からは有利になる。しかし、純青色を満足しないため、高品質のディスプレイにその物質を適用するのは容易ではない。さらに、色純度、効率、および熱安定性の問題がある。   In the case of blue light emission, it is advantageous from the viewpoint of light emission efficiency if the light emission wavelength is slightly shifted to the longer wavelength side. However, it is not easy to apply the material to a high quality display because it does not satisfy the pure blue color. In addition, there are problems with color purity, efficiency, and thermal stability.

青色物質の場合、出光興産株式会社によって欧州特許出願公開第1063869号(特許文献1)にDPVBi(化合物a)の開発が開示されて以来、多くの物質が開発され市販されてきた。今まで最も高い効率を有することが知られてきた出光興産によるジスチリル(distyryl)化合物のシステムは、6 lm/Wの電力効率を有し、30,000時間を超える有利な素子寿命を有する。しかし、駆動時間による色純度の低下により、フルカラーディスプレイに適用した場合、その寿命はわずか数千時間に過ぎない。

Figure 2011504493
In the case of blue substances, many substances have been developed and marketed since Idemitsu Kosan Co., Ltd. disclosed the development of DPVBi (compound a) in European Patent Application No. 1063869 (Patent Document 1). A system of distyryl compounds by Idemitsu Kosan, which has been known to have the highest efficiency so far, has a power efficiency of 6 lm / W and an advantageous device lifetime of over 30,000 hours. However, due to a decrease in color purity due to driving time, the lifetime is only a few thousand hours when applied to a full color display.
Figure 2011504493

一方、コダックにより米国特許第6,465,115号(特許文献2)に開示されているジナフチルアントラセン化合物(化合物b)は、HTL物質としてクレームに特定されている化合物であるが、これは青色電界発光化合物としても使用されてきた。しかし、これらの化合物は、発光効率と色純度の観点で解決されるべき課題を有している。

Figure 2011504493
On the other hand, the dinaphthylanthracene compound (compound b) disclosed by Kodak in US Pat. No. 6,465,115 (Patent Document 2) is a compound specified in the claim as an HTL substance, but this is blue. It has also been used as an electroluminescent compound. However, these compounds have problems to be solved in terms of luminous efficiency and color purity.
Figure 2011504493

最近、前記化合物bと類似した範囲の電界発光物質誘導体(化合物c)がLG化学により、国際公開第2006/25700号(特許文献3)に開示されている。しかし、化合物cも同様に、発光効率と色純度に限界がある。

Figure 2011504493
Recently, an electroluminescent substance derivative (compound c) in a range similar to the compound b has been disclosed in International Publication No. 2006/25700 (Patent Document 3) by LG chemistry. However, the compound c similarly has a limit in luminous efficiency and color purity.
Figure 2011504493

一方、緑色蛍光物質としては、Alq(ホスト)に、ドーパントとして、クマリン誘導体(化合物d、C545T)、キナクリドン誘導体(化合物e)、DPT(化合物f)などが、数%から20%以下の濃度でドープされるシステムが開発され、広く使用されている。しかしながら、これらの従来の電界発光物質は、初期発光効率の観点では実用水準の良好な性能を示すが、初期効率の低下が著しく、寿命の側面でかなりの問題を示している。よって、この物質は、より大きなスクリーンの高性能パネルについて使用されるには限界を有している。   On the other hand, as the green fluorescent substance, Alq (host) and coumarin derivatives (compound d, C545T), quinacridone derivative (compound e), DPT (compound f), etc. as dopants at concentrations of several to 20% or less. Doped systems have been developed and are widely used. However, these conventional electroluminescent materials exhibit good performance at a practical level from the viewpoint of initial luminous efficiency, but the initial efficiency is remarkably lowered, and this presents considerable problems in terms of lifetime. Thus, this material has limitations for use with larger screen high performance panels.

これは、ホストとして使用されたAlqの陽イオン性化学種の短い寿命が原因であると報告されている。この問題を克服するために、陽イオン性化学種および陰イオン性化学種についての安定性を同時に有する両性のホストの開発が非常に求められている。   This is reported to be due to the short lifetime of the Alq cationic species used as the host. In order to overcome this problem, there is a great need for the development of amphoteric hosts that simultaneously have stability for cationic and anionic species.

Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493

欧州特許出願公開第1063869号明細書European Patent Application No. 1063869 米国特許第6,465,115号明細書US Pat. No. 6,465,115 国際公開第2006/25700号パンフレットInternational Publication No. 2006/25700 Pamphlet

本発明の目的は上記の問題点を解決することであり、電界発光物質において溶媒またはエネルギーキャリアとして機能するホストの特性が、従来の物質のと比較して著しく改善されている、電界発光化合物を提供することである。また、本発明の目的は、改良された発光効率および素子寿命を有する青色もしくは緑色電界発光物質、並びにこれを含む有機電界発光物質を提供することである。   An object of the present invention is to solve the above-described problems, and an electroluminescent compound in which the characteristics of a host functioning as a solvent or an energy carrier in an electroluminescent material are remarkably improved as compared with those of conventional materials. Is to provide. Another object of the present invention is to provide a blue or green electroluminescent material having improved luminous efficiency and device lifetime, and an organic electroluminescent material containing the same.

本発明は、下記化学式1で表される有機電界発光化合物に関する:

Figure 2011504493
(前記化学式1においては、R乃至Rは、それぞれ独立して、フェニル基、C10〜C20の縮合多環式芳香族環であり、前記R乃至Rのフェニル基またはC10〜C20の縮合多環式芳香族環には、C1〜C20のアルキル基、C1〜C20のアルコキシ基、ハロゲン、C5〜C7のシクロアルキル基、フェニル基または縮合多環式芳香族基がさらに置換可能である)。
また、本発明は、上記化合物を使用する表示素子に関する。 The present invention relates to an organic electroluminescent compound represented by the following chemical formula 1:
Figure 2011504493
(In the chemical formula 1, R 1 to R 3 are each independently a phenyl group, a C10-C20 condensed polycyclic aromatic ring, and the R 1 to R 3 phenyl group or the C10-C20 The condensed polycyclic aromatic ring may be further substituted with a C1 to C20 alkyl group, a C1 to C20 alkoxy group, a halogen, a C5 to C7 cycloalkyl group, a phenyl group, or a condensed polycyclic aromatic group. ).
The present invention also relates to a display element using the above compound.

図1は比較例1の発光効率−電流密度特性を示す。FIG. 1 shows the luminous efficiency-current density characteristics of Comparative Example 1. 図2は実施例9の青色OLEDの電流密度−電圧特性を示す。FIG. 2 shows the current density-voltage characteristics of the blue OLED of Example 9. 図3は実施例9の青色OLEDの発光効率−電流密度特性を示す。FIG. 3 shows the luminous efficiency-current density characteristics of the blue OLED of Example 9. 図4は比較例2に従って、既存の電界発光物質が適用された緑色OLEDの発光効率−輝度特性を示す。FIG. 4 shows luminous efficiency-luminance characteristics of a green OLED to which an existing electroluminescent material is applied according to Comparative Example 2. 図5は実施例22の緑色OLEDの発光効率−電流密度特性を示す。FIG. 5 shows the luminous efficiency-current density characteristics of the green OLED of Example 22. 図6は実施例22、比較例3および比較例4の緑色OLEDの発光効率−電流密度特性を示す。FIG. 6 shows the luminous efficiency-current density characteristics of the green OLEDs of Example 22, Comparative Example 3 and Comparative Example 4. 図7は実施例22および比較例2の緑色OLED色純度を比較する曲線である。FIG. 7 is a curve comparing the green OLED color purity of Example 22 and Comparative Example 2.

本発明で言及する電界発光物質は、広い意味で、第1の電極、第2の電極および前記第1の電極と第2の電極との間に設けられる有機物質を含んでなる有機電界発光素子において、有機物質として使用されるあらゆる物質を含み;一方、電界発光物質は、狭い意味では、電界発光層において電界発光媒質として機能する電界発光ホストに適用されるものを意味する。   In a broad sense, the electroluminescent substance referred to in the present invention is an organic electroluminescent element comprising a first electrode, a second electrode, and an organic substance provided between the first electrode and the second electrode. In the narrow sense, an electroluminescent material means that applied to an electroluminescent host that functions as an electroluminescent medium in an electroluminescent layer.

本発明による化学式1の化合物においては、R乃至Rは、それぞれ独立して、フェニル、ナフチル、アントリル、フルオレニル、フェナントリル、フルオランセニル、ピレニル、ぺリレニルまたはナフタセニルからなる群から選択され;場合によって、フェニル、ナフチル、アントリル、フルオレニル、フェナントリル、フルオランセニル、ピレニル、ぺリレニルおよびナフタセニルは、C1〜C20のアルキル基、C1〜C20のアルコキシ基、ハロゲン原子、C5〜C7のシクロアルキル基、フェニル基または縮合多環式芳香族基で置換される。本発明による化学式1で表される有機電界発光物質は、下記式:

Figure 2011504493
Figure 2011504493
Figure 2011504493
で表されうるが、これらの式は本発明の範囲を限定しない。 In the compounds of formula 1 according to the invention, R 1 to R 3 are each independently selected from the group consisting of phenyl, naphthyl, anthryl, fluorenyl, phenanthryl, fluoranthenyl, pyrenyl, perylenyl or naphthacenyl; Phenyl, naphthyl, anthryl, fluorenyl, phenanthryl, fluoranthenyl, pyrenyl, perylenyl and naphthacenyl are C1-C20 alkyl groups, C1-C20 alkoxy groups, halogen atoms, C5-C7 cycloalkyl groups, phenyl groups or condensed poly Substituted with a cyclic aromatic group. The organic electroluminescent material represented by Chemical Formula 1 according to the present invention has the following formula:
Figure 2011504493
Figure 2011504493
Figure 2011504493
These formulas do not limit the scope of the invention.

また、本発明は、第1の電極;第2の電極;および前記第1の電極と第2の電極との間に設けられる1以上の有機層を含んでなる有機電界発光素子であって、前記有機層が下記化学式1で表される化合物を1種以上含む、有機電界発光素子を提供する:

Figure 2011504493
(前記化学式1においては、R乃至Rは、それぞれ独立して、フェニル基、もしくはC10〜C20の縮合多環式芳香族環であり、前記R乃至Rのフェニル基もしくはC10〜C20の縮合多環式芳香族環には、C1〜C20のアルキル基、C1〜C20のアルコキシ基、ハロゲン、C5〜C7のシクロアルキル基、フェニル基または縮合多環式芳香族基がさらに置換可能である)。 The present invention also provides an organic electroluminescent device comprising a first electrode; a second electrode; and one or more organic layers provided between the first electrode and the second electrode, Provided is an organic electroluminescent device in which the organic layer contains one or more compounds represented by the following chemical formula 1:
Figure 2011504493
(In the chemical formula 1, R 1 to R 3 are each independently a phenyl group or a C10-C20 condensed polycyclic aromatic ring, and the R 1 to R 3 phenyl group or the C10-C20 In the condensed polycyclic aromatic ring, a C1-C20 alkyl group, a C1-C20 alkoxy group, a halogen, a C5-C7 cycloalkyl group, a phenyl group, or a condensed polycyclic aromatic group can be further substituted. is there).

本発明による有機電界(EL)発光素子は、有機層がEL領域を含み、当該EL領域は、ELホストとしての化学式1で表される1種以上の化合物と共に、1種以上のEL発光ドーパントを含む。本発明の有機EL素子に適用されるELドーパントは、特に限定されないが、下記化学式2乃至4のいずれかで表される化合物で例示される:

Figure 2011504493
Figure 2011504493
Figure 2011504493
In an organic electric field (EL) light emitting device according to the present invention, an organic layer includes an EL region, and the EL region includes one or more EL light emitting dopants together with one or more compounds represented by Formula 1 as an EL host. Including. The EL dopant applied to the organic EL device of the present invention is not particularly limited, but is exemplified by a compound represented by any one of the following chemical formulas 2 to 4:
Figure 2011504493
Figure 2011504493
Figure 2011504493

化学式3および化学式4においては、ArおよびArは、独立して、下記化学式:

Figure 2011504493
で表される、インデノフルオレン、フルオレンまたはスピロ−フルオレンであり、
11乃至R16は、それぞれ独立して、C1〜C20アルキル、およびC1〜C5アルキル置換基を有するもしくは有しないフェニルまたはナフチルからなる群から選択され;
Ar乃至Arは、それぞれ独立して、C5〜C20の芳香族または多環式芳香族環から選択され;但し、ArとArが同じであり、ArとArが同じであって、ArとArが同じである。
Figure 2011504493
AおよびBは、それぞれ独立して、化学結合、または
Figure 2011504493
を表し;
17およびR18は、それぞれ独立して、芳香族環または2以上の芳香族環が縮合している多環式芳香族環を表し;
19乃至R22は、それぞれ独立して、ハロゲン置換基を有するもしくは有しない直鎖または分岐鎖のC1〜C20のアルキル基を表し;
23乃至R26は、それぞれ独立して、水素もしくは芳香族基を表し;
Ar乃至Ar10は、それぞれ独立して、芳香族環または2以上の芳香族環が縮合されている多環式芳香族環を表す。 In Chemical Formula 3 and Chemical Formula 4, Ar 1 and Ar 2 are independently the following chemical formulas:
Figure 2011504493
Indenofluorene, fluorene or spiro-fluorene represented by:
R 11 to R 16 are each independently selected from the group consisting of C1-C20 alkyl, and phenyl or naphthyl with or without a C1-C5 alkyl substituent;
Ar 3 to Ar 6 are each independently selected from C5 to C20 aromatic or polycyclic aromatic rings; provided that Ar 1 and Ar 2 are the same, and Ar 3 and Ar 5 are the same. Ar 4 and Ar 6 are the same.
Figure 2011504493
A and B are each independently a chemical bond, or
Figure 2011504493
Represents;
R 17 and R 18 each independently represents an aromatic ring or a polycyclic aromatic ring in which two or more aromatic rings are condensed;
R 19 to R 22 each independently represents a linear or branched C1-C20 alkyl group with or without a halogen substituent;
R 23 to R 26 each independently represents hydrogen or an aromatic group;
Ar 7 to Ar 10 each independently represents an aromatic ring or a polycyclic aromatic ring in which two or more aromatic rings are condensed.

化学式3または化学式4の化合物は、具体的に下記式のいずれかで表される化合物で例示されうる:

Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
(前記化学式において、R19乃至R22は、メチル基またはエチル基を表す)。 The compound of Chemical Formula 3 or Chemical Formula 4 can be specifically exemplified by a compound represented by any of the following formulas:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
(In the chemical formula, R 19 to R 22 represent a methyl group or an ethyl group).

緑色のEL化合物は、下記化学式5乃至7のいずれかで表される化合物で例示されうる:

Figure 2011504493
Figure 2011504493
Figure 2011504493
(化学式6または化学式7においては、R27およびR28は、それぞれ独立して、2以上の芳香族環が縮合している多環式芳香族環を表し、R29乃至R32は、それぞれ独立して、芳香族環を表し、前記R27乃至R32の各芳香族環には、C1〜C20アルキル基がさらに置換可能である)。 The green EL compound may be exemplified by a compound represented by any one of the following chemical formulas 5 to 7:
Figure 2011504493
Figure 2011504493
Figure 2011504493
(In Chemical Formula 6 or Chemical Formula 7, R 27 and R 28 each independently represent a polycyclic aromatic ring in which two or more aromatic rings are condensed, and R 29 to R 32 are each independently And an aromatic ring, and each of the aromatic rings of R 27 to R 32 can be further substituted with a C1 to C20 alkyl group).

化学式6および化学式7の化合物は、具体的に下記式:

Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
のいずれかで表される化合物で例示されうる。 The compounds of Chemical Formula 6 and Chemical Formula 7 are specifically represented by the following formulas:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
It can be illustrated by the compound represented by either.

ベストモード
本発明は、実施例を参照することにより、本発明の新規の有機EL化合物を製造する方法に関してさらに説明され、この実施例は、例示のためにだけ提供され、何らかの手段によって本発明の範囲を限定することを意図するものではない。
Best Mode The invention will be further described with reference to the examples in relation to the process for producing the novel organic EL compounds of the invention, which examples are provided for illustration only and are provided by any means. It is not intended to limit the scope.

[製造例]化学式1で表される化合物の製造

Figure 2011504493
[Production Example] Production of Compound Represented by Chemical Formula 1
Figure 2011504493

化合物12の製造
9−ブロモアントラセン(58.3mmol)、ボロン酸誘導体(化合物11、70.0mmol)、およびテトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)(5.8mmol)をトルエン:エタノール(容量比2:1)の混合溶液に溶かした。これに2M炭酸ナトリウム水溶液を入れて、得られた混合物を120℃で5時間還流攪拌した。その後、温度を25℃に下げて、蒸留水を加えて反応を終了させた。酢酸エチルで抽出、減圧乾燥して、テトラヒドロフランとメタノールから再結晶させて化合物12を得た。
Preparation of Compound 12 9-Bromoanthracene (58.3 mmol), boronic acid derivative (Compound 11, 70.0 mmol), and tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) (5.8 mmol) Was dissolved in a mixed solution of toluene: ethanol (volume ratio 2: 1). To this was added 2M aqueous sodium carbonate solution, and the resulting mixture was stirred at 120 ° C. for 5 hours under reflux. Thereafter, the temperature was lowered to 25 ° C., and distilled water was added to terminate the reaction. Extraction with ethyl acetate, drying under reduced pressure, and recrystallization from tetrahydrofuran and methanol gave Compound 12.

化合物13の製造
上述のように得られた化合物12(46.0mmol)、N−ブロモスクシンイミド(50.6mmol)を窒素気流下でジクロロメタンに溶かした。得られた溶液を、次いで、25℃で5時間攪拌した。蒸留水を加えて反応を終了させた。ジクロロメタンで抽出し、減圧乾燥して、テトラヒドロフランとメタノールから再結晶させて、化合物13を得た。
Production of Compound 13 Compound 12 (46.0 mmol) and N-bromosuccinimide (50.6 mmol) obtained as described above were dissolved in dichloromethane under a nitrogen stream. The resulting solution was then stirred at 25 ° C. for 5 hours. Distilled water was added to terminate the reaction. Extraction with dichloromethane, drying under reduced pressure, and recrystallization from tetrahydrofuran and methanol gave Compound 13.

化合物2の製造
上述のように得られた化合物13(39.0mmol)を注意深く精製したテトラヒドロフランに溶かした。得られた溶液を−78℃に冷却し、これにn−ブチルリチウム(ヘキサン中1.6M)(46.8mmol)を徐々に添加した。この混合物を1時間攪拌した後、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(78.0mmol)を添加した。温度を徐々に25℃まで上げて、この混合物を一日間攪拌した。蒸留水を加えて反応を終了させ、酢酸エチルで抽出、減圧乾燥した。テトラヒドロフランとメタノールから再結晶させて、化合物2を得た。
Preparation of Compound 2 Compound 13 (39.0 mmol) obtained as described above was dissolved in carefully purified tetrahydrofuran. The resulting solution was cooled to −78 ° C., and n-butyllithium (1.6M in hexane) (46.8 mmol) was gradually added thereto. After the mixture was stirred for 1 hour, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (78.0 mmol) was added. The temperature was gradually raised to 25 ° C. and the mixture was stirred for 1 day. Distilled water was added to terminate the reaction, extracted with ethyl acetate, and dried under reduced pressure. Recrystallization from tetrahydrofuran and methanol gave Compound 2.

化合物3の製造
2−クロロ−9,10−アントラキノン(29.7mmol)、化合物2(35.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)(3.0mmol)、アリクワット336(aliquat336)(3.0mmol)をトルエンに溶かした。これに2M炭酸カリウム水溶液を添加して、得られた混合物を3時間還流攪拌した。その後、温度を25℃に下げて、蒸留水を加えて反応を終了させた。酢酸エチルで抽出、減圧乾燥して、メタノールとテトラヒドロフランから再結晶させて、化合物3を得た。
Production of Compound 3 2-Chloro-9,10-anthraquinone (29.7 mmol), Compound 2 (35.5 mmol), Tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) (3.0 mmol) Aliquat 336 (3.0 mmol) was dissolved in toluene. To this was added 2M aqueous potassium carbonate solution, and the resulting mixture was stirred at reflux for 3 hours. Thereafter, the temperature was lowered to 25 ° C., and distilled water was added to terminate the reaction. Extraction with ethyl acetate, drying under reduced pressure, and recrystallization from methanol and tetrahydrofuran gave Compound 3.

化合物6の製造
化合物4または5のブロモ化合物(54.3mmol)にテトラヒドロフランを添加して、25℃で10分間攪拌して完全に溶かした。−72℃に温度を下げた後、n−ブチルリチウム(ヘキサン中2.5M)(65.1mmol)を徐々に滴加した。1時間後、これに化合物3(21.7mmol)を加えた後、徐々に25℃に温度を上げた。この反応混合物を26時間攪拌した後、これに飽和塩化アンモニウム水溶液を加えて、得られた混合物を1時間攪拌した。減圧ろ過し、有機層を分離、蒸発させて化合物6を得た。
Preparation of Compound 6 Tetrahydrofuran was added to the bromo compound (54.3 mmol) of Compound 4 or 5, and stirred at 25 ° C. for 10 minutes to completely dissolve. After the temperature was lowered to −72 ° C., n-butyllithium (2.5 M in hexane) (65.1 mmol) was gradually added dropwise. After 1 hour, compound 3 (21.7 mmol) was added thereto, and the temperature was gradually raised to 25 ° C. The reaction mixture was stirred for 26 hours, saturated aqueous ammonium chloride was added thereto, and the resulting mixture was stirred for 1 hour. After filtration under reduced pressure, the organic layer was separated and evaporated to give compound 6.

化合物1の製造
上述のように得られた化合物6(21.7mmol)、ヨウ化カリウム(KI)(86.8mmol)、次亜リン酸ナトリウム・一水和物(NaHPO・HO)(130.2mmol)を酢酸に溶かして、この溶液を21時間還流攪拌した。25℃に冷却した後、攪拌しつつ水を加え、生成された固体をろ別した。得られた固体をメタノール、酢酸エチル、テトラヒドロフランで順に洗浄し、薄いアイボリー色の固体として、目的化合物1を得た。
Preparation of Compound 1 Compound 6 (21.7 mmol), potassium iodide (KI) (86.8 mmol), sodium hypophosphite monohydrate (NaH 2 PO 2 .H 2 O) obtained as described above ) (130.2 mmol) was dissolved in acetic acid and the solution was stirred at reflux for 21 hours. After cooling to 25 ° C., water was added with stirring, and the produced solid was filtered off. The obtained solid was washed sequentially with methanol, ethyl acetate, and tetrahydrofuran to obtain the target compound 1 as a light ivory solid.

[製造例1]化合物101の製造

Figure 2011504493
[Production Example 1] Production of Compound 101
Figure 2011504493

化合物300の製造
9−ブロモアントラセン15.0g(58.3mmol)、フェニルボロン酸(化合物200)8.5g(70.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)6.7g(5.8mmol)をトルエン300mLとエタノール150mLの混合溶液に溶かした。これに2M炭酸ナトリウム水溶液145mLを添加した後、得られた混合物を120℃で5時間還流攪拌した。その後、温度を25℃に下げて、蒸留水150mLを加えて反応を終了させた。酢酸エチル200mLで抽出、減圧乾燥して、テトラヒドロフラン20mLとメタノール300mLから再結晶させて、目的化合物300(12.0g、47.2mmol)を得た。
Production of Compound 300 9-Bromoanthracene 15.0 g (58.3 mmol), Phenylboronic acid (Compound 200) 8.5 g (70.0 mmol), Tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 6.7 g (5.8 mmol) was dissolved in a mixed solution of 300 mL of toluene and 150 mL of ethanol. To this was added 145 mL of a 2M aqueous sodium carbonate solution, and the resulting mixture was stirred at 120 ° C. for 5 hours under reflux. Thereafter, the temperature was lowered to 25 ° C., and 150 mL of distilled water was added to terminate the reaction. Extraction with 200 mL of ethyl acetate, drying under reduced pressure, and recrystallization from 20 mL of tetrahydrofuran and 300 mL of methanol gave the target compound 300 (12.0 g, 47.2 mmol).

化合物400の製造
化合物300(11.7g、46.0mmol)およびN−ブロモスクシンイミド9.0g(50.6mmol)を窒素気流下でジクロロメタン360mLに溶かした。得られた溶液を、次いで、25℃で5時間攪拌した。蒸留水300mLを加えて反応を終了させた。ジクロロメタン200mLで抽出、減圧乾燥して、テトラヒドロフラン20mLとメタノール200mLから再結晶させて、目的化合物400(13.0g、39.0mmol)を得た。
Preparation of Compound 400 Compound 300 (11.7 g, 46.0 mmol) and 9.0 g (50.6 mmol) of N-bromosuccinimide were dissolved in 360 mL of dichloromethane under a nitrogen stream. The resulting solution was then stirred at 25 ° C. for 5 hours. 300 mL of distilled water was added to terminate the reaction. Extraction with 200 mL of dichloromethane, drying under reduced pressure, and recrystallization from 20 mL of tetrahydrofuran and 200 mL of methanol gave the target compound 400 (13.0 g, 39.0 mmol).

化合物500の製造
化合物400(13.0g、39.0mmol)を注意深く精製したテトラヒドロフラン200mLに溶かした。得られた溶液を−78℃に冷却し、これにn−ブチルリチウム(ヘキサン中1.6M)29.3mL(46.8mmol)を徐々に添加した。この混合物を1時間攪拌した後、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン15.9mL(78.0mmol)を添加した。温度を25℃まで徐々に上げて、この混合物を一日間攪拌した後、蒸留水200mLを加えて反応を終了させ、この混合物を酢酸エチル300mLで抽出、減圧乾燥して、テトラヒドロフラン20mLとメタノール200mLから再結晶させて、目的化合物500(13.5g、35.5mmol)を得た。
Preparation of Compound 500 Compound 400 (13.0 g, 39.0 mmol) was dissolved in 200 mL carefully purified tetrahydrofuran. The obtained solution was cooled to −78 ° C., and 29.3 mL (46.8 mmol) of n-butyllithium (1.6M in hexane) was gradually added thereto. After the mixture was stirred for 1 hour, 15.9 mL (78.0 mmol) of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was added. The temperature was gradually raised to 25 ° C., and the mixture was stirred for one day, and then 200 mL of distilled water was added to terminate the reaction. The mixture was extracted with 300 mL of ethyl acetate and dried under reduced pressure, and from 20 mL of tetrahydrofuran and 200 mL of methanol, Recrystallization gave the target compound 500 (13.5 g, 35.5 mmol).

化合物600の製造
2−クロロ−9,10−アントラキノン7.2g(29.7mmol)、化合物500(13.5g、35.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)3.5g(3.0mmol)、アリクワット336(aliquat336)1.4mL(3.0mmol)をトルエン300mLに溶かした。これに2M炭酸カリウム水溶液150mLを添加したあと、得られた混合物を3時間還流攪拌した。その後、温度を25℃に下げて、蒸留水100mLを加えて反応を終了させた。酢酸エチル200mLで抽出、減圧乾燥して、メタノール200mLとテトラヒドロフラン50mLから再結晶させて、目的化合物600(10.0g、21.7mmol)を得た。
Preparation of Compound 600 2-chloro-9,10-anthraquinone 7.2 g (29.7 mmol), compound 500 (13.5 g, 35.5 mmol), tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 3.5 g (3.0 mmol) of aliquat 336 (aliquat 336) 1.4 mL (3.0 mmol) was dissolved in 300 mL of toluene. After adding 150 mL of 2M aqueous potassium carbonate solution thereto, the resulting mixture was stirred at reflux for 3 hours. Thereafter, the temperature was lowered to 25 ° C., and 100 mL of distilled water was added to terminate the reaction. Extraction with 200 mL of ethyl acetate, drying under reduced pressure, and recrystallization from 200 mL of methanol and 50 mL of tetrahydrofuran gave the target compound 600 (10.0 g, 21.7 mmol).

化合物700の製造
2−ブロモナフタレン11.2g(54.3mmol)にテトラヒドロフラン250mLを添加し、この混合物を25℃で10分間攪拌して完全に溶かした。−72℃に温度を下げた後、n−ブチルリチウム(ヘキサン中2.5M)26.0mL(65.1mmol)を徐々に滴加した。1時間後、これに化合物600(10.0g、21.7mmol)を加えて、温度を徐々に25℃まで上げた。反応混合物を26時間攪拌した後、これに飽和塩化アンモニウム水溶液を加えて、得られた混合物を1時間攪拌した。減圧ろ過し、有機層を分離、蒸発させて目的化合物700(15.6g、21.7mmol)を得た。
Preparation of Compound 700 To 11.2 g (54.3 mmol) of 2-bromonaphthalene was added 250 mL of tetrahydrofuran, and the mixture was stirred at 25 ° C. for 10 minutes to completely dissolve. After lowering the temperature to −72 ° C., 26.0 mL (65.1 mmol) of n-butyllithium (2.5 M in hexane) was gradually added dropwise. After 1 hour, compound 600 (10.0 g, 21.7 mmol) was added thereto, and the temperature was gradually raised to 25 ° C. After the reaction mixture was stirred for 26 hours, a saturated aqueous ammonium chloride solution was added thereto, and the resulting mixture was stirred for 1 hour. After filtration under reduced pressure, the organic layer was separated and evaporated to obtain the target compound 700 (15.6 g, 21.7 mmol).

化合物101の製造
化合物700(15.6g、21.7mmol)、ヨウ化カリウム(KI)14.4g(86.8mmol)、次亜リン酸ナトリウム・一水和物(NaHPO・HO)13.8g(130.2mmol)を酢酸250mLに溶かして、この溶液を21時間還流攪拌した。この溶液を25℃に冷却した後、攪拌しつつ水を400mL添加し、生成した固体をろ別した。得られた固体をメタノール300mL、酢酸エチル100mL、テトラヒドロフラン50mLで順に洗浄し、薄いアイボリー色の目的化合物101(10.0g、68%)を得た。
HNMR(CDCl,200MHz)δ=7.22(m,1H),7.32−7.35(m,12H),7.48−7.54(m,5H),7.67−7.73(m,13H),7.89(m,3H)
MS/FAB:682(実測値)682.85(計算値)
Preparation of Compound 101 Compound 700 (15.6 g, 21.7 mmol), potassium iodide (KI) 14.4 g (86.8 mmol), sodium hypophosphite monohydrate (NaH 2 PO 2 .H 2 O) 13.8 g (130.2 mmol) was dissolved in 250 mL of acetic acid and the solution was stirred at reflux for 21 hours. After cooling this solution to 25 degreeC, 400 mL of water was added, stirring, and the produced | generated solid was separated by filtration. The obtained solid was washed sequentially with 300 mL of methanol, 100 mL of ethyl acetate, and 50 mL of tetrahydrofuran to obtain the target compound 101 (10.0 g, 68%) having a light ivory color.
1 HNMR (CDCl 3 , 200 MHz) δ = 7.22 (m, 1H), 7.32-7.35 (m, 12H), 7.48-7.54 (m, 5H), 7.67-7 .73 (m, 13H), 7.89 (m, 3H)
MS / FAB: 682 (actual value) 682.85 (calculated value)

[製造例2〜36]
製造例1に記載された手順に従って、下記表1の有機EL化合物が製造された。各化合物のNMRデータは表2に示される。
[Production Examples 2-36]
According to the procedure described in Production Example 1, organic EL compounds shown in Table 1 below were produced. The NMR data for each compound is shown in Table 2.

Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493

Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493

[実施例1〜13]本発明による化合物を使用したOLED素子の製造
本発明の電界発光物質を使用することによりOLED素子を製造した。
まず、OLED用ガラス(三星−コーニング社製造)から得られた透明電極ITO薄膜(15Ω/□)を、トリクロロエチレン、アセトン、エタノール、蒸留水を順に使用して超音波洗浄を行った後、イソプロパノールに入れて保管した後使用した。
次に、真空蒸着装置の基体フォルダにITO基体を設置し、真空蒸着装置のセル内に下記化学式で表される4,4’,4”−トリス(N,N−(2−ナフチル)−フェニルアミノ)トリフェニルアミン(2−TNATA)を入れて、次いで、チャンバー内の真空度が10−6torrに至るまで排気した。セルに電流を印加して2−TNATAを蒸発させて、ITO基体上に60nm厚の正孔注入層を蒸着した。

Figure 2011504493
[Examples 1 to 13] Manufacture of an OLED element using a compound according to the present invention An OLED element was manufactured by using the electroluminescent material of the present invention.
First, the transparent electrode ITO thin film (15Ω / □) obtained from the glass for OLED (manufactured by Samsung-Corning Co., Ltd.) was subjected to ultrasonic cleaning using trichlorethylene, acetone, ethanol and distilled water in this order, and then to isopropanol. Used after storage.
Next, an ITO substrate is placed in the substrate folder of the vacuum deposition apparatus, and 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) -phenyl represented by the following chemical formula is placed in the cell of the vacuum deposition apparatus. Amino) triphenylamine (2-TNATA) was added and then evacuated until the degree of vacuum in the chamber reached 10 −6 torr, a current was applied to the cell to evaporate 2-TNATA, and the A 60 nm thick hole injection layer was evaporated.
Figure 2011504493

次いで、真空蒸着装置の他のセル内に、下記化学式で表されるN,N’−ビス(α−ナフチル)−N,N’−ジフェニル−4,4’−ジアミン(NPB)を入れて、セルに電流を印加しNPBを蒸発させて、正孔注入層上に20nm厚の正孔輸送層を蒸着した。

Figure 2011504493
Next, N, N′-bis (α-naphthyl) -N, N′-diphenyl-4,4′-diamine (NPB) represented by the following chemical formula is put in another cell of the vacuum deposition apparatus, A current was applied to the cell to evaporate NPB, and a 20 nm thick hole transport layer was deposited on the hole injection layer.
Figure 2011504493

正孔注入層および正孔輸送層を形成した後、その上に電界発光層を次のように蒸着した。真空蒸着装置の一方のセル内に、本発明による化合物(例えば、化合物121)を入れて、また他のセルには、ドーパント物質として下記構造のペリレンをを入れた。二つの物質を異なる速度で蒸発させて、ペリレンを2〜5mol%の濃度でドーピングすることにより、前記正孔輸送層上に35nm厚の電界発光層を蒸着した。

Figure 2011504493
After forming the hole injection layer and the hole transport layer, an electroluminescent layer was deposited thereon as follows. In one cell of the vacuum deposition apparatus, the compound according to the present invention (for example, Compound 121) was put, and in the other cell, perylene having the following structure was put as a dopant substance. The electroluminescent layer having a thickness of 35 nm was deposited on the hole transport layer by evaporating the two substances at different rates and doping perylene with a concentration of 2 to 5 mol%.
Figure 2011504493

次いで、電子輸送層として、下記化学式で表されるトリス(8−ヒドロキシキノリン)−アルミニウム(III)(Alq)を20nm厚で蒸着し、電子注入層として、下記化学式で表されるリチウムキノレート(Liq)を1〜2nm厚で蒸着した。その後、別の蒸着装置を使用して、Al陰極を150nm厚で蒸着してOLEDを製造した。

Figure 2011504493
Next, as an electron transport layer, tris (8-hydroxyquinoline) -aluminum (III) (Alq) represented by the following chemical formula was deposited at a thickness of 20 nm, and as an electron injection layer, lithium quinolate ( Liq) was deposited with a thickness of 1-2 nm. Then, using another vapor deposition apparatus, an Al cathode was vapor-deposited with a thickness of 150 nm to produce an OLED.
Figure 2011504493

OLED素子に使用された各物質は、10−6torrで真空昇華により精製した後で使用された。 Each material used in the OLED device was used after purification by vacuum sublimation at 10 −6 torr.

[実施例14〜26]本発明による化合物を使用することによるOLED素子の製造
実施例1におけるように、正孔注入層および正孔輸送層を形成し、その上にEL層を以下のように蒸着させた。真空蒸着装置の一方のセル内に、本発明による化合物(例えば、化合物121)を入れて、また他方のセルには、下記構造のクマリン545T(C545T)を入れた。2つの物質を異なる速度で蒸発させて、クマリン545T(C545T)を2〜5mol%の濃度でドーピングすることにより、前記正孔輸送層上に35nm厚のEL層を蒸着した。

Figure 2011504493
[Examples 14 to 26] Production of an OLED device by using a compound according to the present invention As in Example 1, a hole injection layer and a hole transport layer were formed, and an EL layer was formed thereon as follows. Evaporated. A compound according to the present invention (for example, Compound 121) was placed in one cell of a vacuum deposition apparatus, and Coumarin 545T (C545T) having the following structure was placed in the other cell. The two materials were evaporated at different rates and a 35 nm thick EL layer was deposited on the hole transport layer by doping coumarin 545T (C545T) at a concentration of 2-5 mol%.
Figure 2011504493

実施例1におけるのと同じ手順に従って、電子輸送層と電子注入層を蒸着した後、別の蒸着装置を使用して、Al陰極を150nm厚で蒸着してOLEDを製造した。   According to the same procedure as in Example 1, after depositing an electron transport layer and an electron injection layer, an Al cathode was deposited with a thickness of 150 nm using another vapor deposition apparatus to produce an OLED.

[比較例1]従来のEL物質を使用することによるOLED素子の製造
実施例1におけるように正孔注入層および正孔輸送層を形成した。真空蒸着装置の一方のセル内には、青色EL物質としてジナフチルアントラセン(DNA)を入れて、他方のセルには、別の青色EL物質としてペリレンを入れた。蒸着速度を100:1にして、前記正孔輸送層上に35nm厚の電界発光層を蒸着した。

Figure 2011504493
[Comparative Example 1] Production of OLED device by using conventional EL material A hole injection layer and a hole transport layer were formed as in Example 1. In one cell of the vacuum deposition apparatus, dinaphthylanthracene (DNA) was put as a blue EL material, and perylene was put in another cell as another blue EL material. An electroluminescent layer having a thickness of 35 nm was deposited on the hole transport layer at a deposition rate of 100: 1.
Figure 2011504493

実施例1と同じ手順に従って、電子輸送層と電子注入層を蒸着した後、別の蒸着装置を使用して、Al陰極を150nm厚で蒸着してOLEDを製造した。   In accordance with the same procedure as in Example 1, an electron transport layer and an electron injection layer were vapor-deposited, and then an Al cathode was vapor-deposited with a thickness of 150 nm using another vapor deposition apparatus to produce an OLED.

[比較例2]従来のEL物質を使用することによるOLED素子の製造
実施例1におけるように、正孔注入層および正孔輸送層を形成した。前記蒸着装置の他のセルにELホスト物質としてトリス(8−ヒドロキシキノリン)−アルミニウム(III)(Alq)を入れて、さらに他方のセルには、クマリン545T(C545T)を入れた。2つの物質を異なる速度で蒸発させてドーピングすることにより、前記正孔輸送層上に30nm厚のEL層を蒸着した。ドーピング濃度は、このましくは、Alq基準で2〜5mol%であった。

Figure 2011504493
[Comparative Example 2] Manufacture of an OLED device by using a conventional EL material As in Example 1, a hole injection layer and a hole transport layer were formed. Tris (8-hydroxyquinoline) -aluminum (III) (Alq) was placed in the other cell of the vapor deposition apparatus as an EL host material, and Coumarin 545T (C545T) was placed in the other cell. An EL layer having a thickness of 30 nm was deposited on the hole transport layer by evaporating and doping two substances at different rates. The doping concentration is preferably 2 to 5 mol% based on Alq.
Figure 2011504493

実施例1と同じ手順に従って、電子輸送層と電子注入層を蒸着した後、別の蒸着装置を使用して、Al陰極を150nm厚で蒸着してOLEDを製造した。   In accordance with the same procedure as in Example 1, an electron transport layer and an electron injection layer were vapor-deposited, and then an Al cathode was vapor-deposited with a thickness of 150 nm using another vapor deposition apparatus to produce an OLED.

[比較例3]従来のEL物質を使用することによるOLED素子の製造
実施例1におけるように、正孔注入層および正孔輸送層を形成した。前記真空蒸着装置の他のセルに、青色EL物質としてジナフチルアントラセン(DNA)を入れて、また他方のセルには、クマリン545T(C545T)を入れた。2つの物質を異なる速度で蒸発させてドーピングすることにより、前記正孔輸送層上に30nm厚のEL層を蒸着した。ドーピング濃度は、好ましくは、Alq基準で2〜5mol%であった。
[Comparative Example 3] Manufacture of an OLED element by using a conventional EL material As in Example 1, a hole injection layer and a hole transport layer were formed. Dinaphthylanthracene (DNA) was placed as a blue EL material in the other cell of the vacuum deposition apparatus, and Coumarin 545T (C545T) was placed in the other cell. An EL layer having a thickness of 30 nm was deposited on the hole transport layer by evaporating and doping two substances at different rates. The doping concentration was preferably 2 to 5 mol% based on Alq.

[比較例4]従来のEL物質を使用することによるOLED素子の製造
実施例1におけるように、正孔注入層および正孔輸送層を形成した。前記真空蒸着装置の他方のセルに、青色EL物質として下記構造を有する米国特許出願公開第20060046097A1号に開示された化合物Aを入れて、さらに別のセルに、クマリン545T(C545T)を入れた。2つの物質を異なる速度で蒸発させてドーピングすることにより、前記正孔輸送層上に30nm厚のEL層を蒸着した。ドーピング濃度は、好ましくは、Alq基準で2〜5mol%であった。

Figure 2011504493
[Comparative Example 4] Manufacture of OLED Device by Using Conventional EL Material A hole injection layer and a hole transport layer were formed as in Example 1. Compound A disclosed in US Patent Application Publication No. 2006046097A1 having the following structure as a blue EL substance was placed in the other cell of the vacuum deposition apparatus, and Coumarin 545T (C545T) was placed in another cell. An EL layer having a thickness of 30 nm was deposited on the hole transport layer by evaporating and doping two substances at different rates. The doping concentration was preferably 2 to 5 mol% based on Alq.
Figure 2011504493

実施例1におけるのと同じ手順に従って、電子輸送層と電子注入層を蒸着した後、別の蒸着装置を使用して、Al陰極を150nm厚で蒸着してOLEDを製造した。   According to the same procedure as in Example 1, after depositing an electron transport layer and an electron injection layer, an Al cathode was deposited with a thickness of 150 nm using another vapor deposition apparatus to produce an OLED.

[実験例1]製造されたOLED素子の青色EL特性
本発明に従った有機EL化合物を含む実施例1〜13から製造されたOLED、および従来の電界発光化合物を含む比較例1から製造されたOLEDの青色発光効率を、個々に、500cd/mおよび2,000cd/mで測定し、その結果を表3に示した。
[Experimental Example 1] Blue EL characteristics of manufactured OLED element OLED manufactured from Examples 1 to 13 containing an organic EL compound according to the present invention, and manufactured from Comparative Example 1 containing a conventional electroluminescent compound the blue light-emitting efficiency of the OLED, individually, measured at 500 cd / m 2 and 2,000 cd / m 2, and the results are shown in Table 3.

Figure 2011504493
Figure 2011504493

上記表3は、本発明の物質を青色EL素子に適用した結果を示す。表3から認められ得るように、本発明のEL物質の発光効率は、低輝度で5.26〜6.30cd/Aおよび高輝度で4.80〜5.88cd/Aであったが、一方で、比較例1のEL物質の発光効率は、低輝度および高輝度においてそれぞれ4.45cd/Aおよび3.6cd/Aであった。よって、本発明による有機EL化合物を使用したEL素子が、比較例のと比べて1.5cd/A以上高い発光効率を示した。特に、高輝度では、各化合物について、2cd/A以上の発光効率の改善が確認された。   Table 3 above shows the results of applying the substance of the present invention to a blue EL device. As can be seen from Table 3, the luminous efficiency of the EL material of the present invention was 5.26-6.30 cd / A at low brightness and 4.80-5.88 cd / A at high brightness, Thus, the luminous efficiency of the EL material of Comparative Example 1 was 4.45 cd / A and 3.6 cd / A at low luminance and high luminance, respectively. Therefore, the EL device using the organic EL compound according to the present invention showed a luminous efficiency higher by 1.5 cd / A or more than that of the comparative example. In particular, at high brightness, an improvement in luminous efficiency of 2 cd / A or more was confirmed for each compound.

さらに、色純度に関しては、本発明のホスト物質を適用した場合、若干の改善が観察された。上述のように発光効率と色純度とを同時に改善する結果は、本発明のEL物質が優れた特性を有していることを立証する。   Furthermore, with respect to color purity, a slight improvement was observed when the host material of the present invention was applied. As described above, the result of simultaneously improving the luminous efficiency and the color purity proves that the EL material of the present invention has excellent characteristics.

図1は、従来のEL物質であるDNA:ペリレンを使用した比較例1の発光効率−電流密度特性を示し;図2および図3は、本発明による化合物121をEL物質として使用した実施例9の電流密度−電圧特性、および発光効率−電流密度特性を示す。図に示される結果から、著しい特性改善が確認された。   FIG. 1 shows the luminous efficiency-current density characteristics of Comparative Example 1 using the conventional EL material DNA: perylene; FIGS. 2 and 3 show Example 9 using the compound 121 of the present invention as the EL material. Current density-voltage characteristics and luminous efficiency-current density characteristics are shown. From the results shown in the figure, a significant improvement in characteristics was confirmed.

[実験例2]製造されたOLED素子の緑色EL特性
本発明による有機EL化合物を含む実施例14〜26から製造されたOLED、および従来の電界発光化合物を含む比較例1から製造されたOLEDの緑色発光効率を個々に、5,000cd/mおよび20,000cd/mで測定し、その結果を表4に示した。
[Experimental Example 2] Green EL characteristics of manufactured OLED element OLEDs manufactured from Examples 14 to 26 containing an organic EL compound according to the present invention and OLEDs manufactured from Comparative Example 1 containing a conventional electroluminescent compound The green luminous efficiency was measured individually at 5,000 cd / m 2 and 20,000 cd / m 2 , and the results are shown in Table 4.

Figure 2011504493
Figure 2011504493

上記表4は、本発明の物質が適用された緑色EL素子の特性の結果を示す。実験例1の青色EL素子と同様に、低輝度および高輝度において、従来のEL物質に比べて優れた特性が確認された。   Table 4 above shows the results of the characteristics of the green EL device to which the substance of the present invention was applied. Similar to the blue EL element of Experimental Example 1, characteristics superior to those of conventional EL materials were confirmed at low luminance and high luminance.

比較例2のAlqホストに対して70%以上、比較例3の従来のホストに対して40%以上の効率改善が確認された。この結果は、従来の緑色EL物質の限界を超えて克服することを示す。特に、高輝度における著しい性能改善は、この化合物が、高輝度が要求される大画面用OLED、または極限の特性を要求する2インチ級受動型OLEDについての実用に供されるのを充分に可能にすると推定される。   An efficiency improvement of 70% or more with respect to the Alq host of Comparative Example 2 and 40% or more with respect to the conventional host of Comparative Example 3 was confirmed. This result shows overcoming the limitations of conventional green EL materials. In particular, significant performance improvements at high brightness allow this compound to be put into practical use for large screen OLEDs that require high brightness or 2 inch class passive OLEDs that require extreme properties. It is estimated that

色度座標に関しては有意差はなかった。よって、色純度を維持しつつ改善された発光効率を有する本発明のEL物質は、既存の物質を一段階超えた、画期的な発明であると言える。   There was no significant difference in terms of chromaticity coordinates. Therefore, it can be said that the EL material of the present invention having improved luminous efficiency while maintaining color purity is an epoch-making invention that exceeds existing materials by one step.

図4は、従来の緑色EL物質であるAlq:C545Tを使用した比較例2の発光効率−輝度特性を示し、図5は、本発明による化合物121をEL物質として使用した実施例22の緑色EL素子の発光効率−電流密度特性を示す。図6は、従来のEL物質を使用した比較例3および比較例4、並びにEL物質として本発明による化合物121を使用した実施例22の緑色EL素子の発光効率−電流密度特性を示す。   FIG. 4 shows the luminous efficiency-luminance characteristics of Comparative Example 2 using Alq: C545T, which is a conventional green EL material, and FIG. 5 shows the green EL of Example 22 using Compound 121 according to the present invention as the EL material. The light emission efficiency-current density characteristics of the device are shown. FIG. 6 shows the luminous efficiency-current density characteristics of the green EL elements of Comparative Example 3 and Comparative Example 4 using a conventional EL material, and Example 22 using the compound 121 according to the present invention as the EL material.

本発明のEL物質は、青色OLEDおよび緑色OLEDの双方に適用可能であって、性能面で非常に優れた結果を示した。この結果は、優れたEL物質の非常に目立つ特性を示す。このような特性を有した物質の発明は、OLEDパネル構造の単純化をもたらし、結果的に、OLED製造上の費用を低減させるといった付随的結果をもたらす。この優れた特性により、OLED分野の発展に革新的な結果が起こりうる。   The EL material of the present invention was applicable to both blue OLED and green OLED, and showed excellent results in terms of performance. This result shows the very conspicuous properties of excellent EL materials. The invention of a material having such properties provides the attendant consequences of simplifying the OLED panel structure and consequently reducing the cost of manufacturing the OLED. This excellent property can lead to innovative results in the development of the OLED field.

図7は、本発明による化合物121をEL物質として使用した実施例22の緑色EL素子と、比較例2の緑色EL素子の色純度との比較を示す。従来の純粋な緑色EL物質と比較して優位な差を示さないことから、本発明のEL物質は良好なEL色特性を示した。実施例22のEL素子のELスペクトルでは、520nmでの典型的な緑色ELピークが確認された。このことは、青色EL特性を有する本発明の有機EL化合物が、ELドーパントの特性を最大水準まで引き出すという非常に良好な電気的特性を有しているという事実を示している。   FIG. 7 shows a comparison between the color purity of the green EL device of Example 22 and the green EL device of Comparative Example 2 using the compound 121 of the present invention as the EL material. The EL material of the present invention showed good EL color characteristics because it does not show a significant difference compared to the conventional pure green EL material. In the EL spectrum of the EL device of Example 22, a typical green EL peak at 520 nm was confirmed. This indicates the fact that the organic EL compound of the present invention having blue EL characteristics has very good electrical characteristics that bring out the characteristics of the EL dopant to the maximum level.

特に、従来のEL物質と比較して、本発明に従った物質の優れた寿命特性は、良好な電子伝導性を有する従来の物質とは対照的に、本発明の物質の最大限の利点を達成する。   In particular, the superior lifetime properties of the material according to the present invention compared to the conventional EL material, in contrast to the conventional material with good electronic conductivity, the maximum advantage of the material of the present invention. Achieve.

アントラセンの2番位置に9−アリールアントリルの10番位置を導入することにより、分子間オービタルの重畳効果が改善され、そしてドーパントとのエネルギー準位関係をより有利にして、単純な従来の9,10−ジアリールアントラセン構造における短所を補完する。   By introducing the 10th position of 9-arylanthryl at the 2nd position of anthracene, the effect of superposition of intermolecular orbitals is improved, and the energy level relationship with the dopant is more advantageous, and the simple conventional 9 , 10-diarylanthracene structure is complemented.

本発明による電界発光化合物は、良好な発光効率および物質の優れた寿命特性を有し、よって、駆動寿命が非常に良好なOLED素子を製造することができる。   The electroluminescent compounds according to the present invention have good luminous efficiency and excellent lifetime characteristics of the material, and thus can produce OLED devices with very good driving lifetime.

Claims (9)

下記化学式1で表される有機電界発光物質:
Figure 2011504493
(化学式1において、R乃至Rは、それぞれ独立して、フェニル基またはC10〜C20の縮合多環式芳香族環を表し、前記R乃至Rのフェニル基またはC10〜C20の縮合多環式芳香族環には、C1〜C20のアルキル基、C1〜C20のアルコキシ基、ハロゲン、C5〜C7のシクロアルキル基、フェニル基または縮合多環式芳香族基がさらに置換可能である)。
Organic electroluminescent material represented by the following chemical formula 1:
Figure 2011504493
(In Chemical Formula 1, R 1 to R 3 each independently represents a phenyl group or a C10-C20 condensed polycyclic aromatic ring, and the R 1 to R 3 phenyl group or the C10-C20 condensed polycyclic ring. The cyclic aromatic ring can be further substituted with a C1 to C20 alkyl group, a C1 to C20 alkoxy group, a halogen, a C5 to C7 cycloalkyl group, a phenyl group, or a condensed polycyclic aromatic group).
化学式1のR乃至Rが、それぞれ独立して、フェニル、ナフチル、アントリル、フルオレニル、フェナントリル、フルオランセニル、ピレニル、ぺリレニルまたはナフタセニルからなる群から選択され;場合によって、フェニル、ナフチル、アントリル、フルオレニル、フェナントリル、フルオランセニル、ピレニル、ぺリレニルおよびナフタセニルは、C1〜C20のアルキル基、C1〜C20のアルコキシ基、ハロゲン原子、C5〜C7のシクロアルキル基、フェニル基または縮合多環式芳香族基で置換されている、請求項1に記載の有機電界発光物質。 R 1 to R 3 in Formula 1 are each independently selected from the group consisting of phenyl, naphthyl, anthryl, fluorenyl, phenanthryl, fluoranthenyl, pyrenyl, perylenyl, or naphthacenyl; optionally phenyl, naphthyl, anthryl, fluorenyl , Phenanthryl, fluoranthenyl, pyrenyl, perylenyl and naphthacenyl are substituted with C1-C20 alkyl group, C1-C20 alkoxy group, halogen atom, C5-C7 cycloalkyl group, phenyl group or condensed polycyclic aromatic group The organic electroluminescent material according to claim 1, wherein 下記化学式:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
で表される化合物から選択される、請求項2に記載の有機電界発光物質。
The following chemical formula:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
The organic electroluminescent material according to claim 2, which is selected from the compounds represented by:
第1の電極;第2の電極;および前記第1の電極と第2の電極との間に設けられる1以上の有機層を含んでなる有機電界発光素子であって、
前記有機層が下記化学式1で表される化合物を1種以上含む、有機電界発光素子:
Figure 2011504493
(化学式1において、R乃至Rは、それぞれ独立して、フェニル基またはC10〜C20の縮合多環式芳香族環を表し、前記R乃至Rのフェニル基もしくはC10〜C20の縮合多環式芳香族環には、C1〜C20のアルキル基、C1〜C20のアルコキシ基、ハロゲン、C5〜C7のシクロアルキル基、フェニル基または縮合多環式芳香族基がさらに置換可能である)。
An organic electroluminescent element comprising: a first electrode; a second electrode; and one or more organic layers provided between the first electrode and the second electrode,
Organic electroluminescent device in which the organic layer contains one or more compounds represented by the following chemical formula 1:
Figure 2011504493
(In Formula 1, each of R 1 to R 3 independently represents a phenyl group or a C10-C20 condensed polycyclic aromatic ring, and the R 1 to R 3 phenyl group or the C10-C20 condensed polycyclic ring. The cyclic aromatic ring can be further substituted with a C1 to C20 alkyl group, a C1 to C20 alkoxy group, a halogen, a C5 to C7 cycloalkyl group, a phenyl group, or a condensed polycyclic aromatic group).
有機層が電界発光領域を含み、当該電界発光領域は、化学式1で表される1種以上の化合物と1種以上の電界発光ドーパントとを含む、請求項4に記載の有機電界発光素子。   The organic electroluminescent device according to claim 4, wherein the organic layer includes an electroluminescent region, and the electroluminescent region includes one or more compounds represented by Chemical Formula 1 and one or more electroluminescent dopants. 電界発光ドーパントが下記化学式2乃至4のいずれかで表される化合物から選択される、請求項5に記載の有機電界発光素子:
Figure 2011504493
Figure 2011504493
Figure 2011504493
(式中、ArおよびArは、下記化学式:
Figure 2011504493
で表される、インデノフルオレン、フルオレンおよびスピロ−フルオレンから選択され;
11乃至R16は、それぞれ独立して、C1〜C20アルキル、およびC1〜C5アルキル置換基を有するもしくは有しないフェニルまたはナフチルからなる群から選択され;
Ar乃至Arは、それぞれ独立して、C5〜C20の芳香族または多環式芳香族環から選択され;但し、ArとArが同じであり、ArとArが同じであり、かつArとArが同じであり;
Figure 2011504493
AおよびBは、それぞれ独立して、化学結合、または原子団
Figure 2011504493
を表し;
17およびR18は、それぞれ独立して、芳香族環または2以上の芳香族環が縮合している多環式芳香族環を表し;
19乃至R22は、それぞれ独立して、ハロゲン置換基を有するもしくは有しない直鎖または分岐鎖のC1〜C20のアルキル基を表し;
23乃至R26は、それぞれ独立して、水素もしくは芳香族基を表し;
Ar乃至Ar10は、それぞれ独立して、芳香族環または2以上の芳香族環が縮合している多環式芳香族環を表す)。
The organic electroluminescent element according to claim 5, wherein the electroluminescent dopant is selected from compounds represented by any one of the following chemical formulas 2 to 4:
Figure 2011504493
Figure 2011504493
Figure 2011504493
(In the formula, Ar 1 and Ar 2 are represented by the following chemical formulas:
Figure 2011504493
Selected from indenofluorene, fluorene and spiro-fluorene;
R 11 to R 16 are each independently selected from the group consisting of C1-C20 alkyl, and phenyl or naphthyl with or without a C1-C5 alkyl substituent;
Ar 3 to Ar 6 are each independently selected from C5 to C20 aromatic or polycyclic aromatic rings; provided that Ar 1 and Ar 2 are the same, and Ar 3 and Ar 5 are the same. And Ar 4 and Ar 6 are the same;
Figure 2011504493
A and B are each independently a chemical bond or an atomic group
Figure 2011504493
Represents;
R 17 and R 18 each independently represents an aromatic ring or a polycyclic aromatic ring in which two or more aromatic rings are condensed;
R 19 to R 22 each independently represents a linear or branched C1-C20 alkyl group with or without a halogen substituent;
R 23 to R 26 each independently represents hydrogen or an aromatic group;
Ar 7 to Ar 10 each independently represents an aromatic ring or a polycyclic aromatic ring in which two or more aromatic rings are condensed).
電界発光ドーパントが下記式のいずれかで表される化合物から選択される、請求項6に記載の有機電界発光素子:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
(前記化学式において、R19乃至R22は、メチル基またはエチル基を表す)。
The organic electroluminescent device according to claim 6, wherein the electroluminescent dopant is selected from compounds represented by any of the following formulae:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
(In the chemical formula, R 19 to R 22 represent a methyl group or an ethyl group).
電界発光ドーパントが下記化学式5乃至7のいずれかで表される化合物から選択される、請求項5に記載の有機電界発光素子:
Figure 2011504493
Figure 2011504493
Figure 2011504493
(式中、R27およびR28は、それぞれ独立して、2以上の芳香族環が縮合している多環式芳香族環を表し;R29乃至R32は、それぞれ独立して芳香族環を表し;前記R27乃至R32の各芳香族環には、C1〜C20のアルキル基がさらに置換可能である)。
The organic electroluminescent device according to claim 5, wherein the electroluminescent dopant is selected from compounds represented by any one of the following chemical formulas 5 to 7:
Figure 2011504493
Figure 2011504493
Figure 2011504493
(Wherein R 27 and R 28 each independently represent a polycyclic aromatic ring in which two or more aromatic rings are condensed; R 29 to R 32 are each independently an aromatic ring) the expressed; each aromatic ring of said R 27 or R 32 can be further substituted by an alkyl group having C1 to C20).
電界発光ドーパントが下記式:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
のいずれかで表される化合物から選択される、請求項8に記載の有機電界発光素子。
The electroluminescent dopant is represented by the following formula:
Figure 2011504493
Figure 2011504493
Figure 2011504493
Figure 2011504493
The organic electroluminescent element according to claim 8, wherein the organic electroluminescent element is selected from compounds represented by any one of:
JP2010534861A 2007-11-23 2007-11-23 Organic electroluminescent compound and display device including the same Pending JP2011504493A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2007/005942 WO2009066814A1 (en) 2007-11-23 2007-11-23 Organic electroluminescent compounds and display device containing the same

Publications (1)

Publication Number Publication Date
JP2011504493A true JP2011504493A (en) 2011-02-10

Family

ID=40667627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010534861A Pending JP2011504493A (en) 2007-11-23 2007-11-23 Organic electroluminescent compound and display device including the same

Country Status (4)

Country Link
EP (1) EP2217677A1 (en)
JP (1) JP2011504493A (en)
CN (1) CN101874096A (en)
WO (1) WO2009066814A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723127B2 (en) * 2009-09-28 2015-05-27 双葉電子工業株式会社 COMPOUND FOR ORGANIC EL ELEMENT AND ORGANIC EL ELEMENT
CN102795983B (en) * 2011-05-25 2016-01-20 海洋王照明科技股份有限公司 Anthraquinone derivative material and its preparation method and application
CN109678645A (en) * 2018-12-28 2019-04-26 陕西师范大学 A kind of organic blue fluorescent material and its preparation method and application based on dianthracene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131929A1 (en) * 2005-12-13 2007-06-14 Jae-Soon Bae Novel imidazoquinazoline derivative, process for preparing the same, and organic electronic device using the same
WO2007102683A1 (en) * 2006-03-06 2007-09-13 Lg Chem, Ltd. Novel anthracene derivative and organic electronic device using the same
JP2008244424A (en) * 2006-11-02 2008-10-09 Mitsubishi Chemicals Corp Organic field fluorescence element, organic field fluorescence layer coating liquid, and color display unit
JP2008258603A (en) * 2007-03-14 2008-10-23 Samsung Sdi Co Ltd Organic light-emitting device employing organic layer including anthracene derivative compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231563A (en) * 2003-01-30 2004-08-19 Idemitsu Kosan Co Ltd Bianthryl derivative, luminescent coating film forming material containing the same, and organic electroluminescent element
DE102006013802A1 (en) * 2006-03-24 2007-09-27 Merck Patent Gmbh New anthracene compounds useful in organic electronic devices, preferably organic electroluminescent device e.g. integrated organic electroluminescent devices and organic field-effect-transistors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131929A1 (en) * 2005-12-13 2007-06-14 Jae-Soon Bae Novel imidazoquinazoline derivative, process for preparing the same, and organic electronic device using the same
WO2007102683A1 (en) * 2006-03-06 2007-09-13 Lg Chem, Ltd. Novel anthracene derivative and organic electronic device using the same
JP2008244424A (en) * 2006-11-02 2008-10-09 Mitsubishi Chemicals Corp Organic field fluorescence element, organic field fluorescence layer coating liquid, and color display unit
JP2008258603A (en) * 2007-03-14 2008-10-23 Samsung Sdi Co Ltd Organic light-emitting device employing organic layer including anthracene derivative compound

Also Published As

Publication number Publication date
WO2009066814A1 (en) 2009-05-28
CN101874096A (en) 2010-10-27
EP2217677A1 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4969575B2 (en) Green light emitting compound and light emitting device employing the same as light emitting material
JP5591800B2 (en) Hole transport material containing triphenylene
JP5454854B2 (en) New materials for organic electroluminescent devices
EP1960493B1 (en) Organic electroluminescent compounds and display device using the same
JP5357872B2 (en) Organic light emitting material and organic light emitting device using the same
JP5175099B2 (en) Compound having triazole ring structure substituted with pyridyl group and organic electroluminescence device
JP2009292807A (en) New organic electroluminescent compound, and organic electroluminescent device using the same
JPWO2008023628A1 (en) Compound having triazine ring structure substituted with pyridyl group and organic electroluminescence device
JP2006045503A (en) Luminescent material and organic electroluminescent element using the same
KR20140069237A (en) Spirobifluorene compounds for light emitting devices
JP2009179627A (en) Organic electroluminescent compound and light emitting diode using the same
JPWO2010052932A1 (en) Compound having triphenylsilyl group and triarylamine structure and organic electroluminescence device
WO2005092857A1 (en) Carbazole derivative containing fluorene group and organic electroluminescent element
KR101720079B1 (en) Quinoxaline derivative compound and organic electroluminescent device using the same
Xia et al. Robust and highly efficient blue light-emitting hosts based on indene-substituted anthracene
Lin et al. Highly efficient deep-blue organic electroluminescent devices doped with hexaphenylanthracene fluorophores
JP5378397B2 (en) Highly efficient blue electroluminescent compound and display device using the same
TWI756542B (en) Organic compound and organic electroluminescence device using the same
KR101779915B1 (en) Fused arylamine compound and organic electroluminescent devices comprising the same
KR100793795B1 (en) Organic electroluminescence devices
KR101324150B1 (en) Organic compounds for organic electro luminescente device and organic electro luminescent device using same
JP2009051764A (en) Substituted phenanthrene ring structure-having compound and organic electroluminescence element
KR20120112257A (en) New compounds and organic light-emitting diode including the same
JP2007001895A (en) Phosphorescent host compound and organic electroluminescent element using the same
JP2011504536A (en) High efficiency aromatic electroluminescent compound and electroluminescent device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130311

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130412

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130510

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130807