JP2011256379A - Device manufacturing method - Google Patents

Device manufacturing method Download PDF

Info

Publication number
JP2011256379A
JP2011256379A JP2011108952A JP2011108952A JP2011256379A JP 2011256379 A JP2011256379 A JP 2011256379A JP 2011108952 A JP2011108952 A JP 2011108952A JP 2011108952 A JP2011108952 A JP 2011108952A JP 2011256379 A JP2011256379 A JP 2011256379A
Authority
JP
Japan
Prior art keywords
film
substrate
device manufacturing
mask
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011108952A
Other languages
Japanese (ja)
Other versions
JP5407047B2 (en
Inventor
Masayuki Ogoshi
昌幸 大越
Shigemi Inoue
成美 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Res & Dev Inst Mini Of Defence
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Technical Res & Dev Inst Mini Of Defence
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Res & Dev Inst Mini Of Defence, Technical Research and Development Institute of Japan Defence Agency filed Critical Technical Res & Dev Inst Mini Of Defence
Priority to JP2011108952A priority Critical patent/JP5407047B2/en
Publication of JP2011256379A publication Critical patent/JP2011256379A/en
Application granted granted Critical
Publication of JP5407047B2 publication Critical patent/JP5407047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device manufacturing method to be a basic technology for manufacturing a micro/nano device using a film forming method to a base material by which a smooth film can be formed in a wide film thickness range from a thin film to a thick film in a micro/nano region position-selectively to the base material of a compound or the like containing an Si-O-Si bond.SOLUTION: The device manufacturing method includes a step of disposing a mask closely onto the base material 2 having a modified part 2a subjected to modification beforehand and position-selectively forming a film 6 in a gas phase so as to cover the modified part 2a and then a step of performing chemical etching of only the modified part 2a. Thereby, a micro tunnel structure comprising the base material 2 and the film 6 can be obtained.

Description

本発明は、デバイス作製法に係り、とくにSi−O−Si結合を含む化合物基体上に、マスクを配置することにより、従来困難とされてきたSi−O−Si結合を含む化合物基体上への平滑な膜の形成を位置選択的に行うことが可能なデバイス作製法に関する。   The present invention relates to a device fabrication method, and in particular, by placing a mask on a compound substrate containing Si—O—Si bonds, it is possible to apply the method to a compound substrate containing Si—O—Si bonds, which has been conventionally difficult. The present invention relates to a device manufacturing method capable of selectively forming a smooth film.

Si−O−Si結合を含む化合物上へ膜形成を行うと、形成膜表面にはテクスチャ構造やマイクロクラックが形成される場合が多い。これは、形成膜とSi−O−Si結合を含む化合物との熱膨張係数の差によるものと理解されている。このことが、優れた特性を有するSi−O−Si結合を含む化合物のデバイスとしての使用を制限していた。   When a film is formed on a compound containing a Si—O—Si bond, a texture structure or a microcrack is often formed on the surface of the formed film. This is understood to be due to a difference in thermal expansion coefficient between the formed film and the compound containing Si—O—Si bond. This has limited the use of compounds containing Si—O—Si bonds with excellent properties as devices.

Si−O−Si結合を含む化合物等の基体へ、極めて平滑な膜を、薄膜から厚膜まで広い膜厚範囲で、マイクロ/ナノ領域に位置選択的に形成することにより、Si−O−Si結合を含む化合物等を基礎とした新規マイクロ/ナノデバイスの作製法の確立を課題とする。   By forming a very smooth film on a substrate such as a compound containing a Si—O—Si bond in a micro / nano region in a wide film thickness range from a thin film to a thick film, Si—O—Si The objective is to establish a novel micro / nano device fabrication method based on compounds containing bonds.

そこで、本発明は、上記の点に鑑み、Si−O−Si結合を含む化合物等の基体に対して極めて平滑な膜を、薄膜から厚膜まで広い膜厚範囲で、マイクロ/ナノ領域に位置選択的に形成可能とした基体への膜形成法を用いた、マイクロ/ナノデバイスの作製のための基盤技術となるデバイス作製法を提供することを目的とする。   Therefore, in view of the above points, the present invention provides a very smooth film on a substrate such as a compound containing a Si—O—Si bond in a micro / nano region in a wide film thickness range from a thin film to a thick film. An object of the present invention is to provide a device fabrication method that is a fundamental technology for fabrication of micro / nano devices using a film formation method on a substrate that can be selectively formed.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本発明のある態様に係るデバイス作製法は、予め改質が施された改質部分を有する基体上に、マスクを密着配置して、前記改質部分を覆うように、気相中で膜を位置選択的に形成する工程と、その後、前記改質部分のみを化学エッチングする工程とを備えることを特徴としている。   In order to achieve the above object, in a device manufacturing method according to an aspect of the present invention, a mask is closely disposed on a substrate having a modified portion that has been modified in advance so as to cover the modified portion. And a step of selectively forming a film in a gas phase, and then a step of chemically etching only the modified portion.

前記態様において、前記膜を位置選択的に形成する工程が、前記基体をターゲットに接近させ、レーザーアブレーションを用いて前記基体上に前記膜を形成するものであるとよい。   In the above aspect, the step of selectively forming the film may be a method in which the substrate is brought close to a target and the film is formed on the substrate using laser ablation.

前記態様において、前記マスクは多数の孔が形成されたメッシュ構造であるとよい。   In the above aspect, the mask may have a mesh structure in which a large number of holes are formed.

前記態様において、前記孔の開口サイズは250μm以下であるとよい。   In the above aspect, the opening size of the hole is preferably 250 μm or less.

前記態様において、前記基体がSi−O−Si結合を含む化合物基体であるとよい。   In the above aspect, the substrate may be a compound substrate including a Si—O—Si bond.

前記態様において、前記膜を位置選択的に形成する工程では、前記基体の湾曲に対してクラックの発生しない膜を形成するとよい。   In the above aspect, in the step of selectively forming the film, it is preferable to form a film in which no crack is generated with respect to the curvature of the base.

本発明によれば、Si−O−Si結合を含む化合物等の基体へ、極めて平滑な膜を、薄膜から厚膜まで広い膜厚範囲で、基体面のマイクロ/ナノ領域に位置選択的に形成することにより、Si−O−Si結合を含む化合物等を基礎とした新規マイクロ/ナノデバイスの作製法を確立でき、エレクトロニクス、オプトエレクトロニクス、フォトニクスあるいはバイオ/メディカル分野でのデバイス作製の基盤技術として利用可能であるなど多機能性マイクロ/ナノデバイス作製のための必要不可欠な技術となる。また本発明は、これら電気・電子工学の分野にとどまらず、今後マイクロ・ナノマシーニング技術を利用して発展するデバイス作製の分野に多大に利用可能である。   According to the present invention, an extremely smooth film is selectively formed in a micro / nano region of a substrate surface in a wide film thickness range from a thin film to a thick film on a substrate such as a compound containing a Si—O—Si bond. By doing so, we can establish new micro / nano device fabrication methods based on compounds containing Si-O-Si bonds, etc., and use them as basic technologies for device fabrication in electronics, optoelectronics, photonics or bio / medical fields It becomes an indispensable technology for the production of multifunctional micro / nano devices. The present invention is not limited to the fields of electrical and electronic engineering, but can be used greatly in the field of device fabrication that will be developed using micro / nanomachining technology.

本発明に係るデバイス作製法の実施の形態を示す構成図である。It is a block diagram which shows embodiment of the device manufacturing method which concerns on this invention. 本発明で利用する膜形成法による膜形成手順を示す説明図である。It is explanatory drawing which shows the film formation procedure by the film formation method utilized by this invention. 本発明に係るデバイス作製法の実施の形態における膜形成及びその後のマイクロトンネル形成手順を示す説明図である。It is explanatory drawing which shows the film formation in embodiment of the device manufacturing method concerning this invention, and the subsequent micro tunnel formation procedure. 本発明の実施例において、シリコーンゴム及びSiウエハを基体として用い、成膜時間を変化させた場合のDLC膜の表面粗さの原子間力顕微鏡像である。In the Example of this invention, it is an atomic force microscope image of the surface roughness of a DLC film when using silicone rubber and Si wafer as a base | substrate and changing film-forming time. 本発明の実施例において、マスクの開口サイズとDLC膜の表面粗さとの関係を示すグラフである。In the Example of this invention, it is a graph which shows the relationship between the opening size of a mask, and the surface roughness of a DLC film. 本発明の実施例において、基体−ターゲット間距離と膜厚との関係を示すグラフである。In the Example of this invention, it is a graph which shows the relationship between a base-target distance and a film thickness. 本発明の実施例において、シリコーンゴム基体上に、平滑なDLC膜を、位置選択的に、かつ厚膜として形成した試料表面の光学顕微鏡写真図である。In the Example of this invention, it is an optical microscope photograph figure of the sample surface which formed the smooth DLC film on the silicone rubber base | substrate as a position selective and thick film. 本発明の実施例において、予め改質が施されたシリコーンゴム基体上に、PLD法によりDLC膜を形成し、その後改質部分のみを化学エッチングした試料の光学顕微鏡写真図である。In the Example of this invention, it is the optical microscope photograph figure of the sample which formed the DLC film | membrane by the PLD method on the silicone rubber base | substrate by which modification | denaturation was performed previously, and then chemically etched only the modification part.

以下、本発明を実施するための最良の形態として、デバイス作製法の実施の形態を図面に従って説明する。   Hereinafter, as the best mode for carrying out the present invention, an embodiment of a device manufacturing method will be described with reference to the drawings.

図1及び図2は本発明で利用する基体への膜形成法、及び本発明に係るデバイス作製法の実施の形態を示す。図1は実施の形態で用いる実験装置の概略構成であり、チャンバー1内には、マスク3を配置した基体2(例えば基板)が固定支持されており、チャンバー1内部は真空ポンプ(ロータリーポンプ、ターボ分子ポンプ)で真空排気可能となっている。   1 and 2 show an embodiment of a film forming method on a substrate used in the present invention and a device manufacturing method according to the present invention. FIG. 1 shows a schematic configuration of an experimental apparatus used in the embodiment. A substrate 2 (for example, a substrate) on which a mask 3 is arranged is fixedly supported in a chamber 1, and a vacuum pump (rotary pump, It can be evacuated by a turbo molecular pump.

また、チャンバー1内部の基体2に対向する位置に凝固ペンタノール(C11OH)のターゲット5を形成するためにチャンバー1には液体窒素で冷却されるリザーバー10及び導入管11が設けられている。ターゲット5の形成は、チャンバー内を真空排気するとともに液体窒素によりリザーバーを冷却しておき、導入管11よりチャンバー内に導入したペンタノールを真空中でガス状にして、リザーバー10の底面に吹き付けることにより行うことができる。 In addition, in order to form a target 5 of solidified pentanol (C 5 H 11 OH) at a position facing the substrate 2 inside the chamber 1, the chamber 1 is provided with a reservoir 10 cooled by liquid nitrogen and an introduction pipe 11. ing. In forming the target 5, the chamber is evacuated and the reservoir is cooled with liquid nitrogen, and the pentanol introduced into the chamber from the introduction tube 11 is made gaseous in vacuum and sprayed to the bottom surface of the reservoir 10. Can be performed.

レーザーアブレーション膜形成(pulsed laser deposition;PLD)法による成膜を行うためのPLD用光源20のレーザー光は集光用光学系21、入射窓22を通してターゲット5の表面に、集光、照射されるようになっている。   Laser light from a PLD light source 20 for film formation by a pulsed laser deposition (PLD) method is condensed and irradiated onto the surface of the target 5 through a condensing optical system 21 and an incident window 22. It is like that.

前記基体2のターゲット5に対向する側には、図2(A)のように、多数の小孔3aが開口したマスク3を密着乃至ごく近接させて配置している。マスク3としては例えば金属製のメッシュマスクを用いることができる。前記小孔3aの形状は丸、三角、四角、その他の多角形等のいずれでもよい。   On the side of the substrate 2 facing the target 5, as shown in FIG. 2A, a mask 3 having a large number of small holes 3a is disposed in close contact or very close to each other. As the mask 3, for example, a metal mesh mask can be used. The shape of the small hole 3a may be any of a circle, a triangle, a square, and other polygons.

上記装置を用い、まずロータリーポンプでチャンバー1内を4Pa以下まで真空排気し、その後、液体窒素によりリザーバー10を冷却する。次に、ペンタノールを真空中でガス状にし、冷却したリザーバー底面に吹き付けることにより、厚さ数mm程度の凝固ペンタノールからなるターゲット5形成する。ターゲット5の形成後、ターボ分子ポンプによりチャンバー1内を3×10−3Pa以下まで真空排気する。 Using the above apparatus, the chamber 1 is first evacuated to 4 Pa or less with a rotary pump, and then the reservoir 10 is cooled with liquid nitrogen. Next, the target 5 made of solidified pentanol having a thickness of several millimeters is formed by making pentanol into a gaseous state in a vacuum and spraying it on the bottom of the cooled reservoir. After the formation of the target 5, the inside of the chamber 1 is evacuated to 3 × 10 −3 Pa or less by a turbo molecular pump.

この状態において、PLD用光源20からのレーザー光を集光用光学系21を介し、入射窓22を通してターゲット5の表面に、集光、照射する。このレーザー光の照射によって、レーザーアブレーションによりターゲット5に対向している基体2上にダイヤモンド状炭素(diamond-like carbon;DLC)膜6が形成される。このとき、基体2のターゲット5に対向する側に多数の小孔が開口した金属メッシュ等のマスク3を密着乃至ごく近接させて配置し、開口サイズを適正範囲の値にすることで、平滑膜の形成が従来困難とされてきたSi−O−Si結合を含む化合物で基体2が形成されている場合であっても、図2(B)のように、マスク3を外して基体2側に付着して残ったDLC膜6は、1mm未満の狭い領域(マイクロ/ナノ領域)ではあるが極めて平滑なDLC膜となることが本発明者により見いだされた。詳細な考察は後述の実施例において述べる。   In this state, the laser light from the PLD light source 20 is condensed and irradiated onto the surface of the target 5 through the incident window 22 via the condensing optical system 21. By this laser light irradiation, a diamond-like carbon (DLC) film 6 is formed on the substrate 2 facing the target 5 by laser ablation. At this time, a mask 3 such as a metal mesh having a large number of small holes opened on the side of the substrate 2 facing the target 5 is disposed in close contact or in close proximity, and the opening size is set to a value within an appropriate range. Even when the substrate 2 is formed of a compound containing a Si—O—Si bond, which has conventionally been difficult to form, the mask 3 is removed and the substrate 2 side is removed as shown in FIG. The inventor has found that the DLC film 6 remaining after adhering becomes a very smooth DLC film although it is a narrow region (micro / nano region) of less than 1 mm. Detailed consideration will be described in the examples below.

また、基体2上に配置したマスク3のパターンに応じて位置選択的にDLC膜6を形成することができる。つまり、マスク3に開口の無い部分を設けることで、開口の無い部分にはDLC膜が成膜されないようにすることが可能である。また、開口の形状に合致した膜パターンを得ることができる。   Further, the DLC film 6 can be selectively formed according to the pattern of the mask 3 disposed on the substrate 2. That is, it is possible to prevent the DLC film from being formed on the portion without the opening by providing the mask 3 with the portion without the opening. In addition, a film pattern that matches the shape of the opening can be obtained.

さらに、基体2をターゲット5に接近させた状態で膜形成を行うことにより、数10μmの厚膜を形成可能である。   Furthermore, a thick film of several tens of μm can be formed by performing film formation with the substrate 2 being close to the target 5.

図2(B)のように、マイクロ/ナノ領域の極めて平滑なDLC膜6を多数形成した基体2を湾曲させた場合であっても、平滑なDLC膜6にはクラックの発生は見られない。従って、クラックの発生しない膜を形成可能なデバイス作製法を実現できる。   As shown in FIG. 2B, even when the substrate 2 on which a large number of extremely smooth DLC films 6 in the micro / nano region are formed is curved, no cracks are observed in the smooth DLC film 6. . Therefore, it is possible to realize a device manufacturing method capable of forming a film free from cracks.

さらに、図3は本発明の実施の形態であって、マイクロトンネル構造を基体上に形成するデバイス作製法を示す。この場合、図3(A)のように、Si−O−Si結合を含む化合物等の基体2に予め改質が施された部分、つまり改質部分2aを形成しておき、その後、上述の図1及び図2で説明した基体への膜形成法により、図3(B)のように改質部分2aを有する基体2上に改質部分2aを覆うように膜6を形成し、その後、図3(C)のように改質部分2aのみを化学エッチングで除去することにより、基体2及び膜6からなるマイクロトンネル構造が得られる。   Further, FIG. 3 shows an embodiment of the present invention and shows a device manufacturing method for forming a microtunnel structure on a substrate. In this case, as shown in FIG. 3A, a portion that has been modified in advance, that is, a modified portion 2a, is formed on the substrate 2 such as a compound containing a Si—O—Si bond. The film 6 is formed on the substrate 2 having the modified portion 2a as shown in FIG. 3B so as to cover the modified portion 2a by the film forming method on the substrate described in FIGS. By removing only the modified portion 2a by chemical etching as shown in FIG. 3C, a microtunnel structure including the base 2 and the film 6 is obtained.

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1) Si−O−Si結合を含む化合物基体2上に、マスク3を配置することにより、従来困難とされてきたSi−O−Si結合を含む化合物基体上への平滑な膜の形成を位置選択的に行うことが可能となる。 (1) By arranging the mask 3 on the compound substrate 2 containing Si—O—Si bonds, it is possible to form a smooth film on the compound substrate containing Si—O—Si bonds, which has heretofore been difficult. It is possible to perform the position selective.

(2) マイクロ/ナノ領域への膜形成故、レーザーアブレーション膜形成法においては、基体2をターゲット5に接近させることができ、薄膜のみならず厚膜も形成可能となる。 (2) Since the film is formed in the micro / nano region, in the laser ablation film forming method, the substrate 2 can be brought close to the target 5 and a thick film as well as a thin film can be formed.

(3) 基体2の湾曲に対してクラックの発生しない膜を形成可能である。 (3) It is possible to form a film in which cracks do not occur with respect to the curvature of the substrate 2.

(4) 基体2及び膜6からなるマイクロトンネル構造を得ることができる。 (4) A microtunnel structure comprising the substrate 2 and the film 6 can be obtained.

以下、本発明に係るデバイス作製法を実施例で詳述する。   Hereinafter, the device manufacturing method according to the present invention will be described in detail in Examples.

図1の実験装置の概略図において、PLD用光源20として、波長790nmのモードロックTi:sapphireレーザー光を再生増幅した、パルス幅130フェムト秒(fs)のfsレーザー光を用いた。実験手順として、まずロータリーポンプでチャンバー1内を4Pa以下まで真空排気し、その後、液体窒素によりリザーバー10を冷却した。次に、ペンタノールを真空中でガス状にし、冷却したリザーバー底面に吹き付けることにより、厚さ約3mmの凝固ペンタノールをターゲット5として形成した。ターゲット形成後、ターボ分子ポンプによりチャンバー内を3×10−3Pa以下まで真空排気した。前記fsレーザー光は、焦点距離170mmの集光用光学系21としての石英レンズを介し、石英製の入射窓22を通してターゲット5の表面に集光させた。基体2には、厚さ2mmのシリコーンゴムを用いた。また、比較のためにSi基板(ウエハ)も用いている。シリコーンゴム基体2上には、予め金属製のメッシュマスク3を配置した。 In the schematic diagram of the experimental apparatus in FIG. 1, fs laser light having a pulse width of 130 femtoseconds (fs) obtained by regenerating and amplifying mode-locked Ti: sapphire laser light having a wavelength of 790 nm was used as the light source 20 for PLD. As an experimental procedure, first, the inside of the chamber 1 was evacuated to 4 Pa or less with a rotary pump, and then the reservoir 10 was cooled with liquid nitrogen. Next, solidified pentanol having a thickness of about 3 mm was formed as the target 5 by making pentanol into a gaseous state in a vacuum and spraying the bottom surface of the cooled reservoir. After forming the target, the inside of the chamber was evacuated to 3 × 10 −3 Pa or less by a turbo molecular pump. The fs laser light was condensed on the surface of the target 5 through a quartz incident window 22 through a quartz lens as a condensing optical system 21 having a focal length of 170 mm. For the substrate 2, silicone rubber having a thickness of 2 mm was used. For comparison, a Si substrate (wafer) is also used. A metal mesh mask 3 was previously placed on the silicone rubber substrate 2.

図4は、シリコーンゴム基体及びSiウエハ上にPLD法により形成したDLC膜の原子間力顕微鏡(atomic force microscope;AFM)像を示している。AFM観察したこれら試料は、マスクは使用せずに成膜された場合である。成膜条件は、レーザー光のパルスエネルギー0.8mJ、エネルギー密度10J/cm、パルス繰り返し周波数500Hz、照射時間0分、30分、60分をそれぞれ示し、基体−ターゲット間距離20mmであった。Siウエハ上では平滑なDLC膜が形成しているのに対し、シリコーンゴム基体上では成膜時間とともにテクスチャ構造が形成することがわかった。 FIG. 4 shows an atomic force microscope (AFM) image of the DLC film formed on the silicone rubber substrate and the Si wafer by the PLD method. These samples observed by AFM are when the film is formed without using a mask. The film formation conditions showed a laser beam pulse energy of 0.8 mJ, an energy density of 10 J / cm 2 , a pulse repetition frequency of 500 Hz, an irradiation time of 0 minutes, 30 minutes, and 60 minutes, respectively, and a substrate-target distance of 20 mm. It was found that a smooth DLC film was formed on the Si wafer, whereas a texture structure was formed with the film formation time on the silicone rubber substrate.

次に、シリコーンゴム基体上に金属製メッシュマスクを配置した場合を示す。図5は、マスクの開口サイズを変化させたときの、形成膜の表面粗さの測定結果である。マスクの開口サイズが小さくなっていくと、表面粗さは顕著に低減することが判明した。開口サイズ{メッシュの小孔の径(四角孔の場合には一辺の長さ、五角形以上では近似円の径と考えてよい)}は500μm以下で表面粗さを低減する効果が見られるが、さらに開口サイズを小さくして行くことで、低減効果が増す。例えば、開口サイズ10μmのとき、50nm以下の表面粗さの平滑な膜が形成できた。   Next, a case where a metal mesh mask is disposed on a silicone rubber substrate will be described. FIG. 5 shows measurement results of the surface roughness of the formed film when the opening size of the mask is changed. It has been found that the surface roughness is remarkably reduced as the mask opening size is reduced. Although the opening size {the diameter of the small holes of the mesh (the length of one side in the case of a square hole, may be considered as the diameter of an approximate circle in the case of a pentagon)} is an effect of reducing the surface roughness at 500 μm or less Further, the reduction effect is increased by reducing the opening size. For example, when the opening size was 10 μm, a smooth film with a surface roughness of 50 nm or less could be formed.

図6は、基体−ターゲット間距離を変化させたときの、形成膜の膜厚を測定した結果である。成膜条件は、レーザー光のパルスエネルギー0.38mJ、エネルギー密度5J/cm、パルス繰り返し周波数1kHzであった。また、シリコーンゴム基体上に配置したマスクの開口サイズは125μm一定とした。例えば、基体−ターゲット間距離5mmでは、30μmの膜厚を有するDLC膜が容易に得られることがわかった。このようにマイクロ領域への膜形成故、基体−ターゲット間距離を極近傍まで接近させることができ、これまで困難とされてきたDLC膜の厚膜化も可能となることが明らかとなった。 FIG. 6 shows the results of measuring the film thickness of the formed film when the distance between the substrate and the target is changed. The film forming conditions were a laser beam pulse energy of 0.38 mJ, an energy density of 5 J / cm 2 , and a pulse repetition frequency of 1 kHz. Further, the opening size of the mask arranged on the silicone rubber substrate was fixed to 125 μm. For example, it was found that a DLC film having a film thickness of 30 μm can be easily obtained at a substrate-target distance of 5 mm. As described above, since the film is formed in the micro region, the distance between the substrate and the target can be brought close to the very vicinity, and it has been clarified that the DLC film, which has been considered difficult so far, can be thickened.

図7は、これまでの実験結果を基に、シリコーンゴム基体上に平滑なDLC膜を、位置選択的に形成した例を示す。図7は光学顕微鏡によるものである。このときの成膜条件は、レーザー光のパルスエネルギー0.4mJ、エネルギー密度5J/cm、パルス繰り返し周波数1kHz、基体−ターゲット間距離5mmであった。マスクの開口サイズは、図7(A)の場合250μm径、図7(B)は30μm四方であった。また、レーザー光照射時間はそれぞれ30分、60分であった。これら試料は、基体を湾曲させても、膜にクラックが発生することはなかった。 FIG. 7 shows an example in which a smooth DLC film is selectively formed on a silicone rubber substrate on the basis of the experimental results so far. FIG. 7 shows an optical microscope. The film formation conditions at this time were a pulse energy of laser light of 0.4 mJ, an energy density of 5 J / cm 2 , a pulse repetition frequency of 1 kHz, and a substrate-target distance of 5 mm. The opening size of the mask was 250 μm in the case of FIG. 7A, and 30 μm square in FIG. 7B. The laser beam irradiation time was 30 minutes and 60 minutes, respectively. In these samples, even when the substrate was bent, no cracks were generated in the film.

図3で説明した実施の形態について、予め改質が施されたシリコーンゴムを基体として用い、その基体上に、PLD法によりDLC膜を形成し、その後改質部分のみを化学エッチングするデバイス作製法について実験を行った。具体的には、図8のように、波長157nmのFレーザー光を、シリコーンゴム基体表面に10μm線幅で線状に露光し、シリカガラス(SiO)改質層(厚さ5μm)を形成した。露光条件は、レーザー光のエネルギー密度10mJ/cm、繰り返し周波数10Hz、照射時間30分であった。その後、PLD法により線幅100μmのDLC膜を形成した。作製した試料を、1重量%のHF水溶液に浸漬し、シリカガラス改質層のみを化学エッチングした。その結果、シリコーンゴム基体上にDLC膜のマイクロトンネル構造が作製できた。 In the embodiment described with reference to FIG. 3, a device manufacturing method in which a modified silicone rubber is used as a substrate, a DLC film is formed on the substrate by the PLD method, and then only the modified portion is chemically etched. The experiment was conducted. Specifically, as shown in FIG. 8, F 2 laser light having a wavelength of 157 nm is linearly exposed on the surface of the silicone rubber substrate with a line width of 10 μm, and a silica glass (SiO 2 ) modified layer (thickness 5 μm) is formed. Formed. The exposure conditions were an energy density of laser light of 10 mJ / cm 2 , a repetition frequency of 10 Hz, and an irradiation time of 30 minutes. Thereafter, a DLC film having a line width of 100 μm was formed by the PLD method. The prepared sample was immersed in a 1% by weight HF aqueous solution, and only the silica glass modified layer was chemically etched. As a result, a DLC film microtunnel structure could be fabricated on the silicone rubber substrate.

上記実施例で述べたように、Si−O−Si結合を含む化合物基体上に、所定開口サイズのマスクを配置することにより、従来困難とされてきたSi−O−Si結合を含む化合物基体上への平滑な膜の形成を位置選択的に行うことが可能となる。また、マイクロ/ナノ領域への膜形成故、レーザーアブレーション膜形成法においては、前記基体をターゲットに接近させることができ、薄膜のみならず厚膜も形成可能となる。さらに、予め改質が施されたSi−O−Si結合を含む化合物基体上に、位置選択的に膜を形成し、その後改質部分のみを化学エッチングすることにより、Si−O−Si結合を含む化合物を基礎とした新規マイクロ/ナノデバイスの開発も可能となる。この結果は、エレクトロニクス、オプトエレクトロニクス、フォトニクスあるいはバイオ/メディカル分野でのデバイス作製に適用可能になるなど、その用途は電気、電子のみならずあらゆる分野で有用である。   As described in the above embodiments, by placing a mask having a predetermined opening size on a compound substrate containing Si—O—Si bonds, the compound substrate containing Si—O—Si bonds, which has been conventionally difficult, is disposed. It is possible to selectively form a smooth film on the substrate. In addition, since the film is formed in the micro / nano region, in the laser ablation film forming method, the substrate can be brought close to the target, and a thick film as well as a thin film can be formed. Further, a Si-O-Si bond is formed by selectively forming a film on a compound substrate containing a Si-O-Si bond that has been modified in advance, and then chemically etching only the modified portion. Development of new micro / nano devices based on the compounds containing them is also possible. This result can be applied to device fabrication in the fields of electronics, optoelectronics, photonics or bio / medical, and its use is useful not only in electricity and electronics but also in all fields.

以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited thereto and various modifications and changes can be made within the scope of the claims. I will.

1 チャンバー
2 基体
3 マスク
5 ターゲット
6 DLC膜
10 リザーバー
11 導入管
20 PLD用光源
21 集光用光学系
22 入射窓
DESCRIPTION OF SYMBOLS 1 Chamber 2 Base | substrate 3 Mask 5 Target 6 DLC film 10 Reservoir 11 Introducing pipe 20 Light source for PLD 21 Optical system for condensing 22 Incident window

Claims (6)

予め改質が施された改質部分を有する基体上に、マスクを密着配置して、前記改質部分を覆うように、気相中で膜を位置選択的に形成する工程と、
その後、前記改質部分のみを化学エッチングする工程とを備えることを特徴とするデバイス作製法。
A step of selectively forming a film in a gas phase so as to cover the modified portion by closely arranging a mask on a substrate having a modified portion that has been modified in advance;
And a step of chemically etching only the modified portion.
前記膜を位置選択的に形成する工程が、前記基体をターゲットに接近させ、レーザーアブレーションを用いて前記基体上に前記膜を形成するものである請求項1記載のデバイス作製法。   The device manufacturing method according to claim 1, wherein the step of selectively forming the film includes bringing the substrate close to a target and forming the film on the substrate using laser ablation. 前記マスクは多数の孔が形成されたメッシュ構造である請求項1又は2記載のデバイス作製法。   3. The device manufacturing method according to claim 1, wherein the mask has a mesh structure in which a large number of holes are formed. 前記孔の開口サイズは250μm以下である請求項3記載のデバイス作製法。   The device manufacturing method according to claim 3, wherein an opening size of the hole is 250 μm or less. 前記基体がSi−O−Si結合を含む化合物基体である請求項1,2,3又は4記載のデバイス作製法。   The device manufacturing method according to claim 1, wherein the substrate is a compound substrate containing a Si—O—Si bond. 前記膜を位置選択的に形成する工程では、前記基体の湾曲に対してクラックの発生しない膜を形成する請求項1,2,3,4又は5記載のデバイス作製法。   6. The device manufacturing method according to claim 1, wherein in the step of selectively forming the film, a film in which no crack is generated with respect to the curvature of the substrate is formed.
JP2011108952A 2011-05-16 2011-05-16 Device fabrication method Active JP5407047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108952A JP5407047B2 (en) 2011-05-16 2011-05-16 Device fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108952A JP5407047B2 (en) 2011-05-16 2011-05-16 Device fabrication method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006056411A Division JP4783900B2 (en) 2006-03-02 2006-03-02 Method of forming film on substrate and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2011256379A true JP2011256379A (en) 2011-12-22
JP5407047B2 JP5407047B2 (en) 2014-02-05

Family

ID=45472906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108952A Active JP5407047B2 (en) 2011-05-16 2011-05-16 Device fabrication method

Country Status (1)

Country Link
JP (1) JP5407047B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217803A (en) * 1990-01-24 1991-09-25 Ricoh Co Ltd Method and device for forming microoptical element
JP2000307141A (en) * 1999-02-16 2000-11-02 Tdk Corp Functional part and its manufacture
JP2003147525A (en) * 2001-11-07 2003-05-21 Rikogaku Shinkokai Protective film
JP2004123816A (en) * 2002-09-30 2004-04-22 Tech Res & Dev Inst Of Japan Def Agency SURFACE MODIFYING METHOD OF SOLID COMPOUND HAVING Si-O-Si BOND BY USING LASER BEAM
JP2004272049A (en) * 2003-03-11 2004-09-30 Tech Res & Dev Inst Of Japan Def Agency METHOD FOR FORMING SOLID COMPOUND FILM CONTAINING Si-O-Si BOND, MODIFICATION METHOD OF SOLID COMPOUND FILM INTO SILICON OXIDE, METHOD FOR FORMING PATTERN, AND LITHOGRAPHIC RESIST

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217803A (en) * 1990-01-24 1991-09-25 Ricoh Co Ltd Method and device for forming microoptical element
JP2000307141A (en) * 1999-02-16 2000-11-02 Tdk Corp Functional part and its manufacture
JP2003147525A (en) * 2001-11-07 2003-05-21 Rikogaku Shinkokai Protective film
JP2004123816A (en) * 2002-09-30 2004-04-22 Tech Res & Dev Inst Of Japan Def Agency SURFACE MODIFYING METHOD OF SOLID COMPOUND HAVING Si-O-Si BOND BY USING LASER BEAM
JP2004272049A (en) * 2003-03-11 2004-09-30 Tech Res & Dev Inst Of Japan Def Agency METHOD FOR FORMING SOLID COMPOUND FILM CONTAINING Si-O-Si BOND, MODIFICATION METHOD OF SOLID COMPOUND FILM INTO SILICON OXIDE, METHOD FOR FORMING PATTERN, AND LITHOGRAPHIC RESIST

Also Published As

Publication number Publication date
JP5407047B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5152751B2 (en) Patterning of solid condensate gas layers by energy-induced local removal and solid state chemical reactions occurring in such layers
US20120107562A1 (en) Methods for graphene-assisted fabrication of micro-and nanoscale structures and devices featuring the same
JP5019009B2 (en) IMPRINT MOLD CLEANING METHOD, CLEANING DEVICE, AND IMPRINT MOLD MANUFACTURING METHOD
JP5244396B2 (en) Lift-off patterning method using energy-induced local removal of solid condensate gas layer
US9588416B2 (en) Methods and apparatus for nanofabrication using a pliable membrane mask
US8084365B2 (en) Method of manufacturing a nano structure by etching, using a substrate containing silicon
JP5147307B2 (en) Mass spectrometry substrate and method for manufacturing mass spectrometry substrate
JP4783900B2 (en) Method of forming film on substrate and device manufacturing method
JP2004123816A (en) SURFACE MODIFYING METHOD OF SOLID COMPOUND HAVING Si-O-Si BOND BY USING LASER BEAM
JP5407047B2 (en) Device fabrication method
KR20130035617A (en) Process for forming metal film on graphene
KR101689160B1 (en) Fabrication method for carbon electrodes with multi-scale pores
JP2008213327A (en) Imprint method
JP3950967B2 (en) Method for modifying solid compound film containing Si-O-Si bond to silicon oxide using vacuum ultraviolet light and pattern forming method
JP2005105302A (en) Fine structured metal oxide thin film and its production method
JP2003133283A (en) Method for patterning circuit board
TW201103087A (en) Method for manufacturing silicon structure, apparatus for manufacturing the same, and program for manufacturing the same
Kharlamov et al. Features of the application of reactive ion etching of quartz in the production of pendulums of Q-Flex accelerometers
CN104627957B (en) A kind of manufacture craft of RESEARCH OF PYROCARBON micro-structural electrode and electrical property characterizing method thereof
Mitteramskogler et al. Preparation and Characterization of Solar Thermal Absorbers by Nanoimprint Lithography and Sputtering
Kang et al. Rational Design and Fabrication Method for Bioinspired Directional Droplet Sliding Surfaces
CN113421826B (en) Atomic-level precision lossless layer-by-layer etching method for two-dimensional layered material
JP2008244323A (en) Stencil mask
Cheung et al. Controlling optical properties and surface morphology of dry etched porous silicon
Mednikarov et al. Photolithographic structuring with evaporated inorganic photoresist

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350