JP2011258351A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2011258351A
JP2011258351A JP2010130357A JP2010130357A JP2011258351A JP 2011258351 A JP2011258351 A JP 2011258351A JP 2010130357 A JP2010130357 A JP 2010130357A JP 2010130357 A JP2010130357 A JP 2010130357A JP 2011258351 A JP2011258351 A JP 2011258351A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
negative electrode
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010130357A
Other languages
Japanese (ja)
Inventor
Katsumi Kashiwagi
克巨 柏木
Taisuke Yamamoto
泰右 山本
Tatsuki Hiraoka
樹 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010130357A priority Critical patent/JP2011258351A/en
Publication of JP2011258351A publication Critical patent/JP2011258351A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a cycle characteristic of a lithium ion secondary battery which includes a negative electrode containing an alloy active material.SOLUTION: A lithium ion secondary battery includes: a positive electrode 3 which includes a positive electrode active material layer containing a positive electrode active material capable of occluding and discharging lithium ions and a binder, and a positive electrode current collector supporting the positive electrode active material layer; a negative electrode 4 which includes a negative electrode active material layer containing an alloy active material and a negative electrode current collector supporting the negative electrode active material layer; a separator 5 interposed between the positive electrode 3 and the negative electrode 4; and a nonaqueous electrolyte. The binder contained in the positive electrode active material layer contains a readily swellable resin of which a degree of swelling with respect to the nonaqueous electrolyte is 50% or more.

Description

本発明は、リチウムイオン二次電池に関する。更に詳しくは、本発明は、合金系活物質を含有する負極を備えるリチウムイオン二次電池内における、非水電解液の液回り性の改良に関する。   The present invention relates to a lithium ion secondary battery. More specifically, the present invention relates to improvement of the fluidity of a non-aqueous electrolyte in a lithium ion secondary battery including a negative electrode containing an alloy-based active material.

負極活物質として合金系活物質を用いたリチウムイオン二次電池(以下「合金系二次電池」とすることがある)は、負極活物質として黒鉛を用いた従来のリチウムイオン二次電池よりも高い容量及びエネルギー密度を有していることが知られている。従って、合金系二次電池は、電子機器の電源としてだけでなく、輸送機器や工作機器等の主電源又は補助電源としても期待されている。合金系活物質としては、珪素、珪素酸化物等の珪素系活物質、錫、錫酸化物等の錫系活物質等が知られている。   A lithium ion secondary battery using an alloy active material as a negative electrode active material (hereinafter sometimes referred to as an “alloy secondary battery”) is more than a conventional lithium ion secondary battery using graphite as a negative electrode active material. It is known to have a high capacity and energy density. Therefore, the alloy-based secondary battery is expected not only as a power source for electronic devices but also as a main power source or auxiliary power source for transportation equipment, machine tools, and the like. Known alloy-based active materials include silicon-based active materials such as silicon and silicon oxide, and tin-based active materials such as tin and tin oxide.

特許文献1は、リチウムマンガン複合酸化物及びリチウムニッケル複合酸化物を含む正極活物質と結着剤とを含む正極と、リチウムイオンの吸蔵及び放出が可能な負極と、正極と負極との間に介在するセパレータと、非水電解液と、を備え、正極に含まれる結着剤が、ポリフッ化ビニリデンとヘキサフルオロプロピレンとを含有する非水電解質二次電池を開示する。   Patent Document 1 discloses a positive electrode including a positive electrode active material including a lithium manganese composite oxide and a lithium nickel composite oxide and a binder, a negative electrode capable of inserting and extracting lithium ions, and a positive electrode and a negative electrode. Disclosed is a non-aqueous electrolyte secondary battery comprising an intervening separator and a non-aqueous electrolyte, wherein the binder contained in the positive electrode contains polyvinylidene fluoride and hexafluoropropylene.

特許文献1によれば、上述の構成により、正極合剤スラリーの流動性の低下を抑制し、非水電解質二次電池の生産性及び品質を向上させようとしている。   According to Patent Document 1, with the above-described configuration, a decrease in the fluidity of the positive electrode mixture slurry is suppressed, and the productivity and quality of the nonaqueous electrolyte secondary battery are improved.

特許文献2は、正極活物質と結着剤とを含む正極活物質層を備える正極と、負極活物質と結着剤とを含む負極活物質層を備える負極と、正極と負極との間に介在して、非水電解液を保持するポリマーを含むセパレータと、を備え、正極活物質層及び/又は負極活物質層に含まれる結着剤が、非水電解液に対する膨潤率が5重量%以下の第1ポリマーと、非水電解液に対する膨潤率が30重量%以上の第2ポリマーと、を含むポリマー電解質電池を開示する。   Patent Document 2 discloses a positive electrode including a positive electrode active material layer including a positive electrode active material and a binder, a negative electrode including a negative electrode active material layer including a negative electrode active material and a binder, and a positive electrode and a negative electrode. And a separator containing a polymer that holds the non-aqueous electrolyte, and the binder contained in the positive electrode active material layer and / or the negative electrode active material layer has a swelling ratio of 5% by weight with respect to the non-aqueous electrolyte. A polymer electrolyte battery comprising the following first polymer and a second polymer having a swelling ratio of 30% by weight or more with respect to the non-aqueous electrolyte is disclosed.

特許文献2によれば、上述の構成により、充放電の繰返しによる活物質層の集電体からの剥離及び非水電解液の電池外への漏液を抑制し、電池特性の劣化が少なく、安全性の高いポリマー電解質電池を得ようとしている。   According to Patent Document 2, with the above-described configuration, the peeling of the active material layer from the current collector due to repeated charge and discharge and the leakage of the nonaqueous electrolyte solution to the outside of the battery are suppressed, and the deterioration of the battery characteristics is small. We are trying to obtain a highly safe polymer electrolyte battery.

特許文献3は、正極活物質と結着剤とを含む正極活物質層を備える正極と、負極活物質と結着剤とを含む負極活物質層を備える負極と、正極と負極との間に介在するセパレータと、正極活物質層及び/又は負極活物質層とセパレータとの間に介在する高分子支持体と、を備え、高分子支持体を構成するポリマーの溶媒膨潤度が、その高分子支持体と接する正極活物質層及び/又は負極活物質層に含まれる結着剤の溶媒膨潤度よりも大きいことを特徴とする非水電解質二次電池を開示する。   Patent Document 3 discloses a positive electrode including a positive electrode active material layer including a positive electrode active material and a binder, a negative electrode including a negative electrode active material layer including a negative electrode active material and a binder, and a positive electrode and a negative electrode. And a polymer support interposed between the positive electrode active material layer and / or the negative electrode active material layer and the separator, and the degree of solvent swelling of the polymer constituting the polymer support is high Disclosed is a non-aqueous electrolyte secondary battery characterized by having a degree of solvent swelling of a binder contained in a positive electrode active material layer and / or a negative electrode active material layer in contact with a support.

特許文献3によれば、上述の構成により、非水電解液の漏洩等を解消しようとしている。   According to Patent Document 3, an attempt is made to eliminate leakage of the non-aqueous electrolyte with the above-described configuration.

特開2002−050405号公報JP 2002-050405 A 特開2002−203560号公報JP 2002-203560 A 特開2008−047402号公報JP 2008-047402 A

合金系二次電池においては、充放電回数が増加するにしたがって、サイクル特性の顕著な低下が起こる場合があった。本発明者らは、この原因について、検討を重ねた結果、次のような知見を得た。   In the alloy-based secondary battery, as the number of times of charging / discharging increases, the cycle characteristics may be significantly reduced. As a result of repeated studies on this cause, the present inventors have obtained the following knowledge.

合金系活物質を含有する負極においては、充放電に伴って合金系活物質が膨張及び収縮を繰り返すことにより、負極活物質層中に多くの微小な空隙が形成される。そして、放電により合金系活物質が収縮する際には、前記した空隙の容積が大きくなり、合金系二次電池内に収納された非水電解液が毛細管現象によりその空隙に吸収される。その結果、非水電解液の多くが負極内に偏在する一方、正極は、局所的には非水電解液を含浸しているものの、正極の大部分は液枯れ状態になってしまう。   In a negative electrode containing an alloy-based active material, many minute voids are formed in the negative-electrode active material layer as the alloy-based active material repeatedly expands and contracts with charge and discharge. When the alloy-based active material contracts due to discharge, the volume of the gap increases, and the nonaqueous electrolytic solution stored in the alloy-based secondary battery is absorbed into the gap by capillary action. As a result, most of the non-aqueous electrolyte is unevenly distributed in the negative electrode, while the positive electrode is locally impregnated with the non-aqueous electrolyte, but most of the positive electrode is in a liquid-drying state.

このため、正極の非水電解液が含浸している部分(以下「含浸部」とする)のみに充放電反応が集中する。特に放電時に、負極から放出されたリチウムイオンが含浸部のみに吸蔵され、含浸部は過放電状態になり、含浸部に結晶構造の乱れが生じる。これにより、正極の、正極の劣化が促進される。本発明者らは、これが、サイクル特性の低下の原因であると考察した。そして、合金系活物質を含有する負極内に非水電解液が偏在することを抑制すべく、鋭意検討した結果、本発明を完成するに至った。   For this reason, the charge / discharge reaction concentrates only on the portion of the positive electrode impregnated with the non-aqueous electrolyte (hereinafter referred to as “impregnated portion”). In particular, during discharge, lithium ions released from the negative electrode are occluded only in the impregnated portion, the impregnated portion is overdischarged, and the crystal structure is disturbed in the impregnated portion. Thereby, deterioration of the positive electrode of the positive electrode is promoted. The present inventors considered that this was the cause of the deterioration of the cycle characteristics. And as a result of earnest studies to suppress the non-aqueous electrolyte from being unevenly distributed in the negative electrode containing the alloy-based active material, the present invention has been completed.

本発明の目的は、合金系活物質を含有する負極を備え、サイクル特性に優れたリチウムイオン二次電池を提供することである。   An object of the present invention is to provide a lithium ion secondary battery including a negative electrode containing an alloy-based active material and having excellent cycle characteristics.

本発明のリチウムイオン二次電池は、リチウムイオンの吸蔵及び放出が可能な正極活物質と結着剤とを含有する正極活物質層、及び正極活物質層を支持する正極集電体を備える正極と、合金系活物質からなる負極活物質層、及び負極活物質層を支持する負極集電体を備える負極と、正極と負極との間に介在するセパレータと、非水電解液と、を備え、結着剤が、非水電解液に対する膨潤度が50%以上である易膨潤性樹脂を含有することを特徴とする。   A lithium ion secondary battery of the present invention includes a positive electrode active material layer containing a positive electrode active material capable of occluding and releasing lithium ions and a binder, and a positive electrode provided with a positive electrode current collector supporting the positive electrode active material layer A negative electrode active material layer made of an alloy-based active material, a negative electrode including a negative electrode current collector that supports the negative electrode active material layer, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The binder contains an easily swellable resin having a degree of swelling with respect to the non-aqueous electrolyte of 50% or more.

このように、非水電解液の吸収能力が高い易膨潤性樹脂を用いて正極活物質粒子を結着することにより、正極の非水電解液の吸収能力を向上させている。これにより、正極内に分散した易膨潤性樹脂に非水電解液が含浸され、正極が局所的に液枯れ状態になるのを抑制することができる。その結果、正極が局所的な充放電反応の集中によって局所的な過放電状態になり、その結晶構造に乱れが生じるという現象が非常に起こり難くなる。このため、正極の劣化が顕著に抑制される。   In this way, the positive electrode active material particles are bound using an easily swellable resin having a high nonaqueous electrolyte absorption capability, thereby improving the nonaqueous electrolyte absorption capability of the positive electrode. Thereby, it is possible to suppress the easily swellable resin dispersed in the positive electrode from being impregnated with the nonaqueous electrolytic solution, and the positive electrode from being locally dried up. As a result, a phenomenon in which the positive electrode is in a local overdischarge state due to the concentration of local charge / discharge reactions and the crystal structure is disturbed is very unlikely to occur. For this reason, deterioration of the positive electrode is remarkably suppressed.

本発明によれば、高容量及び高エネルギー密度を有し、サイクル特性に優れたリチウムイオン二次電池が提供される。   According to the present invention, a lithium ion secondary battery having high capacity and high energy density and excellent cycle characteristics is provided.

本発明の第1実施形態であるリチウムイオン二次電池の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the lithium ion secondary battery which is 1st Embodiment of this invention. 図1に示すリチウムイオン二次電池に備えられる負極の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the negative electrode with which the lithium ion secondary battery shown in FIG. 1 is equipped. 図2に示す負極に備えられる柱状体の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the columnar body with which the negative electrode shown in FIG. 2 is equipped. 電子ビーム式真空蒸着装置の構成を模式的に示す側面透視図である。It is side surface perspective drawing which shows the structure of an electron beam type vacuum evaporation system typically. 別形態の真空蒸着装置の構成を模式的に示す側面透視図である。It is a side perspective view which shows typically the structure of the vacuum evaporation system of another form.

本発明の一実施形態を、図面を参照しながら詳しく説明する。   An embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1実施形態であるリチウムイオン二次電池1の構成を模式的に示す縦断面図である。図1においては、正極3における正極集電体及び正極活物質層、並びに、負極4における負極集電体20及び負極活物質層22の図示を省略している。図2は、図1に示すリチウムイオン二次電池1に備えられる負極4の構成を模式的に示す縦断面図である。   FIG. 1 is a longitudinal sectional view schematically showing a configuration of a lithium ion secondary battery 1 according to the first embodiment of the present invention. In FIG. 1, the positive electrode current collector and the positive electrode active material layer in the positive electrode 3 and the negative electrode current collector 20 and the negative electrode active material layer 22 in the negative electrode 4 are not shown. FIG. 2 is a longitudinal sectional view schematically showing the configuration of the negative electrode 4 provided in the lithium ion secondary battery 1 shown in FIG.

リチウムイオン二次電池1は、非水電解液に対する膨潤度が50%以上である易膨潤性樹脂を結着剤として含有する正極3と、合金系活物質を負極活物質として用いる負極4とを、これらの間にセパレータ5を介在させて捲回することにより得られる捲回型電極群2(以下単に「電極群2」とする)、正極3の正極集電体と封口板15とを導通する正極リード10、負極4の負極集電体20と電池ケース14とを導通する負極リード11、電極群2の長手方向両端にそれぞれ装着される上部絶縁板12及び下部絶縁板13、有底円筒型の形状を有し、電極群2や図示しない非水電解液等を収容すると共に、負極端子として機能する電池ケース14、電池ケース14を封口すると共に、正極端子として機能する封口板15、並びに、電池ケース14と封口板15との間に介在するように配置され、これらを絶縁するガスケット16、を備えている。   The lithium ion secondary battery 1 includes a positive electrode 3 containing an easily swellable resin having a degree of swelling of 50% or more with respect to a non-aqueous electrolyte as a binder, and a negative electrode 4 using an alloy-based active material as a negative electrode active material. The wound electrode group 2 (hereinafter simply referred to as “electrode group 2”) obtained by winding with the separator 5 interposed therebetween, and the positive electrode current collector of the positive electrode 3 and the sealing plate 15 are electrically connected. Positive electrode lead 10, negative electrode lead 11 that conducts negative electrode current collector 20 of negative electrode 4 and battery case 14, upper insulating plate 12 and lower insulating plate 13 that are respectively attached to both ends in the longitudinal direction of electrode group 2, bottomed cylinder A battery case 14 that functions as a negative electrode terminal, a sealing plate 15 that functions as a positive electrode terminal, and a battery case 14 that functions as a negative electrode terminal. , Battery case 4 is arranged so as to be interposed between the sealing plate 15, a gasket 16, which insulates them.

リチウムイオン二次電池1は、非水電解液に対する膨潤度が50%以上である易膨潤性樹脂(以下単に「易膨潤性樹脂」とすることがある)を結着剤として含有する正極活物質層を備える正極3を有することを特徴とする。この特徴により、正極3の非水電解液を吸収する能力と、負極4の非水電解液を吸収する能力との差が非常に小さくなり、リチウムイオン二次電池1内での非水電解液の液回りのバランスを良好に保つことができる。   The lithium ion secondary battery 1 is a positive electrode active material containing, as a binder, an easily swellable resin having a degree of swelling with respect to a non-aqueous electrolyte of 50% or more (hereinafter sometimes simply referred to as “an easily swellable resin”). It has the positive electrode 3 provided with a layer, It is characterized by the above-mentioned. Due to this feature, the difference between the ability of the positive electrode 3 to absorb the non-aqueous electrolyte and the ability of the negative electrode 4 to absorb the non-aqueous electrolyte becomes very small, and the non-aqueous electrolyte in the lithium ion secondary battery 1 is reduced. The balance around the liquid can be kept good.

特に、放電により負極4の非水電解液を吸収する能力が高まった場合でも、非水電解液が負極4に偏在することなく、正極3全体にも非水電解液が行き渡る。これにより、正極3が、局所的に非水電解液を含浸し、それ以外の部分が液枯れ状態になるのを抑制することができる。その結果、非水電解液を含浸する部分のみに充放電反応が集中することがなくなり、正極内での充放電深度のばらつきが顕著に減少する。そして、特に放電時に、非水電解液を含浸する部分が過放電状態になって、その結晶構造に乱れが生じることがなくなるので、正極の劣化を抑制することができる。   In particular, even when the ability of the negative electrode 4 to absorb the non-aqueous electrolyte is increased by discharge, the non-aqueous electrolyte is distributed throughout the positive electrode 3 without the non-aqueous electrolyte being unevenly distributed in the negative electrode 4. Thereby, it can suppress that the positive electrode 3 impregnates a non-aqueous electrolyte locally, and a part other than that will be in a liquid dry state. As a result, the charge / discharge reaction does not concentrate only on the portion impregnated with the non-aqueous electrolyte, and the variation in the charge / discharge depth in the positive electrode is significantly reduced. And especially at the time of discharge, the portion impregnated with the non-aqueous electrolyte becomes overdischarged, and the crystal structure is not disturbed, so that the deterioration of the positive electrode can be suppressed.

本明細書において、樹脂の非水電解液に対する膨潤度は、次のようにして測定される。まず、樹脂を有機溶媒に溶解させて樹脂溶液を調製し、この樹脂溶液を平坦なガラス表面に塗布し、得られた塗膜を乾燥させて厚み1mm〜3mmのシートを作製する。このシートを20mm×20mmに切り出し、試料とする。一方、密閉容器内にて、前記で得られた試料を、リチウムイオン二次電池1で用いられる非水電解液に25℃で24時間浸漬する。そして、非水電解液への浸漬前の試料の質量(X)に対する、非水電解液への浸漬後の試料の質量(Y)の増加率として、下記式に従い膨潤度を求める。
膨潤度(%)={(Y−X)/X}×100
In the present specification, the degree of swelling of the resin with respect to the non-aqueous electrolyte is measured as follows. First, a resin is dissolved in an organic solvent to prepare a resin solution, this resin solution is applied to a flat glass surface, and the obtained coating film is dried to produce a sheet having a thickness of 1 mm to 3 mm. This sheet is cut into 20 mm × 20 mm and used as a sample. On the other hand, the sample obtained above is immersed in a non-aqueous electrolyte used in the lithium ion secondary battery 1 at 25 ° C. for 24 hours in a sealed container. And the degree of swelling is calculated | required according to a following formula as an increase rate of the mass (Y) of the sample after being immersed in a non-aqueous electrolyte with respect to the mass (X) of the sample before being immersed in a non-aqueous electrolyte.
Swelling degree (%) = {(Y−X) / X} × 100

以下に、本実施形態のリチウムイオン二次電池1の構成について、具体的に説明する。まず、電極群2について説明する。図1に示すように、電極群2は、易膨潤性樹脂を結着剤として含有する正極3と、合金系活物質を負極活物質として用いる負極4と、これらの間に介在するセパレータ5と、を積層した層構成を有する。また、図2に示すように、負極4は、負極集電体20と、負極集電体20の凸部21の表面に支持されて、合金系活物質からなる複数の柱状体23と、を備える。   Below, the structure of the lithium ion secondary battery 1 of this embodiment is demonstrated concretely. First, the electrode group 2 will be described. As shown in FIG. 1, the electrode group 2 includes a positive electrode 3 containing an easily swellable resin as a binder, a negative electrode 4 using an alloy-based active material as a negative electrode active material, and a separator 5 interposed therebetween. , And a layer structure in which are stacked. In addition, as shown in FIG. 2, the negative electrode 4 includes a negative electrode current collector 20 and a plurality of columnar bodies 23 made of an alloy-based active material supported on the surface of the convex portion 21 of the negative electrode current collector 20. Prepare.

正極3は、正極集電体と、正極集電体の両面に形成される正極活物質層と、を備え、正極活物質層が、非水電解液に対する膨潤度が50%以上である易膨潤性樹脂を結着剤として含有する。なお、本実施形態では、正極活物質層は、正極集電体の両面に形成されるが、正極集電体の片面のみに形成されてもよい。   The positive electrode 3 includes a positive electrode current collector and a positive electrode active material layer formed on both surfaces of the positive electrode current collector, and the positive electrode active material layer has an easily swollen degree of 50% or more with respect to the nonaqueous electrolytic solution. A functional resin is contained as a binder. In this embodiment, the positive electrode active material layer is formed on both surfaces of the positive electrode current collector, but may be formed only on one surface of the positive electrode current collector.

正極集電体としては、アルミニウム、アルミニウム合金、ステンレス鋼、チタン等の金属材料からなる金属箔等を使用できる。前記金属材料の中でも、アルミニウム及びアルミニウム合金が好ましい。正極集電体の厚みは特に限定されないが、好ましくは10μm〜30μmである。本実施形態では、正極集電体は帯状である。   As the positive electrode current collector, a metal foil made of a metal material such as aluminum, an aluminum alloy, stainless steel, or titanium can be used. Among the metal materials, aluminum and aluminum alloys are preferable. The thickness of the positive electrode current collector is not particularly limited, but is preferably 10 μm to 30 μm. In the present embodiment, the positive electrode current collector has a strip shape.

正極活物質層は、正極活物質、易膨潤性樹脂(結着剤)及び導電剤を含有する。正極活物質層は、例えば、正極合剤スラリーを正極集電体の表面に塗布し、得られた塗膜を乾燥及び圧延することにより形成できる。正極合剤スラリーは、例えば、正極活物質、易膨潤性樹脂及び導電剤と、溶媒と、を混合することにより調製できる。   The positive electrode active material layer contains a positive electrode active material, an easily swellable resin (binder), and a conductive agent. The positive electrode active material layer can be formed, for example, by applying a positive electrode mixture slurry to the surface of the positive electrode current collector, and drying and rolling the obtained coating film. The positive electrode mixture slurry can be prepared, for example, by mixing a positive electrode active material, an easily swellable resin and a conductive agent, and a solvent.

本実施形態の易膨潤性樹脂の非水電解液に対する膨潤度(以下単に「易膨潤性樹脂の膨潤度」とする)は、50%以上であり、更に50%〜200%であることが好ましい。   The degree of swelling of the easily swellable resin of the present embodiment with respect to the non-aqueous electrolyte (hereinafter simply referred to as “the degree of swelling of the easily swellable resin”) is 50% or more, and more preferably 50% to 200%. .

易膨潤性樹脂の膨潤度が50%未満である場合は、正極3の非水電解液の吸収能力が不十分になり、充電初期に負極4に非水電解液が偏在するのを抑制できず、正極3が液枯れ状態になるおそれがある。一方、易膨潤性樹脂の膨潤度が大きくなり過ぎた場合は、易膨潤性樹脂がゲル化することにより、正極活物質層の機械的強度が低下するおそれがある。その結果、正極活物質層と正極集電体との密着性及び集電性能が低下するおそれがある。   When the swelling degree of the easily swellable resin is less than 50%, the absorption capacity of the nonaqueous electrolyte solution of the positive electrode 3 becomes insufficient, and the nonaqueous electrolyte solution cannot be prevented from being unevenly distributed in the negative electrode 4 at the initial stage of charging. There is a risk that the positive electrode 3 will be in a liquid-dry state. On the other hand, when the degree of swelling of the easily swellable resin becomes too large, the mechanical strength of the positive electrode active material layer may decrease due to gelation of the easily swellable resin. As a result, the adhesion between the positive electrode active material layer and the positive electrode current collector and the current collection performance may be reduced.

易膨潤性樹脂としては、膨潤度が50%以上である樹脂であれば特に限定なく使用できるが、ポリヘキサフルオロプロピレン(以下「PHFP」とする)、ヘキサフルオロプロピレンとフッ化ビニリデンとの共重合体(以下「HFP−VDF共重合体」とする)、架橋されたポリアクリロニトリル系重合体(以下「架橋PAN系重合体」とする)及び架橋されたポリメチルメタクリレート系重合体(以下「架橋PMMA系重合体」とする)よりなる群から選ばれる少なくとも1種が好ましい。これらの中でも、非水電解液との接触によりリチウムイオン伝導性を示すようになる、PHFP、及びHFP−VDF共重合体が好ましい。   As the easily swellable resin, any resin having a degree of swelling of 50% or more can be used without particular limitation, but polyhexafluoropropylene (hereinafter referred to as “PHFP”), co-polymerization of hexafluoropropylene and vinylidene fluoride. Polymer (hereinafter referred to as “HFP-VDF copolymer”), cross-linked polyacrylonitrile-based polymer (hereinafter referred to as “cross-linked PAN-based polymer”) and cross-linked polymethyl methacrylate-based polymer (hereinafter referred to as “cross-linked PMMA”). At least one selected from the group consisting of “based polymers” is preferred. Among these, PHFP and HFP-VDF copolymers that exhibit lithium ion conductivity upon contact with a non-aqueous electrolyte are preferable.

PHFPは、ヘキサフルオロプロピレン単位の非水電解液に対する親和性が高いことから、非水電解液に対して膨潤性を示す。PHFPとしては、膨潤度が50%以上であれば特に限定されないが、数平均分子量が10万〜100万の範囲にあるPHFPが好ましい。PHFPの数平均分子量が小さすぎると、PHFPの結着力が低下し、充放電回数の増加に伴い、正極活物質層の正極集電体からの剥離等が発生するおそれがある。これにより、電池1のサイクル特性等が低下するおそれがある。また、膨潤度が50%未満になるおそれもある。一方、PHFPの数平均分子量が大きすぎると、PHFPの取り扱い性が低下し、電池1の生産性等に悪影響を及ぼすおそれがある。   Since PHFP has a high affinity for the non-aqueous electrolyte of hexafluoropropylene units, it exhibits swelling properties for the non-aqueous electrolyte. PHFP is not particularly limited as long as the degree of swelling is 50% or more, but PHFP having a number average molecular weight in the range of 100,000 to 1,000,000 is preferable. If the number average molecular weight of PHFP is too small, the binding force of PHFP may be reduced, and the positive electrode active material layer may be peeled off from the positive electrode current collector as the number of charge / discharge cycles increases. Thereby, there exists a possibility that the cycling characteristics etc. of the battery 1 may fall. Moreover, there exists a possibility that a swelling degree may be less than 50%. On the other hand, if the number average molecular weight of PHFP is too large, the handleability of PHFP is lowered, and the productivity of the battery 1 may be adversely affected.

HFP−VDF共重合体は、ヘキサフルオロプロピレン単位の含有割合、数平均分子量等を選択することにより、その膨潤度を調整できる。HFP−VDF共重合体としては、膨潤度が50%以上であれば特に限定されないが、ヘキサフルオロプロピレン単位の含有割合が5モル%以上、100モル%未満であるHFP−VDF共重合体が好ましい。ヘキサフルオロプロピレン単位の含有割合が少なすぎると、HFP−VDF共重合体の膨潤度が50%未満になるおそれがある。また、HFP−VDF共重合体の数平均分子量は特に限定されないが、HFP−VDF共重合体の膨潤度、結着力、取り扱い性等を考慮すると、10万〜100万の範囲が好ましい。   The degree of swelling of the HFP-VDF copolymer can be adjusted by selecting the content ratio of the hexafluoropropylene unit, the number average molecular weight, and the like. The HFP-VDF copolymer is not particularly limited as long as the degree of swelling is 50% or more, but an HFP-VDF copolymer having a hexafluoropropylene unit content of 5 mol% or more and less than 100 mol% is preferable. . If the content ratio of the hexafluoropropylene unit is too small, the swelling degree of the HFP-VDF copolymer may be less than 50%. Further, the number average molecular weight of the HFP-VDF copolymer is not particularly limited, but is preferably in the range of 100,000 to 1,000,000 in consideration of the swelling degree, binding force, handleability and the like of the HFP-VDF copolymer.

架橋PAN系重合体は、非水電解液に対する親和性の高いアクリロニトリル単位を含有することにより、非水電解液に対する膨潤性を示す。また、架橋PAN系重合体は、複数のポリアクリロニトリル鎖を架橋性化合物で架橋することにより、非水電解液に対して不溶化されている。架橋性化合物としては特に限定されないが、ジアルキルメタクリレート類、ジアルキルアクリレート類等が好ましい。このような架橋性化合物は、これらにより架橋される複数のポリアクリロニトリル鎖間の距離を比較的長くすることができる。その結果、非水電解液に対する膨潤性と、非水電解液に対する不溶性とを、高水準で併せ持つ架橋PAN系共重合体が得られる。   The crosslinked PAN-based polymer exhibits swellability with respect to the non-aqueous electrolyte solution by containing acrylonitrile units having high affinity with the non-aqueous electrolyte solution. In addition, the crosslinked PAN-based polymer is insolubilized in the nonaqueous electrolytic solution by crosslinking a plurality of polyacrylonitrile chains with a crosslinking compound. Although it does not specifically limit as a crosslinkable compound, Dialkyl methacrylates, dialkyl acrylates, etc. are preferable. Such a crosslinkable compound can make the distance between a plurality of polyacrylonitrile chains crosslinked by them relatively long. As a result, a crosslinked PAN-based copolymer having a high level of swelling properties with respect to the non-aqueous electrolyte and insolubility with respect to the non-aqueous electrolyte can be obtained.

架橋PAN系重合体としては、膨潤度が50%以上であれば特に限定されないが、膨潤度が50%以上であり且つ数平均分子量が10万〜100万の範囲にあるPAN系重合体が好ましい。架橋PAN系重合体の数平均分子量が小さすぎると、その結着力が低下し、充放電の繰り返しに伴って、正極活物質層の正極集電体からの剥離等が起るおそれがある。架橋PAN系重合体の数平均分子量が大きすぎると、その膨潤度が50%未満になるおそれがある。また、その取り扱い性が低下するおそれがある。   The crosslinked PAN-based polymer is not particularly limited as long as the degree of swelling is 50% or more, but a PAN-based polymer having a degree of swelling of 50% or more and a number average molecular weight in the range of 100,000 to 1,000,000 is preferable. . If the number average molecular weight of the crosslinked PAN-based polymer is too small, the binding force is reduced, and the positive electrode active material layer may be peeled off from the positive electrode current collector as charge and discharge are repeated. If the number average molecular weight of the crosslinked PAN-based polymer is too large, the degree of swelling may be less than 50%. Moreover, the handleability may be reduced.

架橋PMMA系重合体は、非水電解液に対する親和性の高いメチルメタクリレート単位を含有することにより、非水電解液に対する膨潤性を示す。また、架橋PMMA系重合体は、複数のポリメチルメタクリレート鎖を架橋性化合物で架橋することにより、非水電解液に対して不溶化されている。架橋性化合物としては、架橋PAN系重合体に用いられる架橋性化合物と同じものを使用できる。特に、ジアルキルメタクリレート類、ジアルキルアクリレート類等の架橋性化合物を用いることにより、非水電解液に対する膨潤性と、非水電解液に対する不溶性とを、高水準で併せ持つ架橋PMMA系重合体が得られる。   The crosslinked PMMA-based polymer exhibits swelling properties with respect to the non-aqueous electrolyte by containing methyl methacrylate units having high affinity for the non-aqueous electrolyte. Moreover, the crosslinked PMMA polymer is insolubilized with respect to the nonaqueous electrolytic solution by crosslinking a plurality of polymethyl methacrylate chains with a crosslinking compound. As the crosslinkable compound, the same crosslinkable compound used for the crosslinked PAN-based polymer can be used. In particular, by using a crosslinkable compound such as dialkyl methacrylates and dialkyl acrylates, a cross-linked PMMA polymer having both high swellability with respect to the non-aqueous electrolyte and insolubility with respect to the non-aqueous electrolyte can be obtained.

架橋PMMA系重合体としては、膨潤度が50%以上であれば特に限定されないが、膨潤度が50%以上であり且つ数平均分子量が10万〜100万の範囲にあるPMMA系共重合体が好ましい。架橋PMMA系重合体の数平均分子量が小さすぎると、その結着力が低下し、充放電の繰り返しに伴って、正極活物質層の正極集電体からの剥離等が起るおそれがある。架橋PMMA系重合体の数平均分子量が大きすぎると、その膨潤度が50%未満になるおそれがある。また、その取り扱い性が低下するおそれがある。   The cross-linked PMMA polymer is not particularly limited as long as the swelling degree is 50% or more, but a PMMA copolymer having a swelling degree of 50% or more and a number average molecular weight in the range of 100,000 to 1,000,000 is used. preferable. If the number average molecular weight of the cross-linked PMMA polymer is too small, the binding force is reduced, and the positive electrode active material layer may be peeled off from the positive electrode current collector with repeated charge and discharge. If the number average molecular weight of the crosslinked PMMA polymer is too large, the degree of swelling may be less than 50%. Moreover, the handleability may be reduced.

正極活物質層は、正極活物質100質量部に対して、好ましくは、前述の易膨潤性樹脂を0.5質量部〜5質量部の割合で含有し、更に好ましくは、前述の易膨潤性樹脂を0.5質量部〜3質量部の割合で含有する。   The positive electrode active material layer preferably contains the aforementioned easily swellable resin in a proportion of 0.5 parts by mass to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material, and more preferably, the aforementioned easily swellable resin. The resin is contained at a ratio of 0.5 to 3 parts by mass.

易膨潤性樹脂の含有割合が少なすぎると、正極3の非水電解液の吸収能力を向上させる効果が不十分になるおそれがある。その結果、電池1内での非水電解液の液回り性が低下し、放電初期に正極3が液枯れ状態になるおそれがある。これにより、電池1のサイクル特性等が低下する。易膨潤性樹脂の含有割合が多すぎると、正極活物質層と正極集電体との接着性が低下し、充放電回数の増加に伴い、正極活物質層の正極集電体からの剥離等が発生するおそれがある。これにより、電池1のサイクル特性等が低下する。   If the content of the easily swellable resin is too small, the effect of improving the absorption capacity of the non-aqueous electrolyte of the positive electrode 3 may be insufficient. As a result, the liquid circulation property of the non-aqueous electrolyte in the battery 1 is lowered, and the positive electrode 3 may be in a liquid withered state at the beginning of discharge. Thereby, the cycle characteristics and the like of the battery 1 are deteriorated. When the content ratio of the easily swellable resin is too large, the adhesion between the positive electrode active material layer and the positive electrode current collector is reduced, and the positive electrode active material layer is peeled off from the positive electrode current collector as the number of charge / discharge increases. May occur. Thereby, the cycle characteristics and the like of the battery 1 are deteriorated.

正極活物質層は、結着剤として、前述の易膨潤性樹脂と共に、非水電解液に対する膨潤度が30%未満である難膨潤性樹脂(以下単に「難膨潤性樹脂」とすることがある)を含有していてもよい。これにより、正極3の非水電解液の吸収能力を殆ど低下させることなく、正極活物質層と正極集電体との接着性、正極活物質層の機械的強度等を更に向上させることができる。その結果、充放電回数の増加に伴う、正極活物質層の正極集電体からの剥離、局所的な脱落等が抑制され、サイクル特性に優れ、内部短絡等の発生が顕著に抑制された、安全性の高い電池1が得られる。   The positive electrode active material layer may be referred to as a non-swellable resin (hereinafter simply referred to as “non-swellable resin”) having a swelling degree of less than 30% with respect to the non-aqueous electrolyte, together with the above-described easily swellable resin as a binder. ) May be contained. Thereby, the adhesiveness between the positive electrode active material layer and the positive electrode current collector, the mechanical strength of the positive electrode active material layer, and the like can be further improved without substantially reducing the absorption capacity of the nonaqueous electrolyte solution of the positive electrode 3. . As a result, peeling from the positive electrode current collector of the positive electrode active material layer due to an increase in the number of times of charge and discharge, local dropout, etc. were suppressed, excellent cycle characteristics, and occurrence of internal short circuits, etc. were significantly suppressed, A highly safe battery 1 is obtained.

易膨潤性樹脂と共に、難膨潤性樹脂を含有する正極活物質層は、例えば、正極活物質、易膨潤性樹脂、難膨潤性樹脂及び導電剤を溶媒と混合して得られる正極合剤スラリーを正極集電体表面に塗布し、得られた塗膜を乾燥及び圧延することにより形成できる。   The positive electrode active material layer containing the hardly swellable resin together with the easily swellable resin is, for example, a positive electrode mixture slurry obtained by mixing a positive electrode active material, an easily swellable resin, a hardly swellable resin and a conductive agent with a solvent It can form by apply | coating to the positive electrode collector surface, and drying and rolling the obtained coating film.

本実施形態の難膨潤性樹脂の非水電解液に対する膨潤度(以下単に「難膨潤性樹脂の膨潤度」とする)は、好ましくは30%未満であり、更に好ましくは0%〜20%である。   The degree of swelling of the hardly swellable resin of the present embodiment with respect to the non-aqueous electrolyte (hereinafter simply referred to as “the degree of swelling of the hardly swellable resin”) is preferably less than 30%, more preferably 0% to 20%. is there.

難膨潤性樹脂の膨潤度が高すぎる場合は、正極活物質層と正極集電体との接着性、正極活物質層の機械的強度等を向上させる効果が不十分になるおそれがある。また、難膨潤性樹脂の膨潤度が低すぎる場合は、正極合剤スラリーにおける易膨潤性樹脂と難膨潤性樹脂との相溶性が低下することにより、不均一な組織を有する正極活物質層が形成されるおそれがある。その結果、充放電回数の増加に伴って、正極活物質層の局所的な脱落等が起り、サイクル特性の低下、内部短絡等が発生するおそれがある。   When the swelling degree of the hardly swellable resin is too high, the effect of improving the adhesion between the positive electrode active material layer and the positive electrode current collector, the mechanical strength of the positive electrode active material layer, and the like may be insufficient. In addition, when the swelling degree of the hardly swellable resin is too low, the compatibility between the easily swellable resin and the hardly swellable resin in the positive electrode mixture slurry is reduced, so that the positive electrode active material layer having a non-uniform structure can be obtained. There is a risk of formation. As a result, as the number of times of charging / discharging increases, the positive electrode active material layer may fall off locally, which may cause deterioration of cycle characteristics, internal short circuit, and the like.

難膨潤性樹脂としては、膨潤度が30%未満である樹脂であれば特に限定なく使用できるが、結着力及び非水電解液への耐性の高い難膨潤性樹脂が好ましい。このような難膨潤性樹脂としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン−テトラフルオロエチレン共重合体、ポリイミド、ポリアミド、ポリアミドイミド等が挙げられる。これらの難膨潤性樹脂は、1種を単独で使用でき又は2種以上を組み合わせて使用できる。   As the hardly swellable resin, any resin having a degree of swelling of less than 30% can be used without particular limitation, but a hardly swellable resin having high binding force and resistance to a non-aqueous electrolyte is preferable. Examples of such a hardly swellable resin include polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-tetrafluoroethylene copolymer, polyimide, polyamide, and polyamideimide. These hardly swellable resins can be used alone or in combination of two or more.

正極活物質層は、正極活物質100質量部に対して、好ましくは、前述の難膨潤性樹脂を0.1質量部〜5質量部の割合で含有し、更に好ましくは、前述の難膨潤性樹脂を0.5質量部〜3質量部の割合で含有する。   The positive electrode active material layer preferably contains the aforementioned hardly swellable resin in a proportion of 0.1 to 5 parts by mass, more preferably the aforementioned hardly swellable material, relative to 100 parts by mass of the positive electrode active material. The resin is contained at a ratio of 0.5 to 3 parts by mass.

難膨潤性樹脂を正極活物質層に含有させることにより、特に、正極活物質間の密着性が増し、サイクル特性を更に向上させることができる。難膨潤性樹脂の含有割合が少なすぎると、難膨潤性樹脂を添加する効果が十分に発揮されないおそれがある。難膨潤性樹脂の含有割合が多すぎると、正極3内での電荷移動抵抗が大きくなり、サイクル特性が低下するおそれがある。   By including the hardly swellable resin in the positive electrode active material layer, in particular, the adhesion between the positive electrode active materials is increased, and the cycle characteristics can be further improved. If the content of the hardly swellable resin is too small, the effect of adding the hardly swellable resin may not be sufficiently exhibited. If the content of the hardly swellable resin is too large, the charge transfer resistance in the positive electrode 3 is increased, and the cycle characteristics may be deteriorated.

易膨潤性樹脂と難膨潤性樹脂とを併用する場合、これらの使用割合は特に限定されないが、好ましくは、難膨潤性樹脂100質量部に対して、易膨潤性樹脂を20質量部〜200質量部用いるのが良い。易膨潤性樹脂の使用割合が少なすぎると、正極3の非水電解液の吸収能力を向上させる効果が不十分になるおそれがある。また、易膨潤性樹脂の使用割合が多すぎると、難膨潤性樹脂を添加する効果が十分に現れないおそれがある。   When the easily swellable resin and the hardly swellable resin are used in combination, the use ratio thereof is not particularly limited, but preferably the easily swellable resin is 20 parts by mass to 200 parts by mass with respect to 100 parts by mass of the hardly swellable resin. It is good to use part. If the use ratio of the easily swellable resin is too small, the effect of improving the absorption capacity of the non-aqueous electrolyte of the positive electrode 3 may be insufficient. Moreover, when there is too much usage-amount of easily swellable resin, there exists a possibility that the effect of adding hardly swellable resin may not fully appear.

次に、易膨潤性樹脂及び難膨潤性樹脂以外の、正極活物質層に含まれる成分について説明する。正極活物質としては、リチウムイオン二次電池の分野で常用される正極活物質を使用できるが、その中でも、リチウム含有複合酸化物及びオリビン型リチウム塩が好ましい。   Next, components included in the positive electrode active material layer other than the easily swellable resin and the hardly swellable resin will be described. As the positive electrode active material, a positive electrode active material commonly used in the field of lithium ion secondary batteries can be used, among which lithium-containing composite oxides and olivine type lithium salts are preferable.

リチウム含有複合酸化物は、リチウムと遷移金属元素とを含む金属酸化物、又は前記金属酸化物中の遷移金属元素の一部が異種元素により置換された金属酸化物である。遷移金属元素としては、Sc、Y、Mn、Fe、Co、Ni、Cu、Cr等が挙げられる。遷移金属元素の中では、Mn、Co、Ni等が好ましい。異種元素としては、Na、Mg、Zn、Al、Pb、Sb、B等が挙げられる。異種元素の中では、Mg、Al等が好ましい。遷移金属元素及び異種元素は、それぞれ、1種を単独で使用でき又は2種以上を組み合わせて使用できる。   The lithium-containing composite oxide is a metal oxide containing lithium and a transition metal element, or a metal oxide in which a part of the transition metal element in the metal oxide is substituted with a different element. Examples of the transition metal element include Sc, Y, Mn, Fe, Co, Ni, Cu, and Cr. Among transition metal elements, Mn, Co, Ni and the like are preferable. Examples of the different elements include Na, Mg, Zn, Al, Pb, Sb, and B. Among the different elements, Mg, Al and the like are preferable. Each of the transition metal element and the different element can be used alone or in combination of two or more.

リチウム含有複合酸化物の具体例としては、例えば、LilCoO2、LilNiO2、LilMnO2、LilComNil-m2、LilComl-mn、LilNil-mmn、LilMn24、LilMn2-mMnO4(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBよりなる群から選ばれる少なくとも1種の元素を示す。0<l≦1.2、0≦m≦0.9、2.0≦n≦2.3である。)等が挙げられる。これらの中でも、LilComl-mnが好ましい。 Specific examples of the lithium-containing composite oxide, for example, Li l CoO 2, Li l NiO 2, Li l MnO 2, Li l Co m Ni lm O 2, Li l Co m M lm O n, Li l Ni lm M m O n , Li l Mn 2 O 4 , Li l Mn 2−m MnO 4 (wherein M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, This represents at least one element selected from the group consisting of Cr, Pb, Sb and B. 0 <l ≦ 1.2, 0 ≦ m ≦ 0.9, 2.0 ≦ n ≦ 2.3. Etc. Among these, Li l Co m M lm O n is preferred.

オリビン型リチウム塩の具体例としては、例えば、LiXPO4、Li2XPO4F(前記各式中、XはCo、Ni、Mn及びFeよりなる群から選ばれる少なくとも1種の元素を示す)等のオリビン型リン酸リチウム塩が挙げられる。 Specific examples of the olivine type lithium salt include, for example, LiXPO 4 , Li 2 XPO 4 F (wherein X represents at least one element selected from the group consisting of Co, Ni, Mn, and Fe). Of olivine type lithium phosphate.

リチウム含有複合酸化物及びオリビン型リチウム塩を示す前記各式において、リチウムのモル数は、これらを作製した直後の値であり、充放電により増減する。正極活物質は1種を単独で使用でき又は2種以上を組み合わせて使用できる。   In each of the above formulas showing the lithium-containing composite oxide and the olivine-type lithium salt, the number of moles of lithium is a value immediately after the production thereof, and increases or decreases due to charge / discharge. A positive electrode active material can be used individually by 1 type, or can be used in combination of 2 or more type.

導電剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック類、天然黒鉛、人造黒鉛等の黒鉛類等が挙げられる。導電剤の含有割合は、例えば、正極3及びリチウムイオン二次電池1の設計等に応じて適宜変更できる。   Examples of the conductive agent include carbon blacks such as acetylene black and ketjen black, and graphites such as natural graphite and artificial graphite. The content rate of a electrically conductive agent can be suitably changed according to the design etc. of the positive electrode 3 and the lithium ion secondary battery 1, for example.

正極活物質、結着剤及び導電剤と混合する溶媒としては、N−メチル−2−ピロリドン、テトラヒドロフラン、ジメチルホルムアミド等の有機溶媒、水等を使用できる。   As a solvent mixed with the positive electrode active material, the binder, and the conductive agent, organic solvents such as N-methyl-2-pyrrolidone, tetrahydrofuran, dimethylformamide, water, and the like can be used.

次に、図2及び図3を参照しながら、負極4について説明する。負極4は、両方の表面に複数の凸部21を有する負極集電体20と、凸部21の表面に支持された複数の柱状体23を含む負極活物質層22と、を備える。   Next, the negative electrode 4 will be described with reference to FIGS. 2 and 3. The negative electrode 4 includes a negative electrode current collector 20 having a plurality of convex portions 21 on both surfaces, and a negative electrode active material layer 22 including a plurality of columnar bodies 23 supported on the surfaces of the convex portions 21.

負極集電体20は、銅、銅合金、ステンレス鋼、ニッケル等の金属材料からなる帯状の金属箔であり、両方の表面20aに複数の凸部21を有している。凸部21は、表面20aから外方に延びる突起であり、先端部分に表面20aにほぼ平行な平面を有している。負極集電体20の凸部21が形成されない部分の厚みは、好ましくは5μm〜30μmである。なお、本実施形態の負極集電体20は、両方の表面に凸部21を有しているが、片方の表面のみに凸部21を有していてもよい。   The negative electrode current collector 20 is a strip-shaped metal foil made of a metal material such as copper, copper alloy, stainless steel, or nickel, and has a plurality of convex portions 21 on both surfaces 20a. The convex portion 21 is a protrusion extending outward from the surface 20a, and has a flat surface substantially parallel to the surface 20a at the tip portion. The thickness of the portion of the negative electrode current collector 20 where the convex portions 21 are not formed is preferably 5 μm to 30 μm. In addition, although the negative electrode collector 20 of this embodiment has the convex part 21 on both surfaces, you may have the convex part 21 only on one surface.

表面20aにおける、凸部21の配置としては、千鳥配置、最密充填配置、格子配置、碁盤目配置、不規則配置等が挙げられる。凸部21の個数は、好ましくは1万個/cm2〜1000万個/cm2である。また、隣り合う凸部21の軸線間距離は、好ましくは10μm〜100μmである。凸部21の軸線は、凸部21の形状が菱形、多角形、平行四辺形、台形又は楕円形である場合、対角線の交点又は長軸と短軸との交点を通り、表面20aに垂直な方向に延びている。凸部21の形状が円形である場合、凸部21の軸線は、円の中心を通り、表面20aに垂直な方向に延びている。 Examples of the arrangement of the convex portions 21 on the surface 20a include a staggered arrangement, a close-packed arrangement, a lattice arrangement, a grid arrangement, and an irregular arrangement. The number of convex portions 21 is preferably 10,000 pieces / cm 2 to 10 million pieces / cm 2 . Moreover, the distance between the axes of the adjacent convex portions 21 is preferably 10 μm to 100 μm. When the shape of the convex portion 21 is a rhombus, polygon, parallelogram, trapezoid, or ellipse, the axis of the convex portion 21 passes through the intersection of diagonal lines or the intersection of the major axis and minor axis and is perpendicular to the surface 20a. Extending in the direction. When the shape of the convex part 21 is circular, the axis of the convex part 21 passes through the center of the circle and extends in a direction perpendicular to the surface 20a.

凸部21の高さ及び幅は、それぞれ、負極4の断面において、凸部21の最先端点から表面20aに降ろした垂線の長さ及び表面20aに平行な方向における凸部21の最大長さである。凸部21の高さ及び幅は、それぞれ、好ましくは3μm〜20μm及び5μm〜50μmである。凸部21の高さ及び幅は、負極4の断面を走査型電子顕微鏡で観察し、それぞれ、所定個数(例えば100個)の凸部21の高さ及び幅を測定し、得られた測定値の平均値として求めることができる。   The height and width of the convex portion 21 are respectively the length of the perpendicular dropped from the foremost point of the convex portion 21 to the surface 20a and the maximum length of the convex portion 21 in the direction parallel to the surface 20a in the cross section of the negative electrode 4. It is. The height and width of the convex portion 21 are preferably 3 μm to 20 μm and 5 μm to 50 μm, respectively. The height and width of the convex portion 21 are obtained by observing the cross section of the negative electrode 4 with a scanning electron microscope and measuring the height and width of a predetermined number (for example, 100) of the convex portions 21, respectively. It can be calculated as an average value.

負極集電体20の鉛直方向上方からの正投影図における凸部21の形状としては、例えば、菱形、3角形〜8角形の多角形、平行四辺形、台形、円形、楕円形等が挙げられる。
負極集電体20は、例えば、表面に複数の凹部が形成された凸部用ローラ2本を、これらの軸線が平行になるように圧接させてニップ部を形成し、このニップ部に金属箔を通過させて加圧成形することにより作成できる。
Examples of the shape of the convex portion 21 in the orthographic projection from above in the vertical direction of the negative electrode current collector 20 include a rhombus, a triangle to an octagon, a parallelogram, a trapezoid, a circle, and an ellipse. .
The negative electrode current collector 20 is formed, for example, by pressing two convex rollers each having a plurality of concave portions formed on the surface thereof so that the axes thereof are parallel to form a nip portion, and a metal foil is formed in the nip portion. It can be made by passing and pressing.

負極活物質層22は、凸部21表面に主に支持された複数の柱状体23を含む。合金系活物質からなる柱状体23は、凸部21表面から負極集電体20の外方に延びる。本実施形態では、1つの凸部21に1つの柱状体23が形成されている。互いに隣り合う一対の柱状体23間には、空隙24が存在する。   The negative electrode active material layer 22 includes a plurality of columnar bodies 23 mainly supported on the surface of the convex portion 21. The columnar body 23 made of an alloy-based active material extends from the surface of the convex portion 21 to the outside of the negative electrode current collector 20. In the present embodiment, one columnar body 23 is formed on one convex portion 21. A gap 24 exists between a pair of columnar bodies 23 adjacent to each other.

合金系活物質は、リチウムイオンを吸蔵する際に膨張して内部応力を発生することにより、負極活物質層の負極集電体からの剥離、負極の変形等を発生させ、電池のサイクル特性を低下させる。しかしながら、前述の空隙24を設けることにより、合金系活物質の体積変化に伴って発生する応力が緩和される。その結果、柱状体23の凸部21からの剥離、負極集電体20及び負極4の変形等が抑制される。したがって、このような構成を有する負極4を用いることにより、合金系活物質の膨張に起因するサイクル特性の低下を顕著に抑制することができる。   The alloy-based active material expands when occluding lithium ions and generates internal stress, thereby causing the negative electrode active material layer to peel from the negative electrode current collector, deformation of the negative electrode, etc. Reduce. However, by providing the above-described void 24, the stress generated with the volume change of the alloy-based active material is relieved. As a result, separation of the columnar body 23 from the convex portion 21, deformation of the negative electrode current collector 20 and the negative electrode 4, and the like are suppressed. Therefore, by using the negative electrode 4 having such a configuration, it is possible to remarkably suppress the deterioration of the cycle characteristics due to the expansion of the alloy-based active material.

負極活物質層22では、充放電回数の増加に伴って、各柱状体23の内部に微小な空隙が発生すると共に、柱状体23の周囲に空隙24が存在することにより、放電時における負極4が非水電解液を吸収する能力が顕著に高まる。このような負極活物質層22を備える負極4を用いた場合でも、易膨潤性樹脂を結着剤として含有する正極3を用いることにより、電池1内での非水電解液の液回り性が顕著に改善される。   In the negative electrode active material layer 22, as the number of charging / discharging increases, minute voids are generated inside each columnar body 23, and the voids 24 exist around the columnar bodies 23, so that the negative electrode 4 during discharge is discharged. However, the ability to absorb non-aqueous electrolyte is significantly increased. Even when the negative electrode 4 having such a negative electrode active material layer 22 is used, by using the positive electrode 3 containing a readily swellable resin as a binder, the liquidity of the non-aqueous electrolyte in the battery 1 can be improved. Remarkably improved.

図3は、柱状体23の構成を模式的に示す縦断面図である。複数の柱状体23は、気相法により、図3に示す塊23a〜23hの積層体として各凸部21表面に形成される。より具体的には、柱状体23は、塊23a、23c、23e、23gと、塊23b、23d、23f、23hとを交互に積層することにより形成される。なお、塊の積層数は8個に限定されず、2個以上の任意の個数の塊を積層できる。   FIG. 3 is a longitudinal sectional view schematically showing the configuration of the columnar body 23. The plurality of columnar bodies 23 are formed on the surface of each convex portion 21 by a vapor phase method as a stacked body of lumps 23a to 23h shown in FIG. More specifically, the columnar body 23 is formed by alternately stacking the masses 23a, 23c, 23e, and 23g and the masses 23b, 23d, 23f, and 23h. The number of lumps stacked is not limited to eight, and any number of lumps of two or more can be stacked.

柱状体23を構成する合金系活物質は、リチウムと合金化することによりリチウムを吸蔵し、負極電位下でリチウムイオンを可逆的に吸蔵及び放出する物質である。合金系活物質は、非晶質又は低結晶性であることが好ましい。合金系活物質としては、リチウムイオン二次電池用の合金系活物質を使用できるが、珪素系活物質及び錫系活物質が好ましい。合金系活物質は1種を単独で使用でき又は2種以上を組み合わせて使用できる。   The alloy-based active material constituting the columnar body 23 is a substance that occludes lithium by alloying with lithium and reversibly occludes and releases lithium ions under a negative electrode potential. The alloy-based active material is preferably amorphous or low crystalline. As the alloy-based active material, an alloy-based active material for a lithium ion secondary battery can be used, but a silicon-based active material and a tin-based active material are preferable. An alloy type active material can be used individually by 1 type, or can be used in combination of 2 or more type.

珪素系活物質としては、珪素、珪素化合物、これらの部分置換体等が挙げられる。
珪素化合物としては、式SiOa(0.05<a<1.95)で表される珪素酸化物、式SiCb(0<b<1)で表される珪素炭化物、式SiNc(0<c<4/3)で表される珪素窒化物、珪素と異種元素(A)との合金等が挙げられる。異種元素(A)としては、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、Sn、Ti等が挙げられる。また、部分置換体は、珪素及び珪素化合物に含まれる珪素原子の一部が、異種元素(B)で置換された化合物である。異種元素(B)の具体例としては、B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Sn等が挙げられる。これらの中では、珪素及び珪素酸化物が好ましい。
Examples of the silicon-based active material include silicon, silicon compounds, and partial substitutes thereof.
Examples of the silicon compound include silicon oxide represented by the formula SiO a (0.05 <a <1.95), silicon carbide represented by the formula SiC b (0 <b <1), and formula SiN c (0 < a silicon nitride represented by c <4/3), an alloy of silicon and a different element (A), and the like. Examples of the different element (A) include Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti. In addition, the partially substituted body is a compound in which a part of silicon atoms contained in silicon and a silicon compound is substituted with a different element (B). Specific examples of the different element (B) include B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn. Can be mentioned. Of these, silicon and silicon oxide are preferred.

錫系活物質としては、錫、錫化合物、式SnOd(0<d<2)で表される錫酸化物、二酸化錫(SnO2)、錫窒化物、Ni−Sn合金、Mg−Sn合金、Fe−Sn合金、Cu−Sn合金、Ti−Sn合金等の錫合金、SnSiO3、Ni2Sn4、Mg2Sn等の錫化合物等が挙げられる。錫系活物質の中では、錫酸化物、錫合金、錫化合物等が好ましい。 Examples of tin-based active materials include tin, tin compounds, tin oxides represented by the formula SnO d (0 <d <2), tin dioxide (SnO 2 ), tin nitride, Ni—Sn alloy, and Mg—Sn alloy. , Fe-Sn alloy, Cu-Sn alloy, tin alloy, such as Ti-Sn alloy, SnSiO 3, Ni 2 Sn 4 , Mg 2 Sn and tin compounds such like. Among the tin-based active materials, tin oxide, tin alloy, tin compound, and the like are preferable.

柱状体23の高さ及び幅は、それぞれ、負極4の断面において、柱状体23の最先端点から凸部21の平坦な頂部表面に降ろした垂線の長さ及び表面20aに平行な方向の柱状体23の最大長さである。柱状体23の高さ及び幅は、それぞれ、好ましくは5μm〜50μm及び5μm〜60μmである。柱状体23の高さ及び幅は、凸部21の高さ及び幅と同様にして求めることができる。柱状体23の立体形状としては、例えば、円柱状、角柱状、紡錘状等が挙げられる。   The height and width of the columnar body 23 are respectively the length of the perpendicular dropped from the foremost point of the columnar body 23 to the flat top surface of the projection 21 and the columnar shape in the direction parallel to the surface 20a in the cross section of the negative electrode 4. This is the maximum length of the body 23. The height and width of the columnar body 23 are preferably 5 μm to 50 μm and 5 μm to 60 μm, respectively. The height and width of the columnar body 23 can be obtained in the same manner as the height and width of the convex portion 21. Examples of the three-dimensional shape of the columnar body 23 include a columnar shape, a prismatic shape, and a spindle shape.

本実施形態では、両方の表面に複数の凸部21を有する負極集電体20と、複数の柱状体23からなる負極活物質層22と、を備える負極4を用いたが、これに限定されない。例えば、凸部21を有しない負極集電体の表面に、気相法により、合金系活物質からなる薄膜(ベタ膜)を形成した負極を用いてもよい。更に、凸部21を有し又は有しない負極集電体の表面に、合金系活物質粒子を結着剤により結着した負極を用いても良い。この場合、結着剤としては、リチウムイオン二次電池の分野で常用される負極用結着剤を使用できる。   In this embodiment, although the negative electrode 4 provided with the negative electrode collector 20 which has the some convex part 21 on both surfaces, and the negative electrode active material layer 22 which consists of several columnar body 23 was used, it is not limited to this. . For example, a negative electrode in which a thin film (solid film) made of an alloy-based active material is formed on the surface of a negative electrode current collector not having the convex portion 21 by a vapor phase method may be used. Further, a negative electrode in which alloy-based active material particles are bound with a binder on the surface of the negative electrode current collector with or without the convex portion 21 may be used. In this case, as the binder, a negative electrode binder commonly used in the field of lithium ion secondary batteries can be used.

正極3と負極4との間に配置されるセパレータ5としては、細孔を有する多孔質シート、樹脂繊維の不織布、樹脂繊維の織布等を使用できる。これらの中でも、多孔質シートが好ましく、細孔径が0.05μm〜0.15μm程度である多孔質シートが更に好ましい。多孔質シートの厚みは、好ましくは、5μm〜30μmである。多孔質シート及び樹脂繊維を構成する樹脂材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリアミドイミド等が挙げられる。   As the separator 5 disposed between the positive electrode 3 and the negative electrode 4, a porous sheet having pores, a resin fiber nonwoven fabric, a resin fiber woven fabric, or the like can be used. Among these, a porous sheet is preferable, and a porous sheet having a pore diameter of about 0.05 μm to 0.15 μm is more preferable. The thickness of the porous sheet is preferably 5 μm to 30 μm. Examples of the resin material constituting the porous sheet and the resin fiber include polyolefins such as polyethylene and polypropylene, polyamide, and polyamideimide.

非水電解液は、リチウム塩と、非水溶媒と、を含有する。リチウム塩としては、LiPF6、LiClO4、LiBF4、LiAlCl4、LiSbF6、LiSCN、LiAsF6、LiB10Cl10、LiCl、LiBr、LiI、LiCO2CF3、LiSO3CF3、Li(SO3CF32、LiN(SO2CF32、リチウムイミド塩等が挙げられる。リチウム塩は1種を単独で使用でき又は2種以上を組み合わせて使用できる。非水溶媒1L中のリチウム塩の濃度は、好ましくは0.2モル〜2モルである。 The nonaqueous electrolytic solution contains a lithium salt and a nonaqueous solvent. Lithium salts include LiPF 6 , LiClO 4 , LiBF 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiAsF 6 , LiB 10 Cl 10 , LiCl, LiBr, LiI, LiCO 2 CF 3 , LiSO 3 CF 3 , Li (SO 3 CF 3) 2, LiN (SO 2 CF 3) 2, and lithium imide salt and the like. A lithium salt can be used individually by 1 type, or can be used in combination of 2 or more type. The concentration of the lithium salt in 1 L of the nonaqueous solvent is preferably 0.2 mol to 2 mol.

非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、1,2−ジメトキシエタン、1,2−ジエトキシエタン等の鎖状エーテル、γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル、酢酸メチル等の鎖状エステル等が挙げられる。非水溶媒は、1種を単独で使用でき又は2種以上を組み合わせて使用できる。   Non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane. Chain ethers such as γ-butyrolactone, cyclic carboxylic acid esters such as γ-valerolactone, and chain esters such as methyl acetate. A non-aqueous solvent can be used individually by 1 type, or can be used in combination of 2 or more type.

リチウムイオン二次電池1を作製するに際しては、まず、正極リード10及び負極リード11の両端を、それぞれ所定の位置に溶接する。そして、上部絶縁板12及び下部絶縁板13を装着した電極群2を電池ケース14に収容した後、非水電解液を注液する。次に、電池ケース14の開口部に、ガスケット16及び封口板15を順次装着して、電池ケース14を封口する。これにより、リチウムイオン二次電池1が得られる。   When the lithium ion secondary battery 1 is manufactured, first, both ends of the positive electrode lead 10 and the negative electrode lead 11 are welded to predetermined positions, respectively. And after accommodating the electrode group 2 equipped with the upper insulating plate 12 and the lower insulating plate 13 in the battery case 14, a non-aqueous electrolyte is injected. Next, the gasket 16 and the sealing plate 15 are sequentially attached to the opening of the battery case 14 to seal the battery case 14. Thereby, the lithium ion secondary battery 1 is obtained.

正極リード10としては、例えば、アルミニウムリード等を使用できる。負極リード11としては、例えば、ニッケルリード、銅リード等を使用できる。電池ケース14及び封口板15としては、例えば、鉄、ステンレス鋼等の金属材料を所定の形状に成形したものを使用できる。上部絶縁板12、下部絶縁板13及びガスケット16としては、例えば、樹脂材料、ゴム材料等の絶縁性材料を所定の形状に成形したものを使用できる。   For example, an aluminum lead or the like can be used as the positive electrode lead 10. As the negative electrode lead 11, for example, a nickel lead, a copper lead, or the like can be used. As the battery case 14 and the sealing plate 15, for example, a metal material such as iron or stainless steel formed into a predetermined shape can be used. As the upper insulating plate 12, the lower insulating plate 13, and the gasket 16, for example, an insulating material such as a resin material or a rubber material formed into a predetermined shape can be used.

本実施形態のリチウムイオン二次電池1は、捲回型電極群2を備える円筒型電池であるが、それに限定されず、各種形態を採ることができる。前記形態としては、例えば、捲回型電極群2、非水電解液等を収容した電池ケースを、正極端子を支持する絶縁材料製の封口板により封口した円筒型電池、捲回型電極群2又は積層型電極群を角型電池ケースに収容した角型電池、捲回型電極群2を加圧して扁平状に成形した扁平状電極群を角型電池ケースに収容した角型電池、捲回型電極群2又は扁平状電極群又は積層型電極群をラミネートフィルム製電池ケースに収容したラミネートフィルム電池、積層型電極群をコイン型電池ケースに収容したコイン型電池等が挙げられる。   Although the lithium ion secondary battery 1 of this embodiment is a cylindrical battery provided with the wound electrode group 2, it is not limited to this and can take various forms. Examples of the form include a cylindrical battery in which a wound electrode group 2, a battery case containing a non-aqueous electrolyte and the like are sealed with a sealing plate made of an insulating material that supports a positive electrode terminal, and a wound electrode group 2 Alternatively, a prismatic battery in which the stacked electrode group is accommodated in a rectangular battery case, a rectangular battery in which a flat electrode group formed by pressing the wound electrode group 2 into a flat shape is accommodated in the rectangular battery case, and wound. Examples thereof include a laminated film battery in which the type electrode group 2 or the flat electrode group or the laminated electrode group is accommodated in a laminated film battery case, and a coin type battery in which the laminated electrode group is accommodated in a coin type battery case.

以下に実施例及び比較例を挙げ、本発明を具体的に説明する。
(実施例1)
(a)正極の作製
正極活物質(LiNi0.85Co0.15Al0.052)85質量部、黒鉛粉末10質量部及びフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(易膨潤性樹脂、ヘキサフルオロプロピレン単位の含有割合:5モル%、膨潤度:55%、数平均分子量:40万、以下「VDF−HFP共重合体(1)」とする)5質量部を、適量のN−メチル−2−ピロリドンと混合し、正極合剤スラリーを調製した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Example 1
(A) Production of positive electrode 85 parts by mass of a positive electrode active material (LiNi 0.85 Co 0.15 Al 0.05 O 2 ), 10 parts by mass of graphite powder, and a copolymer of vinylidene fluoride and hexafluoropropylene (easily swellable resin, hexafluoropropylene) Content ratio of unit: 5 mol%, swelling degree: 55%, number average molecular weight: 400,000, hereinafter referred to as “VDF-HFP copolymer (1)”), 5 parts by mass, an appropriate amount of N-methyl-2- A positive electrode mixture slurry was prepared by mixing with pyrrolidone.

得られた正極合剤スラリーを、厚み15μmのアルミニウム箔(正極集電体)の両面に塗布し、得られた塗膜を乾燥及び圧延し、厚み130μmの正極を作製した。得られた正極を、18650円筒型電池(直径約18mm、高さ約65mm)の電池ケースに挿入可能な幅に裁断した。なお、VDF−HFP共重合体(1)の膨潤度は、後述する「(c)非水電解液の調製」で得られた非水電解液に対する膨潤度である。以下、同じである。   The obtained positive electrode mixture slurry was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, and the obtained coating film was dried and rolled to produce a positive electrode having a thickness of 130 μm. The obtained positive electrode was cut into a width that can be inserted into a battery case of a 18650 cylindrical battery (diameter: about 18 mm, height: about 65 mm). In addition, the swelling degree of VDF-HFP copolymer (1) is a swelling degree with respect to the non-aqueous electrolyte obtained by "(c) Preparation of non-aqueous electrolyte" mentioned later. The same applies hereinafter.

(b)負極板の作製
(b−1)負極集電体の作製
表面に複数の凹部が千鳥格子状に配置された鍛鋼ローラ2本を、それぞれの軸線が平行になるように圧接させ、ニップ部を形成した。このニップ部に、厚み35μmの電解銅箔(古河サーキットフォイル(株)製)を線圧1000N/cmで通過させることにより、両方の表面に複数の凸部21が形成された負極集電体20を作製した。
(B) Production of negative electrode plate (b-1) Production of negative electrode current collector Two forged steel rollers having a plurality of recesses arranged in a staggered pattern on the surface are pressed so that the respective axes are parallel, A nip was formed. By passing an electrolytic copper foil (made by Furukawa Circuit Foil Co., Ltd.) having a thickness of 35 μm through this nip portion at a linear pressure of 1000 N / cm, a negative electrode current collector 20 having a plurality of convex portions 21 formed on both surfaces. Was made.

複数の凸部21は、平均高さが8μmであり、千鳥格子状に配置されていた。また、凸部21の先端部分は、負極集電体20の表面20aにほぼ平行な平面であった。また、負極集電体20の鉛直方向上方からの正投影図において、凸部21の形状はほぼ菱形であった。また、凸部21の軸線間距離は、負極集電体の長手方向では50μm、幅方向では50μmであった。   The plurality of convex portions 21 had an average height of 8 μm and were arranged in a staggered pattern. Further, the tip portion of the convex portion 21 was a plane substantially parallel to the surface 20 a of the negative electrode current collector 20. Further, in the orthographic projection view from above in the vertical direction of the negative electrode current collector 20, the shape of the convex portion 21 was substantially rhombus. Further, the distance between the axes of the protrusions 21 was 50 μm in the longitudinal direction of the negative electrode current collector and 50 μm in the width direction.

(b−2)負極活物質層の形成
図4は、電子ビーム式真空蒸着装置30(以下「蒸着装置30」とする)の構成を模式的に示す側面透視図である。蒸着装置30を用い、上記で得られた負極集電体20の各凸部21(図4では不図示)の表面にそれぞれ柱状体23を形成し、負極4を作製した。
(B-2) Formation of Negative Electrode Active Material Layer FIG. 4 is a side perspective view schematically showing the configuration of an electron beam vacuum deposition apparatus 30 (hereinafter referred to as “deposition apparatus 30”). A columnar body 23 was formed on the surface of each convex portion 21 (not shown in FIG. 4) of the negative electrode current collector 20 obtained above by using the vapor deposition apparatus 30, thereby manufacturing the negative electrode 4.

蒸着装置30は、帯状の負極集電体20が予め巻き付けられた送り出しローラ32と、負極集電体20を巻き取りローラ35まで誘導する搬送ローラ33a、33b、33c、33d、33e、33fと、合金系活物質の原料を収容する蒸着源36a、36bと、表面に合金系活物質を蒸着させた負極集電体20を巻き取る巻き取りローラ35と、合金系活物質蒸気の負極集電体20表面への供給領域を規制する一対の遮蔽板37、38と、酸素を供給する酸素ノズル(不図示)と、これらを収容するチャンバ31と、チャンバ31内を減圧状態にする真空ポンプ39と、蒸着源36a、36bに収容された合金系活物質の原料に電子ビームを照射して、合金系活物質の原料の蒸気を発生させる電子ビーム照射装置(不図示)と、を備えている。遮蔽板37は、遮蔽片37a、37b、37cを備える。遮蔽板38は、遮蔽片38a、38b、38cを備える。   The vapor deposition apparatus 30 includes a feed roller 32 around which the strip-shaped negative electrode current collector 20 is wound in advance, and conveyance rollers 33a, 33b, 33c, 33d, 33e, and 33f that guide the negative electrode current collector 20 to the take-up roller 35; Vapor deposition sources 36a and 36b that contain raw materials for the alloy active material, a take-up roller 35 for winding the negative electrode current collector 20 with the alloy active material deposited on the surface, and a negative electrode current collector for the alloy active material vapor 20, a pair of shielding plates 37 and 38 for regulating the supply area to the surface, an oxygen nozzle (not shown) for supplying oxygen, a chamber 31 for housing these, and a vacuum pump 39 for reducing the pressure in the chamber 31 And an electron beam irradiation device (not shown) for irradiating the raw material of the alloy-based active material accommodated in the vapor deposition sources 36a and 36b with an electron beam to generate a vapor of the raw material of the alloy-based active material. . The shielding plate 37 includes shielding pieces 37a, 37b, and 37c. The shielding plate 38 includes shielding pieces 38a, 38b, and 38c.

蒸着装置30では、負極集電体20の搬送方向において、遮蔽片37a、37b間に第1蒸着領域が形成され、遮蔽片37b、37c間に第2蒸着領域が形成され、遮蔽片38c、38b間に第3蒸着領域が形成され、遮蔽片38b、38a間に第4蒸着領域が形成される。   In the vapor deposition apparatus 30, in the conveyance direction of the negative electrode current collector 20, a first vapor deposition region is formed between the shielding pieces 37a and 37b, a second vapor deposition region is formed between the shielding pieces 37b and 37c, and the shielding pieces 38c and 38b. A third vapor deposition region is formed therebetween, and a fourth vapor deposition region is formed between the shielding pieces 38b and 38a.

合金系活物質原料としては、スクラップシリコン(シリコン単結晶、純度99.9999%、信越化学工業(株)製)を用い、これを蒸発源36a、36bに収容した。チャンバ31内を真空ポンプ38により5×10-3Paまで排気した後、酸素ノズルからチャンバ31内に酸素を供給し、圧力3.5Paの酸素雰囲気とした。次に、蒸発源36a、36bに収容されたスクラップシリコンに電子ビーム(加速電圧:10kV、エミッション:500mA)を照射し、シリコン蒸気を発生させた。シリコン蒸気が上昇する途中で酸素と混ざり合い、シリコン蒸気と酸素との混合気体を生成させた。 As the alloy-based active material raw material, scrap silicon (silicon single crystal, purity 99.9999%, manufactured by Shin-Etsu Chemical Co., Ltd.) was used and accommodated in evaporation sources 36a and 36b. After the chamber 31 was evacuated to 5 × 10 −3 Pa by the vacuum pump 38, oxygen was supplied from the oxygen nozzle into the chamber 31 to create an oxygen atmosphere with a pressure of 3.5 Pa. Next, the scrap silicon accommodated in the evaporation sources 36a and 36b was irradiated with an electron beam (acceleration voltage: 10 kV, emission: 500 mA) to generate silicon vapor. In the middle of the rise of silicon vapor, it mixed with oxygen to generate a mixed gas of silicon vapor and oxygen.

一方、送り出しローラ32から負極集電体20を送給速度2cm/分で送り出し、第1蒸着領域を走行する負極集電体20の凸部21表面に、シリコン蒸気と酸素との混合物を蒸着させ、図3に示す塊23aを形成した。次に、第2蒸着領域を走行する負極集電体20の凸部21の表面及び塊23aの表面に塊23bを形成した。更に、第3及び第4蒸着領域において、第1及び第2蒸着領域で塊23a、23bを形成したのとは反対側の面の凸部21表面に塊23a、23bを積層した。   On the other hand, the negative electrode current collector 20 is fed from the feed roller 32 at a feed rate of 2 cm / min, and a mixture of silicon vapor and oxygen is deposited on the surface of the convex portion 21 of the negative electrode current collector 20 running in the first deposition region. A lump 23a shown in FIG. 3 was formed. Next, a lump 23b was formed on the surface of the convex portion 21 and the surface of the lump 23a of the negative electrode current collector 20 running in the second vapor deposition region. Furthermore, in the 3rd and 4th vapor deposition area | region, the masses 23a and 23b were laminated | stacked on the convex part 21 surface of the surface on the opposite side to which the masses 23a and 23b were formed in the 1st and 2nd vapor deposition area | regions.

次に、送り出しローラ32及び巻き取りローラ35の回転方向を逆転させることにより、負極集電体20の送り方向を逆転させ、負極集電体20の両面の塊23a、23bの表面に、塊23c、23dを積層した。以下、同様にして1往復の蒸着を行い、負極集電体20の両方の凸部21表面に、塊23a、23b、23c、23d、23e、23f、23g、23hの積層体である柱状体23を形成した。   Next, the feeding direction of the negative electrode current collector 20 is reversed by reversing the rotation directions of the feed roller 32 and the take-up roller 35, and the lump 23 c is formed on the surfaces of the lumps 23 a and 23 b on both sides of the negative electrode current collector 20. , 23d. Thereafter, one reciprocal deposition is performed in the same manner, and the columnar body 23 which is a laminated body of lumps 23a, 23b, 23c, 23d, 23e, 23f, 23g, and 23h is formed on the surfaces of both convex portions 21 of the negative electrode current collector 20. Formed.

柱状体23は、凸部21の表面により支持され、負極集電体20の外方に延びるように成長していた。柱状体23は、ほぼ円柱状の立体形状を有していた。柱状体23の平均高さは20μm、平均幅は40μmであった。また、柱状体23に含まれる酸素量を燃焼法により定量したところ、柱状体23の組成はSiO0.25であった。 The columnar body 23 was supported by the surface of the convex portion 21 and grew to extend outward from the negative electrode current collector 20. The columnar body 23 had a substantially cylindrical solid shape. The columnar body 23 had an average height of 20 μm and an average width of 40 μm. Moreover, when the amount of oxygen contained in the columnar body 23 was quantified by a combustion method, the composition of the columnar body 23 was SiO 0.25 .

上記で得られた負極4の複数の柱状体23からなる負極活物質層に、図5に示す抵抗加熱真空蒸着装置40を用いて、不可逆容量分のリチウムを補填した。蒸着装置40は、帯状負極4が予め巻き付けられた送り出しローラ42と、冷却装置(不図示)が内部に配置されたキャン43と、リチウムが補填された負極4を巻き取る巻き取りローラ44と、負極4を搬送する搬送ローラ45a、45bと、金属リチウムを収容するタンタル製蒸発源46a、46bと、リチウム蒸気の負極4表面への供給を制限する遮蔽板47と、これらを収容する耐圧性チャンバ41と、を備えている。   The negative electrode active material layer composed of the plurality of columnar bodies 23 of the negative electrode 4 obtained above was supplemented with irreversible capacity lithium using a resistance heating vacuum deposition apparatus 40 shown in FIG. The vapor deposition apparatus 40 includes a feeding roller 42 around which the strip-shaped negative electrode 4 is wound in advance, a can 43 in which a cooling device (not shown) is disposed, a winding roller 44 that winds up the negative electrode 4 supplemented with lithium, Conveying rollers 45a and 45b for conveying the negative electrode 4, tantalum evaporation sources 46a and 46b for storing metallic lithium, a shielding plate 47 for restricting supply of lithium vapor to the surface of the negative electrode 4, and a pressure-resistant chamber for storing these 41.

まず、蒸着装置40のチャンバ51内をアルゴン雰囲気に置換し、真空ポンプ(不図示)によりチャンバ41内の真空度を1×10-1Paとした。次に、電源(不図示)から蒸発源57に50Aの電流を通電してリチウム蒸気を発生させると共に、負極4を2cm/分の速度で送り出しローラ42から送り出し、負極4がキャン43表面を通過する際に、負極4の負極活物質層表面に不可逆容量分のリチウムを蒸着させた。リチウムの蒸着は、負極4の両方の負極活物質層に対して実施した。リチウム蒸着後の負極4を、14400円筒型電池(直径約14mm、高さ約40mm)の電池ケースに挿入可能な幅に裁断し、負極板を作製した。 First, the inside of the chamber 51 of the vapor deposition apparatus 40 was replaced with an argon atmosphere, and the degree of vacuum in the chamber 41 was set to 1 × 10 −1 Pa by a vacuum pump (not shown). Next, a current of 50 A is supplied from a power source (not shown) to the evaporation source 57 to generate lithium vapor, and the negative electrode 4 is fed from the feed roller 42 at a speed of 2 cm / min, and the negative electrode 4 passes through the surface of the can 43. In doing so, lithium for an irreversible capacity was deposited on the surface of the negative electrode active material layer of the negative electrode 4. Lithium was deposited on both negative electrode active material layers of the negative electrode 4. The negative electrode 4 after lithium deposition was cut into a width that could be inserted into a battery case of a 14400 cylindrical battery (diameter: about 14 mm, height: about 40 mm) to produce a negative electrode plate.

(c)非水電解液の調製
エチレンカーボネートとエチルメチルカーボネートとの体積比1:1の混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させ、非水電解液を調製した。
(C) a non-aqueous electrolyte solution volume ratio of preparation of ethylene carbonate and ethyl methyl carbonate of 1: in a mixed solvent of 1, LiPF 6 was dissolved at a concentration of 1.0 mol / L, to prepare a nonaqueous electrolyte.

(d)電池の組み立て
上記で得られた正極板と上記で得られた負極板とを、これらの間に、厚み20μmのセパレータ(商品名:ハイポア、ポリエチレン製多孔質膜、旭化成(株)製)を介在させて捲回し、捲回型電極群を作製した。正極集電体にアルミニウムリードの一端を接続し、負極集電体にニッケルリードの一端を接続した。捲回型電極群にポリプロピレン製の上部絶縁板及び下部絶縁板をそれぞれ装着した。次に、この捲回型電極群を、有底円筒型の鉄製電池ケースに収容すると共に、アルミニウムリードの他端をステンレス鋼製封口板に接続し、ニッケルリードの他端を電池ケースの底部内面に接続した。
(D) Battery assembly Between the positive electrode plate obtained above and the negative electrode plate obtained above, a separator having a thickness of 20 μm (trade name: Hypore, polyethylene porous membrane, manufactured by Asahi Kasei Co., Ltd.) ) To interpose a wound electrode group. One end of an aluminum lead was connected to the positive electrode current collector, and one end of the nickel lead was connected to the negative electrode current collector. An upper insulating plate and a lower insulating plate made of polypropylene were respectively attached to the wound electrode group. Next, the wound electrode group is accommodated in a bottomed cylindrical iron battery case, the other end of the aluminum lead is connected to a stainless steel sealing plate, and the other end of the nickel lead is connected to the inner surface of the bottom of the battery case. Connected to.

次に、減圧方式により、電池ケースの内部に非水電解質を注液した。安全弁を支持した封口板の周縁部にポリプロピレン製ガスケットを装着し、この状態で、封口板を電池ケースの開口に装着した。電池ケースの開口端部を封口板に向けてかしめることにより、電池ケースを気密封口した。こうして、外径18mm、高さ65mmである円筒型のリチウムイオン二次電池を作製した。この円筒型電池を10セル作製した。   Next, a nonaqueous electrolyte was injected into the battery case by a reduced pressure method. A polypropylene gasket was attached to the periphery of the sealing plate that supported the safety valve, and in this state, the sealing plate was attached to the opening of the battery case. The battery case was hermetically sealed by caulking the open end of the battery case toward the sealing plate. Thus, a cylindrical lithium ion secondary battery having an outer diameter of 18 mm and a height of 65 mm was produced. Ten cells of this cylindrical battery were produced.

(実施例2)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、VDF−HFP共重合体(2)を用いる以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。なお、VDF−HFP共重合体(2)は、HFP含有割合:12モル%、膨潤度:140%、数平均分子量:40万であった。
(Example 2)
(A) In the preparation of the positive electrode, a 10-cell cylindrical lithium ion was used in the same manner as in Example 1 except that the VDF-HFP copolymer (1) was used instead of the VDF-HFP copolymer (1). A secondary battery was produced. In addition, VDF-HFP copolymer (2) was HFP content rate: 12 mol%, swelling degree: 140%, and number average molecular weight: 400,000.

(実施例3)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、VDF−HFP共重合体(3)を用いる以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。なお、VDF−HFP共重合体(3)は、HFP含有割合:7モル%、膨潤度:80%、数平均分子量:40万であった。
(Example 3)
(A) In the production of the positive electrode, a 10-cell cylindrical lithium ion was used in the same manner as in Example 1 except that the VDF-HFP copolymer (3) was used instead of the VDF-HFP copolymer (1). A secondary battery was produced. In addition, VDF-HFP copolymer (3) was HFP content rate: 7 mol%, swelling degree: 80%, and number average molecular weight: 400,000.

(実施例4)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、ポリヘキサフルオロプロピレン(膨潤度:200%、数平均分子量:45万)を用いる以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。
Example 4
(A) In the production of the positive electrode, the same procedure as in Example 1 was conducted except that polyhexafluoropropylene (swelling degree: 200%, number average molecular weight: 450,000) was used instead of the VDF-HFP copolymer (1). Thus, a 10-cell cylindrical lithium ion secondary battery was produced.

(実施例5)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、架橋ポリアクリロニトリル(膨潤度:180%、数平均分子量:80万)を用いる以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。
(Example 5)
(A) In the production of the positive electrode, the same procedure as in Example 1 was conducted except that crosslinked polyacrylonitrile (swelling degree: 180%, number average molecular weight: 800,000) was used instead of the VDF-HFP copolymer (1). A 10-cell cylindrical lithium ion secondary battery was produced.

(実施例6)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、架橋ポリメチルメタクリレート(膨潤度:185%、数平均分子量:70万)を用いる以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。
(Example 6)
(A) In the production of the positive electrode, the same procedure as in Example 1 was conducted except that crosslinked polymethyl methacrylate (swelling degree: 185%, number average molecular weight: 700,000) was used instead of the VDF-HFP copolymer (1). Thus, a 10-cell cylindrical lithium ion secondary battery was produced.

(実施例7)
下記で得られた正極を用いる以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。
(Example 7)
A 10-cell cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode obtained below was used.

(a)正極の作製
正極活物質(LiNi0.85Co0.15Al0.052)85質量部、黒鉛粉末10質量部、VDF−HFP共重合体(2)3質量部及びポリフッ化ビニリデン(難膨潤性樹脂、膨潤度:15%、平均分子量:60万、以下「PVDF」とする)2質量部を、適量のN−メチル−2−ピロリドンと混合し、正極合剤スラリーを調製した。得られた正極合剤スラリーを、厚み15μmのアルミニウム箔(正極集電体)の両面に塗布し、得られた塗膜を乾燥及び圧延し、厚み130μmの正極を作製した。得られた正極を、18650円筒型電池(直径約18mm、高さ約65mm)の電池ケースに挿入可能な幅に裁断した。
(A) Production of positive electrode 85 parts by mass of positive electrode active material (LiNi 0.85 Co 0.15 Al 0.05 O 2 ), 10 parts by mass of graphite powder, 3 parts by mass of VDF-HFP copolymer (2) and polyvinylidene fluoride (hardly swellable resin) 2 parts by mass of a swelling ratio: 15%, an average molecular weight: 600,000, hereinafter referred to as “PVDF”) was mixed with an appropriate amount of N-methyl-2-pyrrolidone to prepare a positive electrode mixture slurry. The obtained positive electrode mixture slurry was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, and the obtained coating film was dried and rolled to produce a positive electrode having a thickness of 130 μm. The obtained positive electrode was cut into a width that can be inserted into a battery case of a 18650 cylindrical battery (diameter: about 18 mm, height: about 65 mm).

(比較例1)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、ポリフッ化ビニリデン(膨潤度:15%、数平均分子量:60万)を使用する以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。
(Comparative Example 1)
(A) In the production of the positive electrode, the same procedure as in Example 1 was conducted except that polyvinylidene fluoride (swelling degree: 15%, number average molecular weight: 600,000) was used instead of the VDF-HFP copolymer (1). Thus, a 10-cell cylindrical lithium ion secondary battery was produced.

(比較例2)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、VDF−HFP共重合体(ヘキサフルオロプロピレン単位の含有割合:1モル%、膨潤度:23%、数平均分子量:40万)を使用する以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。
(Comparative Example 2)
(A) In preparation of a positive electrode, it replaced with VDF-HFP copolymer (1), VDF-HFP copolymer (The content rate of a hexafluoropropylene unit: 1 mol%, swelling degree: 23%, number average molecular weight: A 10-cell cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except for using 400,000).

(比較例3)
(a)正極の作製において、VDF−HFP共重合体(1)に代えて、VDF−HFP共重合体(ヘキサフルオロプロピレン単位の含有割合:3モル%、膨潤度:40%、数平均分子量:40万)を使用する以外は、実施例1と同様にして、10セルの円筒型リチウムイオン二次電池を作製した。
(Comparative Example 3)
(A) In preparation of a positive electrode, it replaced with VDF-HFP copolymer (1), VDF-HFP copolymer (The content rate of a hexafluoropropylene unit: 3 mol%, swelling degree: 40%, number average molecular weight: A 10-cell cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except for using 400,000).

[電池容量]
実施例1〜7及び比較例1〜3の電池を、それぞれ20℃の恒温槽に収容し、以下の充放電条件で充電(定電流充電及びそれに続く定電圧充電)及び放電(定電流放電)の充放電を3サイクル繰返し、3回目の放電容量(0.2C容量)を求め、電池容量とした。結果を表1に示す。
[Battery capacity]
The batteries of Examples 1 to 7 and Comparative Examples 1 to 3 are each housed in a constant temperature bath of 20 ° C., and are charged (constant current charging and subsequent constant voltage charging) and discharged (constant current discharging) under the following charging / discharging conditions. The charging / discharging was repeated 3 cycles, and the discharge capacity (0.2 C capacity) for the third time was determined and used as the battery capacity. The results are shown in Table 1.

定電流充電:0.7C、充電終止電圧4.2V。
定電圧充電:4.2V、充電終止電流0.05C、休止時間20分。
定電流放電:0.2C、放電終止電圧2.5V、休止時間20分。
Constant current charging: 0.7C, end-of-charge voltage of 4.2V.
Constant voltage charging: 4.2 V, charging end current 0.05 C, rest time 20 minutes.
Constant current discharge: 0.2 C, discharge end voltage 2.5 V, rest time 20 minutes.

[サイクル特性]
実施例1〜7及び比較例1〜3の電池、各10セルを、それぞれ20℃の恒温槽に収容し、電池容量評価と同じ充放電条件で1サイクルの充放電を行い、1サイクル放電容量を求めた。その後、定電流放電の電流値を0.2Cから1Cに変更する以外は、1サイクル目と同じ充放電条件で298サイクルの充放電を行った。次に、1サイクル目と同じ充放電条件で充放電を行い、300サイクル放電容量を求めた。1サイクル放電容量に対する300サイクル放電容量の百分率として、容量維持率(%)を求めた。容量維持率(%)は、10セルの平均値とした。結果を表1に示す。
[Cycle characteristics]
The batteries of Examples 1 to 7 and Comparative Examples 1 to 3 and 10 cells each were housed in a constant temperature bath at 20 ° C., and charged and discharged for one cycle under the same charge and discharge conditions as the battery capacity evaluation. Asked. Then, charge / discharge of 298 cycles was performed on the same charge / discharge conditions as the 1st cycle except changing the electric current value of constant current discharge from 0.2C to 1C. Next, charging / discharging was performed under the same charging / discharging conditions as in the first cycle, and a 300-cycle discharging capacity was obtained. The capacity retention rate (%) was determined as a percentage of the 300 cycle discharge capacity with respect to the 1 cycle discharge capacity. The capacity retention rate (%) was an average value of 10 cells. The results are shown in Table 1.

また、実施例1〜7及び比較例1〜3の電池、各10セルについて、容量維持率が60%を下回る電池の数を計測した。結果を表1に示す。   Moreover, about the battery of Examples 1-7 and Comparative Examples 1-3, and 10 cells each, the number of the batteries in which a capacity | capacitance maintenance rate is less than 60% was measured. The results are shown in Table 1.

Figure 2011258351
Figure 2011258351

表1から、合金系活物質を用いるリチウムイオン二次電池において、正極の正極活物質層が、非水電解液に対する膨潤度が50%以上の易膨潤性樹脂を結着剤として含有することにより、電池のサイクル特性が向上し、充放電サイクル回数が増加しても、サイクル特性の急激な低下が抑制されることが判る。   From Table 1, in the lithium ion secondary battery using an alloy-based active material, the positive electrode active material layer of the positive electrode contains an easily swellable resin having a swelling degree of 50% or more with respect to the non-aqueous electrolyte as a binder. It can be seen that even if the cycle characteristics of the battery are improved and the number of charge / discharge cycles is increased, a rapid decrease in the cycle characteristics is suppressed.

本発明のリチウムイオン二次電池は、従来のリチウムイオン二次電池と同様の用途に使用でき、特に、電子機器、電気機器、工作機器、輸送機器、電力貯蔵機器等の主電源又は補助電源として有用である。電子機器には、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末、携帯用ゲーム機器等がある。電気機器には、掃除機、ビデオカメラ等がある。工作機器には、電動工具、ロボット等がある。輸送機器には、電気自動車、ハイブリッド電気自動車、プラグインHEV、燃料電池自動車等がある。電力貯蔵機器には、無停電電源等がある。   The lithium ion secondary battery of the present invention can be used for the same applications as conventional lithium ion secondary batteries, and in particular, as a main power source or auxiliary power source for electronic devices, electrical devices, machine tools, transportation devices, power storage devices, etc. Useful. Electronic devices include personal computers, mobile phones, mobile devices, portable information terminals, portable game devices, and the like. Electrical equipment includes vacuum cleaners and video cameras. Machine tools include electric tools and robots. Transportation equipment includes electric vehicles, hybrid electric vehicles, plug-in HEVs, fuel cell vehicles, and the like. Examples of power storage devices include uninterruptible power supplies.

1 リチウムイオン二次電池
2 捲回型電極群
3 正極
4 負極
5 セパレータ
10 正極リード
11 負極リード
12 上部絶縁板
13 下部絶縁板
14 電池ケース
15 封口板
16 ガスケット
20 負極集電体
21 凸部
22 負極活物質層
23 柱状体
24 空隙
30 電子ビーム式真空蒸着装置
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 2 Winding-type electrode group 3 Positive electrode 4 Negative electrode 5 Separator 10 Positive electrode lead 11 Negative electrode lead 12 Upper insulating plate 13 Lower insulating plate 14 Battery case 15 Sealing plate 16 Gasket 20 Negative electrode collector 21 Protruding part 22 Negative electrode Active material layer 23 Columnar body 24 Void 30 Electron beam vacuum deposition apparatus

Claims (8)

リチウムイオンの吸蔵及び放出が可能な正極活物質と結着剤とを含有する正極活物質層、及び前記正極活物質層を支持する正極集電体を備える正極と、合金系活物質からなる負極活物質層、及び前記負極活物質層を支持する負極集電体を備える負極と、前記正極と前記負極との間に介在するセパレータと、非水電解液と、を備えるリチウムイオン二次電池であって、
前記結着剤が、前記非水電解液に対する膨潤度が50%以上である易膨潤性樹脂を含有することを特徴とするリチウムイオン二次電池。
A positive electrode active material layer containing a positive electrode active material capable of occluding and releasing lithium ions and a binder, a positive electrode comprising a positive electrode current collector supporting the positive electrode active material layer, and a negative electrode comprising an alloy-based active material A lithium ion secondary battery comprising an active material layer, a negative electrode including a negative electrode current collector that supports the negative electrode active material layer, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. There,
The lithium ion secondary battery, wherein the binder contains an easily swellable resin having a degree of swelling with respect to the non-aqueous electrolyte of 50% or more.
前記負極活物質層が、前記負極集電体の表面に支持された、前記合金系活物質からなる複数の柱状体を含む請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the negative electrode active material layer includes a plurality of columnar bodies made of the alloy-based active material, which are supported on the surface of the negative electrode current collector. 前記合金系活物質が、珪素系活物質及び錫系活物質から選ばれる少なくとも1種である請求項1又は2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the alloy-based active material is at least one selected from a silicon-based active material and a tin-based active material. 前記易膨潤性樹脂が、ポリヘキサフルオロプロピレン、ヘキサフルオロプロピレンとフッ化ビニリデンとの共重合体、架橋されたポリアクリロニトリル系重合体、及び架橋されたポリメチルメタクリレート系重合体よりなる群から選ばれる少なくとも1種である請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。   The easily swellable resin is selected from the group consisting of polyhexafluoropropylene, a copolymer of hexafluoropropylene and vinylidene fluoride, a crosslinked polyacrylonitrile polymer, and a crosslinked polymethyl methacrylate polymer. The lithium ion secondary battery according to any one of claims 1 to 3, wherein the lithium ion secondary battery is at least one kind. 前記正極活物質層が、前記正極活物質100質量部に対して、前記易膨潤性樹脂を0.5質量部〜5質量部の割合で含有する請求項1〜4のいずれか1項に記載のリチウムイオン二次電池。   The said positive electrode active material layer contains the said easily swellable resin in the ratio of 0.5 mass part-5 mass parts with respect to 100 mass parts of the said positive electrode active materials. Lithium ion secondary battery. 前記結着剤が、前記易膨潤性樹脂と共に、前記非水電解液に対する膨潤度が30%未満である難膨潤性樹脂を更に含有する請求項1〜5のいずれか1項に記載のリチウムイオン二次電池。   The lithium ion according to any one of claims 1 to 5, wherein the binder further contains, together with the easily swellable resin, a hardly swellable resin having a degree of swelling with respect to the non-aqueous electrolyte of less than 30%. Secondary battery. 前記難膨潤性樹脂が、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン−テトラフルオロエチレン共重合体、ポリイミド、ポリアミド及びポリアミドイミドよりなる群から選ばれる少なくとも1種である請求項6に記載のリチウムイオン二次電池。   The said difficulty swelling resin is at least 1 sort (s) chosen from the group which consists of a polyvinylidene fluoride, a polytetrafluoroethylene, a vinylidene fluoride-tetrafluoroethylene copolymer, a polyimide, polyamide, and a polyamideimide. Lithium ion secondary battery. 前記正極活物質層が、前記正極活物質100質量部に対して、前記難膨潤性樹脂を1質量部〜5質量部の割合で含有する請求項6又は7に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 6 or 7, wherein the positive electrode active material layer contains the hardly-swellable resin in a ratio of 1 part by mass to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
JP2010130357A 2010-06-07 2010-06-07 Lithium ion secondary battery Pending JP2011258351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010130357A JP2011258351A (en) 2010-06-07 2010-06-07 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130357A JP2011258351A (en) 2010-06-07 2010-06-07 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2011258351A true JP2011258351A (en) 2011-12-22

Family

ID=45474322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130357A Pending JP2011258351A (en) 2010-06-07 2010-06-07 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011258351A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery
CN103904263A (en) * 2014-04-02 2014-07-02 哈尔滨工程大学 Micro-miniature underwater robot battery compartment
JP2017130323A (en) * 2016-01-19 2017-07-27 株式会社クレハ Binder composition, binder fluid dispersion, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for manufacturing binder composition
WO2019169217A2 (en) 2018-03-02 2019-09-06 Arkema Inc. Fluoropolymer binder coating for use in electrochemical devices
CN111916660A (en) * 2019-05-07 2020-11-10 德莎欧洲股份公司 Lithium ion battery pole group
WO2020246394A1 (en) * 2019-06-03 2020-12-10 日本ゼオン株式会社 Separator including functional layer for electrochemical element, and electrochemical element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery
CN103904263A (en) * 2014-04-02 2014-07-02 哈尔滨工程大学 Micro-miniature underwater robot battery compartment
JP2017130323A (en) * 2016-01-19 2017-07-27 株式会社クレハ Binder composition, binder fluid dispersion, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for manufacturing binder composition
US10938034B2 (en) 2016-01-19 2021-03-02 Kureha Corporation Binder composition, binder dispersion liquid, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and method for producing binder composition
WO2019169217A2 (en) 2018-03-02 2019-09-06 Arkema Inc. Fluoropolymer binder coating for use in electrochemical devices
CN112055883A (en) * 2018-03-02 2020-12-08 阿科玛股份有限公司 Fluoropolymer binder coatings for use in electrochemical devices
JP2021516423A (en) * 2018-03-02 2021-07-01 アーケマ・インコーポレイテッド Fluoropolymer binder coating for use in electrochemical devices
EP3759726A4 (en) * 2018-03-02 2022-04-13 Arkema, Inc. Fluoropolymer binder coating for use in electrochemical devices
CN111916660A (en) * 2019-05-07 2020-11-10 德莎欧洲股份公司 Lithium ion battery pole group
CN111916660B (en) * 2019-05-07 2024-02-23 德莎欧洲股份公司 Lithium ion battery pole group
WO2020246394A1 (en) * 2019-06-03 2020-12-10 日本ゼオン株式会社 Separator including functional layer for electrochemical element, and electrochemical element

Similar Documents

Publication Publication Date Title
JP5313761B2 (en) Lithium ion battery
JP5173181B2 (en) Lithium ion secondary battery and method for producing negative electrode plate for lithium ion secondary battery
JP4831075B2 (en) Nonaqueous electrolyte secondary battery
US20050142447A1 (en) Negative electrode for lithium secondary battery, method for manufacturing the same and lithium secondary battery
EP3567663A1 (en) Non-aqueous electrolyte secondary battery and material for use in same
JP5135712B2 (en) Secondary battery
JP5422923B2 (en) Negative electrode and secondary battery, and method for manufacturing negative electrode and secondary battery
JP6746506B2 (en) Non-aqueous electrolyte secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP2010250968A (en) Lithium ion secondary battery
JP2007273183A (en) Negative electrode and secondary battery
EP2450987A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
WO2008072430A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
JP2012069404A (en) Electric device, gas discharging device for electric device and gas discharging method of electric device
JP2020095931A (en) Lithium secondary battery
JP2011258351A (en) Lithium ion secondary battery
WO2012001856A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2013042421A1 (en) Secondary battery
US20090042097A1 (en) Negative electrode current collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
US20100151326A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including same
US20230090463A1 (en) Battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP5289585B2 (en) Lithium ion secondary battery
JP2004342626A (en) Method for enhancing low temperature discharge characteristics of nonaqueous electrolyte lithium secondary battery