JP2011256757A - Combustion chamber structure of compression ignition internal combustion engine - Google Patents

Combustion chamber structure of compression ignition internal combustion engine Download PDF

Info

Publication number
JP2011256757A
JP2011256757A JP2010130851A JP2010130851A JP2011256757A JP 2011256757 A JP2011256757 A JP 2011256757A JP 2010130851 A JP2010130851 A JP 2010130851A JP 2010130851 A JP2010130851 A JP 2010130851A JP 2011256757 A JP2011256757 A JP 2011256757A
Authority
JP
Japan
Prior art keywords
combustion chamber
internal combustion
combustion engine
compression ignition
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010130851A
Other languages
Japanese (ja)
Inventor
Masaaki Kono
正顕 河野
Masatoshi Umasaki
政俊 馬▲崎▼
Takeshi Hashizume
剛 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2010130851A priority Critical patent/JP2011256757A/en
Publication of JP2011256757A publication Critical patent/JP2011256757A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion chamber structure which can reduce a cooling loss while preventing the lowering of filling efficiency, in a compression ignition internal combustion engine.SOLUTION: In the combustion chamber structure of the compression ignition internal combustion engine, an insulating layer which has lower thermal conductivity than other positions is provided on at least one of a sidewall of a cavity provided on a top surface of a piston and a wall surface of a cylinder head commanding a squish area.

Description

本発明は、圧縮着火式内燃機関の燃焼室の構造に関する。   The present invention relates to a structure of a combustion chamber of a compression ignition type internal combustion engine.

圧縮着火式内燃機関の燃焼室構造としては、燃焼室を包囲する壁面全体に断熱層を設ける構成が知られている(たとえば、特許文献1を参照)。   As a combustion chamber structure of a compression ignition type internal combustion engine, a configuration in which a heat insulating layer is provided on the entire wall surface surrounding the combustion chamber is known (see, for example, Patent Document 1).

特開平04−191413号公報Japanese Patent Laid-Open No. 04-191413 特開2006−169987号公報JP 2006-169987 A

ところで、上記した従来の燃焼室構造によれば、燃焼室内で発生した熱が燃焼室の壁面を介して放熱され難くなるものの、燃焼室内の雰囲気温度が下がりにくくなる可能性がある。燃焼室内の雰囲気温度が下がりにくくなると、気筒内へ充填される空気量(充填効率)が減少する可能性がある。   By the way, according to the conventional combustion chamber structure described above, although the heat generated in the combustion chamber is difficult to be dissipated through the wall surface of the combustion chamber, there is a possibility that the atmospheric temperature in the combustion chamber is difficult to decrease. If the atmospheric temperature in the combustion chamber is difficult to decrease, the amount of air (filling efficiency) charged into the cylinder may be reduced.

本発明は、上記した実情に鑑みてなされたものであり、その目的は、圧縮着火式内燃機関の燃焼室構造において、気筒内へ充填される空気の充填効率低下を抑制しつつ冷却損失を低減することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is to reduce cooling loss while suppressing a decrease in charging efficiency of air charged into a cylinder in a combustion chamber structure of a compression ignition type internal combustion engine. There is to do.

本発明は、上記した課題を解決するために、以下のような手段を採用した。すなわち、本発明は、ピストン頂面の一部に設けられシリンダ軸方向に延在する側壁及びシリンダ径方向に延在する底面に囲まれたキャビティと、ピストン頂面におけるキャビティが設けられていない部位及びシリンダヘッドの壁面に囲まれたスキッシュエリアと、を含む圧縮着火式内燃機関の燃焼室構造において、前記キャビティの側壁と前記スキッシュエリアに望むシリンダヘッドの壁面との少なくとも一方に、他の部位より熱伝導率が低い断熱層が設けられるようにした。   The present invention employs the following means in order to solve the above-described problems. That is, the present invention provides a cavity surrounded by a side wall extending in the cylinder axial direction and a bottom surface extending in the cylinder radial direction provided on a part of the piston top surface, and a portion where no cavity is provided on the piston top surface. And a squish area surrounded by the wall surface of the cylinder head, in a combustion chamber structure of a compression ignition type internal combustion engine, at least one of the side wall of the cavity and the wall surface of the cylinder head desired in the squish area from other parts A heat insulating layer having a low thermal conductivity was provided.

本願発明者が鋭意の実験及び検証を行った結果、燃焼室内からピストンへ伝わる熱の大部分は、キャビティの側壁からピストンリングへ向かってピストン内を伝わり、次いでピストンリングを介してシリンダボア壁面へ放熱されることを見出した。また、燃焼室内からシリンダヘッドの壁面へ伝わる熱の大部分は、スキッシュエリアに望む部位からシリンダヘッド内の冷却水通路へ伝わることも見出された。すなわち、燃焼室から放熱される熱の大部分は、キャビティ側壁及びスキッシュエリアに望むシリンダヘッド壁面を介して放熱される。   As a result of diligent experimentation and verification by the present inventor, most of the heat transferred from the combustion chamber to the piston is transferred from the side wall of the cavity toward the piston ring, and then radiated to the cylinder bore wall surface through the piston ring. I found out that It has also been found that most of the heat transferred from the combustion chamber to the cylinder head wall surface is transferred from the site desired in the squish area to the cooling water passage in the cylinder head. That is, most of the heat dissipated from the combustion chamber is dissipated through the cylinder head wall surface desired in the cavity side wall and the squish area.

よって、本発明の圧縮着火式内燃機関の燃焼室構造によれば、燃焼室から放熱される熱量を好適に減少させることができる。さらに、本発明の圧縮着火式内燃機関の燃焼室構造によれば、スキッシュエリアに望むシリンダヘッド壁面及びキャビティ側壁を除く部位からの放熱は許容されるため、燃焼室内の雰囲気温度が過剰に高くなる事態が回避される。その結果、気筒内へ吸入される空気の充填効率低下を抑制しつつ、冷却損失を低減させることが可能になる。   Therefore, according to the combustion chamber structure of the compression ignition internal combustion engine of the present invention, the amount of heat radiated from the combustion chamber can be suitably reduced. Furthermore, according to the combustion chamber structure of the compression ignition type internal combustion engine of the present invention, since the heat radiation from the portion excluding the cylinder head wall surface and the cavity side wall desired in the squish area is allowed, the atmospheric temperature in the combustion chamber becomes excessively high. The situation is avoided. As a result, it is possible to reduce the cooling loss while suppressing a decrease in charging efficiency of the air sucked into the cylinder.

本発明に係わる圧縮着火式内燃機関の燃焼室構造によれば、充填効率の低下を抑制しつつ冷却損失を低減することができる。   According to the combustion chamber structure of the compression ignition type internal combustion engine according to the present invention, it is possible to reduce the cooling loss while suppressing the decrease in the charging efficiency.

本発明を適用する内燃機関の燃焼室の概略構成を示す図である。It is a figure which shows schematic structure of the combustion chamber of the internal combustion engine to which this invention is applied. 燃焼室の拡大図である。It is an enlarged view of a combustion chamber.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本発明を適用する内燃機関の燃焼室の概略構成を示す図である。図1に示す内燃機関1は、気筒内へ燃料を噴射する燃料噴射弁を備えた圧縮着火式の内燃機関(ディーゼルエンジン)である。   FIG. 1 is a diagram showing a schematic configuration of a combustion chamber of an internal combustion engine to which the present invention is applied. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) provided with a fuel injection valve for injecting fuel into a cylinder.

図1において、内燃機関1は、気筒(シリンダ)2が形成されたシリンダブロック10と、燃料噴射弁4、吸気ポート5、排気ポート6、及び動弁系が取り付けられたシリンダヘッド11と、を備えている。   In FIG. 1, an internal combustion engine 1 includes a cylinder block 10 having a cylinder 2 and a cylinder head 11 to which a fuel injection valve 4, an intake port 5, an exhaust port 6, and a valve train are attached. I have.

シリンダブロック10には、気筒2を包囲するブロック側冷却水通路100が設けられている。また、シリンダヘッド11における吸気ポート5及び排気ポート6の下方にはヘッド側冷却水通路110が形成されている。   The cylinder block 10 is provided with a block-side cooling water passage 100 surrounding the cylinder 2. A head side cooling water passage 110 is formed below the intake port 5 and the exhaust port 6 in the cylinder head 11.

シリンダブロック10の気筒2内には、ピストン3がシリンダ軸方向へ摺動自在に挿入されている。ピストン3は、コネクティングロッド7を介して図示しないクランクシャフトに連結されている。ピストン3の頂面の中心部分には、略円筒状の窪みからなるキャビティ30が形成され、燃料噴射弁4から噴射された燃料が該キャビティ30の内部において燃焼せしめられるようになっている。   A piston 3 is inserted into the cylinder 2 of the cylinder block 10 so as to be slidable in the cylinder axial direction. The piston 3 is connected to a crankshaft (not shown) via a connecting rod 7. A cavity 30 composed of a substantially cylindrical depression is formed in the central portion of the top surface of the piston 3, and the fuel injected from the fuel injection valve 4 is combusted inside the cavity 30.

このように構成された内燃機関1では、ピストン3が上死点(TDC)に位置するときに、キャビティ30の内壁面と該キャビティ30に対向するシリンダヘッド11の壁面とに囲まれた空間が燃焼室を形成する。また、ピストン3頂面の周縁部(キャビティ30が設けられていない部位)と該周縁部に対向するシリンダヘッド11の内壁面とシリンダボア壁面とに囲まれた空間がスキッシュエリアを形成する。   In the internal combustion engine 1 configured as described above, when the piston 3 is located at the top dead center (TDC), a space surrounded by the inner wall surface of the cavity 30 and the wall surface of the cylinder head 11 facing the cavity 30 is formed. A combustion chamber is formed. Further, a squish area is defined by a space surrounded by the peripheral portion of the top surface of the piston 3 (the portion where the cavity 30 is not provided) and the inner wall surface and the cylinder bore wall surface of the cylinder head 11 facing the peripheral portion.

上記した燃焼室において燃料が燃焼されると、燃料の燃焼により発生した熱の一部は、燃焼室及びスキッシュエリアを形成する壁面を介して放熱され、冷却損失が発生することになる。これに対し、燃焼室を形成する壁面に断熱層を設ける方法が考えられる。この方法によれば、冷却損失を低減させることは可能になるものの、内燃機関1の高負荷運転時などに気筒2内の雰囲気温度が下がり難くなり、気筒2内へ吸入される空気の充填効率が低下する可能性がある。   When the fuel is combusted in the combustion chamber, a part of the heat generated by the combustion of the fuel is radiated through the wall surface that forms the combustion chamber and the squish area, and a cooling loss occurs. On the other hand, the method of providing a heat insulation layer in the wall surface which forms a combustion chamber can be considered. According to this method, although it is possible to reduce the cooling loss, the atmospheric temperature in the cylinder 2 is unlikely to decrease during high-load operation of the internal combustion engine 1, and the charging efficiency of the air sucked into the cylinder 2 is reduced. May be reduced.

そこで、本実施例の圧縮着火式内燃機関の燃焼室構造は、図2に示すように、ピストン3におけるキャビティ30の側壁30a、及びシリンダヘッド11におけるスキッシュエリアに望む壁面11aのみに、他の部位に比して熱伝導率が低い断熱層を設けるようにした。   Therefore, the combustion chamber structure of the compression ignition type internal combustion engine of the present embodiment has other parts only on the side wall 30a of the cavity 30 in the piston 3 and the wall surface 11a desired in the squish area in the cylinder head 11, as shown in FIG. A heat insulating layer having a lower thermal conductivity than that of is provided.

ここで、本願発明者が鋭意の実験及び検証を行った結果、燃焼室内からピストン3へ伝
わる熱の大部分は、キャビティ30の側壁30aからピストンリングへ向かってピストン3内を伝わり、次いでピストンリングを介してシリンダボア壁面及びブロック側冷却水通路100へ放熱されることを見出した。また、燃焼室内からシリンダヘッド11の壁面へ伝わる熱の大部分は、スキッシュエリアに望む部位11aからヘッド側冷却水通路110へ伝わることも見出された。すなわち、燃焼室から放熱される熱の大部分は、キャビティ側壁30a及びスキッシュエリアに望むシリンダヘッド壁面11aを介して放熱される。
Here, as a result of the inventor's earnest experiment and verification, most of the heat transferred from the combustion chamber to the piston 3 is transferred from the side wall 30a of the cavity 30 toward the piston ring, and then the piston ring. It has been found that heat is radiated to the cylinder bore wall surface and the block-side cooling water passage 100 via. It has also been found that most of the heat transferred from the combustion chamber to the wall surface of the cylinder head 11 is transferred from the portion 11a desired in the squish area to the head-side cooling water passage 110. That is, most of the heat radiated from the combustion chamber is radiated through the cavity side wall 30a and the cylinder head wall surface 11a desired in the squish area.

よって、ピストン3におけるキャビティ30の側壁30a、及びシリンダヘッド11におけるスキッシュエリアに望む壁面11aに断熱層を設けることにより、放熱量の大部分を遮断することができる。さらに、ピストン3におけるキャビティ30の底部、シリンダヘッド11における上記壁面11aを除く部位、及びシリンダボア壁面から少量の放熱が許容されるため、内燃機関1の高負荷運転時など気筒2内の雰囲気温度が下がり難くなる事態を回避することもできる。   Therefore, by providing the heat insulating layer on the side wall 30a of the cavity 30 in the piston 3 and the wall surface 11a desired for the squish area in the cylinder head 11, most of the heat radiation can be blocked. Further, since a small amount of heat radiation is allowed from the bottom of the cavity 30 in the piston 3, the portion excluding the wall surface 11 a in the cylinder head 11, and the cylinder bore wall surface, the ambient temperature in the cylinder 2 such as during high load operation of the internal combustion engine 1 is increased. It is also possible to avoid situations where it is difficult to descend.

したがって、本実施例の圧縮着火式内燃機関の燃焼室構造によれば、気筒2内へ吸入される空気の充填効率低下を抑制しつつ、冷却損失を低減させることが可能になる。   Therefore, according to the combustion chamber structure of the compression ignition type internal combustion engine of the present embodiment, it is possible to reduce the cooling loss while suppressing a decrease in the charging efficiency of the air sucked into the cylinder 2.

なお、前述した図2に示した例では、キャビティ30の側壁30aとシリンダヘッド11の壁面11aの双方に断熱層を設けているが、何れか一方のみに設けられていてもよい。その場合、冷却損失の低減効果は落ちるものの、断熱層を設けることによる充填効率の低下をより少なく抑えることが可能となる。   In the example shown in FIG. 2 described above, the heat insulating layer is provided on both the side wall 30a of the cavity 30 and the wall surface 11a of the cylinder head 11, but may be provided on only one of them. In that case, although the reduction effect of cooling loss falls, it becomes possible to suppress the fall of the filling efficiency by providing a heat insulation layer more.

1 内燃機関
2 気筒
3 ピストン
4 燃料噴射弁
5 吸気ポート
6 排気ポート
10 シリンダブロック
11 シリンダヘッド
11a 断熱層
30 キャビティ
30a 断熱層
100 ブロック側冷却水通路
110 ヘッド側冷却水通路
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Piston 4 Fuel injection valve 5 Intake port 6 Exhaust port 10 Cylinder block 11 Cylinder head 11a Heat insulation layer 30 Cavity 30a Heat insulation layer 100 Block side cooling water path 110 Head side cooling water path

Claims (1)

ピストン頂面の一部に設けられシリンダ軸方向に延在する側壁及びシリンダ径方向に延在する底面に囲まれたキャビティと、
ピストン頂面におけるキャビティが設けられていない部位及びシリンダヘッドの壁面に囲まれたスキッシュエリアと、を含む圧縮着火式内燃機関の燃焼室構造において、
前記キャビティの側壁と前記スキッシュエリアに望むシリンダヘッドの壁面との少なくとも一方に、他の部位より熱伝導率が低い断熱層が設けられることを特徴とする圧縮着火式内燃機関の燃焼室構造。
A cavity provided on a part of the piston top surface and surrounded by a side wall extending in the cylinder axial direction and a bottom surface extending in the cylinder radial direction;
In the combustion chamber structure of a compression ignition type internal combustion engine, including a portion where no cavity is provided on the piston top surface and a squish area surrounded by the wall surface of the cylinder head,
A combustion chamber structure of a compression ignition type internal combustion engine, wherein a heat insulating layer having a lower thermal conductivity than other portions is provided on at least one of a side wall of the cavity and a wall surface of a cylinder head desired in the squish area.
JP2010130851A 2010-06-08 2010-06-08 Combustion chamber structure of compression ignition internal combustion engine Withdrawn JP2011256757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010130851A JP2011256757A (en) 2010-06-08 2010-06-08 Combustion chamber structure of compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130851A JP2011256757A (en) 2010-06-08 2010-06-08 Combustion chamber structure of compression ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011256757A true JP2011256757A (en) 2011-12-22

Family

ID=45473204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130851A Withdrawn JP2011256757A (en) 2010-06-08 2010-06-08 Combustion chamber structure of compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011256757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056423A (en) * 2018-01-18 2019-07-26 丰田自动车株式会社 Charge compression self-ignition type internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056423A (en) * 2018-01-18 2019-07-26 丰田自动车株式会社 Charge compression self-ignition type internal combustion engine
CN110056423B (en) * 2018-01-18 2021-07-30 丰田自动车株式会社 Compression self-ignition internal combustion engine

Similar Documents

Publication Publication Date Title
JP5575926B2 (en) Spark ignition engine piston
US7654240B2 (en) Engine piston having an insulating air gap
JP2011169232A (en) Internal combustion engine
JP5617785B2 (en) Internal combustion engine
JP6544378B2 (en) Engine combustion chamber structure
JP2013164028A (en) Piston
JP2014234740A (en) Compression ignition type internal combustion engine
JP2009293611A (en) Engine piston
JP2011256757A (en) Combustion chamber structure of compression ignition internal combustion engine
JP2014088863A (en) Internal combustion engine
US10309293B2 (en) Internal combustion engine
JP2021161978A (en) Combustion chamber structure of engine
JP2021011843A (en) Piston of internal combustion engine and internal combustion engine
JP2012047115A (en) Auxiliary chamber type gas engine
JP7396173B2 (en) Engine combustion chamber structure
JP2021173213A (en) Combustion chamber structure of engine
JP2005194971A (en) Piston for gas engine
JP2009150247A (en) Internal combustion engine and its valve
JP5224182B2 (en) Internal combustion engine
JP6526456B2 (en) diesel engine
JP2013015054A (en) Cylinder injection type internal combustion engine
JP2014077365A (en) Gasket
JP2010203355A (en) Internal combustion engine
JP2006097579A (en) Cylinder head for internal combustion engine
JP2006316730A (en) Cylinder direct injection type internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903