JP2011256534A - Water cut-off method for reservoir - Google Patents

Water cut-off method for reservoir Download PDF

Info

Publication number
JP2011256534A
JP2011256534A JP2010129543A JP2010129543A JP2011256534A JP 2011256534 A JP2011256534 A JP 2011256534A JP 2010129543 A JP2010129543 A JP 2010129543A JP 2010129543 A JP2010129543 A JP 2010129543A JP 2011256534 A JP2011256534 A JP 2011256534A
Authority
JP
Japan
Prior art keywords
reservoir
water level
water
grout
grouting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010129543A
Other languages
Japanese (ja)
Inventor
Fumiharu Kawashima
文治 川島
Yasuhiro Kimura
靖弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010129543A priority Critical patent/JP2011256534A/en
Publication of JP2011256534A publication Critical patent/JP2011256534A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water cut-off method for a reservoir capable of forming water shielding layers to prevent water leakage from the reservoir even if net-like connected crevices on rocks reach to deep parts.SOLUTION: The water cut-off method for the reservoir comprises: a first process which forms plural first grout injection holes 2 at a prescribed interval approximately along a shoreline direction from surrounding natural ground of a reservoir 1 in a direction inclined to the reservoir 1 side, injects a grout material into the deeper part of the natural ground than a high water level WL2 in the reservoir 1 from the first grout injection holes 2, under a condition that the water level is at a low water level WL1 in the reservoir, so as to grout the whole depth range, and forms water shielding layers not to be overlapped with each other within the natural ground in an area I and the water shielding layers to be overlapped with each other within the natural ground in an area II; and a second process which, under a condition that the water level is at the high water level WL2 in the reservoir 1, forms second grout injection holes 3 at each of central positions between the first grout injection holes 2 in a direction inclined to the reservoir side and injects the grout material into at least the natural ground in the area I from the second grout injection holes 3 so as to form the water shielding layers.

Description

本発明は、ダム湖や調整池等の貯水池の水が地山の開口割目を通じて浸透流出するのを抑制するためのグラウチング工法に係り、詳しくは網状に繋がった開口割目が深部まで存在する岩盤に対して好適な、グラウチングによる貯水池の止水工法に関する。   The present invention relates to a grouting method for preventing water from a reservoir such as a dam lake or a regulating pond from infiltrating and flowing through an opening split of a natural mountain, and more specifically, an opening split connected to a net is present to the deep part. The present invention relates to a water stoppage construction method for a reservoir by grouting, which is suitable for a bedrock.

従来より、ダム湖や調整池等の貯水池から水が地盤中に漏出するのを抑制するために、地山の開口割目にグラウト材を注入するグラウチング工法が知られている。このグラウチング工法は、地盤に複数のボーリング孔を配置し、このボーリング孔から地山にセメント系グラウト材、ケミカル系グラウト材などのグラウト材を注入して遮水層を形成するものである。   Conventionally, a grouting method is known in which a grout material is injected into an open split of a natural ground in order to prevent water from leaking into a ground from a reservoir such as a dam lake or a regulating pond. In this grouting method, a plurality of boring holes are arranged in the ground, and a grout material such as a cement grout material and a chemical grout material is injected into the ground from the boring holes to form a water shielding layer.

このグラウチング工法においても現在までに幾多の改良が試みられている。例えば、グラウト材の浸透性(到達距離の増大)を高めるための動的注入工法、大きな開口割目の閉塞性能を向上させるためのグラウト材の改良などを挙げることができる。   Even in this grouting method, many improvements have been attempted so far. For example, a dynamic injection method for increasing the permeability (increase in reach distance) of the grout material, an improvement of the grout material for improving the closing performance of a large opening split, and the like can be mentioned.

前者の動的注入工法の例として、下記特許文献1では、セメント、ベントナイト系のグラウト材を注入ポンプにより所定の注入圧力で圧送し、末端の注入管を介して亀裂性岩盤に穿設された注入孔に該グラウト材を注入するグラウチングにおいて、前記注入圧力に5Hz〜30Hzの周波数域から選択された特定の周波数を持つ脈動圧力を重畳的に付加し、前記グラウト材の構成粒子を励起させる岩盤グラウトの施工方法が提案されている。また、下記特許文献2では、注入対象領域にグラウト材を、その注入圧力を周期的に変動させながら注入するに際し、周波数が0.05〜1Hzの周期である長波の注入圧力変動に、周波数が1〜10Hzの周期である短波の注入圧力変動を重畳した注入圧力の変動をもって前記グラウト材を注入するグラウト注入工法が提案されている。   As an example of the former dynamic injection method, in Patent Document 1 below, cement and bentonite grout materials are pumped at a predetermined injection pressure by an injection pump, and drilled in a cracked rock mass through a terminal injection pipe. In grouting for injecting the grout material into the injection hole, a pulsation pressure having a specific frequency selected from a frequency range of 5 Hz to 30 Hz is added to the injection pressure in a superimposed manner to excite the constituent particles of the grout material. Grout construction methods have been proposed. Further, in Patent Document 2 below, when a grout material is injected into an injection target region while periodically changing the injection pressure, the frequency is changed to a long-wave injection pressure fluctuation having a frequency of 0.05 to 1 Hz. A grout injection method has been proposed in which the grout material is injected with a fluctuation in injection pressure in which a short wave injection pressure fluctuation having a period of 1 to 10 Hz is superimposed.

後者の閉塞性能を向上させるための方法としては、従来は綿繊維(例えば、商品名「ウラゴメール」)、ベントナイト(膨潤性粘土)、凝結促進剤(例えば商品名「サンコ−ハード」)を混入する方法が多く採用されてきたが、これらの方法では大きな開口割目の閉塞は不十分であるとして、下記特許文献3では、岩盤の亀裂部分に注入するために用いる岩盤のグラウト材であって、セメント、水、および水膨潤性繊維を含む混合液からなり、前記水膨潤性繊維は、その吸水量が自重の数倍以上であって、吸水により流動平滑性を帯びる繊維を予め十分に吸水膨潤させた岩盤のグラウト材が提案されている。   As a method for improving the blocking performance of the latter, conventionally, cotton fibers (for example, trade name “Uragomer”), bentonite (swelling clay), and a setting accelerator (for example, trade name “Sanko-Hard”) are mixed. Although many methods have been adopted, it is considered that the blockage of the large opening split is insufficient in these methods, the following Patent Document 3 is a rock grout material used to inject into the crack portion of the rock, It consists of a mixed solution containing cement, water, and water-swellable fibers. The water-swellable fibers have a water absorption amount that is several times or more than their own weight, and sufficiently absorb and swell the fibers that have fluid smoothness due to water absorption beforehand. Proposed rock grout materials have been proposed.

特許第3096244号公報Japanese Patent No. 3096244 特開2007−247389号公報JP 2007-247389 A 特開平8−113938号公報JP-A-8-113938

しかしながら、上記特許文献1,2のような動的注入工法であっても、大きな開口割目が網状に存在し深部まで伸びているような岩盤では、十分な浸透性を確保することができないとともに、グラウトポンプ自体も特殊な装置を使用することになるなどの問題があった。   However, even with the dynamic injection method as described in Patent Documents 1 and 2 above, in a rock where a large opening split exists in a net shape and extends to a deep part, sufficient permeability cannot be secured. Also, the grout pump itself has a problem of using a special device.

また、上記特許文献3などに提案される特殊なグラウト材を使用する工法の場合でも、大きな開口割目が網状に存在し深部まで伸びているような岩盤では、深部方向への透水性の収束性は認められないことが多く、この場合は高価なグラウト材を大量に使用することになり、工費が膨大となるなどの問題があった。   In addition, even in the case of a construction method using a special grout material proposed in Patent Document 3 above, the convergence of water permeability in the direction of the deep part is observed in rocks where a large opening split exists in a net shape and extends to the deep part. In many cases, expensive grout materials are used in this case, and there is a problem that the construction cost is enormous.

また、網状に繋がった開口割目が深部まで存在する岩盤をグラウチング対象とした場合、貯水池からの浸透水は、最も流れやすい流路(一次流路という)が選択されて地下に流出する傾向を示す。従って、前述したグラウチング工法によって割目の閉塞を行った場合、一次流路が閉塞されたとしても、網状に水みちがあるため、この一次流路が閉塞されたことによって別の流路(二次流路)が水みちとなって浸透水が流れ、更にこれも閉塞されたとしても別の水みち(三次流路)を流れるというように、多元的に流路が形成されるため、これに対応したグラウチング工法であることが望まれる。   In addition, when the rock mass where the open slits connected to the net exist to the deep part, osmotic water from the reservoir tends to flow out to the underground when the flow channel that is most likely to flow (called the primary flow channel) is selected. Show. Therefore, when the clot is closed by the grouting method described above, even if the primary flow path is blocked, there is a water channel in the mesh shape. Since the permeated water flows through the secondary channel), and even if it is blocked, it flows through another water channel (tertiary channel). It is desirable that the grouting method be compatible with

そこで本発明の主たる課題は、グラウト材の浸透性と閉塞性能とを効率よく兼ね備えることで、網状に繋がった開口割目が深部まで存在する岩盤であっても、遮水層を形成し貯水池からの漏水を効果的に抑制し得ることが可能なグラウチング工法による貯水池の止水工法を提供することにある。   Therefore, the main problem of the present invention is to efficiently combine the permeability of the grout material and the blockage performance, so that even if the bedrock is open to the deep part, the water break layer is formed from the reservoir. The purpose of the present invention is to provide a water stop construction method for a reservoir by a grouting method capable of effectively suppressing water leakage.

上記課題を解決するために請求項1に係る本発明として、貯水池の水が地山の開口割目を通じて浸透流出するのを抑制するためのグラウチングによる貯水池の止水工法であって、
前記貯水池周囲の地山から略汀線方向に沿って所定の間隔で、貯水池側に傾斜する方向に複数の第1グラウト注入孔を形成し、前記貯水池の水位が低水位状態時に、貯水池の高水位より以深部分の地山領域に前記第1グラウト注入孔からグラウト材を注入し、全深さ範囲に亘ってグラウチングを行い、前記貯水池の水位よりも以浅の地山内ではグラウト材の水平方向の到達範囲が相互に重ならない遮水層を形成し、前記貯水池の水位よりも以深の地山内ではグラウト材の水平方向の到達範囲が相互に重なる遮水層を形成する第1工程と、
貯水池の水位が高水位状態である条件の下で、前記第1工程における第1グラウト注入孔間の中央位置に貯水池側に傾斜する方向に第2グラウト注入孔を形成し、少なくとも前記第1工程時の貯水池の水位よりも以浅の地山内に第2グラウト注入孔からグラウト材を注入し、遮水層を形成する第2工程とからなることを特徴とする貯水池の止水工法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, there is a water stop construction method of a reservoir by grouting for suppressing the water of the reservoir from seeping out through the opening split of the natural mountain,
A plurality of first grout injection holes are formed in a direction inclined toward the reservoir side at a predetermined interval along a substantially shoreline direction from a natural ground around the reservoir, and when the water level of the reservoir is at a low water level, the high water level of the reservoir Grouting material is injected into the deeper ground area from the first grout injection hole, grouting is performed over the entire depth range, and in the ground depth shallower than the water level of the reservoir, the grout material reaches in the horizontal direction. Forming a water shielding layer that does not overlap with each other, and forming a water shielding layer in which the horizontal reach of the grout material overlaps with each other in a deeper ground than the water level of the reservoir;
Under the condition that the water level of the reservoir is at a high water level, a second grout injection hole is formed at a central position between the first grout injection holes in the first step in a direction inclined toward the reservoir, and at least the first step And a second step of forming a water shielding layer by injecting a grout material from a second grout injection hole into a ground shallower than the water level of the reservoir at the time. .

上記請求項1記載の発明は、2段階的にグラウチングを行い、貯水池から浸透流出する水を無くす遮水層を形成するものである。先ず、第1工程では、貯水池周囲の地山から略汀線方向に沿って所定の間隔で、貯水池側に傾斜する方向に複数の第1グラウト注入孔を形成し、前記貯水池の水位が低水位状態時に、貯水池の高水位より以深部分の地山領域に前記第1グラウト注入孔からグラウト材を注入し、全深さ範囲に亘ってグラウチングを行い、前記貯水池の水位よりも以浅の地山内ではグラウト材の水平方向の到達範囲が相互に重ならない遮水層を形成し、前記貯水池の水位よりも以深の地山内ではグラウト材の水平方向の到達範囲が相互に重なる遮水層を形成する。なお、本明細書において、「低水位」とは、止水処理したい範囲の最上位よりも低い水位をいうものとする。また、「高水位」とは、止水処理したい範囲の最上位よりも高いか同じ水位をいうものとする。   The invention according to claim 1 performs grouting in two steps to form a water shielding layer that eliminates water that permeates and flows out from the reservoir. First, in the first step, a plurality of first grout injection holes are formed in a direction inclined toward the reservoir side at a predetermined interval along a substantially shoreline direction from a natural mountain around the reservoir, and the water level of the reservoir is in a low water level state. Occasionally, grout material is injected from the first grouting hole into the ground area deeper than the high water level of the reservoir, grouting is performed over the entire depth range, and the ground is shallower than the water level of the reservoir. A water shielding layer in which the horizontal reach of the material does not overlap each other is formed, and a water shield layer in which the horizontal reach of the grout material overlaps in a deeper mountain than the water level of the reservoir is formed. In the present specification, the “low water level” refers to a water level lower than the highest level in the range where water stop treatment is desired. In addition, the “high water level” means a water level that is higher than or equal to the highest level in the range where water stop treatment is desired.

そして、その後の第2工程では、貯水池の水位が高水位状態である条件の下で、前記第1工程における第1グラウト注入孔間の中央位置に貯水池側に傾斜する方向に第2グラウト注入孔を形成し、少なくとも前記第1工程時の貯水池の水位よりも以浅の地山内に第2グラウト注入孔からグラウト材を注入し、遮水層を形成する。   In the subsequent second step, under the condition that the water level of the reservoir is at a high water level, the second grout injection hole is inclined in the direction inclined toward the reservoir at the center position between the first grout injection holes in the first step. And a grouting material is injected from the second grouting hole into the ground at least shallower than the water level of the reservoir at the time of the first step to form a water shielding layer.

本願発明者等は、従来一般のグラウト材の注入圧力に依存したグラウチングでは、浸透範囲の拡大に限界があり、広範な開口割目にグラウト材を侵入させることはできないとの考え方の下、セメント粒子を貯水池から浸透流出する水の浸透流速に乗せてやればグラウト材の浸透性が向上され、広範な範囲に亘ってグラウト材を注入できるようになるとの着想に至った。圧力に依存したグラウチングの場合、セメント粒子が限界沈降速度(セメント粒子の有効径を10%粒径とすればD10=5μmであり、Vc=1cm/sec程度)になると沈降し、凝結して割目を塞ぐことになる。試験によれば、仮に開口幅が3mmの割目の場合、注入圧力10kgf/cm2でセメントミルクの到達距離は10m程度である。 Inventors of the present application consider that grouting that depends on the injection pressure of a conventional grout material has a limit on the expansion of the permeation range, and the grout material cannot penetrate into a wide range of apertures. The idea was that if the particles were placed on the permeation flow rate of the water that permeates and flows out of the reservoir, the permeability of the grout material was improved and the grout material could be injected over a wide range. In the case of pressure-dependent grouting, the cement particles settle and settle when the critical sedimentation rate (D 10 = 5 μm and Vc = 1 cm / sec if the effective diameter of the cement particles is 10%). It will close the split. According to the test, if the opening width is 3 mm, the cement milk reachable distance is about 10 m at an injection pressure of 10 kgf / cm 2 .

これに対して、浸透水の流速が限界沈降速度以上であれば、セメント粒子の沈降は抑制され、浸透流速により遠方まで輸送され沈降することになり、広範囲にグラウト材を注入できるようになる。浸透流速の程度にもよるが、概ね1cm/sec程度の浸透流速があれば、同条件で到達距離は15〜20m程度に拡大することが可能である。   On the other hand, if the flow rate of the osmotic water is equal to or higher than the critical sedimentation rate, the sedimentation of the cement particles is suppressed, and the osmotic flow rate transports and settles far away, so that the grout material can be injected over a wide range. Depending on the level of the infiltration flow rate, if there is an infiltration flow rate of about 1 cm / sec, the reach distance can be increased to about 15 to 20 m under the same conditions.

また、本発明では、貯水池から地山に流出する浸透水の流速を活用するべく、グラウト注入孔は、貯水池周囲の地山から貯水池側に傾斜する方向に形成される。すなわち、貯水池から漏出する浸透水がある程度(限界沈降速度以上)の流速をもって流れる地下流域に対してグラウト注入孔を形成し、グラウト注入対象領域が前記貯水池の水位より以深である条件の下で、この領域に前記グラウト注入孔からセメント系グラウト材を地山に注入して浸透水の流速を活用したグラウチングを行う。   Moreover, in this invention, in order to utilize the flow velocity of the osmotic water which flows out from a reservoir to a natural ground, a grout injection hole is formed in the direction inclined to the reservoir side from the natural ground around a reservoir. That is, under the condition that the grouting hole is formed in the ground downstream area where the osmotic water leaking from the reservoir flows at a flow rate of a certain level (above the limit settling velocity), and the grouting target area is deeper than the water level of the reservoir, In this region, cement grout material is injected into the ground from the grout injection hole, and grouting is performed utilizing the flow rate of the permeated water.

本願発明では、注入圧力に浸透水の流速を活用したグラウチングを指向するものであるが、注入圧力に依存したグラウチングを巧みに利用することによって、効率的なグラウチング施工を実現したものである。   The present invention is directed to grouting utilizing the flow rate of the osmotic water as the injection pressure, but by effectively utilizing the grouting depending on the injection pressure, efficient grouting work is realized.

前記第1工程では、第1グラウト注入孔を形成し、前記貯水池の水位が低水位状態時に、貯水池の高水位より以深部分の地山領域に前記第1グラウト注入孔からグラウト材を注入し、全深さ範囲に亘ってグラウチングを行う。この場合、貯水池の水位よりも以浅の地山内(領域I)では注入圧力に依存したグラウチングが行われ、グラウト材の水平方向の到達範囲が相互に重ならない遮水層が形成される。また、前記貯水池の水位よりも以深の地山内(領域II)では、注入圧力に浸透水の流速を活用したグラウチングによってグラウト材の水平方向の到達範囲が相互に重なる遮水層が形成されることになる。   In the first step, a first grout injection hole is formed, and when the water level of the reservoir is in a low water level state, a grout material is injected from the first grout injection hole into a natural ground region deeper than the high water level of the reservoir, Grouting over the entire depth range. In this case, grouting depending on the injection pressure is performed in the ground (region I) shallower than the water level of the reservoir, and a water-impervious layer in which the reach ranges in the horizontal direction of the grout material do not overlap each other is formed. Moreover, in the ground (region II) deeper than the water level of the reservoir, a water-impervious layer is formed in which the horizontal reach of the grout material overlaps by grouting using the flow rate of the osmotic water as the injection pressure. become.

前記領域Iでは等間隔毎若しくは断続的に遮水層未形成領域が存在することになるが、形成された遮水層の分だけ貯水池からの水の流出が抑えられることになり、水位を極力維持することが可能となる。従って、浸透流出の多い貯水池であっても、次の第2工程における「貯水池の水位が高水位状態である条件」を容易かつ短期間に満足することが可能となる。   In the region I, there are regions where the water shielding layer is not formed at regular intervals or intermittently, but the outflow of water from the reservoir is suppressed by the amount of the formed water shielding layer, and the water level is reduced as much as possible. Can be maintained. Therefore, even if the reservoir has a large amount of seepage and outflow, it is possible to satisfy the “condition that the reservoir water level is high” in the next second step easily and in a short period of time.

前記第2工程では、貯水池の水位が高水位状態である条件の下で、前記第1工程における第1グラウト注入孔間の中央位置に貯水池側に傾斜する方向に第2グラウト注入孔を形成し、少なくとも前記第1工程時の貯水池の水位よりも以浅の地山内に第2グラウト注入孔からグラウト材を注入し、浸透水の流速を活用したグラウチングを行い、遮水層を形成する。   In the second step, a second grout injection hole is formed in a direction inclined to the reservoir side at a central position between the first grout injection holes in the first step under the condition that the water level of the reservoir is in a high water level state. In addition, a grout material is injected from a second grout injection hole into a ground mountain shallower than the water level of the reservoir at the time of the first step, and grouting utilizing the flow rate of the permeated water is performed to form a water shielding layer.

以上より、たとえ網状に繋がった開口割目が深部まで存在する岩盤であっても、後述するメカニズムにより、浸透水の流速を活用したグラウチングでは地山の深部側から順に流路の閉塞を行うため、効果的に割目を塞いで地山中に遮水層を形成し、貯水池から水の流出を防ぐことが可能となる。   From the above, even in rocks where the opening splits connected in a net form exist to the deep part, grouting using the flow rate of the permeated water performs blockage of the flow path in order from the deep side of the natural ground by the mechanism described later. It is possible to effectively close the splits and form a water-impervious layer in the natural ground, preventing water from flowing out of the reservoir.

請求項2に係る本発明として、前記第1グラウト注入孔は、貯水池の高水位以上の標高位置から貯水池側に傾斜する方向に形成し、その先端部が同じく対岸の貯水池の高水位以上の標高位置から貯水池側に傾斜する方向に形成されたグラウト注入孔と縦断面的に交差するように形成されている請求項1記載の貯水池の止水工法が提供される。   As the present invention according to claim 2, the first grout injection hole is formed in a direction inclined from the altitude position above the high water level of the reservoir toward the reservoir side, and the tip thereof is also an altitude above the high water level of the reservoir on the opposite bank. The water stop construction method for a reservoir according to claim 1, wherein the water stop construction method is formed so as to intersect with a grout injection hole formed in a direction inclined from the position toward the reservoir.

上記請求項2記載の発明は、前記第1グラウト注入孔として、貯水池の高水位以上の標高位置から貯水池側に傾斜する方向に形成し、その先端部が同じく対岸の貯水池の高水位以上の標高位置から貯水池側に傾斜する方向に形成されたグラウト注入孔と縦断面的に交差するように形成することにより、貯水池を囲むように断面略V字形に遮水層を形成するものである。貯水池の漏水箇所が全体に亘っている場合は、このような態様で遮水層を形成するのが効果的である。   The invention according to claim 2 is characterized in that the first grout injection hole is formed in a direction inclined from the altitude position above the high water level of the reservoir to the reservoir side, and the tip of the same is the altitude above the high water level of the reservoir on the opposite bank. A water shielding layer having a substantially V-shaped cross section is formed so as to surround the reservoir by forming it so as to intersect with the grout injection hole formed in a direction inclined from the position toward the reservoir. It is effective to form the water shielding layer in such a manner when the water leaking portion of the reservoir extends over the whole.

以上詳説のとおり本発明によれば、グラウト材の浸透性と閉塞性能とを効率よく兼ね備えることで、網状に繋がった開口割目が深部まで存在する岩盤であっても、遮水層を形成し貯水池からの漏水を効果的に抑制し得るようになる。   As described above in detail, according to the present invention, by efficiently combining the permeability of the grout material and the blockage performance, even if it is a bedrock in which the opening splits connected in a net form exist deeply, a water shielding layer is formed. It becomes possible to effectively suppress water leakage from the reservoir.

貯水池1に対する第1グラウト注入孔2及び第2グラウト注入孔3の配置図である。FIG. 3 is a layout diagram of a first grout injection hole 2 and a second grout injection hole 3 with respect to a reservoir 1. そのII−II線矢視図である。It is the II-II arrow directional view. 第1グラウト注入孔2及び第2グラウト注入孔3の配置図である。FIG. 3 is a layout view of a first grout injection hole 2 and a second grout injection hole 3. 最大注入圧力の設定例を示す貯水池1の断面図である。It is sectional drawing of the reservoir 1 which shows the example of a setting of the maximum injection pressure. グラウト材の配合割合の切替要領を示す流れ図である。It is a flowchart which shows the switching point of the mixture ratio of a grout material. 本発明グラウチングによる第1工程の注入要領を示す縦断面図である。It is a longitudinal cross-sectional view which shows the injection | pouring procedure of the 1st process by this invention grouting. 本発明グラウチングによる第2工程の注入要領を示す縦断面図である。It is a longitudinal cross-sectional view which shows the injection | pouring point of the 2nd process by this invention grouting. 注入圧のみに依存した注入メカニズムを説明するための概念図である。It is a conceptual diagram for demonstrating the injection mechanism depending only on injection pressure. 注入圧力Pとセメント到達距離Rの関係を示すグラフである。It is a graph which shows the relationship between the injection pressure P and the cement reach distance R. セメントの粒度分布を示すグラフである。It is a graph which shows the particle size distribution of cement. 本発明の浸透流速を活用した注入メカニズムを説明するための概念図である。It is a conceptual diagram for demonstrating the injection | pouring mechanism using the osmosis | permeation flow rate of this invention. 浸透流速を活用した本発明グラウチングの閉塞過程を説明するための図である。It is a figure for demonstrating the obstruction | occlusion process of grouting of this invention using an osmosis | permeation flow velocity.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係るグラウチングによる止水工法は、図1及び図2に示されるように、ダム湖、調整池等の貯水池1の水が地山の開口割目を通じて浸透流出するのを抑制するためのものであり、貯水池1周囲の地山から略汀線方向に沿って所定の間隔で、貯水池1側に傾斜する方向に複数の第1グラウト注入孔2,2…を形成し、前記貯水池1の水位が低水位状態時に、貯水池1の高水位より以深部分の地山領域に前記第1グラウト注入孔2,2…からグラウト材を注入し、全深さ範囲に亘ってグラウチングを行い、前記貯水池の水位よりも以浅の地山内ではグラウト材の水平方向の到達範囲が相互に重ならない遮水層を形成し、前記貯水池1の水位よりも以深の地山内ではグラウト材の水平方向の到達範囲が相互に重なる遮水層を形成する第1工程と、
貯水池1の水位が高水位状態である条件の下で、前記第1工程における第1グラウト注入孔2,2…間の中央位置に貯水池1側に傾斜する方向に第2グラウト注入孔3,3…を形成し、少なくとも前記第1工程時の貯水池1の水位よりも以浅の地山内に第2グラウト注入孔3,3…からグラウト材を注入し、遮水層を形成する第2工程とからなるものである。
As shown in FIGS. 1 and 2, the water stopping method by grouting according to the present invention is to prevent the water in the reservoir 1 such as a dam lake or a regulating pond from penetrating and flowing out through the opening split of the natural ground. A plurality of first grout injection holes 2, 2... Are formed in a direction inclined to the reservoir 1 side at a predetermined interval along a substantially shoreline direction from a natural mountain around the reservoir 1, and the water level of the reservoir 1 is formed. When the water level is low, grouting material is injected from the first grouting holes 2, 2... Into the natural ground region deeper than the high water level of the reservoir 1, and grouting over the entire depth range. In the ground mountain shallower than the water level, the horizontal reach of the grout material forms a water shielding layer, and in the ground mountain deeper than the water level of the reservoir 1, the horizontal reach range of the grout material is mutual. The first work to form a water shielding layer that overlaps And,
Under the condition that the water level of the reservoir 1 is high, the second grout injection holes 3 and 3 are inclined in the direction inclined toward the reservoir 1 at the center position between the first grout injection holes 2, 2. ... and at least a second step of injecting a grout material from the second grout injection holes 3, 3 ... into a ground mountain shallower than the water level of the reservoir 1 at the time of the first step to form a water shielding layer. It will be.

本発明では、特には、網状に繋がった開口割目が深部まで存在する岩盤を対象として、効果的なグラウチングを可能とするべく、注入に際して、後段の〔グラウチングのメカニズム〕の欄で詳述するように、グラウト材の注入圧力に加えて、浸透水の流速を活用して水みちに対する効果的な注入を指向したものである。浸透水の流速が限界沈降速度以上であれば、セメント粒子の沈降は抑制され、浸透流速により遠方まで輸送され沈降することになり、広範囲にグラウト材を注入できるようになる。また、前記網状に繋がった開口割目が深部まで存在する岩盤では、前述したように多元的に流路が形成されるため、グラウト材の浸透性を上げて、閉塞の度に形成される流路を順に閉塞させていくようにすることで割目の閉塞を効果的に行えるようになる。   In the present invention, in particular, in order to enable effective grouting for a rock in which the opening splits connected in a net form exist to the deep part, it will be described in detail in the section of (Grouting mechanism) at the later stage in order to enable effective grouting. Thus, in addition to the injection pressure of the grout material, the flow rate of osmotic water is utilized to direct effective injection into the water channel. If the flow rate of the osmotic water is equal to or higher than the critical settling rate, the settling of cement particles will be suppressed, and the osmotic flow rate will cause the grouting material to be injected over a wide range by being transported and settled far away. In addition, in the bedrock where the opening splits connected to the mesh form exist deeply, the flow path is formed in a multi-dimensional manner as described above, so that the permeability of the grout material is increased and the flow formed at each blockage is formed. By closing the road in order, it is possible to effectively close the split.

本グラウチングでは、前記グラウト注入孔2、3は貯水池1周囲の地山から貯水池1側に傾斜する方向に形成される。すなわち、浸透水の流速は貯水池1の池底面に近い方が、或いは直下の方が相対的に高い流速値を示すため、グラウト注入孔2は前記浸透水の流速を活用するために、地山から貯水池1側に傾斜する方向に向けて形成される。   In this grouting, the grouting holes 2 and 3 are formed in a direction inclined from the natural ground around the reservoir 1 to the reservoir 1 side. That is, since the flow rate of the osmotic water is closer to the bottom of the reservoir 1 or directly below it, the grouting hole 2 is used to utilize the flow rate of the osmotic water. It forms toward the direction which inclines to the reservoir 1 side.

前記第1工程におけるグラウチングは、前記貯水池1の水位が低水位WL1状態時に、貯水池1の高水位WL2より以深部分の地山領域に前記第1グラウト注入孔2,3…からグラウト材を注入し、全深さ範囲に亘ってグラウチングを行う。ここで、貯水池1の水位より以浅の地山内では注入圧力に依存したグラウチングが行われ、貯水池1の水位よりも以深の地山内では注入圧力に加え浸透水の流速を活用したグラウチングが行われる。   In the grouting in the first step, when the water level of the reservoir 1 is in the low water level WL1, the grouting material is injected from the first grout injection holes 2, 3... Into the natural ground region deeper than the high water level WL2 of the reservoir 1. Grouting over the entire depth range. Here, grouting depending on the injection pressure is performed in the ground mountain shallower than the water level of the reservoir 1, and grouting using the flow rate of the osmotic water in addition to the injection pressure is performed in the ground mountain deeper than the water level of the reservoir 1.

前記第1グラウト注入孔2は、ボーリングマシンを用いて孔径約40〜80mm程度で形成されるものであり、ノンコアボーリング又はコアボーリングのいずれでもよい。該注入孔2の口元位置は、貯水池2の高水位WL2の標高よりも高い位置に設定するのが望ましい。図2に示されるように、前記注入孔2は、貯水池1の高水位WL2以上の地点から貯水池1側に傾斜する方向に形成され、その先端部が対岸方向から形成されたグラウト注入孔2の先端部と重なるように形成されるようにすることが好ましい。これにより、貯水池1の下側には両岸から縦断面でV字状に遮水層が形成されるようになる。本形態例では、貯水池1の全体に漏水箇所が点在しているものとし、平面視で貯水池1の下側地山全体に断面V字状の遮水層を形成するようにしたが、漏水箇所が一部区域に特定されているならば、その部分だけに遮水層を形成すればよい。   The first grout injection hole 2 is formed with a hole diameter of about 40 to 80 mm using a boring machine, and may be either non-core boring or core boring. The mouth position of the injection hole 2 is desirably set to a position higher than the elevation of the high water level WL2 of the reservoir 2. As shown in FIG. 2, the injection hole 2 is formed in a direction inclined toward the reservoir 1 from a point above the high water level WL <b> 2 of the reservoir 1, and a tip of the grout injection hole 2 formed from the opposite bank direction. It is preferable to be formed so as to overlap the tip portion. As a result, a water shielding layer is formed in a V-shaped longitudinal section from both banks below the reservoir 1. In this embodiment, it is assumed that water leak points are scattered throughout the reservoir 1, and a V-shaped impermeable layer is formed on the entire lower ground of the reservoir 1 in plan view. If the location is specified as a partial area, a water shielding layer may be formed only in that portion.

浸透水の流速を活用したグラウチングの場合は、後述するメカニズムより、第1グラウト注入孔2を中心として水平方向に15〜20m程度の範囲までのグラウト材注入が可能と考えられるので、隣接する第1グラウト注入孔2,2によるグラウト材注入範囲に重なり代ができるような間隔で前記第1グラウト注入孔2、2…を形成する。具体的には、図3に示されるように、第1グラウト注入孔2,2…の間隔は、25m程度の間隔で形成している。   In the case of grouting utilizing the flow rate of permeated water, it is considered possible to inject grout material up to a range of about 15 to 20 m in the horizontal direction around the first grout injection hole 2 from the mechanism described later. The first grout injection holes 2, 2... Are formed at an interval that allows an overlap allowance in the grout material injection range by the 1 grout injection holes 2, 2. Specifically, as shown in FIG. 3, the first grout injection holes 2, 2... Are formed at intervals of about 25 m.

前記グラウト材としては、工費及び本グラウチングのメカニズムの点から、セメントミルクやモルタルなどのセメント系グラウト材を用いることとする。濃度は、注入箇所のルジオン値に応じてセメント:水の配合割合を任意に調整できるようにするのが望ましい。   As the grout material, a cement grout material such as cement milk or mortar is used from the viewpoint of construction cost and the mechanism of the present grouting. It is desirable that the concentration can be arbitrarily adjusted in the blending ratio of cement: water according to the lugion value at the injection site.

以上の第1工程におけるグラウチングの結果、図6に示されるように、前記貯水池1の低水位WL1よりも以浅の地山内(領域I)では浸透水の流速は活用できないため、注入圧力に依存したグラウチングとなりグラウト材の水平方向の到達範囲が相互に重ならない遮水層が形成されるようになる。また、前記貯水池1の低水位WL1よりも以深の地山内(領域II)では、注入圧力に浸透水の流速を活用したグラウチングが行われることになり、グラウト材の水平方向の到達範囲が相互に重なる遮水層が形成されるようになる。   As a result of the grouting in the first step described above, as shown in FIG. 6, the flow rate of the osmotic water cannot be used in the ground (shallow region I) shallower than the low water level WL1 of the reservoir 1, and thus depends on the injection pressure. It becomes grouting and a water shielding layer is formed in which the horizontal reach of the grout material does not overlap each other. In the ground (region II) deeper than the low water level WL1 of the reservoir 1, grouting is performed by utilizing the flow rate of the osmotic water as the injection pressure, so that the horizontal reach of the grouting material is mutually Overlapping water shielding layers are formed.

前記領域Iでは等間隔毎若しくは断続的に遮水層未形成領域が存在することになるが、形成された遮水層の分だけ貯水池からの水の流出が抑えられることになり、貯水池1の水位を極力維持することが可能となる。従って、浸透流出の多い貯水池であっても、次の第2工程における「貯水池の水位が高水位状態である条件」を容易かつ短期間に満足することが可能となる。   In the region I, there are regions where the water shielding layer is not formed at regular intervals or intermittently, but the outflow of water from the reservoir is suppressed by the amount of the formed water shielding layer. It becomes possible to maintain the water level as much as possible. Therefore, even if the reservoir has a large amount of seepage and outflow, it is possible to satisfy the “condition that the reservoir water level is high” in the next second step easily and in a short period of time.

次に、第2工程では、図7に示されるように、貯水池1の水位が高水位状態WL2である条件の下で、前記第1工程における第1グラウト注入孔2,2…間の中央位置に貯水池1側に傾斜する方向に第2グラウト注入孔3,3…を形成し、少なくとも前記第1工程時の貯水池1の低水位WL1よりも以浅の地山内(領域I)に第2グラウト注入孔3,3…からグラウト材を注入し、浸透水の流速を活用したグラウチングを行い、遮水層を形成する。なお、貯水池1の水位を高水位状態WL2とするには、雨量の多い梅雨等の時期にグラウチングを行うか、例えば揚水発電所の調整池において揚水や発電等により、人為的に水位を上昇させるようにする。高水位WL2状態とした条件下でグラウチングを行うことにより、注入圧力に加え浸透水の流速を活用したグラウチングが行われ、該領域Iにおいても、グラウト材の水平方向の到達範囲が相互に重なる遮水層が形成されるようになる。   Next, in the second step, as shown in FIG. 7, the center position between the first grout injection holes 2, 2... In the first step under the condition that the water level of the reservoir 1 is in the high water level state WL2. Are formed in the direction inclined to the reservoir 1 side, and the second grout is injected into the ground (region I) shallower than the low water level WL1 of the reservoir 1 at least during the first step. A grout material is injected from the holes 3, 3... And grouting utilizing the flow rate of the permeated water is performed to form a water shielding layer. In addition, in order to set the water level of the reservoir 1 to the high water level state WL2, the water level is artificially increased by grouting during rainy season or the like when there is a lot of rainfall, or by pumping or power generation in the adjustment pond of the pumped storage power plant, for example. Like that. By performing grouting under the condition of the high water level WL2, grouting is performed by utilizing the flow rate of the osmotic water in addition to the injection pressure, and also in the region I, the horizontal reach ranges of the grouting materials overlap each other. An aqueous layer is formed.

以上の手順により、図7に示されるように、全深さ範囲に亘ってグラウト材が充填された改良範囲が形成されるようになる。隣接するグラウト注入孔2…(3…)は、グラウト材の水平方向の到達範囲、即ち各注入孔による改良範囲が相互に重なるように設けられている。これら領域I、IIにおけるグラウチングは、浸透水の流速を活用したグラウチングであり、後述するように、地山の深部側から順に流路の閉塞を行うため、貯水池1の周囲に形成された開口割目に隙間無くグラウト材が充填され、水みちが閉塞されることにより、貯水池1の水の浸透流出が抑制できるようになる。   By the above procedure, as shown in FIG. 7, an improved range in which the grout material is filled over the entire depth range is formed. The adjacent grout injection holes 2... (3 ...) are provided so that the reach range of the grout material in the horizontal direction, that is, the improvement ranges by the respective injection holes overlap each other. The grouting in these regions I and II is grouting utilizing the flow rate of the permeated water. As will be described later, the channel is closed in order from the deeper side of the natural ground, so that the opening ratio formed around the reservoir 1 is By filling the grout material without gaps in the eyes and closing the water channel, the permeation and outflow of water in the reservoir 1 can be suppressed.

〔グラウチングの施工要領〕
はじめに、必要に応じて地山のボーリング調査を行い、開口割目の分布状態、透水試験、地下水挙動等、地山の水理・地質的特徴を把握しておく。このとき形成された調査孔は、グラウト注入孔2、2…の内の一部として利用することができる。
[Grouting work instructions]
First of all, we will conduct drilling surveys of natural grounds as necessary, and understand the hydrological and geological characteristics of natural grounds, such as the distribution status of opening splits, permeability tests, groundwater behavior, etc. The investigation hole formed at this time can be used as a part of the grout injection holes 2, 2.

グラウチングでは、注入管に1個のパッカーを設けてグラウト材を圧入するシングルパッカー方式又は注入区間の上下部にパッカーを設けるダブルパッカー方式のいずれをも用いることができる。また、グラウチング工法としては、深度をいくつかのステージに分けて、孔口から孔底に向かって、ボーリングとグラウト注入を繰返して行うステージグラウチングが好ましく、注入ステージは原則1ステージ5mとする。但し、透水試験の結果、注入前ルジオン値が1Lu以下のステージは、次ステージとあわせて注入してもよい(1ステージ10m)。   In grouting, either a single packer method in which one packer is provided in an injection tube and a grout material is press-fitted, or a double packer method in which packers are provided in the upper and lower portions of the injection section can be used. As a grouting method, stage grouting in which the depth is divided into several stages and boring and grouting are repeated from the hole opening toward the hole bottom is preferable. However, as a result of the water permeability test, a stage having a pre-injection lugeon value of 1 Lu or less may be injected together with the next stage (one stage 10 m).

本発明に係る第1工程のグラウチングでは、前述の通り、第1グラウト注入孔2、2…から貯水池の高水位より以深部分を対象領域としてグラウト材を注入する。前記グラウト材の注入圧力は、最小地山被り厚さd(グラウト注入孔2と貯水池1の水底との最小距離)に応じて3kgf/cm2〜30kgf/cm2とするのが好ましい。例えば、図4及び表1に示されるように、最小地山被り厚さdの増加に対して段階的に増加させることができる。なお、注入時に貯水池1内を常時監視し、貯水池1側にグラウト材が漏れ出たときは、そのときの圧力を注入圧力とする。

Figure 2011256534
In the grouting of the first step according to the present invention, as described above, the grouting material is injected from the first grouting holes 2, 2,. Injection pressure of the grout is preferably between 3kgf / cm 2 ~30kgf / cm 2 according to suffer minimum land mountain thickness d (minimum distance between the bottom of the water grouting hole 2 and reservoirs 1). For example, as shown in FIG. 4 and Table 1, it can be increased in steps with respect to an increase in the minimum ground cover thickness d. In addition, the inside of the reservoir 1 is constantly monitored at the time of injection, and when the grout material leaks to the reservoir 1 side, the pressure at that time is taken as the injection pressure.
Figure 2011256534

グラウト材の注入に際しては、図5に示されるように、グラウト注入孔2の穿孔及び水押し後、注入するセメントミルクの配合割合(セメント(C):水(W))の切り替えを行う。この初期配合は、地山の注入前ルジオン値に応じてC:W=1:6〜1:2とし、この初期配合のセメントミルクを所定量(図示例では400リットル)注入したら、段階的に配合割合を高濃度セメントミルクに切り替えていく。そして、所定の配合割合(図示例ではC:W=1:1)となったらこの配合割合で無制限に注入する。その後、総セメント量、注入流量Q及び長時間注入によるパッカー事故や地山リークの懸念などに応じて、注入を完了するか、更に高濃度セメントミルクへの切り替え(図示例ではC:W=1:0.8)を行う。これでも注入流量Qが収束せず、パッカー事故や地山リークが懸念される場合には、注入を中断し、水洗い後、再度初期段階から注入を繰り返す。なお、注入圧力Pが上昇傾向にあり、P>0.8Pmaxの場合は配合切り替えを行わないことが好ましい。また、注入圧力が規定圧に達し流量が減少傾向にある場合は配合切り替えを行わないことが好ましい。   In injecting the grout material, as shown in FIG. 5, after mixing the grout injection hole 2 and pushing the water, the blending ratio of cement milk to be injected (cement (C): water (W)) is switched. This initial formulation is C: W = 1: 6 to 1: 2 depending on the pre-injection lugeon value of the natural ground, and when a predetermined amount (400 liters in the illustrated example) of cement milk of this initial formulation is injected, stepwise Change the blending ratio to high-concentration cement milk. And when it becomes a predetermined | prescribed mixture ratio (C: W = 1: 1 in the example of illustration), it inject | throws in unlimited by this mixture ratio. Thereafter, in accordance with the total cement amount, the injection flow rate Q and the concern of a packer accident due to long-time injection or a natural ground leak, the injection is completed or switched to a high-concentration cement milk (C: W = 1 in the illustrated example) : 0.8). Even in this case, when the injection flow rate Q does not converge and there is a concern about a packer accident or a natural ground leak, the injection is interrupted, and the injection is repeated again from the initial stage after washing with water. In addition, when the injection pressure P tends to increase and P> 0.8 Pmax, it is preferable not to switch the blending. Further, when the injection pressure reaches the specified pressure and the flow rate tends to decrease, it is preferable not to switch the blending.

〔グラウチングのメカニズム〕
本発明の前記第1工程に係るグラウチングは、(1)注入圧力に依存したグラウチングと、(2)注入圧力に加え浸透水の流速を活用したグラウチングの組合せとされ、前記第2工程におけるグラウチングは、(2)注入圧力に加え浸透水の流速を活用したグラウチングとされる。貯水池1の水位を境界として、これよりも以浅部分の領域にグラウト材を注入した場合は、(1)注入圧力に依存したグラウチングが実行され、貯水池1の水位より以深部分の領域にグラウト材を注入した場合は、(2)注入圧力に加えて浸透水の流速を活用したグラウチングが実行され、浸透水の流速によってグラウト材が水平方向に遠方まで到達できるようになる。
[Grouting mechanism]
The grouting according to the first step of the present invention is a combination of (1) grouting depending on the injection pressure and (2) grouting utilizing the flow rate of the osmotic water in addition to the injection pressure. (2) Grouting using the flow rate of osmotic water in addition to the injection pressure. When the grouting material is injected into the shallower region than the water level of the reservoir 1 as a boundary, (1) grouting depending on the injection pressure is executed, and the grouting material is injected into the region deeper than the water level of the reservoir 1. In the case of the injection, (2) grouting utilizing the flow rate of the osmotic water in addition to the injection pressure is executed, and the grouting material can reach far in the horizontal direction by the flow rate of the osmotic water.

以下、これらのグラウチングメカニズムについて、(1)注入圧力のみに依存したグラウチングと、(2)注入圧力に浸透流速が加わったグラウチングとに分けて詳述する。   Hereinafter, these grouting mechanisms will be described in detail by dividing into (1) grouting that depends only on the injection pressure and (2) grouting in which the osmotic flow rate is added to the injection pressure.

(1)注入圧力のみに依存したグラウチング
この場合の開口割目に対するグラウト材充填メカニズムは、図8の概念図に示されるように、開口割目(水平な平行平板を仮定、開口幅a)内をセメントミルク(粘性係数μ)が注入孔(注入圧力P、注入流量Q、半径r)から同心円状に拡がるものと考えれば、先端部までの距離Rと先端部流速Vの関係は次式(1)のように表される。
(1) Grouting dependent only on injection pressure In this case, the grouting material filling mechanism with respect to the opening split is within the opening split (assuming a horizontal parallel plate, opening width a) as shown in the conceptual diagram of FIG. Assuming that the cement milk (viscosity coefficient μ) expands concentrically from the injection hole (injection pressure P, injection flow rate Q, radius r), the relationship between the distance R to the tip and the flow velocity V at the tip is It is expressed as 1).

Q=2πRaV ・・・・・ (1)
つまり、Rが大きくなるとVが小さくなり、セメント粒子の限界沈降流速V以下になった箇所から沈降が始まり、注入孔に向けてセメントの沈降が進展して開口割目を閉塞する。
Q = 2πRaV (1)
That is, when R increases, V decreases, and sedimentation starts from a location where the cement particle has reached a critical sedimentation velocity Vc or less, and cement sedimentation progresses toward the injection hole to close the opening split.

この場合、層流を仮定すれば、注入圧力と注入流量の関係は次式(2)となる。   In this case, assuming a laminar flow, the relationship between the injection pressure and the injection flow rate is expressed by the following equation (2).

P=[6μQ/(πa)]・log(R/r) ・・・・・ (2)
しかしながら、セメントミルクは水のようなニュートン性流体ではなく、非ニュートン性の流動特性を有することから、上の2式より直接、注入圧力に応じたセメントミルクの到達距離Rを算定することはできない。そこで、実験的なせん断速度と粘度との関係から、壁面が平滑な水平平行平板について層流・乱流を考慮して、開口割目の開口幅a、注入圧力P、セメントミルク到達距離Rの関係が従来より知られている(図9)。なお、開口幅a=3mmは補間により求めたものである。
P = [6 μQ / (πa 3 )] · log (R / r) (2)
However, since cement milk is not a Newtonian fluid such as water and has non-Newtonian flow characteristics, it is not possible to directly calculate the reach distance R of cement milk according to the injection pressure from the above two formulas. . Therefore, considering the relationship between the experimental shear rate and viscosity, considering the laminar flow and turbulent flow for horizontal parallel plates with smooth walls, the opening width a, injection pressure P, cement milk reach distance R The relationship is conventionally known (FIG. 9). The aperture width a = 3 mm is obtained by interpolation.

これによれば、開口幅a=3mmの開口割目の場合、注入圧力10kgf/cm2でセメントミルク到達距離は水平方向に10m程度となる。 According to this, in the case of the opening split with an opening width a = 3 mm, the cement milk reaching distance is about 10 m in the horizontal direction at an injection pressure of 10 kgf / cm 2 .

なお、使用するセメントの種類によっては、セメント粒子の有効径である10%粒径D10が大きいものもあり(図10参照)、限界沈降速度Vcが速くなることも予想される。このため、セメントミルクの到達距離は、水平方向に10mよりも短くなる場合も十分に考えられる。 Depending on the type of cement to be used, even there (see FIG. 10) greater than 10% particle diameter D 10 is the effective diameter of cement particles, the limit settling velocity Vc is also expected to become faster. For this reason, the reach | attainment distance of cement milk is fully considered also when it becomes shorter than 10 m in a horizontal direction.

(2)注入圧力に浸透流速が加わったグラウチング
注入圧力のみに依存したグラウチングの場合、上述の通りセメントミルク先端部の流速がセメント粒子の限界沈降速度(有効径を10%粒径とすればVc=1cm/sec程度)となった距離でセメント粒子は沈降を開始し、注入孔に向けて閉塞が進行する。
(2) Grouting in which the osmotic flow rate is added to the injection pressure In the case of grouting that depends only on the injection pressure, as described above, the flow rate at the tip of the cement milk is the critical sedimentation rate of the cement particles (Vc if the effective diameter is 10% particle size). = 1 cm / sec), the cement particles begin to settle and blockage proceeds toward the injection hole.

しかし、図11に示されるように、上述の注入圧力に加えて浸透水の流速vが加わった場合、セメントミルクの先端部で浸透水の流速vが限界沈降速度Vc以上であれば、セメント粒子の沈降は抑制され、浸透流速vにより更に遠方に輸送され、開口割目のネットワーク交叉部等の浸透流速低下部(限界沈降速度以下)で沈降し、上流側への閉塞が進展する。セメントミルクの到達距離は、注入圧力10kgf/cm2でセメントミルク到達距離は水平方向に15〜20m程度となる。 However, as shown in FIG. 11, when the flow rate v of osmotic water is added in addition to the above injection pressure, if the flow rate v of osmotic water at the tip of the cement milk is equal to or higher than the critical sedimentation velocity Vc, cement particles Sedimentation is suppressed, transported further by the permeation flow velocity v, settles at a permeation flow rate lowering portion (below the critical settling velocity) such as the network crossing portion of the opening split, and the blockage to the upstream side develops. The arrival distance of cement milk is about 15 to 20 m in the horizontal direction at an injection pressure of 10 kgf / cm 2 .

この浸透流速が加わった場合の割目の閉塞過程を図12に基づいて説明する。 先ず、注入初期においてセメント粒子は浸透水により最も流れやすい流路A〜Bにより開口割目を移動する。この際、セメント粒子の移動可能領域はセメント粒子の限界沈降速度Vc以上の範囲である。仮に、分岐点AからDに至る流路があっても、この流路には浸透水があまり流れず流速vはセメント粒子の限界沈降速度Vc未満である。流路A〜Bの領域において、セメント粒子の沈降〜目詰まり〜凝結し、この割目を閉塞させる。流路A〜Bが閉塞すると、注入過程の欄に示されるように、閉塞箇所の上流側ポテンシャルが上昇し、上流側で交差する開口割目A〜Dの浸透流速が上昇する。上昇した流速が限界沈降速度Vc以上であれば、セメント粒子は流路A〜Dの方向に新たに移動する。この流路でもセメント粒子の限界沈降速度Vc未満となる位置でセメント粒子の沈降が始まり、目詰まりを起こし、凝結し、この流路A〜Dを閉塞させる。このような閉塞を順次繰り返し、ほとんどの割目で限界沈降速度Vc未満となれば、注入終了段階の欄に示されるように、注入圧力に依存した注入のみが行われ注入が収束する。   The clogging process of the split when this osmotic flow velocity is added will be described with reference to FIG. First, in the initial stage of injection, the cement particles move through the opening split through the channels A to B which are most likely to flow by the permeated water. At this time, the movable region of the cement particles is in a range equal to or higher than the critical sedimentation velocity Vc of the cement particles. Even if there is a flow path from the branch points A to D, the permeated water does not flow much in this flow path, and the flow velocity v is less than the critical sedimentation velocity Vc of the cement particles. In the region of the flow paths A to B, the cement particles settle, clog, and condense, and the cracks are closed. When the flow paths A to B are closed, as shown in the column of the injection process, the upstream potential of the closed portion is increased, and the permeation flow rates of the opening splits A to D intersecting on the upstream side are increased. If the increased flow velocity is equal to or higher than the critical sedimentation velocity Vc, the cement particles newly move in the directions of the flow paths A to D. Also in this flow path, sedimentation of cement particles begins at a position where the cement particle is less than the critical sedimentation velocity Vc, causing clogging and condensation, and closing the flow paths A to D. If such occlusion is repeated sequentially and becomes less than the critical sedimentation velocity Vc in almost every division, only the injection depending on the injection pressure is performed and the injection converges as shown in the column of the injection end stage.

1…貯水池、2…第1グラウト注入孔、3…第2グラウト注入孔、WL1…低水位、WL2…高水位   DESCRIPTION OF SYMBOLS 1 ... Reservoir, 2 ... 1st grout injection hole, 3 ... 2nd grout injection hole, WL1 ... Low water level, WL2 ... High water level

Claims (2)

貯水池の水が地山の開口割目を通じて浸透流出するのを抑制するためのグラウチングによる貯水池の止水工法であって、
前記貯水池周囲の地山から略汀線方向に沿って所定の間隔で、貯水池側に傾斜する方向に複数の第1グラウト注入孔を形成し、前記貯水池の水位が低水位状態時に、貯水池の高水位より以深部分の地山領域に前記第1グラウト注入孔からグラウト材を注入し、全深さ範囲に亘ってグラウチングを行い、前記貯水池の水位よりも以浅の地山内ではグラウト材の水平方向の到達範囲が相互に重ならない遮水層を形成し、前記貯水池の水位よりも以深の地山内ではグラウト材の水平方向の到達範囲が相互に重なる遮水層を形成する第1工程と、
貯水池の水位が高水位状態である条件の下で、前記第1工程における第1グラウト注入孔間の中央位置に貯水池側に傾斜する方向に第2グラウト注入孔を形成し、少なくとも前記第1工程時の貯水池の水位よりも以浅の地山内に第2グラウト注入孔からグラウト材を注入し、遮水層を形成する第2工程とからなることを特徴とする貯水池の止水工法。
Reservoir construction method of the reservoir by grouting to prevent the water of the reservoir from seeping out through the opening split of the natural mountain,
A plurality of first grout injection holes are formed in a direction inclined toward the reservoir side at a predetermined interval along a substantially shoreline direction from a natural ground around the reservoir, and when the water level of the reservoir is at a low water level, the high water level of the reservoir Grouting material is injected into the deeper ground area from the first grout injection hole, grouting is performed over the entire depth range, and in the ground depth shallower than the water level of the reservoir, the grout material reaches in the horizontal direction. Forming a water shielding layer that does not overlap with each other, and forming a water shielding layer in which the horizontal reach of the grout material overlaps with each other in a deeper ground than the water level of the reservoir;
Under the condition that the water level of the reservoir is at a high water level, a second grout injection hole is formed at a central position between the first grout injection holes in the first step in a direction inclined toward the reservoir, and at least the first step A waterstop construction method for a reservoir, comprising a second step of injecting a grout material into a ground mountain shallower than the water level of the reservoir at the time to form a water shielding layer by injecting a grout material from the second grout injection hole.
前記第1グラウト注入孔は、貯水池の高水位以上の標高位置から貯水池側に傾斜する方向に形成し、その先端部が同じく対岸の貯水池の高水位以上の標高位置から貯水池側に傾斜する方向に形成されたグラウト注入孔と縦断面的に交差するように形成されている請求項1記載の貯水池の止水工法。   The first grout injection hole is formed in a direction inclined to the reservoir side from an altitude position higher than the high water level of the reservoir, and a tip portion thereof is inclined to the reservoir side from an altitude position equal to or higher than the high water level of the opposite bank. The water stop construction method for a reservoir according to claim 1, wherein the water stop construction method is formed so as to intersect the formed grout injection hole in a longitudinal section.
JP2010129543A 2010-06-07 2010-06-07 Water cut-off method for reservoir Withdrawn JP2011256534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129543A JP2011256534A (en) 2010-06-07 2010-06-07 Water cut-off method for reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129543A JP2011256534A (en) 2010-06-07 2010-06-07 Water cut-off method for reservoir

Publications (1)

Publication Number Publication Date
JP2011256534A true JP2011256534A (en) 2011-12-22

Family

ID=45473017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129543A Withdrawn JP2011256534A (en) 2010-06-07 2010-06-07 Water cut-off method for reservoir

Country Status (1)

Country Link
JP (1) JP2011256534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221298A (en) * 2012-04-16 2013-10-28 Hazama Ando Corp Quality management support method of grouting technique
JP2015525314A (en) * 2012-05-23 2015-09-03 リボーガン ピーティワイ リミテッドRelborgn Pty Ltd Method for limiting the permeability of a matrix to limit the inflow of liquids and gases

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221298A (en) * 2012-04-16 2013-10-28 Hazama Ando Corp Quality management support method of grouting technique
JP2015525314A (en) * 2012-05-23 2015-09-03 リボーガン ピーティワイ リミテッドRelborgn Pty Ltd Method for limiting the permeability of a matrix to limit the inflow of liquids and gases
US10227746B2 (en) 2012-05-23 2019-03-12 Relborgn Pty Ltd Method of limiting permeability of a matrix to limit liquid and gas inflow

Similar Documents

Publication Publication Date Title
CN104131575B (en) A kind of karst height grows the leak stopping water discharge method of the stratum dam foundation
CN105926624B (en) Inverse-stopping type set hole grouting device and its construction method
JP3972260B2 (en) Low concentration grout method
CN110258501A (en) A kind of negative pressure of vacuum grouting method and device
JP6183819B1 (en) Natural slope protection structure
CN202767100U (en) Drainage structure of retaining wall
JP2011256534A (en) Water cut-off method for reservoir
CN111379267A (en) Water plugging method for solving water gushing at bottom of foundation pit
CN112523170A (en) Seepage-proofing treatment method for deep-buried karst seepage channel of reservoir
CN111058469A (en) Impervious wall structure and ecological seepage-control solid bed system
JP2011256533A (en) Water cut-off method for reservoir
Al-Adhadh et al. Reviewing the most suitable Soil Improvement Techniques for treating soft clay soil
CN208219545U (en) A kind of barrier pollution migration and ecological afforestation are in integrated river levee structure
JP2017210717A (en) Ground injection method
Al-Soud Numerical analysis of prefabricated vertical drains improved soft soil beneath an embankment during staged construction
CN109629560A (en) A kind of cast-in-place pile construction method
CN106149631B (en) High mountain strid arch dam avalanche type Slope Treatment method
CN211690401U (en) Impervious wall structure and ecological seepage-control solid bed system
KR100463104B1 (en) Pillar-shaped hardening structure formation equipment and the formation method of leading cement milk pressure injection
CN208486245U (en) Groundwater reservoir gate shaft based on rubber bag tank sealing
CN209227626U (en) A kind of heavy metal pollution Tailings Dam governing system
JP2005282000A (en) Structure of underground wall
CN110627435B (en) Seepage-proofing material for filling horizontal directional drilling and seepage-proofing construction method
CN115387369B (en) Flexible seepage-proofing structure combining seepage-proofing wall and curtain grouting and construction method thereof
KR20200051352A (en) A GROUNTING METHOD FOR REINFORCING CIP(Cast-In place Pile) WALL

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903