JP2011252208A - Heat-resistant austenitic stainless steel for metal gasket - Google Patents

Heat-resistant austenitic stainless steel for metal gasket Download PDF

Info

Publication number
JP2011252208A
JP2011252208A JP2010127403A JP2010127403A JP2011252208A JP 2011252208 A JP2011252208 A JP 2011252208A JP 2010127403 A JP2010127403 A JP 2010127403A JP 2010127403 A JP2010127403 A JP 2010127403A JP 2011252208 A JP2011252208 A JP 2011252208A
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
austenitic stainless
metal gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010127403A
Other languages
Japanese (ja)
Other versions
JP5717359B2 (en
Inventor
Naohito Kumano
尚仁 熊野
Sadayuki Nakamura
定幸 中村
Manabu Oku
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010127403A priority Critical patent/JP5717359B2/en
Publication of JP2011252208A publication Critical patent/JP2011252208A/en
Application granted granted Critical
Publication of JP5717359B2 publication Critical patent/JP5717359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasket Seals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide austenitic stainless steel suitable for a metal gasket which is excellent in settling resistance, and maintains air tightness for a long period of time.SOLUTION: The austenitic stainless steel contains: >0.03 to 0.20 mass% C, 2.0 to 5.0 mass% Si, ≤2.5 mass% Mn, 7.0 to 17.0 mass% Ni, 13.0 to 23.0 mass% Cr and <0.05 mass% N, and the balance Fe with inevitable impurities, and an SFE value defined as 25.7+2(Ni)+410(C)-0.9(Cr)-77(N)-13(Si)-1.2(Mn) is adjusted to 2 to 20. Furthermore, the austenitic stainless steel may contain one, two or more of ≤0.80 mass% Nb, ≤2.0 mass% Mo, ≤4.0 mass% Cu, ≤0.5 mass% Ti, ≤1.0 mass% V, ≤0.2 mass% Al, ≤0.020 mass% B, ≤0.2 mass% REM (rare earth element), ≤0.2 mass% Y, ≤0.1 mass% Ca, and ≤0.1 mass% Mg.

Description

本発明は、内燃機関のエンジン,排気ガス経路部材(エキゾーストマニホールド,触媒コンバータ),EGRクーラーならびにターボチャージャー等の高温雰囲気に曝されても、優れた耐へたり性を維持するメタルガスケットとして使用されるオーステナイト系ステンレス鋼に関する。   INDUSTRIAL APPLICABILITY The present invention is used as a metal gasket that maintains excellent sag resistance even when exposed to a high temperature atmosphere such as an engine of an internal combustion engine, an exhaust gas passage member (exhaust manifold, catalytic converter), an EGR cooler, and a turbocharger. Relates to austenitic stainless steel.

加熱・冷却が頻繁に繰り返される雰囲気に曝されるエンジン等には従来からメタルガスケットが使用されてきたが、エンジンの高性能化や環境規制に伴い排気ガス温度が上昇し、600〜800℃の温度に曝されるガスケットが増加している。ガスケットが曝される温度の上昇にともない、従来のガスケット材では以下の課題を生じている。   Metal gaskets have been used for engines and the like that are exposed to an atmosphere in which heating and cooling are frequently repeated. However, the exhaust gas temperature has increased due to higher performance of engines and environmental regulations, and the temperature has increased to 600-800 ° C. More gaskets are exposed to temperature. As the temperature at which the gasket is exposed is increased, the conventional gasket material has the following problems.

特開平7−3406,特開2008−111192に代表されるSUS301系の加工誘起マルテンサイト相に強化された材料や、特開平7−278758に代表されるSUS431系の焼入−焼戻マルテンサイト相に強化された材料は、加熱される温度がマルテンサイト相の分解温度に相当するため軟化が著しく耐へたり性に劣る。   Materials strengthened by SUS301-based work-induced martensite phase represented by JP-A-7-3406 and JP-A-2008-111192, and SUS431-type quenching-tempering martensite phase represented by JP-A-7-278758 In a material reinforced to a high temperature, the temperature at which it is heated corresponds to the decomposition temperature of the martensite phase, so that the softening is remarkably inferior in sag resistance.

JISG4902(耐食耐熱超合金板)に規定されるNCF625,NCF718やJISG4312(耐熱鋼板)に規定されるSUH660等の析出強化系の材料は使用中に微細析出物を生成するため、600〜800℃の析出強化には有効であるが、高価なNiが多量に含まれるためコスト高となる。   Precipitation strengthening materials such as NCF625, NCF718 and SUH660 specified in JISG4312 (heat-resistant steel plate) defined in JIS G4902 (corrosion-resistant heat-resistant superalloy plate) generate fine precipitates during use. Although effective for precipitation strengthening, it is expensive because it contains a large amount of expensive Ni.

これらの課題を解決させるために、特開2003−82441ではNとNbにより強化されたFe−Cr−Niオーステナイト系ステンレス鋼が、また、特開平7−3407,特開平9−279315,特開平11−241145では、Nにより強化されたFe−Cr−Mn−Niオーステナイト系ステンレス鋼が開示されており、一部の耐熱用ガスケットに適用されつつある。   In order to solve these problems, in Japanese Patent Laid-Open No. 2003-82441, Fe—Cr—Ni austenitic stainless steel reinforced with N and Nb is disclosed in Japanese Patent Laid-Open Nos. 7-3407, 9-279315, and 11 No. -241145 discloses Fe-Cr-Mn-Ni austenitic stainless steel reinforced with N and is being applied to some heat-resistant gaskets.

しかし、これらの鋼はNを多く含むために降伏応力(0.2%耐力)が非常に高くなるという課題を有する。すなわち、ガスケットに必要な平坦度を矯正加工にて確保するには焼なまし材で比較的軟質であることが望ましく、使用中の耐熱性を確保するには高温でのへたり性に優れることが望ましいが、多量にNを添加する鋼では前者の特性を満足するとは必ずしも言い難いからである。   However, since these steels contain a lot of N, they have a problem that the yield stress (0.2% proof stress) becomes very high. In other words, it is desirable that the annealed material should be relatively soft to ensure the flatness required for the gasket by straightening, and that it has excellent sagability at high temperatures to ensure heat resistance during use. However, it is difficult to say that the steel having a large amount of N added satisfies the former characteristics.

以上述べたように、Niを多量に含まないオーステナイト系ステンレス鋼において初期の耐力が比較的低く、高温での耐熱性(へたり性)に優れた低N鋼が必要となってきているが、その成分系は必ずしも明確化されていないのが現状であった。   As described above, an austenitic stainless steel that does not contain a large amount of Ni has a relatively low initial proof strength, and low N steel that is excellent in heat resistance at high temperatures (sagging property) has become necessary. The component system was not necessarily clarified at present.

特開平7−3406号公報Japanese Unexamined Patent Publication No. 7-3406 特開平8−111192号公報Japanese Patent Laid-Open No. 8-111192 特開平7−278258号公報JP 7-278258 A 特開2003−82441号公報JP 2003-82441 A 特開平7−3407号公報Japanese Patent Laid-Open No. 7-3407 特開平9−279315号公報Japanese Patent Laid-Open No. 9-279315 特開平11−241145号公報JP-A-11-241145

本発明は、比較的安価で常温での加工性と高温での耐へたり性を同時に向上させた耐熱用メタルガスケットに適したオーステナイト系ステンレス鋼を提供することを目的とする。   An object of the present invention is to provide an austenitic stainless steel suitable for a heat-resistant metal gasket that is relatively inexpensive and has improved workability at room temperature and sag resistance at high temperature at the same time.

本発明のメタルガスケット用耐熱オーステナイト系ステンレス鋼は、その目的を達成するため、C:0.03超〜0.20質量%,Si:2.0超え〜5.0質量%,Mn:2.5質量%以下,Ni:7.0〜17.0質量%,Cr:13.0〜23.0質量%,N:0.05質量%未満を含み、残部がFeおよび不可避的不純物からなり、さらに下記(1)式で示されるSFE値が2〜20であることを特徴とする。
SFE=25.7+2(Ni)+410(C)−0.9(Cr)−77(N)−13(Si)−1.2(Mn)・・・(1)
ただし、式中の各項は、合金元素の含有量(質量%)である。
In order to achieve the object, the heat-resistant austenitic stainless steel for metal gaskets of the present invention has C: more than 0.03 to 0.20% by mass, Si: more than 2.0 to 5.0% by mass, Mn: 2. 5 mass% or less, Ni: 7.0 to 17.0 mass%, Cr: 13.0 to 23.0 mass%, N: less than 0.05 mass%, with the balance being Fe and inevitable impurities, Furthermore, the SFE value represented by the following formula (1) is 2 to 20.
SFE = 25.7 + 2 (Ni) +410 (C) −0.9 (Cr) −77 (N) −13 (Si) −1.2 (Mn) (1)
However, each term in the formula is the content (mass%) of the alloy element.

また、さらにNb:0.80質量%以下,Mo:2.0質量%以下,Cu:4.0質量%以下,Ti:0.5質量%以下,V:1.0質量%以下,Al:0.2質量%以下,B:0.020質量%以下,REM(希土類元素):0.2質量%以下,Y:0.2質量%以下,Ca:0.1質量%以下,Mg:0.1質量%以下の1種又は2種以上を含むことができる。   Further, Nb: 0.80 mass% or less, Mo: 2.0 mass% or less, Cu: 4.0 mass% or less, Ti: 0.5 mass% or less, V: 1.0 mass% or less, Al: 0.2% by mass or less, B: 0.020% by mass or less, REM (rare earth element): 0.2% by mass or less, Y: 0.2% by mass or less, Ca: 0.1% by mass or less, Mg: 0 .1% by mass or less of one kind or two or more kinds may be included.

本発明のオーステナイト系ステンレス鋼は、メタルガスケットに要求される500〜800℃の高温環境での耐へたり性に優れている。一方、焼き戻し状態では十分な加工性を有しているため、平坦度の矯正が容易である。
上記2点の特徴を有しているため、このオーステナイト系ステンレス鋼をエギゾストマニホルド,インテックマニホルド等の低温用メタルガスケットとして自動車用エンジンに組み込むと、周辺機器の寿命やエンジン自体の性能が向上する。また、エンジン用ガスケットの他に、自動車排ガス部品,自動車排気管の振動遮断用継手に使用されるボールジョイント部に組み込まれる弾性ガスケットにも使用できる。
The austenitic stainless steel of the present invention is excellent in sag resistance in a high temperature environment of 500 to 800 ° C. required for a metal gasket. On the other hand, since it has sufficient workability in the tempered state, it is easy to correct the flatness.
Due to the above two characteristics, when this austenitic stainless steel is incorporated into an automobile engine as a low-temperature metal gasket such as exhaust manifold or intech manifold, the life of peripheral equipment and the performance of the engine itself are improved. To do. In addition to engine gaskets, the present invention can also be used for elastic gaskets incorporated in ball joint parts used in automobile exhaust parts and vibration isolation joints for automobile exhaust pipes.

ガスケット試験片の形状を示す図である。It is a figure which shows the shape of a gasket test piece.

本発明者らは、上記課題を解決するために種々検討を行い、以下の知見を得て本発明に至った。   The inventors of the present invention have made various studies in order to solve the above-described problems, and have obtained the following knowledge to arrive at the present invention.

(1)初期の軟質化はNを0.05%未満とすることにより達成される。
(2)高温でのへたり性はビード部(加工部)を加熱によって軟化しにくい因子で強化しておくこと、すなわち、主として積層欠陥にて硬化されることにより達成される。
(1) Initial softening is achieved by setting N to less than 0.05%.
(2) The sagability at high temperature is achieved by strengthening the bead part (processed part) with a factor that is not easily softened by heating, that is, by being hardened mainly by stacking faults.

積層欠陥による高温での耐へたり性向上のメカニズムは必ずしも明確でないが、積層欠陥の交差により導入される転位が可働しにくいことや強加工によってε−マルテンサイト相が生成し、しかもこれが加熱により分解されにくいことが挙げられる。   The mechanism for improving sag resistance at high temperatures due to stacking faults is not always clear, but dislocations introduced by crossing stacking faults are difficult to work, and ε-martensite phase is generated by strong processing, which is heated. It is difficult to decompose by.

以下、本発明が対象とするオーステナイト系ステンレス鋼に含まれる合金成分,含有量等を説明する。
C:0.03超〜0.20質量%
高温強度の向上に有効な合金成分であり、固溶強化や析出強化によってステンレス鋼を強化する。このような作用は、0.03質量%超のC含有で顕著になる。しかし、0.20質量%を超える過剰量のCが含まれると、高温保持中に巨大な粒界炭化物が析出しやすくなり、材料を脆化させる。
Hereinafter, alloy components, contents, and the like included in the austenitic stainless steel targeted by the present invention will be described.
C: more than 0.03 to 0.20% by mass
It is an alloy component effective for improving high-temperature strength, and strengthens stainless steel by solid solution strengthening and precipitation strengthening. Such an effect becomes remarkable when C content exceeds 0.03 mass%. However, when an excessive amount of C exceeding 0.20% by mass is included, huge grain boundary carbides are likely to precipitate during holding at a high temperature, and the material becomes brittle.

Si:2.0超え〜5.0質量%
フェライト形成元素であり、オーステナイト相中で大きな固溶強化能を呈し、高温保持中に歪み時効によって時効硬化を促進させる。このような効果は、2.0質量%以上のSi含有量で顕著になる。しかし、5.0質量%を超える過剰量のSiを添加すると、高温割れが誘発され、製造上で種々のトラブルを引き起こす。Si含有量は3.0超〜5.0質量%以下の範囲とすることが一層好ましい。
Si: more than 2.0 to 5.0% by mass
It is a ferrite forming element, exhibits a large solid solution strengthening ability in the austenite phase, and promotes age hardening by strain aging while maintaining a high temperature. Such an effect becomes remarkable when the Si content is 2.0% by mass or more. However, when an excessive amount of Si exceeding 5.0% by mass is added, hot cracking is induced, causing various troubles in production. The Si content is more preferably in the range of more than 3.0 to 5.0% by mass or less.

Mn:2.5質量%以下
オーステナイト形成元素であり、高価なNiの代替成分として使用され、Niの必要量を低減できる。また、Sを固定することによって熱間加工性を改善することにも有効である。しかし、2.5質量%を超える過剰量のMn添加は、高温強度や機械的性質を低下させる。
Mn: 2.5% by mass or less An austenite-forming element that is used as an alternative component of expensive Ni and can reduce the required amount of Ni. It is also effective to improve hot workability by fixing S. However, addition of an excessive amount of Mn exceeding 2.5% by mass lowers the high-temperature strength and mechanical properties.

Ni:7.0〜17.0質量%
安定なオーステナイト組織を確保するために必須の合金成分であり、Niの最適含有量は鋼材に含まれるCr,Si,Mo等のフェライト形成元素量に依存する。しかし、7.0質量%未満のNi含有量ではオーステナイト相の安定化が困難になる。他方、17.0質量%を越えるNi含有量では、鋼材コストが上昇して経済的に不利となる。Ni含有量は11.0〜15.0質量%の範囲とすることが一層好ましい。
Ni: 7.0 to 17.0% by mass
It is an essential alloy component for ensuring a stable austenite structure, and the optimum content of Ni depends on the amount of ferrite-forming elements such as Cr, Si, and Mo contained in the steel material. However, when the Ni content is less than 7.0% by mass, it becomes difficult to stabilize the austenite phase. On the other hand, when the Ni content exceeds 17.0% by mass, the steel material cost increases, which is economically disadvantageous. The Ni content is more preferably in the range of 11.0 to 15.0 mass%.

Cr:13.0〜23.0質量%
耐食性・耐酸化性に必要な合金成分であり、過酷な高温腐食雰囲気に曝されるメタルガスケット用途を考慮すると少なくとも13.0質量%のCr量が必要である。しかし、23.0質量%を超える過剰量のCrが含まれると、δフェライトが形成され、安定したオーステナイト相が維持できなくなる。
Cr: 13.0 to 23.0% by mass
It is an alloy component necessary for corrosion resistance and oxidation resistance, and considering the use of a metal gasket exposed to a severe high temperature corrosion atmosphere, an amount of Cr of at least 13.0% by mass is necessary. However, if an excessive amount of Cr exceeding 23.0% by mass is contained, δ ferrite is formed and a stable austenite phase cannot be maintained.

N:0.05質量%未満
オーステナイト系ステンレス鋼の高温強度の上昇に有効な合金成分であるが、0.05質量%以上のNが含まれると、M23中のCがC+Nに遷移し、析出速度を低下させる。そのため、高温保持中において析出強化への変態が遅延され、高温強度を低下させる。
N: Less than 0.05% by mass An alloy component effective for increasing the high-temperature strength of austenitic stainless steel, but when 0.05% by mass or more of N is contained, C in M 23 C 6 transitions to C + N And reduce the deposition rate. Therefore, the transformation to precipitation strengthening is delayed during high temperature holding, and the high temperature strength is lowered.

Nb:0.80質量%以下
メタルガスケットが曝される高温雰囲気下で析出物を形成し、或いはオーステナイトマトリックスに固溶することにより、硬度を上昇させ、耐軟化性を改善する。しかし、0.80質量%を超える過剰量のNb含有は、高温強度向上に起因して熱間加工性を低下させる。
Nb: 0.80% by mass or less By forming a precipitate in a high temperature atmosphere to which the metal gasket is exposed or by dissolving in austenite matrix, the hardness is increased and the softening resistance is improved. However, the excessive Nb content exceeding 0.80% by mass reduces the hot workability due to the improvement of the high temperature strength.

Mo:2.0質量%以下
必要に応じて添加される合金成分であり、耐食性の向上に有効であると共に、高温保持中に炭窒化物となって微細に分散し高温強度を上昇させる。時効処理時にあっては、析出物の形成によって強度を向上させる。そのため、メタルガスケットが過酷な高温雰囲気に曝されても、Mo添加により強度の低下が防止される。しかし、2.0質量%を超えるMoの過剰添加は、高温域でのδフェライト生成を促進させる。
Mo: 2.0% by mass or less Mo is an alloy component added as necessary, and is effective for improving corrosion resistance, and becomes carbonitride during fine temperature holding to finely disperse and increase high temperature strength. At the time of aging treatment, the strength is improved by the formation of precipitates. Therefore, even if the metal gasket is exposed to a severe high temperature atmosphere, the strength is prevented from being reduced by the addition of Mo. However, excessive addition of Mo exceeding 2.0% by mass promotes the formation of δ ferrite at high temperatures.

Cu:4.0質量%以下
必要に応じて添加される合金成分であり、メタルガスケットが使用される雰囲気の温度上昇に伴ってCu系析出物を生成させ、高温強度,耐軟化性を改善する。しかし、3.0質量%を超えるCuの過剰添加は、熱間加工性を低下させ、割れ発生の原因となる。
Cu: 4.0% by mass or less Cu is an alloy component added as necessary, and generates Cu-based precipitates as the temperature of the atmosphere in which the metal gasket is used to improve high temperature strength and softening resistance. . However, excessive addition of Cu exceeding 3.0% by mass reduces hot workability and causes cracking.

Ti:0.5質量%以下
必要に応じて添加される合金成分であり、硬度上昇,耐ヘタリ性の改善に有効な析出物を高温雰囲気で形成する。しかし、0.5質量%を超えるTiの過剰添加は、表面疵を発生させる原因となる。
Ti: 0.5% by mass or less Ti is an alloy component added as necessary, and forms a precipitate effective in increasing hardness and improving resistance to settling in a high temperature atmosphere. However, excessive addition of Ti exceeding 0.5% by mass causes surface defects.

V:1.00質量%以下
必要に応じて添加される合金成分であり、硬度上昇,耐ヘタリ性の改善に有効な析出物を高温雰囲気で形成する。しかし、1.0質量%を超えるVの過剰添加は、表加工性、靭性を低下させる原因となる。
V: 1.00% by mass or less An alloy component added as necessary, and forms a precipitate effective in increasing the hardness and improving the anti-sagging property in a high-temperature atmosphere. However, excessive addition of V exceeding 1.0% by mass causes a reduction in surface workability and toughness.

Al:0.2質量%以下
必要に応じて添加される合金成分であり、製鋼時に脱酸剤として添加されると共に、鋼板をガスケット形状に打抜く際に打抜き性に悪影響を及ぼすA2系介在物を激減させる効果を奏する。このような効果は0.2質量%のAl含有量で飽和し、それ以上Alを増量しても却って表面欠陥の増加を招く。
Al: 0.2% by mass or less An alloy component that is added as necessary. It is added as a deoxidizer during steelmaking, and has an adverse effect on punchability when a steel sheet is punched into a gasket shape. Has the effect of drastically reducing. Such an effect is saturated at an Al content of 0.2% by mass, and even if Al is increased further, surface defects are increased.

B:0.020質量%以下
必要に応じて添加される合金成分であり、高温強度上昇に有効な炭窒化物の微細析出を促進させ、熱間圧延温度域においてはS等の粒界偏析を抑制しエッジクラックの発生を防止する作用を呈する。しかし、0.020質量%を超える過剰量のBを添加すると、低融点硼化物が生成しやすく、却って熱間加工性が劣化する。
B: 0.020% by mass or less An alloy component that is added as necessary, promotes fine precipitation of carbonitrides effective in increasing high-temperature strength, and causes grain boundary segregation such as S in the hot rolling temperature range. Suppresses and prevents the occurrence of edge cracks. However, when an excessive amount of B exceeding 0.020% by mass is added, a low-melting boride tends to be generated, and hot workability is deteriorated.

REM(希土類元素):0.2質量%以下
Y:0.2質量%以下
Ca:0.1質量%以下
Mg:0.1質量%以下
必要に応じて添加される合金成分であり、何れも熱間加工性を改善し、耐酸化性の向上にも有効である。熱間加工性,耐酸化性に及ぼす効果は何れも添加量の増加に応じて顕著になるが、REM,Yでは0.20質量%、Ca,Mgでは0.10質量%で飽和する。
REM (rare earth element): 0.2 mass% or less Y: 0.2 mass% or less Ca: 0.1 mass% or less Mg: 0.1 mass% or less It is effective in improving hot workability and improving oxidation resistance. The effects on hot workability and oxidation resistance both become more pronounced as the amount added increases, but saturates at 0.20% by mass for REM and Y and 0.10% by mass for Ca and Mg.

SFE値:2〜20
SFE値は次の式で定義される積層欠陥エネルギーの指標であり、本発明においてはこれを2〜20に限定する。
SFE=25.7+2(Ni)+410(C)−0.9(Cr)−77(N)−13(Si)−1.2(Mn)・・・(1)
ただし、式中の各項は、合金元素の含有量(質量%)である。
SFE値は、本発明においては耐へたり性を確保するために上記範囲に限定しており、この範囲を保つことで良好な加工性および加熱保持後の耐軟化性を確保するものである。SFEが2を下回る場合、加工硬化が大きくなりすぎるため製品加工する際、シワの発生や割れが生じる。また、SFEが20を超えると加工しやすくなるものの、εマルテンサイト等の生成が起こらず、600〜800℃加熱によるビードへたり量が大きくなる。
SFE value: 2-20
The SFE value is an index of stacking fault energy defined by the following formula, and is limited to 2 to 20 in the present invention.
SFE = 25.7 + 2 (Ni) +410 (C) −0.9 (Cr) −77 (N) −13 (Si) −1.2 (Mn) (1)
However, each term in the formula is the content (mass%) of the alloy element.
In the present invention, the SFE value is limited to the above range in order to ensure sag resistance. By maintaining this range, good workability and softening resistance after heating and holding are ensured. If the SFE is less than 2, the work hardening becomes too large, so that when the product is processed, generation of wrinkles and cracks occur. Moreover, although it becomes easy to process when SFE exceeds 20, the production | generation of (epsilon) martensite etc. does not occur, but the amount of bead sag by 600-800 degreeC heating becomes large.

表1に示す組成のステンレス鋼を300kg真空溶解炉で溶製し、その後スラブを熱間鍛造、切り出し、熱間圧延、焼鈍、酸洗、冷延圧延、焼鈍、酸洗工程を経て板厚0.5〜0.2mmのステンレス鋼帯を製造した。   Stainless steel having the composition shown in Table 1 is melted in a 300 kg vacuum melting furnace, and then the slab is subjected to hot forging, cutting, hot rolling, annealing, pickling, cold rolling, annealing, and pickling steps to obtain a thickness of 0. Stainless steel strips of 0.5 to 0.2 mm were produced.

Figure 2011252208
Figure 2011252208

表2に、各ステンレス鋼の冷延焼鈍材の0.2%耐力を示す。発明鋼はいずれも低い耐力を示しており、ガスケットへの加工が容易であることがわかる。   Table 2 shows the 0.2% proof stress of each stainless steel cold-rolled annealed material. Invented steels all show low proof stress, and it can be seen that processing into gaskets is easy.

Figure 2011252208
Figure 2011252208

各ステンレス鋼帯から150mm×150mmの正方形試験片を切り出し、試験片の中央に内径75mmの円形開口を形成し、開口周辺に幅2.5mm,高さ0.25mm,突起部2Rのビードをプレス成形することによりメタルガスケット(図1)を作製した。次いで、ビード部がフラットになるように治具で押え、700℃に48時間保持した後、室温まで徐冷した。徐冷後の試験片について、室温での残存ビード高さを測定した。なお、残存ビード高さの測定には焦点顕微鏡を使用し、3点の平均値として算出した。   A 150 mm x 150 mm square test piece is cut out from each stainless steel strip, a circular opening with an inner diameter of 75 mm is formed in the center of the test piece, and a bead with a width of 2.5 mm, a height of 0.25 mm, and a protrusion 2R is pressed around the opening. A metal gasket (FIG. 1) was produced by molding. Next, the bead portion was pressed with a jig so as to be flat, held at 700 ° C. for 48 hours, and then gradually cooled to room temperature. About the test piece after slow cooling, the residual bead height at room temperature was measured. In addition, the focus bead microscope was used for the measurement of residual bead height, and it computed as an average value of 3 points | pieces.

結果を表3に示す。測定結果にみられるように、鋼種No.1〜10(本発明例)では700℃×48時間加熱後に室温での残存ビード高さが0.210mm以上であり、メタルガスケットに要求される残存ビード高さを備えていた。他方、比較鋼No.11〜15(比較例)では、何れも残存ビード高さが0.200mm未満であり、メタルガスケットとしての性能上に問題があった。残存ビード高さが低い理由には、次のような原因が考えられる。
比較鋼No.11はSi量が不足し、N量が多すぎることにより、加熱保持中の時効硬化能が低下したため、残存ビード高さが十分でない。比較鋼No.12,13は、加熱される温度がマルテンサイト相の分解温度に相当するため著しく軟化し、残存ビード高さが低くなった。比較鋼No.14,15は過剰量のNを含有していることからSFE値が低くなり、加工誘起マルテンサイトの生成し、高温保持中に焼戻しされたため、残存ビード高さが低くなった。
The results are shown in Table 3. As seen in the measurement results, the steel type No. 1 to 10 (examples of the present invention) had a residual bead height of 0.210 mm or more at room temperature after heating at 700 ° C. for 48 hours, and had a residual bead height required for a metal gasket. On the other hand, Comparative Steel No. In 11 to 15 (comparative examples), the residual bead height was less than 0.200 mm, and there was a problem in performance as a metal gasket. The reason why the remaining bead height is low can be considered as follows.
In comparative steel No. 11, since the amount of Si is insufficient and the amount of N is too large, the age hardening ability during heating and holding is lowered, so the residual bead height is not sufficient. Comparative steel No. Nos. 12 and 13 were remarkably softened because the heating temperature corresponded to the decomposition temperature of the martensite phase, and the residual bead height was lowered. Comparative steel No. Since 14 and 15 contained an excessive amount of N, the SFE value was low, the processing-induced martensite was generated, and tempered during holding at a high temperature, so the residual bead height was low.

Figure 2011252208
Figure 2011252208

この対比から明らかなように、N量を低減したオーステナイト系ステンレス鋼であっても、SFE値の適正管理により、形状凍結性に優れ、長期間にわたって気密性を維持するメタルガスケットが得られることが確認された。   As is clear from this comparison, even with austenitic stainless steel with a reduced amount of N, it is possible to obtain a metal gasket that is excellent in shape freezing property and maintains hermeticity for a long period of time by appropriate management of the SFE value. confirmed.

本発明のオーステナイト系ステンレス鋼は、メタルガスケットに要求される500〜800℃の高温環境での耐へたり性に優れている。また、このオーステナイト系ステンレス鋼をエギゾストマニホルド,インテックマニホルド等の低温用メタルガスケットとして自動車用エンジンに組み込むと、周辺機器の寿命やエンジン自体の性能が向上する。また、エンジン用ガスケットの他に、自動車排ガス部品,自動車排気管の振動遮断用継手に使用されるボールジョイント部に組み込まれる弾性ガスケットにも使用できる。
The austenitic stainless steel of the present invention is excellent in sag resistance in a high temperature environment of 500 to 800 ° C. required for a metal gasket. In addition, when this austenitic stainless steel is incorporated in an automobile engine as a low-temperature metal gasket such as an exhaust manifold or intech manifold, the life of peripheral devices and the performance of the engine itself are improved. In addition to engine gaskets, the present invention can also be used for elastic gaskets incorporated in ball joint parts used in automobile exhaust parts and vibration isolation joints for automobile exhaust pipes.

Claims (3)

C:0.03超〜0.20質量%,Si:2.0超え〜5.0質量%,Mn:2.5質量%以下,Ni:7.0〜17.0質量%,Cr:13.0〜23.0質量%,N:0.05質量%未満を含み、残部がFeおよび不可避的不純物からなり、さらに下記(1)式で示されるSFE値が2〜20であることを特徴とするメタルガスケット用耐熱オーステナイト系ステンレス鋼。
SFE=25.7+2(Ni)+410(C)−0.9(Cr)−77(N)−13(Si)−1.2(Mn)・・・(1)
ただし、式中の各項は、合金元素の含有量(質量%)である。
C: more than 0.03 to 0.20% by mass, Si: more than 2.0 to 5.0% by mass, Mn: 2.5% by mass or less, Ni: 7.0 to 17.0% by mass, Cr: 13 0.0-23.0% by mass, N: less than 0.05% by mass, the balance being Fe and unavoidable impurities, and the SFE value represented by the following formula (1) being 2-20 Heat resistant austenitic stainless steel for metal gaskets.
SFE = 25.7 + 2 (Ni) +410 (C) −0.9 (Cr) −77 (N) −13 (Si) −1.2 (Mn) (1)
However, each term in the formula is the content (mass%) of the alloy element.
さらにNb:0.8質量%以下を含む、請求項1記載のメタルガスケット用耐熱オーステナイト系ステンレス鋼。   Furthermore, the heat-resistant austenitic stainless steel for metal gaskets of Claim 1 containing Nb: 0.8 mass% or less. さらにMo:2.0質量%以下,Cu:4.0質量%以下,Ti:0.5質量%以下,V:1.0質量%以下,Al:0.2質量%以下,B:0.020質量%以下,REM(希土類元素):0.2質量%以下,Y:0.2質量%以下,Ca:0.1質量%以下,Mg:0.1質量%以下の1種又は2種以上を含む請求項1記載のメタルガスケット用耐熱オーステナイト系ステンレス鋼。   Furthermore, Mo: 2.0 mass% or less, Cu: 4.0 mass% or less, Ti: 0.5 mass% or less, V: 1.0 mass% or less, Al: 0.2 mass% or less, B: 0.0 mass%. One or two of 020 mass% or less, REM (rare earth element): 0.2 mass% or less, Y: 0.2 mass% or less, Ca: 0.1 mass% or less, Mg: 0.1 mass% or less The heat-resistant austenitic stainless steel for metal gaskets according to claim 1 including the above.
JP2010127403A 2010-06-03 2010-06-03 Heat-resistant austenitic stainless steel for metal gaskets Active JP5717359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127403A JP5717359B2 (en) 2010-06-03 2010-06-03 Heat-resistant austenitic stainless steel for metal gaskets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127403A JP5717359B2 (en) 2010-06-03 2010-06-03 Heat-resistant austenitic stainless steel for metal gaskets

Publications (2)

Publication Number Publication Date
JP2011252208A true JP2011252208A (en) 2011-12-15
JP5717359B2 JP5717359B2 (en) 2015-05-13

Family

ID=45416353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127403A Active JP5717359B2 (en) 2010-06-03 2010-06-03 Heat-resistant austenitic stainless steel for metal gaskets

Country Status (1)

Country Link
JP (1) JP5717359B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651749A (en) * 2013-11-22 2015-05-27 刘志强 Medium-carbon multielement heat resistant steel
WO2015151771A1 (en) * 2014-04-02 2015-10-08 日新製鋼株式会社 Austenitic stainless-steel sheet for gasket, and gasket
JP2015178664A (en) * 2014-03-19 2015-10-08 日新製鋼株式会社 Double structure exhaust manifold
WO2016027709A1 (en) * 2014-08-19 2016-02-25 日新製鋼株式会社 Austenitic stainless steel sheet and metal gasket
KR20180059548A (en) 2015-10-06 2018-06-04 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel plate
CN111118411A (en) * 2019-12-16 2020-05-08 嘉兴吉森科技有限公司 High-strength stainless steel and manufacturing method thereof
CN111542629A (en) * 2017-12-28 2020-08-14 株式会社Ihi Heat-resistant cast steel and supercharger member
EP3875624A4 (en) * 2018-10-30 2022-08-31 NIPPON STEEL Stainless Steel Corporation Austenitic stainless steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339682A (en) * 1992-06-05 1993-12-21 Nisshin Steel Co Ltd Heat resistant austenitic stainless steel excellent in high temperature salt damage corrosion resistance and high temperature fatigue property
JPH0987809A (en) * 1995-09-27 1997-03-31 Kawasaki Steel Corp Hot rolled plate of chromium-containing austenitic stainless steel for automobile exhaust system material
JP2001059141A (en) * 1999-08-18 2001-03-06 Sumitomo Metal Ind Ltd Austenitic stainless steel and automotive exhaust system paprts
JP2006070314A (en) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd High-strength stainless steel strip superior in delayed-fracture resistance, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339682A (en) * 1992-06-05 1993-12-21 Nisshin Steel Co Ltd Heat resistant austenitic stainless steel excellent in high temperature salt damage corrosion resistance and high temperature fatigue property
JPH0987809A (en) * 1995-09-27 1997-03-31 Kawasaki Steel Corp Hot rolled plate of chromium-containing austenitic stainless steel for automobile exhaust system material
JP2001059141A (en) * 1999-08-18 2001-03-06 Sumitomo Metal Ind Ltd Austenitic stainless steel and automotive exhaust system paprts
JP2006070314A (en) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd High-strength stainless steel strip superior in delayed-fracture resistance, and manufacturing method therefor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651749A (en) * 2013-11-22 2015-05-27 刘志强 Medium-carbon multielement heat resistant steel
JP2015178664A (en) * 2014-03-19 2015-10-08 日新製鋼株式会社 Double structure exhaust manifold
WO2015151771A1 (en) * 2014-04-02 2015-10-08 日新製鋼株式会社 Austenitic stainless-steel sheet for gasket, and gasket
JP2015196889A (en) * 2014-04-02 2015-11-09 日新製鋼株式会社 Austenitic stainless steel sheet for gasket and the gasket
KR102351192B1 (en) 2014-04-02 2022-01-17 닛테츠 스테인레스 가부시키가이샤 Austenitic stainless-steel sheet for gasket, and gasket
TWI657151B (en) * 2014-04-02 2019-04-21 日商日新製鋼股份有限公司 Austenite series stainless stell sheet for gasket, and gasket made of such sheet
CN106103779A (en) * 2014-04-02 2016-11-09 日新制钢株式会社 Sealing ring austenite stainless steel plate and sealing ring
KR20160140897A (en) * 2014-04-02 2016-12-07 닛신 세이코 가부시키가이샤 Austenitic stainless-steel sheet for gasket, and gasket
US10161524B2 (en) 2014-04-02 2018-12-25 Nisshin Steel Co., Ltd. Austenitic stainless steel sheet for gasket, and gasket
EP3128034A4 (en) * 2014-04-02 2017-10-04 Nisshin Steel Co., Ltd. Austenitic stainless-steel sheet for gasket, and gasket
US10060003B2 (en) 2014-08-19 2018-08-28 Nisshin Steel Co., Ltd. Austenitic stainless steel sheet and metal gasket
WO2016027709A1 (en) * 2014-08-19 2016-02-25 日新製鋼株式会社 Austenitic stainless steel sheet and metal gasket
EP3184662A4 (en) * 2014-08-19 2018-03-21 Nisshin Steel Co., Ltd. Austenitic stainless steel sheet and metal gasket
KR20170054410A (en) 2014-08-19 2017-05-17 닛신 세이코 가부시키가이샤 Austenitic stainless steel sheet and metal gasket
TWI657152B (en) * 2014-08-19 2019-04-21 日商日新製鋼股份有限公司 Austenite stainless steel plate and metal gasket
JP2016041843A (en) * 2014-08-19 2016-03-31 日新製鋼株式会社 Austenitic stainless steel plate and metal gasket
CN106687612B (en) * 2014-08-19 2019-08-13 日新制钢株式会社 Austenite stainless steel plate and metallic gasket
KR102077414B1 (en) 2015-10-06 2020-02-13 닛테츠 스테인레스 가부시키가이샤 Austenitic Stainless Steel Sheet
KR20180059548A (en) 2015-10-06 2018-06-04 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel plate
CN111542629A (en) * 2017-12-28 2020-08-14 株式会社Ihi Heat-resistant cast steel and supercharger member
US11414735B2 (en) 2017-12-28 2022-08-16 Ihi Corporation Heat-resistant cast steel and turbocharger part
EP3875624A4 (en) * 2018-10-30 2022-08-31 NIPPON STEEL Stainless Steel Corporation Austenitic stainless steel sheet
CN111118411A (en) * 2019-12-16 2020-05-08 嘉兴吉森科技有限公司 High-strength stainless steel and manufacturing method thereof
CN111118411B (en) * 2019-12-16 2021-03-26 浙江吉森金属科技有限公司 High-strength stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP5717359B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5717359B2 (en) Heat-resistant austenitic stainless steel for metal gaskets
JP6029611B2 (en) Austenitic stainless steel sheet and gasket for gasket
KR101744432B1 (en) Heat-resistant austenitic stainless steel sheet
JP5885884B2 (en) Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
US20060237102A1 (en) Ferritic steel sheet concurrently improved in formability, high-temperature strength, high temperature oxidation resistance, and low temperature toughness
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP2014145097A (en) Ferritic stainless steel sheet for automotive exhaust system member suitable for high temperature press molding and manufacturing method of ferritic stainless steel molding part
TWI548758B (en) Fat iron stainless steel
JPWO2017179346A1 (en) Martensitic stainless steel sheet
US7341690B2 (en) Soft Cr-containing steel
JP6296435B2 (en) Manufacturing method of heat-resistant austenitic stainless steel for metal gasket
JP4785302B2 (en) High strength austenitic stainless steel for metal gaskets
CN109321829B (en) Stainless steel plate with yield strength of 900MPa and manufacturing method thereof
JP4116134B2 (en) Austenitic stainless steel excellent in high temperature sag resistance and method for producing the same
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP2007197779A (en) Manufacturing method of cr-containing steel sheet having excellent high-temperature strength and toughness, and cr-containing steel sheet
JP5796398B2 (en) Ferritic stainless steel with excellent thermal and high temperature fatigue properties
JP2014218687A (en) HIGH Mn AUSTENITIC STAINLESS STEEL AND METHOD FOR PRODUCING THE SAME
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JP5796397B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP2021070857A (en) Ferritic stainless steel having high temperature creep strength and excellent workability
JP2010053420A (en) Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property, oxidation resistance and toughness
KR20190025403A (en) Ferritic stainless steel for exhaust system heat exchanger having excellent sound absorption ability and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5717359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250