JP2011252821A - Battery control system - Google Patents

Battery control system Download PDF

Info

Publication number
JP2011252821A
JP2011252821A JP2010127690A JP2010127690A JP2011252821A JP 2011252821 A JP2011252821 A JP 2011252821A JP 2010127690 A JP2010127690 A JP 2010127690A JP 2010127690 A JP2010127690 A JP 2010127690A JP 2011252821 A JP2011252821 A JP 2011252821A
Authority
JP
Japan
Prior art keywords
battery
charging
soc
voltage
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010127690A
Other languages
Japanese (ja)
Other versions
JP5365582B2 (en
Inventor
Takeshi Inoue
健士 井上
Michihito Sonehara
理仁 曽根原
Masanori Sakai
政則 酒井
Tetsuro Okoshi
哲郎 大越
Keizo Yamada
惠造 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2010127690A priority Critical patent/JP5365582B2/en
Publication of JP2011252821A publication Critical patent/JP2011252821A/en
Application granted granted Critical
Publication of JP5365582B2 publication Critical patent/JP5365582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To control charge/discharge of a battery other than a specific battery.SOLUTION: A battery control system for charging a battery by regenerating using a rotary electric machine when a vehicle is decelerated comprises: measuring means that measures voltage and current of a battery; voltage calculating means (step 20) that calculates an open voltage of the battery based on the voltage and current of the battery; resistance calculation means (step 21) that calculates a charged-state internal resistance of the battery based on the open voltage of the battery and on the voltage and current in a charged state of the battery; setting means (step 23) that sets a target charged-state internal resistance based on the available current and voltage from the rotary electric machine and an open voltage of the battery; and control means (step 24-29) that controls charging/discharging of the battery after a regeneration charging based on a comparison result between the charged-state internal resistance and the target charged-state internal resistance.

Description

本発明は電池制御システムに関する。   The present invention relates to a battery control system.

電池のSOC(State Of Charge;充電量)を推定し、推定値が所定値以上の場合はアイドルストップを許可するようにしたアイドルストップ車両の制御装置が知られている(例えば、特許文献1参照)。   A control device for an idle stop vehicle is known in which the SOC (State Of Charge) of a battery is estimated and the idle stop is permitted when the estimated value is equal to or greater than a predetermined value (see, for example, Patent Document 1). ).

特開2007−056745号公報JP 2007-056745 A

しかしながら、上述した従来の制御装置では、例えば特定の電池以外の電池が接続されるなどしてSOCの推定誤差が大きくなると、アイドルストップ判断を含む電池の充放電制御を正しくできないおそれがある。   However, in the above-described conventional control device, for example, when a battery other than a specific battery is connected and the SOC estimation error increases, there is a possibility that the battery charge / discharge control including the idle stop determination cannot be performed correctly.

(1) 請求項1の発明は、車両の減速時に回転電機により回生して電池を充電する電池制御システムにおいて、電池の電圧および電流を計測する計測手段と、電池の電圧および電流に基づいて電池の開放電圧を算出する電圧算出手段と、電池の開放電圧と充電時の電池の電圧および電流に基づいて電池の充電時内部抵抗を算出する抵抗算出手段と、回転電機の供給可能な電流と電圧および電池の開放電圧に基づいて目標充電時内部抵抗を設定する設定手段と、充電時内部抵抗と目標充電時内部抵抗との比較結果に基づいて、回生充電後の電池の充放電を制御する制御手段とを備える。
(2) 請求項2の発明は、請求項1に記載の電池制御システムにおいて、制御手段は、充電時内部抵抗が目標充電時内部抵抗より大きい場合には、回生充電後に電池の電力を補機に供給して放電させる。
(3) 請求項3の発明は、請求項2に記載の電池制御システムにおいて、電池の充放電量を積算する積算手段を備え、制御手段は、電池の充電時の充電量以上の放電を行ったら放電を終了する。
(4) 請求項4の発明は、請求項3に記載の電池制御システムにおいて、制御手段は、電池の放電量に対する充電時内部抵抗の変化度合いが所定値を越えた場合は、回転電機による電池の充電を行う。
(5) 請求項5の発明は、請求項1〜4のいずれか一項に記載の電池制御システムにおいて、制御手段は、充電時内部抵抗が目標充電時内部抵抗以下の場合には、回生充電後に回転電機により電池の充電を行う。
(6) 請求項6の発明は、請求項5に記載の電池制御システムにおいて、制御手段は、回転電機による電池の充電量が所定値を越えたら回転電機による充電を終了する。
(7) 請求項7の発明は、請求項1〜6のいずれか一項に記載の電池制御システムにおいて、電池のSOC(State Of Charge)を検出するSOC検出手段と、SOCの誤差を算出する誤差算出手段とを備え、制御手段は、SOCの誤差が所定値より低い場合は、目標充電時内部抵抗に応じた目標SOCを設定し、SOCと目標SOCとの比較結果に基づいて電池の充放電を制御し、SOCの誤差が所定値以上の場合は、充電時内部抵抗と目標充電時内部抵抗との比較結果に基づいて電池の充放電を制御する。
(8) 請求項8の発明は、請求項1〜7のいずれか一項に記載の電池制御システムにおいて、電池の温度を検出する検出手段を備え、制御手段は、電池の温度が所定値以下のときは回転電機により電池の充電を行う。
(1) The invention of claim 1 is a battery control system in which a battery is regenerated and recharged by a rotating electrical machine when the vehicle is decelerated. The battery is based on the voltage and current of the measuring means for measuring the voltage and current of the battery. Voltage calculating means for calculating the open circuit voltage of the battery, resistance calculating means for calculating the internal resistance during charging of the battery based on the open circuit voltage of the battery and the voltage and current of the battery during charging, and the current and voltage that can be supplied by the rotating electrical machine And setting means for setting the target internal resistance during charging based on the open circuit voltage of the battery, and control for controlling charging / discharging of the battery after regenerative charging based on a comparison result between the internal resistance during charging and the internal resistance during target charging Means.
(2) In the battery control system according to claim 1, in the battery control system according to claim 1, the control means supplies the battery power after regenerative charging when the internal resistance during charging is larger than the internal resistance during charging. To be discharged.
(3) A third aspect of the present invention is the battery control system according to the second aspect, further comprising integrating means for integrating the charge / discharge amount of the battery, wherein the control means discharges more than the charge amount when the battery is charged. Then end the discharge.
(4) According to a fourth aspect of the present invention, there is provided the battery control system according to the third aspect, wherein the control means is a battery operated by a rotating electrical machine when the degree of change in internal resistance during charging with respect to the amount of battery discharge exceeds a predetermined value. Charge the battery.
(5) The invention according to claim 5 is the battery control system according to any one of claims 1 to 4, wherein the control means performs regenerative charging when the internal resistance during charging is equal to or lower than the internal resistance during charging. The battery is charged later by a rotating electric machine.
(6) According to a sixth aspect of the present invention, in the battery control system according to the fifth aspect, when the amount of charge of the battery by the rotating electrical machine exceeds a predetermined value, the control means ends the charging by the rotating electrical machine.
(7) According to a seventh aspect of the present invention, in the battery control system according to any one of the first to sixth aspects, an SOC detection means for detecting a state of charge (SOC) of the battery and an error of the SOC are calculated. An error calculating means, and when the SOC error is lower than a predetermined value, the control means sets a target SOC corresponding to the target internal resistance during charging and charges the battery based on a comparison result between the SOC and the target SOC. When discharging is controlled and the SOC error is greater than or equal to a predetermined value, charging / discharging of the battery is controlled based on a comparison result between the internal resistance during charging and the internal resistance during target charging.
(8) The invention according to claim 8 is the battery control system according to any one of claims 1 to 7, further comprising detection means for detecting the temperature of the battery, wherein the control means has a temperature of the battery equal to or lower than a predetermined value. In this case, the battery is charged by the rotating electric machine.

本発明によれば、電池の充電時の内部抵抗に基づいて電池の充放電制御を行うので、特定の電池以外の電池が接続された場合でも電池の充放電制御を正しく行うことができる。   According to the present invention, since charging / discharging control of a battery is performed based on internal resistance at the time of charging of the battery, charging / discharging control of the battery can be correctly performed even when a battery other than a specific battery is connected.

一実施の形態の電池制御システムの構成を示す図The figure which shows the structure of the battery control system of one embodiment. 一実施の形態の電池制御プログラムを示すフローチャートThe flowchart which shows the battery control program of one embodiment 一定周期ごとに計測した電流と電圧の4組のデータをプロットした図A plot of four sets of current and voltage data measured at regular intervals 電池制御システムを2つのコントローラに分割して収納する構成を示す図The figure which shows the structure which divides | segments and stores a battery control system in two controllers. SOCによる電池制御と充電抵抗による電池制御とを切り替える電池制御プログラムのフローチャートFlow chart of battery control program for switching between battery control by SOC and battery control by charging resistance SOC誤差の計算ルーチンを示すフローチャートFlowchart showing SOC error calculation routine 電池の充電抵抗テーブルを示す図The figure which shows the charge resistance table of the battery 電池の充電抵抗テーブルから目標SOCを設定する方法を説明する図The figure explaining the method of setting target SOC from the charge resistance table of a battery

回転電機と二次電池(以下では単に電池と呼ぶ)を持つ車両が回生制動により減速して電池を充電し、停車して電池への回生が終了した後、電池への充電を継続するか、放電モードへの移行を許可するかを判断して回転電機のオン、オフ制御を行う一実施の形態を説明する。   A vehicle having a rotating electrical machine and a secondary battery (hereinafter simply referred to as a battery) is decelerated by regenerative braking to charge the battery, and after stopping and regenerating to the battery, charging the battery is continued, An embodiment will be described in which it is determined whether or not the transition to the discharge mode is permitted and the on / off control of the rotating electrical machine is performed.

なお、この一実施の形態では車両として自動車を例に挙げて説明するが、汽車、列車、電車などの鉄道車両、建設機械の中で自走する建設車両、産業機械の中で自走する産業車両などにも本発明を適用することができる。   In this embodiment, a vehicle is described as an example of a vehicle. However, railway vehicles such as trains, trains, and trains, construction vehicles that are self-propelled in construction machinery, and industries that are self-propelled in industrial machinery. The present invention can also be applied to vehicles and the like.

また、この一実施の形態では電池は鉛電池を例に挙げて説明するが、鉛電池と同様な特性を有する電池であれば鉛電池に限定されるものではない。さらに、この一実施の形態では回転電機として発電機を例に挙げて説明するが、発電機能の他に負荷駆動機能を有する電動機であってもよい。   In this embodiment, the battery is described by taking a lead battery as an example. However, the battery is not limited to the lead battery as long as it has the same characteristics as the lead battery. Furthermore, in this embodiment, a generator is described as an example of a rotating electrical machine, but an electric motor having a load driving function in addition to a power generation function may be used.

図1に一実施の形態の電池制御システムの構成を示す。一実施の形態の電池制御システムは、制御部100、電池101、電流計102、電圧計103、充電開始判定部104、開放電圧計算部105、充電抵抗時系列測定部106、電流積分部107、発電機供給可能電流記憶部108、目標充電抵抗設定部109、放電開始判定部110、放電終了判定部111、発電機112、補機113などを備えている。   FIG. 1 shows a configuration of a battery control system according to an embodiment. The battery control system according to one embodiment includes a control unit 100, a battery 101, an ammeter 102, a voltmeter 103, a charging start determination unit 104, an open-circuit voltage calculation unit 105, a charging resistance time series measurement unit 106, a current integration unit 107, A generator supplyable current storage unit 108, a target charging resistance setting unit 109, a discharge start determination unit 110, a discharge end determination unit 111, a generator 112, an auxiliary machine 113, and the like are provided.

制御部100は、車両コントローラのマイクロコンピューターで実行されるソフトウエア形態として実現される。車両コントローラ内のソフトウエアは、電池101に直結された状態検知装置(電池の温度、電流および電圧の測定装置)、車両のエンジンまたはモータコントローラ、もしくは発電機のコントローラのいずれか、または各種複数コントローラの組み合わせで実現される。このコントローラの組み合わせについては詳細を後述する。   The control part 100 is implement | achieved as a software form performed with the microcomputer of a vehicle controller. The software in the vehicle controller includes a state detection device (battery temperature, current and voltage measurement device) directly connected to the battery 101, a vehicle engine or motor controller, or a generator controller, or various controllers. Realized by a combination of Details of this controller combination will be described later.

電流計102は電池101への充放電電流を計測し、制御部100へ計測した電流値を送信する。電流計102にはシャント抵抗やホール素子などを用いることができる。また、電圧計103は電池101の陰極と陽極との間の電圧を測定し、デジタル値に変換して制御部100へ送信する。発電機112はオン、オフ機能と発電電圧調整機能を有し、電池101への充放電と車載補機113への電力供給を行う。この一実施の形態では、発電機112は回生時に回生能力を上げるために最大電圧を保持する。補機113は車両に搭載されるライトやワイパーなどの電池101の負荷である。   The ammeter 102 measures the charging / discharging current to the battery 101 and transmits the measured current value to the control unit 100. A shunt resistor, a Hall element, or the like can be used for the ammeter 102. The voltmeter 103 measures the voltage between the cathode and the anode of the battery 101, converts it to a digital value, and transmits it to the control unit 100. The generator 112 has an on / off function and a generated voltage adjustment function, and performs charging / discharging of the battery 101 and power supply to the in-vehicle auxiliary machine 113. In this embodiment, the generator 112 maintains a maximum voltage in order to increase the regenerative capability during regeneration. The auxiliary machine 113 is a load of the battery 101 such as a light or a wiper mounted on the vehicle.

なお、図1において、自動車の場合は発電機はエンジン(不図示)にベルトなどを介して機械的に連結されており、発電機は発電機能の他にエンジンを駆動して始動する負荷駆動機能(力行運転機能)を併せ持つ。一方、鉄道車両の場合には、一般に発電機は電動発電機(モータージェネレータ)であり、発電機能と負荷駆動機能を有する。また、建設車両および産業車両については、エンジンに機械的に連結された発電機である場合と、電動発電機である場合とがある。   In FIG. 1, in the case of an automobile, a generator is mechanically connected to an engine (not shown) via a belt or the like, and the generator drives a load drive function for starting the engine in addition to the power generation function. (Power running function) On the other hand, in the case of a railway vehicle, the generator is generally a motor generator (motor generator) and has a power generation function and a load drive function. In addition, the construction vehicle and the industrial vehicle may be a generator mechanically connected to an engine or a motor generator.

図2は一実施の形態の電池制御プログラムを示すフローチャートである。制御部100の充電開始判定部104によって、車両が回生制動を開始した、つまり電流計102で測定される電池101の電流の符号により放電電流から充電電流に変化したと判定されると、制御部100はこの電池制御プログラムの実行を開始する。   FIG. 2 is a flowchart showing a battery control program according to one embodiment. When it is determined by the charge start determination unit 104 of the control unit 100 that the vehicle has started regenerative braking, that is, the discharge current is changed to the charge current by the sign of the current of the battery 101 measured by the ammeter 102, the control unit 100 starts execution of the battery control program.

ステップ20において、制御部100の開放電圧計算部105により電池101の開放電圧、すなわち電流0のときの電池101の端子電圧を計算する。具体的には、電池101が放電状態から充電状態へ移行するときの電池101の電流と電圧の時系列測定値により求める。   In step 20, the open-circuit voltage calculation unit 105 of the control unit 100 calculates the open-circuit voltage of the battery 101, that is, the terminal voltage of the battery 101 when the current is zero. Specifically, it is obtained from time-series measured values of the current and voltage of the battery 101 when the battery 101 shifts from the discharged state to the charged state.

図3は例として一定周期ごと(例えば10msごと)に計測した電流と電圧の4組のデータをプロットした図であり、横軸が電流31(+側が充電、−側が放電)を表し、縦軸が電圧32を表す。データ33は充電前の放電時に計測した電流と電圧のデータ、データ34は充電開始直後に計測した電流と電圧のデータ、データ35はその10ms後の電流と電圧のデータ、データ36はさらに10ms後の電流と電圧のデータである。   FIG. 3 is a diagram in which four sets of data of current and voltage measured at regular intervals (for example, every 10 ms) are plotted as an example, the horizontal axis represents current 31 (+ side is charged, − side is discharged), and the vertical axis Represents the voltage 32. Data 33 is current and voltage data measured at the time of discharging before charging, data 34 is current and voltage data measured immediately after the start of charging, data 35 is current and voltage data 10 ms later, and data 36 is 10 ms later. Current and voltage data.

電流0のときのデータがないため、データ33からデータ36までのプロットした点を用いて最小二乗直線37を求め、その直線と電流0の縦軸との切片より電流0のときの電圧38を求める。なお、最小二乗法としては例えば文献「東京大学教養学部統計学教室編:統計学入門、東京大学出版会、2001年9月25日第20刷」に紹介された方法などを用いることができる。また、図3では電流と電圧の4組のデータを用いた例を示したが、電流と電圧の少なくとも2組以上のデータを用いて求めることができる。   Since there is no data when the current is 0, the least square line 37 is obtained using the plotted points from the data 33 to the data 36, and the voltage 38 when the current is 0 is obtained from the intercept of the straight line and the vertical axis of the current 0. Ask. In addition, as the least square method, for example, the method introduced in the document “University of Tokyo Faculty of Liberal Arts, Statistics: Introduction to Statistics, University of Tokyo Press, September 25, 2001, 20th edition” can be used. Although FIG. 3 shows an example using four sets of data of current and voltage, it can be obtained using data of at least two sets of current and voltage.

次に、ステップ21で制御部100の充電抵抗時系列測定部106により充電抵抗(電池101の充電時の内部抵抗)を求める。この一実施の形態では次式により充電抵抗を算出する。
端子電圧−開放電圧=充電抵抗×電流
∴充電抵抗=(端子電圧−開放電圧)/電流 ・・・(1)
(1)式において、開放電圧はステップ20で求めた値を、端子電圧は電池101の充電時に電圧計103で計測した値を、電流は電池101の充電時に電流計102で計測した値をそれぞれ用いる。
Next, in step 21, the charging resistance (internal resistance when the battery 101 is charged) is obtained by the charging resistance time series measuring unit 106 of the control unit 100. In this embodiment, the charging resistance is calculated by the following equation.
Terminal voltage-Open voltage = Charging resistance x Current ∴ Charging resistance = (Terminal voltage-Open voltage) / Current (1)
In equation (1), the open circuit voltage is the value obtained in step 20, the terminal voltage is the value measured by the voltmeter 103 when the battery 101 is charged, and the current is the value measured by the ammeter 102 when the battery 101 is charged. Use.

電池を充電する際に、充電が進むにつれて充電抵抗が増大し、その後、充電抵抗はある一定値に収束する特性があるため、この一実施の形態では充電抵抗の初期値を用いず、収束値もしくはそれに近い値を電池101の制御に用いる。   When charging the battery, the charging resistance increases as the charging proceeds, and then the charging resistance has a characteristic of converging to a certain value. Therefore, in this embodiment, the initial value of the charging resistance is not used and the convergence value is used. Alternatively, a value close to that is used for controlling the battery 101.

なお、端子電圧と電流はノイズの影響を受けるため、(1)式に対して、過去の充電抵抗時系列に重みづけ移動平均(ローパスフィルタ)処理を施してスムージングした値を用いてもよい。このローパスフィルタの方法としては、例えば文献「岩田 利王:実践ディジタル・フィルタ設計入門、CQ出版」に紹介された方法を用いることができる。   Since the terminal voltage and current are affected by noise, a value obtained by applying a weighted moving average (low-pass filter) process to the past charging resistance time series to the equation (1) may be used. As a method of this low-pass filter, for example, the method introduced in the document “Toshio Iwata: Introduction to Practical Digital Filter Design, CQ Publishing” can be used.

ステップ22では回生が終了したかどうかを判定する。具体的には、車速信号を用い、車速が0になったときに回生終了とする。回生が終了していない場合はステップ21へ戻り、終了した場合はステップ23へ進む。   In step 22, it is determined whether or not regeneration has ended. Specifically, the vehicle speed signal is used and the regeneration is terminated when the vehicle speed becomes zero. If regeneration has not been completed, the process returns to step 21; if completed, the process proceeds to step 23.

ステップ23では、制御部100の目標充電抵抗設定部109により次式を用いて目標充電抵抗を計算する。
発電機供給可能電流×目標充電抵抗=発電機電圧−開放電圧
∴目標充電抵抗=(発電機電圧−開放電圧)/発電機供給可能電流・・・(2)
In step 23, the target charging resistance is calculated by the target charging resistance setting unit 109 of the control unit 100 using the following equation.
Current that can be supplied to the generator x target charging resistance = generator voltage-open voltage ∴ Target charging resistance = (generator voltage-open voltage) / current that can be supplied to the generator (2)

ここで、実際には電池101から車両のライトなどの補機113へ電力が供給されており、この電流分を引いた次式により求めてもよい。
目標充電抵抗=(発電機電圧―開放電圧)/(発電機供給可能電流−補機電流) ・・・(3)
(3)式において、補機電流はライトなどの車両補機113へ流れる電流であり、後述する電池101へ充電も放電も行っていない状態で発電機112の電流の平均を求め、その値を使用してもよい。あるいは一定値を用いてもよい。また、発電機供給可能電流は図1の発電機供給可能電流記憶部108に予め記憶された値を用いる。さらに、発電機電圧は予め設定された値か、または発電機101がオンになっている間の電圧の平均値を用いてもよい。
Here, power is actually supplied from the battery 101 to the auxiliary machine 113 such as a vehicle light, and the current may be obtained by the following equation.
Target charging resistance = (generator voltage-open circuit voltage) / (generator supplyable current-auxiliary machine current) (3)
In the equation (3), the auxiliary current is a current that flows to the vehicle auxiliary machine 113 such as a light, and the average of the current of the generator 112 is obtained in a state where the battery 101 described later is not charged or discharged, and the value is May be used. Alternatively, a constant value may be used. Further, as the generator supplyable current, a value stored in advance in the generator supplyable current storage unit 108 of FIG. 1 is used. Further, the generator voltage may be a preset value or an average value of the voltage while the generator 101 is on.

ステップ24において、制御部100の放電開始判定部110により電池101への充電を継続するか、または放電モードへの移行を許可するかの放電判定を行う。自動車の場合には、この放電判定はアイドリングストップ判定になり、放電モードへの移行が許可された場合にはエンジンを停止して電池101から車載補機113への放電が開始される。   In step 24, the discharge start determination unit 110 of the control unit 100 determines whether to continue charging the battery 101 or to permit the transition to the discharge mode. In the case of an automobile, this discharge determination is an idling stop determination. When the transition to the discharge mode is permitted, the engine is stopped and discharge from the battery 101 to the in-vehicle auxiliary machine 113 is started.

放電判定は、ステップ23で計算した目標充電抵抗と、ステップ21で計算した充電抵抗の最終値とを比較し、最終充電抵抗が目標充電抵抗よりも小さいと判定された場合はステップ28へ進む。この場合は、電池101の充電抵抗が低く発電機112の負荷が大きいため、次回の回生時までに充電抵抗を上げる必要があり、ステップ28で発電機112をオンし充電を継続する。続くステップ29で、回生終了から現在までに蓄積された充電量(図1の制御部100の電流積分部107で算出)が予め決められたしきい値以上になったか否かを判定し、充電量がしきい値以上になったらステップ27へ進む。   In the discharge determination, the target charging resistance calculated in step 23 is compared with the final value of the charging resistance calculated in step 21. If it is determined that the final charging resistance is smaller than the target charging resistance, the process proceeds to step 28. In this case, since the charging resistance of the battery 101 is low and the load on the generator 112 is large, it is necessary to increase the charging resistance until the next regeneration. In step 28, the generator 112 is turned on and charging is continued. In the following step 29, it is determined whether or not the amount of charge accumulated from the end of regeneration to the present (calculated by the current integration unit 107 of the control unit 100 in FIG. 1) exceeds a predetermined threshold value. When the amount exceeds the threshold value, the process proceeds to step 27.

一方、ステップ24で最終充電抵抗が目標充電抵抗以上と判定された場合はステップ25へ進む。この場合には、電池101の充電抵抗が高く発電機112に余力があるため、次回の回生時までに充電抵抗を下げる必要があり、ステップ25で発電機112をオフして充電を終了するとともに、電池101から車載補機113への放電を開始する。続くステップ26で、回生終了から現在までに放電された放電量(制御部100の電流積分部107で算出)が、回生時に充電された充電量よりα(予め決められた定数)だけ大きくなったか否かを判定し、放電量が(充電量+α)以上になったらステップ27へ進む。   On the other hand, if it is determined in step 24 that the final charging resistance is greater than or equal to the target charging resistance, the process proceeds to step 25. In this case, since the charging resistance of the battery 101 is high and the generator 112 has a surplus capacity, it is necessary to lower the charging resistance until the next regeneration. In step 25, the generator 112 is turned off to complete the charging. Then, discharge from the battery 101 to the in-vehicle auxiliary machine 113 is started. In subsequent step 26, has the discharge amount (calculated by the current integration unit 107 of the control unit 100) discharged from the end of regeneration to the present increased by α (a predetermined constant) than the charge amount charged during regeneration? It is determined whether or not, and when the discharge amount becomes (charge amount + α) or more, the process proceeds to step 27.

ここで、αは、今回の回生時に充電された充電量の半分の値としてもよいし、例えば1Ahの固定値としてもよい。   Here, α may be a half value of the amount of charge charged during the current regeneration, or may be a fixed value of 1 Ah, for example.

ここで、充電抵抗を目標充電抵抗と比較して充電継続か放電許可かを判定すると、充電抵抗と目標充電抵抗とのわずかな差で充電と放電とが頻繁に切り換わることがある。そのような不具合を避けるため、判断「目標充電抵抗>充電抵抗」の代わりに「目標充電抵抗>充電抵抗+ε」とし、判断「目標充電抵抗<充電抵抗」の代わりに「目標充電抵抗<充電抵抗−ε」としてヒステリシスを持たせてもよい。ここで、εは予め決められた微小抵抗である。   Here, when the charging resistance is compared with the target charging resistance and it is determined whether charging is continued or discharged, charging and discharging may be frequently switched due to a slight difference between the charging resistance and the target charging resistance. In order to avoid such problems, “target charging resistance> charging resistance + ε” is used instead of “target charging resistance> charging resistance”, and “target charging resistance <charging resistance” is used instead of “target charging resistance <charging resistance”. Hysteresis may be given as “−ε”. Here, ε is a predetermined minute resistance.

ステップ27において、発電機112の電圧を電池101への充放電が起きない電圧に制御する。具体的には、電流計102で計測した電流に基づいて発電機電圧のフィードバック制御を行う。例えば次式により発電機電圧を制御してもよい。
V(t+1)=V(t)−δ×I(t) ・・・(4)
(4)式において、V(t)は時刻tにおける発電機電圧、I(t)は時刻tにおける電流(充電側を+とする)、δは予め決められた微小値である。なお、ステップ27では、発電機電圧をステップ20で計算した開放電圧に制御してもよい。
In step 27, the voltage of the generator 112 is controlled to a voltage at which charging / discharging of the battery 101 does not occur. Specifically, feedback control of the generator voltage is performed based on the current measured by the ammeter 102. For example, the generator voltage may be controlled by the following equation.
V (t + 1) = V (t) −δ × I (t) (4)
In equation (4), V (t) is the generator voltage at time t, I (t) is the current at time t (charge side is +), and δ is a predetermined minute value. In step 27, the generator voltage may be controlled to the open circuit voltage calculated in step 20.

電池と発電機を有する車両に本発明の電池制御システムを適用する場合には、車両に搭載された機器および装置をそのまま流用して本発明の電池制御システムを構成することが望ましい場合がある。そのような場合には、本発明の電池制御システムにおけるコントローラとセンサの組み合わせが多様になる。そこで、本発明の電池制御システムにおけるコントローラとセンサの組み合わせについて説明する。   When the battery control system of the present invention is applied to a vehicle having a battery and a generator, it may be desirable to configure the battery control system of the present invention by diverting equipment and devices mounted on the vehicle as they are. In such a case, the combination of the controller and the sensor in the battery control system of the present invention varies. Therefore, a combination of a controller and a sensor in the battery control system of the present invention will be described.

まず第一の構成として、電流センサ102と制御部100とを一つのコントローラに収納する構成がある。第二の構成として、電流センサ102と制御部100とを分離し、制御部100を一つのコントローラに収納する構成がある。   As a first configuration, there is a configuration in which the current sensor 102 and the control unit 100 are housed in one controller. As a second configuration, there is a configuration in which the current sensor 102 and the control unit 100 are separated and the control unit 100 is housed in one controller.

第三の構成として、電流センサ102、電圧計103、電流積分部107、充電抵抗時系列測定部106、開放電圧計算部105および充電開始判定部104を一つのコントローラ(電池状態検知装置)に収納するとともに、発電供給可能電流記憶部108、目標充電抵抗設定部109、放電開始判定部110および放電終了判定部111を別のコントローラ(発電機制御用)に収納する構成がある。   As a third configuration, the current sensor 102, the voltmeter 103, the current integration unit 107, the charging resistance time series measurement unit 106, the open-circuit voltage calculation unit 105, and the charge start determination unit 104 are housed in one controller (battery state detection device). In addition, there is a configuration in which the power generation supplyable current storage unit 108, the target charging resistance setting unit 109, the discharge start determination unit 110, and the discharge end determination unit 111 are housed in another controller (for generator control).

さらに第四の構成として、電圧計103、電流積分部107、充電抵抗時系列測定部106、開放電圧計算部105および充電開始判定部104を一つのコントローラ(電池状態検知装置)に収納するとともに、発電供給可能電流記憶部108、目標充電抵抗設定部109、放電開始判定部110および放電終了判定部111を別のコントローラ(発電機制御用)に収納し、電流センサ102を電池101に取り付ける構成が考えられる。   Further, as a fourth configuration, the voltmeter 103, the current integration unit 107, the charging resistance time series measurement unit 106, the open-circuit voltage calculation unit 105, and the charge start determination unit 104 are housed in one controller (battery state detection device), A configuration may be considered in which the power generation supplyable current storage unit 108, the target charging resistance setting unit 109, the discharge start determination unit 110, and the discharge end determination unit 111 are housed in another controller (for generator control) and the current sensor 102 is attached to the battery 101. It is done.

図4は、電池制御システムを2つのコントローラに分割して収納する構成の一例を示す。この構成では、電流計102を電池状態検知装置41に収納し、電池状態検知装置41を電池101に取り付ける。電池制御システムを2つのコントローラに分けて収納する構成の場合には、コントローラどうしの通信が必要になる。電池状態検知装置41は電池101の直接的な制御は行わず、開放電圧、充電抵抗および電流積分値を計算し、通信部42および車両内LAN(Local Area Network)45を介して発電機制御コントローラ43へ計算結果を送信する。また、電池状態検知装置41は発電機オン信号を受信して電流積分値をリセットする。   FIG. 4 shows an example of a configuration in which the battery control system is divided and stored in two controllers. In this configuration, the ammeter 102 is housed in the battery state detection device 41, and the battery state detection device 41 is attached to the battery 101. In the case of a configuration in which the battery control system is stored in two controllers, communication between the controllers is required. The battery state detection device 41 does not directly control the battery 101, calculates the open circuit voltage, the charging resistance, and the current integral value, and generates the generator controller via the communication unit 42 and the in-vehicle LAN (Local Area Network) 45. The calculation result is transmitted to 43. Further, the battery state detection device 41 receives the generator on signal and resets the current integral value.

一方、発電機制御コントローラ43は発電に必要な制御を実行する。具体的には、電池状態検知装置41から受信した開放電圧、充電抵抗および電流積分値と、車両コントローラ(不図示)から通信部44および車両内LAN45を介して受信した回生終了信号(車速0信号)に基づいて、発電機112のオン、オフおよび電池101の充放電電流が0となる電圧調整を行う。発電機112に対する指令は、通信部44と車両内LAN45を介して発電機112へ送信する。   On the other hand, the generator controller 43 executes control necessary for power generation. Specifically, the open circuit voltage, the charging resistance and the current integration value received from the battery state detection device 41, and the regeneration end signal (vehicle speed 0 signal) received from the vehicle controller (not shown) via the communication unit 44 and the in-vehicle LAN 45. ), Voltage adjustment is performed so that the generator 112 is turned on / off and the charge / discharge current of the battery 101 becomes zero. A command for the generator 112 is transmitted to the generator 112 via the communication unit 44 and the in-vehicle LAN 45.

なお、図4に示す構成では電池状態検知装置41に電流計102を収納する例を示すが、電流計102は電池状態検知装置41と別体に構成してもよい。その場合には電池状態検知装置41を電池101に取り付ける必要はない。   4 shows an example in which the ammeter 102 is housed in the battery state detection device 41, the ammeter 102 may be configured separately from the battery state detection device 41. In that case, it is not necessary to attach the battery state detection device 41 to the battery 101.

また、本発明の電池制御システムを汽車、列車、電車などの鉄道車両に適用し、鉄道車両の駅回生システムを実現する場合には、図4に示すコントローラ構成において、電池101と電池状態検知装置41とを駅に設置し、発電機制御コントローラ43を電車に設置することになる。この場合には車載補機113が系統になる。   When the battery control system of the present invention is applied to a railway vehicle such as a train, a train, or a train to realize a railway vehicle station regeneration system, the battery 101 and the battery state detection device in the controller configuration shown in FIG. 41 is installed at the station, and the generator controller 43 is installed on the train. In this case, the in-vehicle auxiliary machine 113 becomes a system.

《他の実施の形態》
上述したように、一実施の形態の電池制御システムでは、回生終了後に電池への充電を継続するか、または放電モードへの移行を許可するかの放電判定を行う。自動車の場合には、この放電判定はアイドリングストップ判定になり、放電モードへの移行が許可された場合にはエンジンを停止して電池から車載補機への放電が開始される。従来は、電池の開放電圧に対するSOCのテーブルを記憶し、開放電圧を求めてSOCテーブルから対応するSOCを読み出し、このSOCに基づいて放電判定を行って電池の充放電を制御していた。ここで、開放電圧に対するSOCの特性は電池の種類、型式、仕様などにより異なり、個々の電池はそれぞれ固有の特性を有している。したがって、車両に搭載された電池に対して正しいSOCテーブルを用いて電池の充放電制御を行えば正確な制御が可能になる。
<< Other Embodiments >>
As described above, in the battery control system according to the embodiment, the discharge determination is performed as to whether to continue charging the battery after the end of regeneration or to allow the transition to the discharge mode. In the case of an automobile, this discharge determination is an idling stop determination. When the transition to the discharge mode is permitted, the engine is stopped and the discharge from the battery to the in-vehicle auxiliary device is started. Conventionally, the SOC table for the open circuit voltage of the battery is stored, the open circuit voltage is obtained, the corresponding SOC is read from the SOC table, and discharge determination is performed based on this SOC to control the charge / discharge of the battery. Here, the SOC characteristics with respect to the open circuit voltage vary depending on the type, model, and specification of the battery, and each battery has its own characteristics. Therefore, accurate control becomes possible by performing charge / discharge control of the battery using the correct SOC table for the battery mounted on the vehicle.

ところが、種類、型式、仕様などが異なる、特定の電池以外の電池が用いられると、電池と特性テーブルとが対応しなくなり、開放電圧に応じてSOCテーブルから読み出したSOCに誤差が含まれることになる。そこで、電池のSOCの精度を検出する装置を付加し、SOCの検出精度が高い場合には従来のSOCによる電池の充放電制御を行い、SOCの検出精度が低い場合には上述した一実施の形態の充電抵抗による電池の充放電制御を行う実施の形態を説明する。   However, when a battery other than a specific battery having a different type, model, or specification is used, the battery and the characteristic table do not correspond to each other, and an error is included in the SOC read from the SOC table according to the open circuit voltage. Become. Therefore, a device for detecting the SOC accuracy of the battery is added. When the SOC detection accuracy is high, conventional battery charge / discharge control is performed. When the SOC detection accuracy is low, the above-described implementation is performed. Embodiment which performs charge / discharge control of the battery by the charge resistance of form is described.

SOCの計算は、車両のエンジンを起動した直後に電池の開放電圧を計測し、その後の電流と電圧の変化に基づいて放電抵抗を計算する。そして、開放電圧と放電抵抗に基づいてSOH(State of Health;電池の劣化度)と初期のSOCを推定する。その後は電池の充放電電流の積分によりSOCの値を更新する。ここでは、電池固有のSOCテーブルを参照することによってSOC初期値を求める(例えば特開2008−082990号公報参照)。   The SOC is calculated by measuring the open circuit voltage of the battery immediately after starting the engine of the vehicle and calculating the discharge resistance based on the subsequent change in current and voltage. And based on an open circuit voltage and discharge resistance, SOH (State of Health; deterioration degree of a battery) and initial stage SOC are estimated. Thereafter, the SOC value is updated by integrating the charge / discharge current of the battery. Here, the SOC initial value is obtained by referring to the battery-specific SOC table (see, for example, Japanese Patent Application Laid-Open No. 2008-082990).

SOCの精度が保てなくなる原因には、SOCテーブルに対応する電池とは種類、型式、仕様などが異なる、特定の電池以外の電池が接続された場合の他に、エンジン始動後、長時間が経過して電流積分の誤差が累積した場合がある。このため、保持するSOCテーブルに対応しない電池が接続された場合、または車両のエンジンが起動してから長時間が経過した場合には、SOCによる電池制御から上述した一実施の形態の充電抵抗による電池制御に切り替えるものとする。   The cause of the inability to maintain the accuracy of the SOC is that the battery corresponding to the SOC table is different in type, model, specification, etc. In addition to the case where a battery other than a specific battery is connected, there is a long time after starting the engine. Over time, current integration errors may accumulate. For this reason, when a battery that does not correspond to the SOC table to be held is connected, or when a long time has elapsed since the start of the vehicle engine, the charging resistance of the above-described embodiment is controlled from the battery control by the SOC. Switch to battery control.

図5は、SOCによる電池制御と充電抵抗による電池制御とを切り替える電池制御プログラムのフローチャートである。車両のエンジンが起動されると制御装置100は図5の電池制御プログラムの実行を開始し、車両が停止してコントローラの電源がオフされるまで継続される。   FIG. 5 is a flowchart of a battery control program for switching between battery control by SOC and battery control by charging resistance. When the engine of the vehicle is started, the control device 100 starts executing the battery control program of FIG. 5 and continues until the vehicle stops and the controller is turned off.

ステップ51においてSOCの誤差計算を行う。この計算方法については詳細を後述する。続くステップ52で誤差の判定を行い、SOC誤差が判定基準値より小さい場合はステップ53へ進み、SOC誤差が判定基準値以上の場合はステップ55へ進む。ここで、判定基準値には予め決められた値を用いる。SOC誤差が判定基準値より小さい場合には、ステップ53で上述した従来のSOCによる電池制御を実行する。一方、SOC誤差が判定基準値以上の場合は、ステップ55で上述した一実施の形態の充電抵抗による電池制御を実行する。   In step 51, SOC error calculation is performed. Details of this calculation method will be described later. In step 52, the error is determined. If the SOC error is smaller than the determination reference value, the process proceeds to step 53. If the SOC error is greater than the determination reference value, the process proceeds to step 55. Here, a predetermined value is used as the determination reference value. If the SOC error is smaller than the determination reference value, the battery control based on the conventional SOC described above is executed in step 53. On the other hand, if the SOC error is greater than or equal to the determination reference value, in step 55, the battery control using the charging resistance according to the embodiment described above is executed.

なお、SOC誤差が判定基準値より小さいと判定されてSOCによる電池制御を行う場合でも、上述したようにエンジン起動後、時間の経過とともにSOC誤差が大きくなるため、ステップ54で起動時間が予め設定した時間Tを超えたか否かを判定し、起動時間が設定時間Tを越えたら一実施の形態の充電抵抗による電池制御に切り替えるものとする。設定時間Tには、電流計誤差(ホワイトノイズ分)に起因した充放電電流の積分によるSOC誤差が判定基準値を超える限界の時間を設定する。   Even when it is determined that the SOC error is smaller than the determination reference value and the battery is controlled by the SOC, the SOC error increases as time passes after the engine is started as described above. It is determined whether or not the measured time T has been exceeded, and when the startup time exceeds the set time T, the battery control using the charging resistor according to the embodiment is switched. The set time T is set to a limit time when the SOC error due to the integration of the charge / discharge current due to the ammeter error (for white noise) exceeds the determination reference value.

次に、図5のステップ51におけるSOC誤差の計算方法を説明する。図6はSOC誤差の計算ルーチンを示すフローチャートである。ステップ61においてSOC初期値の計算を行う。例えば、電池の開放電圧を検出し、開放電圧に対するSOCの特性テーブルから開放電圧検出値に対応するSOCを読み出す方法で求める(例えば、特開2008−82990号公報参照)。   Next, the SOC error calculation method in step 51 of FIG. 5 will be described. FIG. 6 is a flowchart showing an SOC error calculation routine. In step 61, the SOC initial value is calculated. For example, the open circuit voltage of the battery is detected, and the SOC corresponding to the open circuit voltage detection value is read from the SOC characteristic table for the open circuit voltage (see, for example, Japanese Patent Application Laid-Open No. 2008-82990).

次にステップ62にて、SOC初期値をしきい値と比較し、SOC初期値がしきい値より大きい場合はステップ63へ進み、SOC初期値がしきい値以下の場合はステップ64へ進む。しきい値には次式で求めた値を設定する。
しきい値=100−SOC初期誤差−ε ・・・(5)
(5)式において、SOC初期誤差は電流計102、電圧計103のアナログデジタル変換誤差やテーブルによる推定誤差(予め設定された値)などにより決められた値であり、εは車両が駐車中に自己放電して電圧低下した分のSOC(予め調査して決められた値)である。なお、しきい値に所定値、例えば95%を設定してもよい。
Next, in step 62, the SOC initial value is compared with a threshold value. If the SOC initial value is larger than the threshold value, the process proceeds to step 63. If the SOC initial value is less than the threshold value, the process proceeds to step 64. The value obtained by the following formula is set as the threshold value.
Threshold = 100−SOC initial error−ε (5)
In equation (5), the SOC initial error is a value determined by analog-digital conversion errors of the ammeter 102 and the voltmeter 103, an estimation error (preset value) by a table, etc., and ε is when the vehicle is parked. This is the SOC (a value determined by investigating in advance) corresponding to the voltage drop due to self-discharge. A predetermined value such as 95% may be set as the threshold value.

SOC初期値がしきい値以下の場合は、ステップ64で発電機112をオンにして満充電になるまでオン状態を保持する。電池の場合、満充電になると充電電流が0になるため、|充電電流|<電流計誤差になったら満充電になったと判定して発電機112をオフにする。なお、電流計誤差は電流計仕様により予め与えられた値とする。   If the SOC initial value is less than or equal to the threshold value, the generator 112 is turned on in step 64 and the on state is maintained until the battery is fully charged. In the case of a battery, the charging current becomes 0 when the battery is fully charged. If | charging current | <ammeter error, it is determined that the battery is fully charged and the generator 112 is turned off. The ammeter error is a value given in advance according to ammeter specifications.

一方、SOC初期値がしきい値より大きい場合は、ステップ63で発電機112をオフにしてSOCがある一定値、例えば90%になるまで補機113に放電する。放電終了後のステップ64で、上述したように発電機112をオンにして満充電になるまでオン状態を保持する。ステップ65においてSOC誤差を次式により求める。
SOC誤差=100−SOC ・・・(6)
(6)式において、右辺のSOCはSOC初期値を電流積分により更新した値である。
On the other hand, if the SOC initial value is larger than the threshold value, the generator 112 is turned off in step 63 and the auxiliary machine 113 is discharged until the SOC reaches a certain value, for example, 90%. In step 64 after the end of discharging, the generator 112 is turned on as described above, and the on state is maintained until the battery is fully charged. In step 65, the SOC error is obtained by the following equation.
SOC error = 100−SOC (6)
In the equation (6), the SOC on the right side is a value obtained by updating the SOC initial value by current integration.

図6に示すフローチャートでは計算によりSOC誤差を求める例を示したが、特定電池種(鉛状態検知装置のSOC計算で想定している電池種)に凹凸や反射板を取り付け、鉛状態検知装置にその凹凸または反射板を認識する装置を付加して異種電池が付けられたかどうかを判定し、異種電池が接続されたと判定された場合にはSOC誤差を大きな値、例えば(5)式によるしきい値以上の値を設定し、特定電池が接続された場合にはSOC誤差を0としてもよい。   In the flowchart shown in FIG. 6, an example in which the SOC error is obtained by calculation is shown. However, an unevenness or a reflector is attached to a specific battery type (battery type assumed in the SOC calculation of the lead state detection device), and the lead state detection device A device for recognizing the unevenness or the reflector is added to determine whether or not a different type of battery is attached. If it is determined that a different type of battery is connected, the SOC error is set to a large value, for example, a threshold according to equation (5). When a value equal to or greater than the value is set and a specific battery is connected, the SOC error may be set to zero.

次に、図5のステップ53におけるSOC制御を実行するには目標SOCを設定する必要がある。回生能力を上げるために目標SOCを目標充電抵抗に応じた値としてもよく、この実施の形態では目標充電抵抗に応じた目標SOCの設定方法を説明する。SOCによる電池の充放電制御を行う場合は、電池の種類、型式、仕様などが特定され、SOC誤差が小さい場合である。この場合、図7に示すような電池の充電抵抗テーブルを予め保持するものとする。   Next, in order to execute the SOC control in step 53 of FIG. 5, it is necessary to set the target SOC. In order to increase the regenerative capability, the target SOC may be a value corresponding to the target charging resistance. In this embodiment, a method of setting the target SOC corresponding to the target charging resistance will be described. When performing charge / discharge control of a battery by SOC, the type, model, specification, etc. of the battery are specified, and the SOC error is small. In this case, a battery charging resistance table as shown in FIG. 7 is held in advance.

図7において、充電抵抗テーブルは横方向が温度71、縦方向がSOC72のマトリクスとして構成され、さらにSOHごとに充電抵抗テーブルのマトリクスが用意されている。なお、充電抵抗の単位はmΩである。ここで、目標充電抵抗は別途、図1に示す目標充電抵抗設定部109により計算された値を用いる。また、SOHは電池の内部抵抗と相関があり、予め測定により求めた内部抵抗に対するSOHの特性テーブルから、内部抵抗検出値に対応するSOHを読み出す(例えば、特開2008−082990号公報参照)。さらに、温度は電池に取り付けた温度計により計測する。図7に示す電池の充電抵抗テーブルから、目標充電抵抗(=充電抵抗)、SOHおよび温度に対応するSOCを読み出す。   In FIG. 7, the charging resistance table is configured as a matrix of temperature 71 in the horizontal direction and SOC 72 in the vertical direction, and a matrix of charging resistance tables is prepared for each SOH. The unit of charging resistance is mΩ. Here, as the target charging resistance, a value separately calculated by the target charging resistance setting unit 109 shown in FIG. 1 is used. Also, SOH has a correlation with the internal resistance of the battery, and the SOH corresponding to the detected internal resistance value is read from the SOH characteristic table for the internal resistance obtained by measurement in advance (see, for example, Japanese Patent Application Laid-Open No. 2008-082990). Further, the temperature is measured by a thermometer attached to the battery. The SOC corresponding to the target charging resistance (= charging resistance), SOH, and temperature is read from the battery charging resistance table shown in FIG.

SOCの上記検索方法を図7に示すテーブルを使って具体的に説明する。電池の温度が25℃、SOHが84%、目標充電抵抗が18mΩである場合には、まずSOC90%とSOC80%のテーブルを抽出する。次に、この2つのテーブルの重みづけ平均値を求める。重みづけ平均値としては、SOH80%のテーブルを6割、SOH90%の重みづけを4割とする。次に、テーブルより温度20℃と30℃の列を抽出し、さらに重みづけ平均を求める。重みづけは、25℃より1:1の割合とする。この重みづけした列の例を図8に示す。図8に示す列から、18mΩに最も近いSOCを探す。この場合にはSOC90%時の抵抗18.5mΩ(符号81)となる。この値は目標充電抵抗18mΩより大きいため、この値より小さなSOC85%時の抵抗17mΩ(符号82)の値も参照し、18mΩとなる目標SOCを一次方程式の解として求める。
18−17=(18.5−17)×(x−85)/(90−85)・・・(7)
(7)式において、xは目標SOCである。
The above SOC search method will be specifically described with reference to the table shown in FIG. When the battery temperature is 25 ° C., SOH is 84%, and the target charging resistance is 18 mΩ, a table of SOC 90% and SOC 80% is first extracted. Next, the weighted average value of these two tables is obtained. As the weighted average value, the SOH 80% table is 60%, and the SOH 90% weight is 40%. Next, columns of temperatures 20 ° C. and 30 ° C. are extracted from the table, and a weighted average is obtained. The weighting is a ratio of 1: 1 from 25 ° C. An example of this weighted column is shown in FIG. The SOC closest to 18 mΩ is searched from the column shown in FIG. In this case, the resistance becomes 18.5 mΩ (reference numeral 81) when the SOC is 90%. Since this value is larger than the target charging resistance of 18 mΩ, the value of the resistance of 17 mΩ (reference numeral 82) when the SOC is 85% smaller than this value is also referred to, and the target SOC of 18 mΩ is obtained as the solution of the linear equation.
18−17 = (18.5−17) × (x−85) / (90−85) (7)
In the equation (7), x is a target SOC.

(7)式の解はx=88.33となり、目標SOCを88.33%に設定する。ここで、次回のエンジン始動を確保するSOCの値(SOC下限値、予め決められた値)より、(7)式で求めた目標SOCの値が小さい場合には、目標SOCをSOC下限値とする。この計算は、図4に示すコントローラ構成の場合、電池状態検知装置41において実施する。目標充電抵抗は、発電機制御コントローラ43で回生の間に定期的に計算した値を車両内LAN45を介して電池状態検知装置41に送信される。目標SOC(および別途電池状態検知装置41で計算されたSOC)は、同様に車両内LAN45を介して電池状態検知装置41から発電機制御コントローラ43へ送信され、SOC制御は発電機制御コントローラ43で実施される。   The solution of equation (7) is x = 88.33, and the target SOC is set to 88.33%. Here, when the target SOC value obtained by the equation (7) is smaller than the SOC value (SOC lower limit value, predetermined value) for ensuring the next engine start, the target SOC is set as the SOC lower limit value. To do. This calculation is performed in the battery state detection device 41 in the case of the controller configuration shown in FIG. The target charging resistance is transmitted to the battery state detection device 41 via the in-vehicle LAN 45 as a value periodically calculated during regeneration by the generator controller 43. The target SOC (and the SOC calculated separately by the battery state detection device 41) is similarly transmitted from the battery state detection device 41 to the generator controller 43 via the in-vehicle LAN 45, and the SOC control is performed by the generator controller 43. To be implemented.

次に、電池の温度が低い場合は電池の内部抵抗が大きくなり、特に車両の場合、エンジンの再始動ができなくなるおそれがある。このため、電池に温度計を取り付け、温度が一定値以下、例えば0℃以下になったら放電禁止、つまり常に発電機をオンして充電するようにしてもよい。   Next, when the temperature of the battery is low, the internal resistance of the battery increases, and particularly in the case of a vehicle, the engine may not be restarted. For this reason, a thermometer may be attached to the battery, and discharging may be prohibited when the temperature falls below a certain value, for example, 0 ° C., that is, the generator is always turned on for charging.

また、図2に示す充電抵抗による電池の充放電制御では、接続された電池の容量(Ah)が小さい場合、あるいは電池が劣化し過ぎていて、充電抵抗が大きく、いくら放電を行っても充電抵抗が目標充電抵抗にならない場合がある。このような場合には、回生終了ごとの充電抵抗R(n)(nは回生回数)と、回生と回生との間の放電量Q(n)(nは回生回数)を記憶し、次式により充電抵抗の放電量感度を求める。
放電量感度[1/Ah]=(R(n)−R(n-1))/(R(n)×Q(n)) ・・・(8)
この放電量感度は電池の放電量に対する充電抵抗の変化度合いを表す。
In addition, in the charge / discharge control of the battery by the charge resistance shown in FIG. 2, if the capacity (Ah) of the connected battery is small or the battery has deteriorated too much, the charge resistance is large and the battery is charged no matter how much discharge is performed. The resistance may not be the target charging resistance. In such a case, the charging resistance R (n) (n is the number of regenerations) at the end of regeneration and the discharge amount Q (n) (n is the number of regenerations) between regenerations are stored. The discharge amount sensitivity of the charging resistor is obtained by
Discharge sensitivity [1 / Ah] = (R (n) −R (n−1)) / (R (n) × Q (n)) (8)
This discharge amount sensitivity represents the degree of change in charge resistance with respect to the discharge amount of the battery.

(8)式により求めた放電量感度がしきい値以上の場合には、充電抵抗がいくら放電しても目標充電抵抗にならないと判定し、発電機を常にオンにして電池の充電を行う。なお、この処理は図2に示す充電抵抗による電池制御におけるステップ22とステップ23の間に行う。また、上記しきい値としては、放電につれ充電抵抗が大きくなる場合を検出するために、予め決められた微小な負の値とする。   When the discharge amount sensitivity obtained by the equation (8) is equal to or greater than the threshold value, it is determined that the charge resistance does not become the target charge resistance no matter how much the discharge is discharged, and the generator is always turned on to charge the battery. This process is performed between step 22 and step 23 in the battery control by the charging resistance shown in FIG. Further, the threshold value is set to a small negative value determined in advance in order to detect a case where the charging resistance increases with discharge.

次に、充電抵抗を小さくして回生能力を上げると、発電機によるエンジン始動不良を起こす可能性がある。このような不具合を避けるために次のような対策を施す。まず、初回のエンジン始動で放電抵抗を求めることができる。放電抵抗は、上述した充電抵抗(図3参照)と同様に、エンジン始動時の電流と電圧の時系列測定値に基づいて最小二乗法により求めた直線の傾きとして求めることができる。そこで、アイドリングストップ後の放電抵抗r(n)(nはエンジン始動回数)とエンジン始動とエンジン始動との間の放電量q(n)(nはエンジン始動回数)を記憶しておき、次式の関係を満たすか否かでアイドリングストップを判定する。
r(n-1)−E(q)×S<放電抵抗限界,
S={r(n-1)−r(m-2)}/q(n-1):放電抵抗・放電量感度 ・・・(9)
(9)式において、放電抵抗限界は予め決められたエンジンが安全に始動できる放電抵抗であり、
開放電圧−放電抵抗限界×エンジン始動時の最大電流=装置が動かなくなる電圧 ・・・(10)
により計算する。なお、(10)式において、装置が動かなくなる電圧は例えば7.2Vとする。
Next, if the regenerative capacity is increased by reducing the charging resistance, there is a possibility of causing engine start failure by the generator. In order to avoid such problems, the following measures are taken. First, the discharge resistance can be obtained at the first engine start. The discharge resistance can be obtained as the slope of a straight line obtained by the method of least squares based on the time series measured values of current and voltage at the time of starting the engine, similarly to the above-described charging resistance (see FIG. 3). Therefore, the discharge resistance r (n) (n is the number of engine starts) after idling stop and the discharge amount q (n) (n is the number of engine starts) between the engine start and the engine start are stored. The idling stop is determined by whether or not the above relationship is satisfied.
r (n-1) -E (q) × S <discharge resistance limit,
S = {r (n-1) -r (m-2)} / q (n-1): discharge resistance / discharge amount sensitivity (9)
In equation (9), the discharge resistance limit is a discharge resistance that allows a predetermined engine to be started safely,
Open circuit voltage-discharge resistance limit x maximum current when starting the engine = voltage at which the device does not operate (10)
Calculate according to In the equation (10), the voltage at which the apparatus does not move is, for example, 7.2V.

ここで、(9)式の関係を満たす場合にはアイドリングストップを実行する。一方、(9)式の関係を満たさない場合はアイドリングストップを実施しない。具体的な処理としては、図2に示す充電抵抗による電池制御のステップ24の条件に、(9)式の条件をアンド条件として加える。   Here, idling stop is executed when the relationship of equation (9) is satisfied. On the other hand, idling stop is not performed when the relationship of equation (9) is not satisfied. As a specific process, the condition of equation (9) is added as an AND condition to the condition of step 24 of battery control by charging resistance shown in FIG.

なお、上述した実施の形態とそれらの変形例において、実施の形態どうし、または実施の形態と変形例とのあらゆる組み合わせが可能である。   In the above-described embodiments and their modifications, all combinations of the embodiments or the embodiments and the modifications are possible.

上述した実施の形態とその変形例によれば以下のような作用効果を奏することができる。まず、車両の減速時に発電機により回生して電池を充電する電池制御システムにおいて、電池の電圧および電流を計測して電池の開放電圧を算出するとともに、電池の開放電圧と充電時の電池の電圧および電流に基づいて電池の充電抵抗を算出し、さらに発電機の供給可能な電流と電圧および電池の開放電圧に基づいて目標充電抵抗を設定する。そして、充電抵抗と目標充電抵抗との比較結果に基づいて、回生充電後の電池の充放電を制御するようにしたので、特定の電池以外の電池が接続された場合でも電池の充放電制御を正しく行うことができる。   According to the above-described embodiment and its modifications, the following operational effects can be achieved. First, in a battery control system in which a battery is regenerated and charged by a generator when the vehicle decelerates, the battery voltage and current are measured to calculate the battery open voltage, and the battery open voltage and the battery voltage during charge are calculated. The charging resistance of the battery is calculated based on the current and the current, and the target charging resistance is set based on the current and voltage that can be supplied by the generator and the open voltage of the battery. And based on the comparison result between the charging resistance and the target charging resistance, the charging / discharging of the battery after the regenerative charging is controlled, so the charging / discharging control of the battery is performed even when a battery other than a specific battery is connected. Can be done correctly.

また、一実施の形態とその変形例によれば、充電抵抗が目標充電抵抗より大きい場合には、電池の電力を補機に供給して放電させるようにしたので、次回の回生充電時までに充電抵抗を下げることができ、発電機からの回生充電電流が増加して回生効率を向上させることができる。   In addition, according to the embodiment and the modification thereof, when the charging resistance is larger than the target charging resistance, the battery power is supplied to the auxiliary machine to be discharged. The charging resistance can be lowered, and the regenerative charging current from the generator can be increased to improve the regenerative efficiency.

一実施の形態とその変形例によれば、充電抵抗が目標充電抵抗以下の場合には、回生充電後に発電機により電池の充電を行うようにしたので、電池の充電量を所定量以上に確保することができ、例えば本発明を自動車に適用した場合には、アイドルストップ後にエンジンを確実に再始動することができる。   According to one embodiment and its modification, when the charging resistance is less than or equal to the target charging resistance, the battery is charged by the generator after regenerative charging. For example, when the present invention is applied to an automobile, the engine can be reliably restarted after idling stop.

一実施の形態とその変形例によれば、電池のSOCを検出してSOCの誤差を算出し、SOCの誤差が所定値より低い場合は、目標充電抵抗に応じた目標SOCを設定し、SOCと目標SOCとの比較結果に基づいて電池の充放電を制御し、SOCの誤差が所定値以上の場合は、充電抵抗と目標充電抵抗との比較結果に基づいて電池の充放電を制御するようにしたので、SOCの誤差によってSOCによる電池の充放電制御と充電抵抗による電池の充放電制御とを効果的に切り替えることができる。つまり、通常はSOCによる正確な電池の充放電制御を行いながら、特定の電池以外の電池が接続された場合などSOC誤差が大きくなった場合には、充電抵抗による電池の充放電制御により正確な電池の充放電制御を継続することができる。   According to one embodiment and its modification, the SOC of the battery is detected to calculate the SOC error. If the SOC error is lower than a predetermined value, the target SOC is set according to the target charging resistance, and the SOC is calculated. And charging / discharging of the battery based on the comparison result between the charging resistance and the target SOC, and when the SOC error is a predetermined value or more, charging / discharging of the battery is controlled based on the comparison result between the charging resistance and the target charging resistance. Therefore, the battery charge / discharge control by the SOC and the battery charge / discharge control by the charge resistance can be effectively switched by the SOC error. In other words, when the SOC error becomes large, such as when a battery other than a specific battery is connected while normally performing accurate battery charge / discharge control by SOC, accurate charge / discharge control of the battery by charge resistance is performed. Battery charge / discharge control can be continued.

100;制御部、101;電池、102;電流計、103;電圧計、105;開放電圧計算部、106;充電抵抗時系列測定部、107;電流積分部、108;発電機供給可能電流記憶部、109;目標充電抵抗設定部、110;放電開始判定部、111;放電終了判定部、112;発電機、113;補機 DESCRIPTION OF SYMBOLS 100; Control part, 101; Battery, 102; Ammeter, 103; Voltmeter, 105; Open-circuit voltage calculation part, 106; Charging resistance time series measurement part, 107; Current integration part, 108; 109; target charging resistance setting unit; 110; discharge start determination unit; 111; discharge end determination unit; 112; generator; 113;

Claims (8)

車両の減速時に回転電機により回生して電池を充電する電池制御システムにおいて、
前記電池の電圧および電流を計測する計測手段と、
前記電池の電圧および電流に基づいて前記電池の開放電圧を算出する電圧算出手段と、
前記電池の開放電圧と充電時の前記電池の電圧および電流に基づいて前記電池の充電時内部抵抗を算出する抵抗算出手段と、
前記回転電機の供給可能な電流と電圧および前記電池の開放電圧に基づいて目標充電時内部抵抗を設定する設定手段と、
前記充電時内部抵抗と前記目標充電時内部抵抗との比較結果に基づいて、回生充電後の前記電池の充放電を制御する制御手段とを備えることを特徴とする電池制御システム。
In a battery control system that regenerates by a rotating electric machine and charges a battery when the vehicle decelerates,
Measuring means for measuring the voltage and current of the battery;
Voltage calculating means for calculating an open voltage of the battery based on the voltage and current of the battery;
A resistance calculating means for calculating an internal resistance during charging of the battery based on an open voltage of the battery and a voltage and current of the battery during charging;
Setting means for setting a target charging internal resistance based on a current and voltage that can be supplied by the rotating electrical machine and an open voltage of the battery;
A battery control system comprising: control means for controlling charge / discharge of the battery after regenerative charging based on a comparison result between the internal resistance during charging and the internal resistance during target charging.
請求項1に記載の電池制御システムにおいて、
前記制御手段は、前記充電時内部抵抗が前記目標充電時内部抵抗より大きい場合には、回生充電後に前記電池の電力を補機に供給して放電させることを特徴とする電池制御システム。
The battery control system according to claim 1,
When the internal resistance at the time of charging is larger than the internal resistance at the time of target charging, the control means supplies the power of the battery to an auxiliary machine after regenerative charging to discharge the battery.
請求項2に記載の電池制御システムにおいて、
前記電池の充放電量を積算する積算手段を備え、
前記制御手段は、前記電池の充電時の充電量以上の放電を行ったら放電を終了することを特徴とする電池制御システム。
The battery control system according to claim 2,
An integrating means for integrating the charge / discharge amount of the battery;
The battery control system according to claim 1, wherein the control unit terminates the discharge when the discharge exceeds the charge amount at the time of charging the battery.
請求項3に記載の電池制御システムにおいて、
前記制御手段は、前記電池の放電量に対する前記充電時内部抵抗の変化度合いが所定値を越えた場合は、前記回転電機による前記電池の充電を行うことを特徴とする電池制御システム。
The battery control system according to claim 3,
The battery control system, wherein the control means charges the battery by the rotating electrical machine when the degree of change in the internal resistance during charging with respect to the discharge amount of the battery exceeds a predetermined value.
請求項1〜4のいずれか一項に記載の電池制御システムにおいて、
前記制御手段は、前記充電時内部抵抗が前記目標充電時内部抵抗以下の場合には、回生充電後に前記回転電機により前記電池の充電を行うことを特徴とする電池制御システム。
In the battery control system according to any one of claims 1 to 4,
When the internal resistance during charging is equal to or less than the internal resistance during target charging, the control means charges the battery by the rotating electrical machine after regenerative charging.
請求項5に記載の電池制御システムにおいて、
前記制御手段は、前記回転電機による前記電池の充電量が所定値を越えたら前記回転電機による充電を終了することを特徴とする電池制御システム。
The battery control system according to claim 5, wherein
The battery control system according to claim 1, wherein the control unit terminates charging by the rotating electrical machine when a charge amount of the battery by the rotating electrical machine exceeds a predetermined value.
請求項1〜6のいずれか一項に記載の電池制御システムにおいて、
前記電池のSOC(State Of Charge)を検出するSOC検出手段と、
前記SOCの誤差を算出する誤差算出手段とを備え、
前記制御手段は、前記SOCの誤差が所定値より低い場合は、前記目標充電時内部抵抗に応じた目標SOCを設定し、前記SOCと前記目標SOCとの比較結果に基づいて前記電池の充放電を制御し、前記SOCの誤差が前記所定値以上の場合は、前記充電時内部抵抗と前記目標充電時内部抵抗との比較結果に基づいて前記電池の充放電を制御することを特徴とする電池制御システム。
In the battery control system according to any one of claims 1 to 6,
SOC detecting means for detecting SOC (State Of Charge) of the battery;
Error calculating means for calculating the error of the SOC,
When the SOC error is lower than a predetermined value, the control unit sets a target SOC corresponding to the target internal resistance during charging, and charges / discharges the battery based on a comparison result between the SOC and the target SOC. And controlling charging / discharging of the battery based on a comparison result between the internal resistance during charging and the internal resistance during target charging when the SOC error is equal to or greater than the predetermined value. Control system.
請求項1〜7のいずれか一項に記載の電池制御システムにおいて、
前記電池の温度を検出する検出手段を備え、
前記制御手段は、前記電池の温度が所定値以下のときは前記回転電機により前記電池の充電を行うことを特徴とする電池制御システム。
In the battery control system according to any one of claims 1 to 7,
A detecting means for detecting the temperature of the battery;
The battery control system, wherein the control means charges the battery by the rotating electrical machine when the temperature of the battery is equal to or lower than a predetermined value.
JP2010127690A 2010-06-03 2010-06-03 Battery control system Expired - Fee Related JP5365582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127690A JP5365582B2 (en) 2010-06-03 2010-06-03 Battery control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127690A JP5365582B2 (en) 2010-06-03 2010-06-03 Battery control system

Publications (2)

Publication Number Publication Date
JP2011252821A true JP2011252821A (en) 2011-12-15
JP5365582B2 JP5365582B2 (en) 2013-12-11

Family

ID=45416865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127690A Expired - Fee Related JP5365582B2 (en) 2010-06-03 2010-06-03 Battery control system

Country Status (1)

Country Link
JP (1) JP5365582B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146196A (en) * 2016-02-17 2017-08-24 日立化成株式会社 Battery state detection system, charge control system, and battery state detection method
US9973018B2 (en) 2013-12-18 2018-05-15 Toyota Jidosha Kabushiki Kaisha Electric storage system
CN111106402A (en) * 2020-01-03 2020-05-05 天能电池集团股份有限公司 Method for recovering capacity of over-term storage battery
JP2021005985A (en) * 2019-06-27 2021-01-14 古河電気工業株式会社 Dc power network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304008A (en) * 2000-04-25 2001-10-31 Nissan Motor Co Ltd Control device for vehicle
JP2003348707A (en) * 2002-05-28 2003-12-05 Shin Kobe Electric Mach Co Ltd Detection system for state of charging and automobile provided with the system
JP2004130909A (en) * 2002-10-10 2004-04-30 Shin Kobe Electric Mach Co Ltd Battery state detection system
JP2004227995A (en) * 2003-01-24 2004-08-12 Nissan Motor Co Ltd Charge/discharge control device for hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304008A (en) * 2000-04-25 2001-10-31 Nissan Motor Co Ltd Control device for vehicle
JP2003348707A (en) * 2002-05-28 2003-12-05 Shin Kobe Electric Mach Co Ltd Detection system for state of charging and automobile provided with the system
JP2004130909A (en) * 2002-10-10 2004-04-30 Shin Kobe Electric Mach Co Ltd Battery state detection system
JP2004227995A (en) * 2003-01-24 2004-08-12 Nissan Motor Co Ltd Charge/discharge control device for hybrid vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973018B2 (en) 2013-12-18 2018-05-15 Toyota Jidosha Kabushiki Kaisha Electric storage system
JP2017146196A (en) * 2016-02-17 2017-08-24 日立化成株式会社 Battery state detection system, charge control system, and battery state detection method
JP2021005985A (en) * 2019-06-27 2021-01-14 古河電気工業株式会社 Dc power network
CN111106402A (en) * 2020-01-03 2020-05-05 天能电池集团股份有限公司 Method for recovering capacity of over-term storage battery

Also Published As

Publication number Publication date
JP5365582B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5419832B2 (en) Battery capacity calculation device and battery capacity calculation method
JP6317031B2 (en) Battery control device and vehicle system
CN1988242B (en) Method for compensating state of charge of battery, battery management system and hybrid vehicle
US10589732B2 (en) Battery control device and vehicle system
CN101013822B (en) Method for compensating state of charge of battery and battery management system using the same
JP4806558B2 (en) Secondary battery control device and secondary battery deterioration judgment method
US9880224B2 (en) Battery system monitoring device
US9634361B2 (en) Battery system and associated method for determining the internal resistance of battery cells or battery modules of said battery system
CN103079897B (en) Control device for vehicle and control method for vehicle
JP5621818B2 (en) Power storage system and equalization method
US20050269991A1 (en) Battery state-of-charge estimator
KR101798464B1 (en) SOC correction method in multi-pack of parallel type
JP5493407B2 (en) Battery pack capacity adjustment device
JPWO2014083856A1 (en) Battery management device, power supply device, and SOC estimation method
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
CA3015276A1 (en) Online battery capacity estimation utilizing passive balancing
WO2016129260A1 (en) Battery class determination device and battery class determination method
JP5365582B2 (en) Battery control system
WO2011145255A1 (en) Battery control device and vehicle
JP2011221012A (en) Battery module state detecting device, battery module state control device, battery system, electric vehicle, mobile body, power storage device and power supply device
CN110361669B (en) Battery degradation determination device
JP2004325263A (en) Self-discharge amount detection device of battery
JP2019074501A (en) Battery state estimation method and battery state estimating device
JP5772615B2 (en) Power storage system
JP2001339863A (en) Calculation method of residual capacity of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5365582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees