JP2011257014A - Melting furnace - Google Patents

Melting furnace Download PDF

Info

Publication number
JP2011257014A
JP2011257014A JP2010129025A JP2010129025A JP2011257014A JP 2011257014 A JP2011257014 A JP 2011257014A JP 2010129025 A JP2010129025 A JP 2010129025A JP 2010129025 A JP2010129025 A JP 2010129025A JP 2011257014 A JP2011257014 A JP 2011257014A
Authority
JP
Japan
Prior art keywords
melted
combustion air
air
burner
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010129025A
Other languages
Japanese (ja)
Other versions
JP5203421B2 (en
Inventor
Yusaku Kawamoto
祐作 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2010129025A priority Critical patent/JP5203421B2/en
Priority to TW100105066A priority patent/TWI429872B/en
Priority to KR1020110031600A priority patent/KR101269794B1/en
Priority to CN201110161499.0A priority patent/CN102269515B/en
Publication of JP2011257014A publication Critical patent/JP2011257014A/en
Application granted granted Critical
Publication of JP5203421B2 publication Critical patent/JP5203421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0031Regulation through control of the flow of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity
    • F27D2019/0043Amount of air or O2 to the burner

Abstract

PROBLEM TO BE SOLVED: To provide a simply-constituted melting furnace saving energy and making NOx low.SOLUTION: The melting furnace 1 includes: a furnace body 2 for housing a material As to be melted; a burner 3 which can mix and burn fuel and main combustion air, so as to form a concentrated flame colliding with the material to be melted, and which can only partially burn the fuel by reducing a flow rate of the main combustion air; an auxiliary air nozzle 4 which supplies the inside of the furnace body 2 with supplemental combustion air for self-burning the fuel remaining in combustion gas after the fuel has been partially burnt by the burner 3; and a control means 10 which decreases the flow rate of the main combustion air of the burner 3 and increases the flow rate of the supplemental combustion air of the auxiliary air nozzle 4 when the material As to be melted is melted down.

Description

本発明は、溶解炉に関する。   The present invention relates to a melting furnace.

環境保護の観点から、アルミニウムや銅等のスクラップ(被溶解材料)を溶解する溶解炉に対しても、排気ガスの低NOx化が求められている。例えば、特許文献1には、炉内に燃料と空気とを離れた位置から供給し、緩慢に燃焼(拡散燃焼)させるバーナを設けてNOxを低減した溶解炉が記載されている。さらに、特許文献1には、溶解炉に、蓄熱体を有する一対のバーナを交番運転し、燃焼していないバーナを介して燃焼排気ガスを排気して蓄熱体で燃焼排気ガスから熱回収し、熱回収した蓄熱体で燃焼用空気を予熱して燃焼運転するリジェネバーナを採用することが記載されている。   From the viewpoint of environmental protection, NOx reduction in exhaust gas is also required for melting furnaces for melting scraps (melting materials) such as aluminum and copper. For example, Patent Document 1 discloses a melting furnace in which NOx is reduced by providing a burner that supplies fuel and air from a remote location in the furnace and slowly burns (diffusion combustion). Further, in Patent Document 1, a pair of burners having a heat storage body are alternately operated in a melting furnace, exhaust gas is exhausted through a burner that is not combusted, and heat is recovered from the combustion exhaust gas by the heat storage body, It is described that a regenerative burner that preheats combustion air with a heat-recovered heat storage body and performs combustion operation is described.

しかしながら、溶解炉においては、例えば非特許文献1に記載されているように、被溶解材料に火炎を衝突させて効率よく熱を伝達することで溶解速度を向上させることができる。このため、省エネルギーの観点からは、溶解炉には、燃料と空気とを混合して供給し、集中燃焼させることによって、被溶解材料に高い運動エネルギーを持って衝突する指向性の高い集中火炎を形成するバーナが好ましいと考えられている。   However, in the melting furnace, for example, as described in Non-Patent Document 1, a melting rate can be improved by causing a flame to collide with a material to be melted and efficiently transferring heat. For this reason, from the standpoint of energy saving, the melting furnace is supplied with a mixture of fuel and air and intensively burned to create a highly directional concentrated flame that collides with the material to be melted with high kinetic energy. The burner that is formed is considered preferred.

また、特許文献2に記載されているように、溶解炉に拡散燃焼方式のバーナを用いる場合、運転初期には低温の被溶解材料がバーナの前に堆積しているため、未燃焼の燃料が低温の被溶解材料に当たって不完全燃焼を起こし、すすが発生したりするという問題もある。このため、特許文献2では、拡散燃焼する主バーナと、被溶解材料に衝突する集中火炎を形成する補助バーナとを設けた溶解炉を提案している。このように複数のバーナを設けると、構成が複雑になり、溶解炉が高価になる。   Further, as described in Patent Document 2, when a diffusion combustion type burner is used in a melting furnace, low-temperature material to be melted is deposited in front of the burner at the initial stage of operation. There is also a problem that incomplete combustion occurs when hitting a low-temperature material to be melted and soot is generated. For this reason, Patent Document 2 proposes a melting furnace provided with a main burner that performs diffusion combustion and an auxiliary burner that forms a concentrated flame that collides with a material to be melted. If a plurality of burners are provided in this way, the configuration becomes complicated and the melting furnace becomes expensive.

特開平8−94253号公報JP-A-8-94253 特開平11−325734号公報JP-A-11-325734

上妻学而、「リジェネバーナを使ったアルミ溶解炉の省エネルギー化の現状」、AL−ある、株式会社軽金属通信ある社、2009年7月号、P17−20Kamitsugami, “Current status of energy saving in aluminum melting furnaces using regenerative burners”, AL-Aru, Light Metal Communications Co., Ltd., July 2009, P17-20

前記問題点に鑑みて、本発明は、省エネルギー且つ低NOxで構成が簡単な溶解炉を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a melting furnace that is energy saving, low NOx, and simple in configuration.

前記課題を解決するために、本発明による溶解炉は、被溶解材料を収容する炉体と、燃料と主燃焼空気とを混合して燃焼させることにより前記被溶解材料に衝突する集中火炎を形成でき、且つ、前記主燃焼空気の流量を少なくして前記燃料の一部のみを燃焼させられるバーナと、前記バーナで燃焼させた後の燃焼ガス中に残存する燃料を自燃させるための補助燃焼空気を前記炉体内に供給する補助空気ノズルと、前記被溶解材料が溶解したとき、前記バーナの前記主燃焼空気の流量を少なくし、且つ、前記補助空気ノズルの前記補助燃焼空気の流量を多くする制御手段とを有するものとする。   In order to solve the above problems, a melting furnace according to the present invention forms a concentrated flame that collides with a material to be melted by mixing a furnace body containing the material to be melted and fuel and main combustion air to be burned. A burner capable of burning only a part of the fuel by reducing the flow rate of the main combustion air, and auxiliary combustion air for self-combusting the fuel remaining in the combustion gas after being burned by the burner When the material to be melted is dissolved, the flow rate of the main combustion air in the burner is decreased and the flow rate of the auxiliary combustion air in the auxiliary air nozzle is increased. And control means.

この構成によれば、被溶解材料が溶けるまでは、バーナの集中火炎を被溶解材料に直接当てて効率よく熱を伝えることによって被溶解材料の溶解を促進できる。また、被溶解材料が溶けた後は、主燃焼空気を減じて集中火炎中では一部の燃料しか燃焼できないようにし、燃焼ガス中に残留する燃料を補助空気ノズルから供給される空気によって炉内の各所で分散的に拡散燃焼させることで、被溶解材料が溶けた溶湯の表面全体を輻射加熱して、溶湯温度の上昇を促進できる。また、燃料を拡散燃焼させることで、NOxの発生を抑制することもできる。   According to this structure, until the material to be melted is melted, the melting of the material to be melted can be promoted by efficiently applying heat by directly applying the concentrated flame of the burner to the material to be melted. In addition, after the material to be melted is melted, the main combustion air is reduced so that only a part of the fuel can be burned in the concentrated flame, and the fuel remaining in the combustion gas is fed into the furnace by the air supplied from the auxiliary air nozzle. By diffusing and burning in a dispersive manner in these places, the entire surface of the molten metal in which the material to be melted is radiantly heated, and the rise in the molten metal temperature can be promoted. Also, NOx generation can be suppressed by diffusing and burning the fuel.

また、本発明の溶解炉において、前記被溶解材料が溶解した後の前記主燃焼空気の流量を空気比0.2以下にすれば、NOxの発生を十分に抑制できる。   Further, in the melting furnace of the present invention, if the flow rate of the main combustion air after the material to be melted is reduced to an air ratio of 0.2 or less, generation of NOx can be sufficiently suppressed.

また、本発明の溶解炉において、前記主燃焼空気および前記補助燃焼空気の合計流量の前記バーナの燃料流量に対する空気比を、前記被溶解材料が溶解する前よりも前記被溶解材料が溶解した後の方が低くなるようにすれば、運転初期の集中火炎の不完全燃焼を防止し、溶湯の昇温のための拡散燃焼におけるNOxを低減できる。   In the melting furnace of the present invention, the air ratio of the total flow rate of the main combustion air and the auxiliary combustion air to the fuel flow rate of the burner is after the material to be melted is melted than before the material to be melted is melted. If it is made lower, incomplete combustion of the concentrated flame in the initial stage of operation can be prevented, and NOx in diffusion combustion for increasing the temperature of the molten metal can be reduced.

また、本発明の溶解炉において、溶解していない被溶解材料は、集中火炎を遮るため、その背後の部分に火炎の輻射熱が届かず、温度が低くなる。したがって、前記被溶解材料の溶解状態は、炉内の温度分布によって検出することができる。   In addition, in the melting furnace of the present invention, the material to be melted that is not melted blocks the concentrated flame, so that the radiant heat of the flame does not reach the portion behind it and the temperature is lowered. Therefore, the melting state of the material to be melted can be detected by the temperature distribution in the furnace.

また、火炎の状態や火炎が形成される位置が変化する本発明の溶解炉において、炉内に温度センサを設けると火炎の輻射熱の影響によって検出温度の誤差が大きくなる。そこで、火炎の輻射を受けない煙道内において排気ガスの温度を検出することによって炉内の温度の指標とすればよい。さらに、被溶解材料の溶解が進むのにしたがって炉内温度が上昇するので、煙道内の排気ガス温度によって被溶解材料の溶解状態を推測できる。   Further, in the melting furnace of the present invention in which the state of the flame and the position where the flame is formed are changed, if a temperature sensor is provided in the furnace, an error in the detected temperature increases due to the influence of the radiant heat of the flame. Therefore, the temperature of the exhaust gas may be detected as an index of the temperature in the furnace by detecting the temperature of the exhaust gas in the flue not receiving the flame radiation. Furthermore, since the furnace temperature rises as the melting of the material to be melted progresses, the melting state of the material to be melted can be estimated from the exhaust gas temperature in the flue.

以上のように、本発明によれば、1つのバーナによって、被溶解材料に集中火炎を衝突させて効率よく溶かすことも、拡散火炎によって溶湯全体を効率よく輻射加熱することもできる。これにより、本発明の溶解炉は、燃料消費を節減して省エネルギーを達成でき、且つ、排気ガス中のNOx濃度を低く維持することができる。   As described above, according to the present invention, it is possible to cause the concentrated flame to collide with the material to be melted and efficiently melt it with one burner, or to efficiently radiate and heat the entire molten metal with the diffusion flame. Thereby, the melting furnace of the present invention can save fuel consumption and achieve energy saving, and can maintain the NOx concentration in the exhaust gas low.

本発明の第1実施形態の溶解炉の構成図である。It is a block diagram of the melting furnace of 1st Embodiment of this invention. 図1の溶解炉における個別の空気流量を示す図である。It is a figure which shows the separate air flow rate in the melting furnace of FIG. 図1の溶解炉における総量の空気流量を示す図である。It is a figure which shows the total air flow rate in the melting furnace of FIG. 本発明の第2実施形態の溶解炉の構成図である。It is a block diagram of the melting furnace of 2nd Embodiment of this invention. 図4の溶解炉における空気流量を示す図である。It is a figure which shows the air flow rate in the melting furnace of FIG. 本発明の第3実施形態の溶解炉の構成図である。It is a block diagram of the melting furnace of 3rd Embodiment of this invention.

これより、本発明の実施形態について、図面を参照しながら説明する。先ず、図1に、本発明の第1実施形態の溶解炉1の構成を示す。溶解炉1は、二点鎖線で図示するように被溶解材料(アルミニウムのスクラップ)Asを山積みして収容し、実線で示すように被溶解材料が溶けた溶湯Amを貯留できる炉体2と、炉体2の内部に燃料(例えばLNG)と空気(主燃焼空気)とを混合して噴射し、集中火炎を形成するように燃焼させるバーナ3と、バーナ3の近傍から炉体2の内部に補助燃焼空気を導入できる補助空気ノズル4とを有する。   Embodiments of the present invention will now be described with reference to the drawings. First, in FIG. 1, the structure of the melting furnace 1 of 1st Embodiment of this invention is shown. A melting furnace 1 includes a furnace body 2 that can store a material to be melted (aluminum scrap) As as illustrated by a two-dot chain line, and can store a melt Am in which the material to be melted is melted as indicated by a solid line; Fuel (for example, LNG) and air (main combustion air) are mixed and injected into the furnace body 2 and burned so as to form a concentrated flame, and from the vicinity of the burner 3 to the interior of the furnace body 2 And an auxiliary air nozzle 4 capable of introducing auxiliary combustion air.

炉体2内の燃焼ガスは、煙道5からレキュペレータ6を通して排気される。レキュペレータ6は、この排気ガスと補助空気ノズル4に供給される補助燃焼空気との間で熱交換して熱回収を行う。主燃焼空気および補助燃焼空気は、共に、給気ファン7によって供給される。主燃焼空気の流量は、主調整弁8によって調節され、補助燃焼空気の流量は補助調整弁9によって調節される。主調整弁8および補助調整弁9の開度は、コンピュータからなる制御装置(制御手段)10によって、煙道5に設けられた温度センサ11が検出する排気ガス温度に応じて調節される。   The combustion gas in the furnace body 2 is exhausted from the flue 5 through the recuperator 6. The recuperator 6 performs heat recovery by exchanging heat between the exhaust gas and the auxiliary combustion air supplied to the auxiliary air nozzle 4. Both the main combustion air and the auxiliary combustion air are supplied by the air supply fan 7. The flow rate of the main combustion air is adjusted by the main adjustment valve 8, and the flow rate of the auxiliary combustion air is adjusted by the auxiliary adjustment valve 9. The opening degree of the main regulating valve 8 and the auxiliary regulating valve 9 is adjusted according to the exhaust gas temperature detected by the temperature sensor 11 provided in the flue 5 by a control device (control means) 10 comprising a computer.

図2に、溶解炉1における、主燃焼空気および補助燃焼空気の流量を、バーナ3に供給される燃料の理論空気量に対する比(空気比)で示す。尚、溶解炉1では、排気ガス温度が例えば1200℃に達するまでは、バーナ3の最大燃焼量の燃料が供給され、その後は排気ガス温度を1200℃に維持するように、燃料流量が調節される。そして、溶解炉1は、排気ガス温度を1200℃に維持したまま、溶湯の温度が所定温度に達するまで燃焼運転を継続する。   FIG. 2 shows the flow rates of the main combustion air and the auxiliary combustion air in the melting furnace 1 as a ratio (air ratio) to the theoretical air amount of fuel supplied to the burner 3. In the melting furnace 1, the fuel with the maximum combustion amount of the burner 3 is supplied until the exhaust gas temperature reaches, for example, 1200 ° C., and thereafter the fuel flow rate is adjusted so that the exhaust gas temperature is maintained at 1200 ° C. The The melting furnace 1 continues the combustion operation until the temperature of the molten metal reaches a predetermined temperature while maintaining the exhaust gas temperature at 1200 ° C.

図示するように、溶解炉1では、排気ガス温度が500℃に達するまでは、補助燃焼空気は供給せず、バーナ3に空気比1.2の主燃焼空気を供給し、バーナ3を完全燃焼させる。このとき、供給される燃料は、すべて、集中火炎の内部において燃焼する。バーナ3が形成する集中火炎は、直進性(指向性)が高く、山積みされた被溶解材料Asに衝突し、その高い運動エネルギーによって効果的に被溶解材料Asに熱を伝達する。   As shown in the figure, in the melting furnace 1, no auxiliary combustion air is supplied until the exhaust gas temperature reaches 500 ° C., main combustion air having an air ratio of 1.2 is supplied to the burner 3, and the burner 3 is completely burned. Let At this time, all of the supplied fuel burns inside the concentrated flame. The concentrated flame formed by the burner 3 has high straightness (directivity), collides with the stacked materials to be melted As, and effectively transfers heat to the materials to be melted with the high kinetic energy.

アルミニウムの溶解温度は660℃であるため、排気ガス温度が500℃に達すると、直接、集中火炎に晒されている被溶解材料Asはより高温になり、少なくとも部分的には溶解して、溶湯Amになっていると考えられる。そこで、溶解炉1では、排気ガス温度が500℃以上になると、バーナ3の主燃焼空気の流量を減じると共に、補助空気ノズル4から、補助燃焼空気を炉体2の内部に供給する。   Since the melting temperature of aluminum is 660 ° C., when the exhaust gas temperature reaches 500 ° C., the material to be melted As that is directly exposed to the concentrated flame becomes higher and melts at least partially. It is thought that it is Am. Therefore, in the melting furnace 1, when the exhaust gas temperature becomes 500 ° C. or higher, the flow rate of the main combustion air in the burner 3 is reduced and the auxiliary combustion air is supplied from the auxiliary air nozzle 4 into the furnace body 2.

主燃焼空気の流量を減じることで、バーナ3の集中火炎では、一部の燃料が燃焼されずに残り、未燃焼の燃料を含む燃焼ガスが炉体2内に拡散する。この燃焼ガスは燃料の着火点以上の温度を有しているため、未燃焼の燃料は、補助空気ノズル4から、供給された補助燃焼空気に含まれる酸素と出会うと自燃する。つまり、バーナ3に供給された燃料の一部は、集中火炎から脱離して、炉体2の内部に拡散しながら燃焼して、各所で拡散火炎を形成する。   By reducing the flow rate of the main combustion air, in the concentrated flame of the burner 3, some fuel remains without being burned, and combustion gas containing unburned fuel diffuses into the furnace body 2. Since this combustion gas has a temperature equal to or higher than the ignition point of the fuel, the unburned fuel self-combusts when it encounters oxygen contained in the auxiliary combustion air supplied from the auxiliary air nozzle 4. That is, a part of the fuel supplied to the burner 3 is desorbed from the concentrated flame and burned while diffusing inside the furnace body 2 to form a diffusion flame at various places.

このような拡散火炎は、集中火炎が届かない部分にも形成され、固体の被溶解材料Asや溶湯Amを輻射熱によって加熱する。被溶解材料Asの溶解が進み、溶湯Amが多くなると、集中火炎によって局所的に加熱するよりも、拡散火炎によって全体的に輻射加熱する方が、効率的に熱を伝達できるようになる。このため、溶解炉1では、図2に示すように、排気ガス温度の上昇に伴って、主燃焼空気の流量を徐々に少なくし、同時に、補助燃焼空気の流量を多くしてゆく。   Such a diffusion flame is also formed in a portion where the concentrated flame does not reach, and heats the solid material As or the molten metal Am by radiant heat. When melting of the material to be melted advances and the amount of molten metal Am increases, heat can be transferred more efficiently by radiant heating as a whole by diffusion flame than by local heating by concentrated flame. For this reason, in the melting furnace 1, as shown in FIG. 2, as the exhaust gas temperature rises, the flow rate of the main combustion air is gradually decreased, and at the same time, the flow rate of the auxiliary combustion air is increased.

溶解炉1において、排気ガス温度が800℃に達すると、被溶解材料Asの溶解は略すべて溶解し、溶湯Amになっていると考えられる。そこで、溶解炉1では、排気ガス温度が800℃になったとき、主燃焼空気の空気比を0.1とし、補助燃焼空気の空気比を1.0とするように設定されている。ここで、図3に示すように、主燃焼空気と補助燃焼空気との総量の空気比は、1.1になっていることを注記する。溶解炉1において、高温時は、燃料を拡散させて緩慢に燃焼させるため、低温時の集中火炎を形成する場合に比べて、低い空気比でも燃料を残さずに燃焼させられるからである。   In the melting furnace 1, when the exhaust gas temperature reaches 800 ° C., it is considered that almost all of the material As to be melted is melted to become a molten metal Am. Therefore, in the melting furnace 1, when the exhaust gas temperature reaches 800 ° C., the air ratio of the main combustion air is set to 0.1, and the air ratio of the auxiliary combustion air is set to 1.0. Here, as shown in FIG. 3, it is noted that the air ratio of the total amount of the main combustion air and the auxiliary combustion air is 1.1. This is because, in the melting furnace 1, the fuel is diffused and burnt slowly at high temperatures, so that the fuel can be burned without leaving any fuel even at a low air ratio as compared to the case of forming a concentrated flame at low temperatures.

溶解炉1は、このように空気比を低くすることで、NOxの発生を抑制できる。NOxの低減効果を得るためには、主燃焼空気の空気比を0.2以下にすることが好ましい。主燃焼空気の空気比をさらに低くしても良いが、保炎のために集中火炎を残す必要があるので、主燃焼空気の空気比は少なくとも0.01程度を確保しなければならない。   The melting furnace 1 can suppress the generation of NOx by lowering the air ratio in this way. In order to obtain the NOx reduction effect, the air ratio of the main combustion air is preferably 0.2 or less. Although the air ratio of the main combustion air may be further reduced, it is necessary to leave a concentrated flame for holding the flame. Therefore, the air ratio of the main combustion air must be at least about 0.01.

尚、煙道5における排気ガスの温度は、炉体2の内部の燃焼ガスの温度と略同じであるが、温度センサ11を炉体2の内部に設けると火炎の輻射熱によって温度センサ11自体が直接加熱され、燃焼ガスの温度よりも高い温度を検出してしまう。溶解炉1では、火炎の状態や火炎の形成される位置が変化するので、火炎の輻射熱による検出誤差が一定ではなく、経験的に検出温度を補正することが困難である。このため、溶解炉1では、火炎の輻射の影響がない煙道5に温度センサ11を設けてある。   The temperature of the exhaust gas in the flue 5 is substantially the same as the temperature of the combustion gas inside the furnace body 2, but if the temperature sensor 11 is provided inside the furnace body 2, the temperature sensor 11 itself is caused by the radiant heat of the flame. It is directly heated and detects a temperature higher than the temperature of the combustion gas. In the melting furnace 1, since the flame state and the position where the flame is formed change, the detection error due to the radiant heat of the flame is not constant, and it is difficult to empirically correct the detection temperature. For this reason, in the melting furnace 1, the temperature sensor 11 is provided in the flue 5 which is not influenced by the flame radiation.

続いて、図4に、本発明の第2実施形態の溶解炉1aを示す。尚、以下の説明において、先に説明した実施形態と同じ構成要素には同じ符号を付して、重複する説明を省略する。溶解炉1aは、バーナ3および補助空気ノズル4をそれぞれ2つ一対として有する。補助空気ノズル4は、それぞれ、蓄熱体12を有し、蓄熱体12を通して補助燃焼空気を供給することができるようになっている。   Subsequently, FIG. 4 shows a melting furnace 1a according to a second embodiment of the present invention. In the following description, the same components as those of the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted. The melting furnace 1a has two burners 3 and two auxiliary air nozzles 4 as a pair. Each of the auxiliary air nozzles 4 has a heat storage body 12 and can supply auxiliary combustion air through the heat storage body 12.

主調整弁8によって流量が調節された主燃焼空気は、主供給弁13によって選択された片側のバーナ3のみに供給され、一方のバーナ3のみが燃焼運転する。また、補助調整弁9によって流量が調節された補助燃焼空気は、補助供給弁14によって選択された、燃焼しているバーナ3と同じ側の補助空気ノズル4から、炉体2の内部に供給される。   The main combustion air whose flow rate is adjusted by the main regulating valve 8 is supplied only to one burner 3 selected by the main supply valve 13, and only one burner 3 is in a combustion operation. The auxiliary combustion air whose flow rate is adjusted by the auxiliary regulating valve 9 is supplied into the furnace body 2 from the auxiliary air nozzle 4 on the same side as the burning burner 3 selected by the auxiliary supply valve 14. The

また、補助空気ノズル4は、排気弁15を介して排気調整弁16および排気ファン17を備える排気流路に接続されており、炉体2内の燃焼ガスを蓄熱体12を通して排気することもできるようになっている。   In addition, the auxiliary air nozzle 4 is connected to an exhaust passage including an exhaust adjustment valve 16 and an exhaust fan 17 via an exhaust valve 15, and the combustion gas in the furnace body 2 can be exhausted through the heat storage body 12. It is like that.

つまり、溶解炉1aでは、拡散燃焼を行う際、補助空気ノズル4の一方から補助燃焼空気を供給し、他方の補助空気ノズル4を介して炉体2内の燃焼ガスを排気し、これらを交番運転することにより、蓄熱体12で排気ガスから熱回収して補助燃焼空気を予熱するいわゆるリジェネバーナの効果を得ることができる。   That is, in the melting furnace 1a, when performing diffusion combustion, auxiliary combustion air is supplied from one of the auxiliary air nozzles 4 and the combustion gas in the furnace body 2 is exhausted through the other auxiliary air nozzle 4 to alternate them. By operating, a so-called regenerative burner effect that preheats auxiliary combustion air by recovering heat from the exhaust gas by the heat storage body 12 can be obtained.

また、溶解炉1aは、蓄熱体12の加熱と冷却とのバランスを保つために、バーナ3を介して炉体2に供給された主燃焼空気の全量と、補助空気ノズル4介して炉体2に供給された補助燃焼空気の約20%に相当する量の燃焼ガスを、煙道5を介して排気するように排気調整弁16の開度が調節される。   In addition, the melting furnace 1 a has a total amount of main combustion air supplied to the furnace body 2 through the burner 3 and a furnace body 2 through the auxiliary air nozzle 4 in order to keep a balance between heating and cooling of the heat storage body 12. The opening degree of the exhaust adjustment valve 16 is adjusted so that an amount of combustion gas corresponding to about 20% of the auxiliary combustion air supplied to the exhaust gas is exhausted through the flue 5.

図5に、本実施形態の溶解炉1aにおける、主燃焼空気および補助燃焼空気の流量を示す。本実施形態では、煙道5における排気ガス温度が低いときから、バーナ3の主燃焼空気の空気比を0.5に抑制し、補助空気ノズル4から空気比0.7の補助燃焼空気を導入している。また、本実施形態では、主燃焼空気および補助燃焼空気の流量を徐々に変化させるのではなく、排気ガス温度が800℃に達して被溶解材料がすべて溶解したと考えられるときに、主燃焼空気の空気比を0.1に、補助燃焼空気の空気比を1.0に変更し、集中燃焼と拡散燃焼との割合を不連続に変更するようになっている。   FIG. 5 shows the flow rates of main combustion air and auxiliary combustion air in the melting furnace 1a of the present embodiment. In this embodiment, since the exhaust gas temperature in the flue 5 is low, the air ratio of the main combustion air of the burner 3 is suppressed to 0.5, and auxiliary combustion air with an air ratio of 0.7 is introduced from the auxiliary air nozzle 4. is doing. Further, in the present embodiment, the main combustion air does not gradually change the flow rates of the main combustion air and the auxiliary combustion air, but when the exhaust gas temperature reaches 800 ° C. and all the materials to be dissolved are dissolved. The air ratio is changed to 0.1 and the air ratio of the auxiliary combustion air is changed to 1.0, so that the ratio between the concentrated combustion and the diffusion combustion is changed discontinuously.

尚、本実施形態の溶解炉1aは、所定温度に達した溶湯Amを排出した後、直ぐに、被溶解材料Asが供給され、炉体2がある程度高温の状態で次の燃焼運転が開始されることを想定している。しかしながら、休業空けの最初の運転開始時等の排気ガス温度が300℃よりもさらに低いような場合には、主燃焼空気の空気比を1.2とし、補助燃焼空気を導入しないようにして、集中燃焼のみで運転を開始してもよい。   In the melting furnace 1a of the present embodiment, the melted material As is supplied immediately after discharging the molten metal Am that has reached a predetermined temperature, and the next combustion operation is started in a state where the furnace body 2 is somewhat hot. Assumes that. However, if the exhaust gas temperature is even lower than 300 ° C., such as at the start of the first operation after a holiday, the main combustion air ratio is set to 1.2 and the auxiliary combustion air is not introduced. The operation may be started only by concentrated combustion.

勿論、蓄熱体12を有する本実施形態の装置構成の溶解炉1aにおいて、図2のように、排気ガス温度の上昇に合わせて、主燃焼空気を減少させ、補助燃焼空気を増加させることにより、集中火炎と拡散火炎との割合を連続的に変化させてもよい。   Of course, in the melting furnace 1a of the apparatus configuration of the present embodiment having the heat storage body 12, as shown in FIG. 2, the main combustion air is decreased and the auxiliary combustion air is increased as the exhaust gas temperature rises. The ratio between the concentrated flame and the diffusion flame may be continuously changed.

さらに、図6に、本発明の第3実施形態の溶解炉1bを示す。本実施形態では、炉体2の天井に、バーナ3の火炎形成方向に並んで複数の温度センサ18が配設されている。先に述べたように、炉体2の内部に露出する各温度センサ18は、炉体2の内部の燃焼ガスの温度だけでなく、バーナ3が形成する火炎の輻射熱をも検出する。   Furthermore, FIG. 6 shows a melting furnace 1b according to a third embodiment of the present invention. In the present embodiment, a plurality of temperature sensors 18 are arranged on the ceiling of the furnace body 2 along the flame forming direction of the burner 3. As described above, each temperature sensor 18 exposed inside the furnace body 2 detects not only the temperature of the combustion gas inside the furnace body 2 but also the radiant heat of the flame formed by the burner 3.

図示するように、固体の被溶解材料Asが存在する場合、バーナ3が形成する集中火炎は、被溶解材料Asによって途中で遮られる。したがって、燃焼運転中のバーナ3に近い位置に設けられた温度センサ18のみが、集中火炎の輻射熱を検出し、燃焼運転中のバーナ3から遠い側の温度センサ18よりも高い温度を検出する。つまり、検出温度が高い温度センサ18の直下では被溶解材料Asが溶解していると考えられる。   As shown in the figure, when there is a solid material to be melted As, the concentrated flame formed by the burner 3 is interrupted by the material to be melted As. Therefore, only the temperature sensor 18 provided at a position close to the burner 3 during the combustion operation detects the radiant heat of the concentrated flame, and detects a temperature higher than the temperature sensor 18 on the side far from the burner 3 during the combustion operation. That is, it is considered that the material to be dissolved As is dissolved immediately below the temperature sensor 18 having a high detection temperature.

被溶解材料Asが全体的に溶解して溶湯Amになると、炉体2の内部を集中火炎が横断し、すべての温度センサが略同じように集中火炎の輻射熱を検出するようになる。したがって、溶解炉1bでは、温度センサ18の検出温度の差が、ある一定温度以下になったとき、被溶解材料Asが溶解して溶湯Amになったものと判断し、主燃焼空気の流量を少なくし、補助燃焼空気の流量を多くして、集中火炎を小さくし、残りの燃料を拡散燃焼させる。   When the material to be melted is melted as a whole to become the molten metal Am, the concentrated flame traverses the inside of the furnace body 2, and all temperature sensors detect the radiant heat of the concentrated flame in substantially the same manner. Therefore, in the melting furnace 1b, when the difference in the temperature detected by the temperature sensor 18 is equal to or lower than a certain temperature, it is determined that the material As to be melted has melted into the molten metal Am, and the flow rate of the main combustion air is determined. Reduce the flow of auxiliary combustion air, reduce the concentrated flame, and diffusely burn the remaining fuel.

本発明では、以上の実施形態の方法以外にも、例えば、炉体2の内部を撮影するビデオカメラを設け、画像処理によって被溶解材料Asの溶解度合いを判断しても良い。   In the present invention, in addition to the method of the above embodiment, for example, a video camera for photographing the inside of the furnace body 2 may be provided, and the degree of dissolution of the material As to be dissolved may be determined by image processing.

また、本発明における主燃焼空気、補助燃焼空気という用語は、燃焼に必要な酸素を供給するガスを指し、酸素供給源となるいかなる気体も、これらの用語に含まれ得ると理解しなければならない。   In addition, the terms main combustion air and auxiliary combustion air in the present invention refer to a gas that supplies oxygen necessary for combustion, and it should be understood that any gas that serves as an oxygen supply source can be included in these terms. .

1,1a,1b…溶解炉
2…炉体
3…バーナ
4…補助空気ノズル
5…煙道
7…給気ファン
8…主調整弁
9…補助調整弁
10…制御装置
11…温度センサ
12…蓄熱体
18…温度センサ
DESCRIPTION OF SYMBOLS 1,1a, 1b ... Melting furnace 2 ... Furnace body 3 ... Burner 4 ... Auxiliary air nozzle 5 ... Flue 7 ... Air supply fan 8 ... Main adjustment valve 9 ... Auxiliary adjustment valve 10 ... Control apparatus 11 ... Temperature sensor 12 ... Thermal storage Body 18 ... Temperature sensor

Claims (5)

被溶解材料を収容する炉体と、
燃料と主燃焼空気とを混合して燃焼させることにより前記被溶解材料に衝突する集中火炎を形成でき、且つ、前記主燃焼空気の流量を少なくして前記燃料の一部のみを燃焼させられるバーナと、
前記バーナで燃焼させた後の燃焼ガス中に残存する燃料を自燃させるための補助燃焼空気を前記炉体内に供給する補助空気ノズルと、
前記被溶解材料が溶解したとき、前記バーナの前記主燃焼空気の流量を少なくし、且つ、前記補助空気ノズルの前記補助燃焼空気の流量を多くする制御手段とを有することを特徴とする溶解炉。
A furnace body containing the material to be melted;
A burner capable of forming a concentrated flame that collides with the material to be dissolved by mixing and burning fuel and main combustion air, and burning only a part of the fuel by reducing the flow rate of the main combustion air When,
An auxiliary air nozzle for supplying auxiliary combustion air into the furnace body for self-combustion of fuel remaining in the combustion gas after being burned by the burner;
And a control means for reducing the flow rate of the main combustion air of the burner and increasing the flow rate of the auxiliary combustion air of the auxiliary air nozzle when the material to be melted is melted. .
前記被溶解材料が溶解した後の前記主燃焼空気の流量は、空気比0.2以下であることを特徴とする請求項1に記載の溶解炉。   The melting furnace according to claim 1, wherein a flow rate of the main combustion air after the material to be melted is melted is an air ratio of 0.2 or less. 前記主燃焼空気および前記補助燃焼空気の合計流量の前記バーナの燃料流量に対する空気比は、前記被溶解材料が溶解する前よりも前記被溶解材料が溶解した後の方が低いことを特徴とする請求項1または2に記載の溶解炉。   The air ratio of the total flow rate of the main combustion air and the auxiliary combustion air to the fuel flow rate of the burner is lower after the material to be dissolved is lower than before the material to be dissolved is dissolved. The melting furnace according to claim 1 or 2. 前記制御手段は、前記被溶解材料の溶解状態を、炉内の温度分布によって検出することを特徴とする請求項1から3のいずれかに記載の溶解炉。   4. The melting furnace according to claim 1, wherein the control means detects a melting state of the material to be melted by a temperature distribution in the furnace. 5. 前記制御手段は、前記被溶解材料の溶解状態を、煙道内の排気ガス温度によって推定することを特徴とする請求項1から4のいずれかに記載の溶解炉。   The melting furnace according to any one of claims 1 to 4, wherein the control means estimates a melting state of the material to be melted based on an exhaust gas temperature in the flue.
JP2010129025A 2010-06-04 2010-06-04 melting furnace Active JP5203421B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010129025A JP5203421B2 (en) 2010-06-04 2010-06-04 melting furnace
TW100105066A TWI429872B (en) 2010-06-04 2011-02-16 Melting furnace
KR1020110031600A KR101269794B1 (en) 2010-06-04 2011-04-06 Melting furnace
CN201110161499.0A CN102269515B (en) 2010-06-04 2011-06-02 Melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129025A JP5203421B2 (en) 2010-06-04 2010-06-04 melting furnace

Publications (2)

Publication Number Publication Date
JP2011257014A true JP2011257014A (en) 2011-12-22
JP5203421B2 JP5203421B2 (en) 2013-06-05

Family

ID=45051889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129025A Active JP5203421B2 (en) 2010-06-04 2010-06-04 melting furnace

Country Status (4)

Country Link
JP (1) JP5203421B2 (en)
KR (1) KR101269794B1 (en)
CN (1) CN102269515B (en)
TW (1) TWI429872B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453780A (en) * 2013-09-03 2013-12-18 南通曼特威金属材料有限公司 Automatic energy-saving heat-accumulating burner for use in smelting
CN104534863A (en) * 2014-12-12 2015-04-22 魏伯卿 Oxygen-enriched energy-saving and emission-reducing system of aluminum melting furnace
JP2021042417A (en) * 2019-09-10 2021-03-18 サンコーアルミ株式会社 Aluminum recovery method and recovery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714347B1 (en) * 2016-09-22 2017-03-09 윤서구 High efficiency furnace using waste heat

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156427A (en) * 1976-06-22 1977-12-26 Sumitomo Metal Ind Ltd Combustion method and its device for upper stoking system soaking pit
JPS59157218A (en) * 1983-02-24 1984-09-06 Daido Steel Co Ltd Heating furnace
JPS60172761U (en) * 1984-04-20 1985-11-15 新日本製鐵株式会社 aluminum melting furnace
JPH01167591A (en) * 1987-12-23 1989-07-03 Tokyo Gas Co Ltd Combustion in furnace
JPH024191A (en) * 1988-06-21 1990-01-09 Kobe Steel Ltd Temperature control of smelting furnace
JP2001065859A (en) * 1999-06-25 2001-03-16 Sanken Sangyo Co Ltd Combustion device and non-ferrous metal melting furnace
JP2002081865A (en) * 2000-09-11 2002-03-22 Nippon Sanso Corp Operating method for furnace
WO2009038849A2 (en) * 2007-06-29 2009-03-26 Praxair Technology, Inc. Low velocity staged combustion for furnace atmosphere control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462394B2 (en) * 1998-07-24 2003-11-05 Jfeスチール株式会社 Combustion control method of regenerative burner device and burner device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156427A (en) * 1976-06-22 1977-12-26 Sumitomo Metal Ind Ltd Combustion method and its device for upper stoking system soaking pit
JPS59157218A (en) * 1983-02-24 1984-09-06 Daido Steel Co Ltd Heating furnace
JPS60172761U (en) * 1984-04-20 1985-11-15 新日本製鐵株式会社 aluminum melting furnace
JPH01167591A (en) * 1987-12-23 1989-07-03 Tokyo Gas Co Ltd Combustion in furnace
JPH024191A (en) * 1988-06-21 1990-01-09 Kobe Steel Ltd Temperature control of smelting furnace
JP2001065859A (en) * 1999-06-25 2001-03-16 Sanken Sangyo Co Ltd Combustion device and non-ferrous metal melting furnace
JP2002081865A (en) * 2000-09-11 2002-03-22 Nippon Sanso Corp Operating method for furnace
WO2009038849A2 (en) * 2007-06-29 2009-03-26 Praxair Technology, Inc. Low velocity staged combustion for furnace atmosphere control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453780A (en) * 2013-09-03 2013-12-18 南通曼特威金属材料有限公司 Automatic energy-saving heat-accumulating burner for use in smelting
CN104534863A (en) * 2014-12-12 2015-04-22 魏伯卿 Oxygen-enriched energy-saving and emission-reducing system of aluminum melting furnace
JP2021042417A (en) * 2019-09-10 2021-03-18 サンコーアルミ株式会社 Aluminum recovery method and recovery system

Also Published As

Publication number Publication date
TWI429872B (en) 2014-03-11
KR101269794B1 (en) 2013-05-30
CN102269515B (en) 2014-01-08
TW201207345A (en) 2012-02-16
CN102269515A (en) 2011-12-07
JP5203421B2 (en) 2013-06-05
KR20110133414A (en) 2011-12-12

Similar Documents

Publication Publication Date Title
US9689612B2 (en) Selective oxy-fuel burner and method for a rotary furnace
JP5203421B2 (en) melting furnace
BR112012027190B1 (en) FUEL FEED OVEN AND METHOD TO CONTROL COMBUSTION IN A FUEL FED OVEN
TW202117254A (en) Multi-burner rotary furnace melting system and method
US20030079665A1 (en) Furnace having increased energy efficiency and reduced pollutant formation
KR100653029B1 (en) Combustion in a porous wall furnace
CN104053792B (en) Start fusion process
KR20150068918A (en) Method for heating a metal material in an industrial furnace
JP2006349281A (en) Continuous heating furnace and method for controlling its combustion
JP4722022B2 (en) Glass melting furnace
JP2008214670A (en) Continuous heating furnace
CN210441681U (en) Low-nitrogen combustion device of heat accumulating type steel rolling heating furnace
JP2005016854A (en) Oxygen combustion burner and furnace having the same and its operating method
JP2008215667A (en) Continuous heating furnace
JP2001065859A (en) Combustion device and non-ferrous metal melting furnace
KR101471636B1 (en) Pellet Combustion Device and Method for Low-Emission
CN220287442U (en) Acid gas burner
TW201910275A (en) Method and burner assembly for combusting a fuel gas with an oxidant
JP2010071582A (en) Method of providing regenerative burner as burner of heating furnace
JP2004093122A (en) Steel heating facility and operation method
JP2003194328A (en) Burning method for regenerative burner and regenerative burner
JP3491444B2 (en) How to use a regenerative preheater
TW201920895A (en) Method for controlling a combustion and furnace
JP6430339B2 (en) Flameless combustion equipment
JP2022152684A (en) boiler system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5203421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250