JP2011250037A - Polarization multiplexing optical transmission system - Google Patents

Polarization multiplexing optical transmission system Download PDF

Info

Publication number
JP2011250037A
JP2011250037A JP2010119797A JP2010119797A JP2011250037A JP 2011250037 A JP2011250037 A JP 2011250037A JP 2010119797 A JP2010119797 A JP 2010119797A JP 2010119797 A JP2010119797 A JP 2010119797A JP 2011250037 A JP2011250037 A JP 2011250037A
Authority
JP
Japan
Prior art keywords
node
optical
polarization
unit
state information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010119797A
Other languages
Japanese (ja)
Inventor
Tetsuo Komukai
哲郎 小向
Akio Sawara
明夫 佐原
Shunichi Soma
俊一 相馬
Kunihiko Mori
邦彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010119797A priority Critical patent/JP2011250037A/en
Publication of JP2011250037A publication Critical patent/JP2011250037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarization multiplexing optical transmission system, capable of reducing an influence of PDL (polarization-dependent loss).SOLUTION: In the polarization multiplexing optical transmission system performing transmission between a first node and a second node by multiplexing two optical signals having an identical wavelength using mutually orthogonal polarized waves, the first node includes: a receiving unit for obtaining status information of the two optical signals transmitted from the second node; and a transmitting unit for transmitting the status information to the second node. Also, the second node includes: a receiving unit for receiving the status information transmitted from the first node; and based on the status information, a control processing unit for controlling the incident power level difference between the two optical signals input to a transmission path to be transmitted to the first node.

Description

本発明は、偏波多重光伝送システムに関する。特に、本発明は、光伝送路又は光ノードに存在する偏波依存性損失(Polarization Dependent Loss: PDL)の偏波多重光伝送への影響を低減化させる偏波多重光伝送システムに関する。   The present invention relates to a polarization multiplexed optical transmission system. In particular, the present invention relates to a polarization multiplexed optical transmission system that reduces the influence of polarization dependent loss (PDL) existing in an optical transmission line or an optical node on polarization multiplexed optical transmission.

従来の全光ネットワークにおいては、光信号は、単一偏波で伝送される。近年、伝送速度の高速化や帯域使用率の高効率化のために、波長多重に加えて偏波多重方式の導入が検討されている。この偏波多重方式は、同一の波長に、互いに直交する二つの偏波状態が存在することを利用して、これらの二つの偏波状態に独立な二つの信号を対応させて伝送し、受信側で偏波分離を行なうことにより二つの信号を得る。   In conventional all-optical networks, optical signals are transmitted with a single polarization. In recent years, the introduction of a polarization multiplexing scheme in addition to wavelength multiplexing has been studied in order to increase the transmission speed and the efficiency of bandwidth utilization. This polarization multiplexing method utilizes the fact that two polarization states that are orthogonal to each other exist at the same wavelength, and transmits and receives two independent signals corresponding to these two polarization states. Two signals are obtained by performing polarization separation on the side.

ところで、実際の光伝送路においては、偏波依存性損失(Polarization Dependent Loss: PDL)が存在し、信号光の偏波状態によって信号光が過剰に減衰することが知られている。しかしながら、単一偏波の光伝送システムでは、このPDLによる減衰を光ノードで補償することができる。   By the way, in an actual optical transmission line, there is a polarization dependent loss (PDL), and it is known that the signal light is excessively attenuated depending on the polarization state of the signal light. However, in a single-polarization optical transmission system, this attenuation due to PDL can be compensated by the optical node.

しかし、偏波多重方式の場合、二つの光信号のうち、どちらかが受信端で大きくレベルが下がり、良好な伝送特性が得られない恐れがある(非特許文献1参照)。以下にこれを詳細に説明する。   However, in the case of the polarization multiplexing system, one of the two optical signals is greatly reduced in level at the receiving end, and there is a fear that good transmission characteristics cannot be obtained (see Non-Patent Document 1). This will be described in detail below.

偏波多重方式は、同一波長の光信号を偏波が直交する状態で、送信元で偏波多重して伝送する方式である。図1は、PDLの偏波多重光信号への影響を説明するための図である。図1(a)に示すように、送信元で、二つの光信号を互いに直交する二つの偏波(X偏波及びY偏波)に偏波多重する。ここで例えばX偏波の方向と光伝送路のPDLの損失軸(図1では水平軸)が一致したとすると、図1(b)のように伝搬後にX偏波が減衰することになる。PDLが大きいほど、X偏波が大きく減衰する。   The polarization multiplexing method is a method in which an optical signal having the same wavelength is transmitted by polarization multiplexing at the transmission source in a state where the polarization is orthogonal. FIG. 1 is a diagram for explaining the influence of PDL on a polarization multiplexed optical signal. As shown in FIG. 1A, at the transmission source, two optical signals are polarized and multiplexed into two polarizations (X polarization and Y polarization) orthogonal to each other. If, for example, the direction of X polarization coincides with the loss axis (horizontal axis in FIG. 1) of the PDL of the optical transmission line, the X polarization is attenuated after propagation as shown in FIG. The greater the PDL, the greater the attenuation of X polarization.

T. Duthel et al., "Impact of polarization dependent loss on coherent POLMUX-NRZ-DQPSK", OThU5, OFC/NFOEC2008, 2008.T. Duthel et al., "Impact of polarization dependent loss on coherent POLMUX-NRZ-DQPSK", OThU5, OFC / NFOEC2008, 2008. 菊池和朗、「ディジタルコヒーレント光受信機を用いた偏波多重分離および偏波分散補償技術の基礎」、OCS2009-T01、OCS第二種研究会第1回「ディジタル信号処理による新しい光伝送技術」、2009年7月.Kazuaki Kikuchi, “Basics of Polarization Demultiplexing and Polarization Dispersion Compensation Technology Using a Digital Coherent Optical Receiver”, OCS2009-T01, OCS Second Class Study Group 1 “New Optical Transmission Technology Using Digital Signal Processing”, July 2009. T. Matsuda et al., "Field trial of 43-Gbit/s RZ-DQPSK transmission in aerial fiber with rapidly changing SOP", NWD1, OFC/NFOEC2009, 2009.T. Matsuda et al., "Field trial of 43-Gbit / s RZ-DQPSK transmission in aerial fiber with rapidly changing SOP", NWD1, OFC / NFOEC2009, 2009.

図2及び図3を参照して、光信号を光伝送路で伝送する場合のパワーレベルの変化を説明する。図2は、単一偏波光伝送の場合のパワーレベルの変化を説明するための図である。図2においてノードAからノードCに光信号を伝送する場合を考える。図2のように単一偏波方式で非偏波多重の場合、偏波でチャネルが規定されているわけではなく、単一偏波状態であるため、仮にノードAとノードBとの間の光伝送路(図2(b)ではBC間)のPDLにより過剰に減衰を受けても光ノードの光増幅器で所定のレベルに回復させることができ(図2(b)ではDの位置)、その後次のノードに送られる。ただし、受信端(図2(b)ではFの位置)ではノードBとノードCとの間の光伝送路(図2(b)ではDE間)でのPDLの影響を受ける可能性はある。   With reference to FIG. 2 and FIG. 3, a change in power level when an optical signal is transmitted through an optical transmission line will be described. FIG. 2 is a diagram for explaining a change in power level in the case of single polarization optical transmission. Consider the case where an optical signal is transmitted from node A to node C in FIG. In the case of non-polarization multiplexing in the single polarization method as shown in FIG. 2, the channel is not defined by the polarization, and is in a single polarization state. Even if it is excessively attenuated by the PDL of the optical transmission line (between BC in FIG. 2B), it can be restored to a predetermined level by the optical amplifier of the optical node (position D in FIG. 2B). Then it is sent to the next node. However, at the receiving end (position F in FIG. 2B), there is a possibility of being affected by the PDL in the optical transmission path between node B and node C (between DE in FIG. 2B).

図3は、偏波多重光伝送の場合のパワーレベルの変化を説明するための図である。図3のように偏波多重方式の場合、現状の光ノードでは、二つの異なる偏波状態の光信号のパワーの和が一定になるように制御される。このため、どちらかのチャネルのパワーがPDLにより過剰に減衰して小さくなっていても、十分にパワーが回復しないまま(図3(b)ではDの位置)、次のノードに送られることになる(図3(b)ではX偏波が回復していないことを示す)。さらにその信号光(図3(b)ではX偏波)が再び過剰な減衰を被った場合(図3(b)ではDE間)、受信端ではその光信号のレベルが極端に小さくなり、必要な光信号対雑音比(Optical Signal Noise Ratio: OSNR)が得られなくなる可能性がある。   FIG. 3 is a diagram for explaining a change in power level in the case of polarization multiplexed optical transmission. In the case of the polarization multiplexing system as shown in FIG. 3, the current optical node is controlled so that the sum of the powers of optical signals in two different polarization states is constant. For this reason, even if the power of either channel is excessively attenuated and reduced by PDL, the power is not recovered sufficiently (position D in FIG. 3B) and is sent to the next node. (In FIG. 3B, the X polarization is not recovered). Furthermore, if the signal light (X-polarized wave in FIG. 3B) again suffers excessive attenuation (between DE in FIG. 3B), the optical signal level becomes extremely small at the receiving end, which is necessary. An optical signal noise ratio (OSNR) may not be obtained.

またこのように二つの信号間のレベル偏差が大きい場合、最近開発が進められているディジタルコヒーレント方式においては、コヒーレントレシーバでの偏波分離が困難になることが予想される(非特許文献2参照)。このように、偏波多重方式を全光ネットワークに導入する場合、現状の技術だけの適用では、光伝送路のPDLにより伝送特性が劣化する恐れがある。また光ノードを構成する部品自体にも多少ともPDLが存在するため、光信号が多くの光ノードを通過する場合はその影響は無視できないと考えられる。   In addition, when the level deviation between two signals is large in this way, it is expected that polarization separation at a coherent receiver will be difficult in a digital coherent system that has been developed recently (see Non-Patent Document 2). ). As described above, when the polarization multiplexing method is introduced into the all-optical network, the transmission characteristics may be deteriorated due to the PDL of the optical transmission line if only the current technology is applied. In addition, since there are some PDLs in the parts constituting the optical node itself, it is considered that the influence cannot be ignored when the optical signal passes through many optical nodes.

上記の解決策としては、例えば各光ノードでチャネル(波長)毎に何らかの手段で偏波分離し、X偏波及びY偏波のレベルが同一になるように制御した後、再度、偏波多重し、光伝送路に送出することが考えられる。しかしながら、この場合、数十に及ぶチャネル(波長)毎に機能を実装することになるので各ノードが複雑化するとともにコストの大幅な上昇をもたらすと考えられる。したがって簡潔な手段でPDLの影響を低減化することが望まれる。   As the above solution, for example, polarization separation is performed by some means for each channel (wavelength) at each optical node, and control is performed so that the levels of X polarization and Y polarization are the same, and then polarization multiplexing is performed again. However, it is conceivable to send it to the optical transmission line. However, in this case, since the function is implemented for every several tens of channels (wavelengths), it is considered that each node becomes complicated and the cost is significantly increased. Therefore, it is desirable to reduce the influence of PDL by simple means.

本発明は、PDLの影響を低減化できる偏波多重光伝送システムを簡略な構成で提供することを目的とする。   An object of the present invention is to provide a polarization multiplexed optical transmission system capable of reducing the influence of PDL with a simple configuration.

本発明の偏波多重光伝送システムは、
第1ノードと第2ノードとの間で、同一波長の二つの光信号を互いに直交する偏波で多重して伝送する偏波多重光伝送システムであって、
前記第1ノードは、
前記第2ノードから送信された二つの光信号の状態情報を取得する受信部と、
前記状態情報を前記第2ノードに送信する送信部と、
を有し、
前記第2ノードは、
前記第1ノードから送信された前記状態情報を受信する受信部と、
前記状態情報に基づいて、前記第1ノードに送信する二つの光信号の伝送路への入射パワーのレベル差を制御する制御処理部と、
を有することを特徴とする。
The polarization multiplexed optical transmission system of the present invention,
A polarization multiplexing optical transmission system that multiplexes and transmits two optical signals having the same wavelength with mutually orthogonal polarizations between a first node and a second node,
The first node is
A receiving unit for acquiring state information of two optical signals transmitted from the second node;
A transmitter for transmitting the state information to the second node;
Have
The second node is
A receiving unit for receiving the state information transmitted from the first node;
A control processing unit for controlling a difference in level of incident power to a transmission path of two optical signals to be transmitted to the first node based on the state information;
It is characterized by having.

本発明によれば、PDLの影響を低減化できる偏波多重光伝送システムを簡略な構成で提供することが可能になる。   According to the present invention, it is possible to provide a polarization multiplexed optical transmission system capable of reducing the influence of PDL with a simple configuration.

PDLの偏波多重光信号への影響を説明するための図Diagram for explaining the effect of PDL on polarization multiplexed optical signals 単一偏波光伝送の場合のパワーレベルの変化を説明するための図Diagram for explaining the change in power level in the case of single polarization optical transmission 偏波多重光伝送の場合のパワーレベルの変化を説明するための図The figure for explaining the change of the power level in the case of the polarization multiplexing optical transmission 双方向通信状態の全光ネットワークの例を示す図Diagram showing an example of an all-optical network in a bidirectional communication state 偏波多重伝送方式による双方向通信状態の全光ネットワークの例を示す図The figure which shows the example of the all-optical network of the two-way communication state by the polarization multiplexing transmission system 光分岐挿入機能のある光ノードの構成例を示す図Diagram showing an example configuration of an optical node with an optical add / drop function 本発明の実施形態に係る偏波多重光伝送システムの概念を示す図The figure which shows the concept of the polarization multiplexing optical transmission system which concerns on embodiment of this invention 光ノードにおける偏波多重トランスポンダ機能部の例を示す図The figure which shows the example of the polarization multiplexing transponder function part in an optical node 本発明の実施形態に係る光ノードにおける偏波多重トランスポンダ機能部の例を示す図The figure which shows the example of the polarization multiplexing transponder function part in the optical node which concerns on embodiment of this invention 本発明の実施形態に係る光ノードにおける制御処理部の例を示すブロック図The block diagram which shows the example of the control process part in the optical node which concerns on embodiment of this invention

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の実施形態では、同一波長の二つの光信号を互いに直交する偏波で多重して伝送路を伝送する偏波多重光伝送において、伝送路のPDLの影響を低減あるいは緩和するために、受信側で二つの光信号の状態情報(パワーレベル、ビット誤り率、光信号対雑音比、Q値等)を取得し、取得した状態情報を基に送信元の二つの光信号の伝送路への入射パワーのレベル差を制御する。例えば、二つの信号の受信レベルを比較して、低い方の信号のレベルを送信元で増加させ、受信時のパワーレベルが一致することを目標に制御を行なう。   In the embodiment of the present invention, in polarization multiplexed optical transmission in which two optical signals having the same wavelength are multiplexed with polarizations orthogonal to each other and transmitted through the transmission line, in order to reduce or alleviate the influence of the PDL of the transmission line, The receiving side acquires the status information (power level, bit error rate, optical signal-to-noise ratio, Q value, etc.) of the two optical signals, and based on the acquired status information to the transmission path of the two optical signals of the transmission source Controls the level difference of the incident power. For example, the reception levels of two signals are compared, the level of the lower signal is increased at the transmission source, and control is performed with the goal of matching the power levels at the time of reception.

送信元でのレベル差の制御のため、受信側での二つの信号の状態情報を送信元に送る必要がある。ここで、一般に光ファイバを伝搬する信号光の偏波状態は時間的に変動し(非特許文献3参照)、そのため伝送路のPDLの光信号への影響も時間的に変化し、光信号のレベルは時間的に変動する。したがって、受信側は状態情報を逐次送る必要があり、通常の光パスの他に制御用の情報を送る光パスを用意する必要がある。光伝送路が固定されている長距離対地間伝送の場合、別途制御情報用の光パスを用意することは容易であるが、メトロネットワーク等の光パスの追加や削除が頻繁な光分岐挿入システムの場合、別途制御情報用の光パスを用意することは実用的には困難と予想される。   In order to control the level difference at the transmission source, it is necessary to send the status information of the two signals on the reception side to the transmission source. Here, in general, the polarization state of the signal light propagating through the optical fiber fluctuates with time (see Non-Patent Document 3), and therefore, the influence of the PDL of the transmission path on the optical signal also changes with time. The level varies with time. Therefore, it is necessary for the receiving side to sequentially transmit state information, and it is necessary to prepare an optical path for transmitting control information in addition to a normal optical path. In the case of long-distance to ground transmission where the optical transmission line is fixed, it is easy to prepare a separate optical path for control information, but an optical add / drop system that frequently adds and deletes optical paths such as metro networks In this case, it is practically difficult to prepare a separate optical path for control information.

ところで一般に全光ネットワークでは、一般にあるノードから別のノードに光パスが設定される場合、双方向に光パスが設定され、双方向通信状態になっている。図4に一般的な全光ネットワークでの双方向通信の模式図を示す。図4の上部はノードAからノードCへの光パスを示しており、ノードAの送信部TxからノードCの受信部Rxに光信号が伝送される。同様に、図4の下部はノードCからノードAへの光パスを示しており、ノードCの送信部TxからノードAの受信部Rxに光信号が伝送される。   In general, in an all-optical network, when an optical path is generally set from one node to another node, the optical path is set in both directions and is in a bidirectional communication state. FIG. 4 shows a schematic diagram of bidirectional communication in a general all-optical network. The upper part of FIG. 4 shows an optical path from the node A to the node C, and an optical signal is transmitted from the transmission unit Tx of the node A to the reception unit Rx of the node C. Similarly, the lower part of FIG. 4 shows an optical path from the node C to the node A, and an optical signal is transmitted from the transmission unit Tx of the node C to the reception unit Rx of the node A.

偏波多重光伝送システムの場合も図5のような構成となる。図5の上部はノードAからノードCへの光パスを示しており、ノードAのX偏波用の送信部Tx(X)及びY偏波用の送信部Tx(Y)からノードCの偏波分離機能付き受信部Rx(X/Y)に光信号が伝送される。同様に、図5の下部はノードCからノードAへの光パスを示しており、ノードCのX偏波用の送信部Tx(X)及びY偏波用の送信部Tx(Y)からノードAの偏波分離機能付き受信部Rx(X/Y)に光信号が伝送される。   The configuration of the polarization multiplexed optical transmission system is also as shown in FIG. The upper part of FIG. 5 shows an optical path from the node A to the node C, and the deviation of the node C from the transmission unit Tx (X) for X polarization and the transmission unit Tx (Y) for Y polarization of the node A is shown. An optical signal is transmitted to the receiver Rx (X / Y) with a wave separation function. Similarly, the lower part of FIG. 5 shows an optical path from the node C to the node A, and the node C transmits the X polarization transmission unit Tx (X) and the Y polarization transmission unit Tx (Y) to the node. The optical signal is transmitted to the receiving unit Rx (X / Y) with the polarization separation function of A.

このように1つのノードに送信部Tx及び受信部Rxがあり、送信部Tx及び受信部Rxは、通常、図6のように光分岐挿入機能のある光ノードの中で、トランスポンダ機能部として1つのパッケージ内に収容されている。なお、図6は単一偏波光伝送の場合を示しているが、偏波多重光伝送の場合も同様に、送信部及び受信部は、1つのパッケージ内に収容される。そのため、受信部で得られた状態情報を送信部に転送することが可能である。   As described above, the transmission unit Tx and the reception unit Rx are provided in one node, and the transmission unit Tx and the reception unit Rx are usually 1 as a transponder function unit in an optical node having an optical add / drop function as shown in FIG. Contained in one package. Note that FIG. 6 shows the case of single polarization optical transmission, but similarly in the case of polarization multiplexed optical transmission, the transmission unit and the reception unit are accommodated in one package. Therefore, it is possible to transfer the state information obtained by the receiving unit to the transmitting unit.

<本発明の実施形態に係る偏波多重光伝送システムの構成>
図7は、本発明の実施形態に係る偏波多重光伝送システムの概念を示す図である。図5を参照して説明したように、偏波多重光伝送システムにおいても、1つのノード(ノードA、ノードC)にX偏波用の送信部Tx(X)(11A、21C)とY偏波用の送信部Tx(Y)(12A、22C)と偏波多重部POLMUX(13A、23C)があり、また、偏波分離機能付き受信部Rx(X/Y)(10A、20C)がある。本発明の実施形態では、ノードAとノードCとの間で光パスが設定されている場合、図7のようにノードAからノードCへの光パス(A→C)に関しては、ノードCの受信部Rx(X/Y)(20C)で二つの信号の状態を検知し、状態情報を、直ちに同じノードCの送信部Tx(X),Tx(Y)(21C、22C)に送り、通常の伝送信号と共にノードAの受信部Rx(X/Y)(10A)に向けて伝送する。ノードAの受信部Rx(X/Y)(10A)が通常の伝送信号と共に状態情報を受信すると、直ちに同じノードAの送信部Tx(X),Tx(Y)(11A、12A)に送り、送信部Tx(X),Tx(Y)(11A、12A)が送信光の出力を制御する。このように、信号光の偏波変動に対応してPDLの影響を低減あるいは緩和することができる。ノードCからノードAへの光パス(C→A)も同様に処理を実施し、両パスともPDLの影響を低減化することができる。
<Configuration of Polarization Multiplexed Optical Transmission System According to Embodiment of the Present Invention>
FIG. 7 is a diagram showing a concept of the polarization multiplexed optical transmission system according to the embodiment of the present invention. As described with reference to FIG. 5, also in the polarization multiplexed optical transmission system, one node (node A, node C) has a transmission unit Tx (X) (11A, 21C) for X polarization and a Y polarization. There are a wave transmitting unit Tx (Y) (12A, 22C) and a polarization multiplexing unit POLMUX (13A, 23C), and a receiving unit Rx (X / Y) (10A, 20C) with a polarization separation function. . In the embodiment of the present invention, when an optical path is set between the node A and the node C, the optical path (A → C) from the node A to the node C as shown in FIG. The reception unit Rx (X / Y) (20C) detects the state of the two signals, and immediately sends the state information to the transmission unit Tx (X), Tx (Y) (21C, 22C) of the same node C. Are transmitted toward the receiving unit Rx (X / Y) (10A) of the node A. When the receiving unit Rx (X / Y) (10A) of the node A receives the state information together with the normal transmission signal, it immediately sends it to the transmitting units Tx (X), Tx (Y) (11A, 12A) of the same node A, Transmitters Tx (X) and Tx (Y) (11A, 12A) control the output of transmission light. In this way, the influence of PDL can be reduced or alleviated corresponding to the polarization fluctuation of the signal light. The optical path from node C to node A (C → A) is processed in the same way, and both paths can reduce the influence of PDL.

このように双方向通信の場合には、対向する光パスを用いて信号光の状態情報を伝送信号と共に送ることができるため、高速に状態情報を帰還することができ、高速な偏波変動に対応できる。なお、信号光の状態情報は、必ずしも通常の伝送信号と共に伝送される必要はなく、例えば制御情報用のパスのように、対向する光パス以外の経路によって伝送されてもよい。   In this way, in the case of bidirectional communication, since the state information of the signal light can be sent together with the transmission signal using the opposite optical path, the state information can be fed back at a high speed, resulting in high-speed polarization fluctuations. Yes. Note that the state information of the signal light does not necessarily have to be transmitted together with a normal transmission signal, and may be transmitted by a route other than the opposing optical path, for example, a control information path.

典型的な偏波多重光伝送システムと異なる点はトランスポンダ機能部(集積部)の構成及び機能である。図8に典型的な光ノードにおけるトランスポンダ機能部の例を示す。トランスポンダの送信の機能を果たす部分には、X偏波用の送信部Tx(X)(11A、21A)とY偏波用の送信部Tx(Y)(12A、22A)があり、さらに偏波多重部POLMUX(13A、23A)が実装される。受信部Rx(X/Y)(10A、20A)は単一偏波用のトランスポンダ受信部とは異なり、偏波分離機能を有している。通常、トランスポンダの送信部Tx(X),Tx(Y)と受信部Rx(X/Y)は、互いに情報のやり取りをすることはない。   The difference from a typical polarization multiplexed optical transmission system is the configuration and function of a transponder function unit (integration unit). FIG. 8 shows an example of a transponder function unit in a typical optical node. The part that performs the transmission function of the transponder includes a transmission unit Tx (X) (11A, 21A) for X polarization and a transmission unit Tx (Y) (12A, 22A) for Y polarization. Multiplexer POLMUX (13A, 23A) is implemented. Unlike the single-polarization transponder receiving unit, the receiving unit Rx (X / Y) (10A, 20A) has a polarization separation function. Normally, the transmission units Tx (X), Tx (Y) and the reception unit Rx (X / Y) of the transponder do not exchange information with each other.

図9に本発明の実施形態に係る光ノードにおけるトランスポンダ機能部の例を示す。ここでは、ノードAのトランスポンダ機能部について例示する。トランスポンダ機能部の受信部Rx(X/Y)(20A)は、対地のノードから伝送されて来た二つの信号の状態情報を取得する。状態情報としてパワーレベルを用いてもよい。また、パワーレベルの他に、光信号対雑音比(OSNR)、誤り率、Q値なども信号のパワーレベルと相関するので、送信出力を制御するための状態情報として用いることができる。このような状態情報のうちいずれか一つが用いられてもよく、いずれかの組み合わせが用いられてもよい。   FIG. 9 shows an example of the transponder function unit in the optical node according to the embodiment of the present invention. Here, the transponder function unit of the node A is illustrated. The receiving unit Rx (X / Y) (20A) of the transponder function unit acquires the state information of the two signals transmitted from the ground node. A power level may be used as the state information. In addition to the power level, an optical signal-to-noise ratio (OSNR), an error rate, a Q value, and the like correlate with the power level of the signal and can be used as status information for controlling the transmission output. Any one of such state information may be used, and any combination may be used.

この状態情報は対地のノードから送信されて来る二つの信号のレベル制御に用いられる。このため、トランスポンダ機能部の制御処理部(24A)は、取得した状態情報を同じパッケージ内の送信部Tx(X),Tx(Y)(21A、22A)に伝達する。制御処理部(24A)は送信部Tx(X),Tx(Y)(21A、22A)から対地に向かって送信される伝送信号と共にこの状態情報を信号化して伝送する。なお、図9では、制御処理部(24A)を介して受信部Rx(X/Y)(20A)から送信部Tx(X),Tx(Y)(21A、22A)に状態情報を伝達しているが、受信部Rx(X/Y)(20A)から送信部Tx(X),Tx(Y)(21A、22A)に直接に状態情報を伝達してもよい。   This state information is used for level control of two signals transmitted from the ground node. For this reason, the control processing unit (24A) of the transponder function unit transmits the acquired state information to the transmission units Tx (X), Tx (Y) (21A, 22A) in the same package. The control processing unit (24A) converts this state information into a signal and transmits it along with transmission signals transmitted from the transmitting units Tx (X) and Tx (Y) (21A, 22A) to the ground. In FIG. 9, the state information is transmitted from the receiving unit Rx (X / Y) (20A) to the transmitting units Tx (X), Tx (Y) (21A, 22A) via the control processing unit (24A). However, the state information may be directly transmitted from the reception unit Rx (X / Y) (20A) to the transmission units Tx (X) and Tx (Y) (21A, 22A).

一方、対地のノードからは、対地に送信した当該ノードの信号の状態情報が通常の伝送信号と共に送られて来ており、受信部Rx(X/Y)(10A)により受信される。制御処理部(14A)は、その状態情報を抽出して送信部Tx(X),Tx(Y)(11A、12A)に送る。送信部Tx(X),Tx(Y)(11A、12A)は、この情報を基に自らの送信光のX偏波及びY偏波の出力を制御し、対地に向かって送信する。その際、二つの光信号の伝送路への入射パワーの調整に、例えば図9のように可変光減衰器(Variable Optical Attenuator: VOA)(15A、16A)を用いてもよい。具体的には、送信部Tx(X),Tx(Y)(11A、12A)がX偏波及びY偏波の出力を直接制御する代わりに、制御処理部(14A)が可変減衰器(15A、16A)の減衰量を制御することにより、X偏波及びY偏波の出力を制御してもよい。   On the other hand, the state information of the signal of the node transmitted to the ground is sent together with the normal transmission signal from the ground node, and is received by the receiving unit Rx (X / Y) (10A). The control processing unit (14A) extracts the state information and sends it to the transmission units Tx (X), Tx (Y) (11A, 12A). The transmission units Tx (X), Tx (Y) (11A, 12A) control the output of the X polarization and the Y polarization of their transmission light based on this information, and transmit toward the ground. At that time, for example, a variable optical attenuator (VOA) (15A, 16A) as shown in FIG. 9 may be used to adjust the incident power to the transmission path of the two optical signals. Specifically, instead of the transmitters Tx (X), Tx (Y) (11A, 12A) directly controlling the output of the X polarization and the Y polarization, the control processing unit (14A) is controlled by the variable attenuator (15A). 16A), the output of the X polarization and the Y polarization may be controlled.

なお、図9では1つの光ノード(ノードA)における偏波多重トランスポンダ機能部を示しているが、対地の光ノード(ノードC)も同様に構成される。すなわち、ノードCにも、ノードAと同じ各機能部10C〜16C及び20C〜26Cが含まれる。   Although FIG. 9 shows the polarization multiplexing transponder function unit in one optical node (node A), the ground optical node (node C) is similarly configured. That is, the node C includes the same functional units 10C to 16C and 20C to 26C as the node A.

図10に本発明の実施形態に係る光ノードにおける制御処理部の例を示す。図10の上部の制御処理部(14A)が送信元の制御処理部に対応し、図10の下部の制御処理部(24C)が受信側の制御処理部に対応する。外乱としての偏波変動により、受信部Rx(X/Y)(20C)でのX偏波の受信パワーPx及びY偏波の受信パワーPyが変動する。ただし、通常、両偏波のパワーの和は各光ノードで一定に制御されるので、Pxの増減とPyの増減は逆になる。つまり、例えばPxが増えるとPyがその分減ることになる。すなわちPxとPyのレベル比が変動することになる。受信部Rx(X/Y)(20C)での受信パワーPx及びPyから、現時点でのΔPを信号処理回路(27C)で取得する。制御回路(18A)は、目標設定値をΔP=Px-Py=0として、送信出力を決定する。決定された送信出力は、VOAドライバ(19A)を介してVOA(15A)の出力制御に用いられる。X偏波もY偏波もPDLの影響を受けるが、通常、上述したように光パス上の各光ノードでX偏波とY偏波の総和は一定に保たれるので伝送設計上問題がなければX偏波のみの出力制御でもよい。またPDLが全く存在しない場合、X偏波とY偏波のパワーが送信時に等しければ、本来、X偏波とY偏波のパワーは受信部でも等しくなるが、そのパワーを目標設定値とし、信号処理部(27C)から取得したPxの値との差分を用いて、制御回路(18A)で送信出力を決定してもよい。このようにしてPxとPyのレベル差、あるいはレベル比を制御することにより、偏波変動の影響を緩和することができる。   FIG. 10 shows an example of a control processing unit in the optical node according to the embodiment of the present invention. The upper control processing unit (14A) in FIG. 10 corresponds to the transmission source control processing unit, and the lower control processing unit (24C) in FIG. 10 corresponds to the reception side control processing unit. Due to the polarization fluctuation as disturbance, the reception power Px of the X polarization and the reception power Py of the Y polarization change in the reception unit Rx (X / Y) (20C). However, since the sum of the powers of both polarizations is normally controlled at each optical node, increase / decrease in Px and increase / decrease in Py are reversed. That is, for example, when Px increases, Py decreases accordingly. That is, the level ratio of Px and Py varies. The current ΔP is acquired by the signal processing circuit (27C) from the reception powers Px and Py at the reception unit Rx (X / Y) (20C). The control circuit (18A) sets the target set value as ΔP = Px−Py = 0 and determines the transmission output. The determined transmission output is used for output control of the VOA (15A) via the VOA driver (19A). Both X polarization and Y polarization are affected by PDL, but usually the total sum of X polarization and Y polarization is kept constant at each optical node on the optical path as described above. Otherwise, output control only for X polarization may be performed. Also, if there is no PDL at all, if the power of X polarization and Y polarization is equal at the time of transmission, the power of X polarization and Y polarization is essentially the same at the receiver, but that power is the target setting value, The transmission output may be determined by the control circuit (18A) using the difference from the value of Px acquired from the signal processing unit (27C). By controlling the level difference or level ratio between Px and Py in this way, the influence of polarization fluctuation can be mitigated.

ディジタルコヒーレント方式の場合、トランスポンダの受信部(コヒーレントレシーバ)で偏波ビームスプリッタ等の光学的な偏波分離手段とディジタル信号処理との併用により偏波分離が行なわれる。しかし、光パス設定時には二つの光信号のレベル差が大きいため、最初はディジタル信号処理による偏波分離動作ができない可能性がある。その場合、まず光学的な偏波分離手段のみを利用して、大まかな二つの光信号の状態情報を得て、その状態情報を送信元に送信してもよい。送信元は、状態情報を基にディジタル信号処理可能な領域まで送信元で二つの光信号のレベル制御を行なう。二つの光信号のレベル差が所定の閾値以下になったときに、受信部で光学的な偏波分離手段とディジタル信号処理との併用に切り替えて実際の運用を開始すればよい。   In the case of the digital coherent system, polarization separation is performed in the transponder reception unit (coherent receiver) by using optical polarization separation means such as a polarization beam splitter in combination with digital signal processing. However, since there is a large level difference between the two optical signals when the optical path is set, there is a possibility that the polarization separation operation by digital signal processing cannot be performed at first. In that case, first, only the optical polarization separation means may be used to obtain the state information of two rough optical signals, and the state information may be transmitted to the transmission source. The transmission source controls the levels of the two optical signals at the transmission source up to an area where digital signal processing is possible based on the state information. When the level difference between the two optical signals becomes equal to or less than a predetermined threshold value, the actual operation may be started by switching to the combined use of optical polarization separation means and digital signal processing at the receiving unit.

<実施形態の効果>
以上説明したように、本発明の実施形態によれば、光伝送路の偏波依存性損失(PDL)の伝送特性への影響を低減化あるいは緩和できる偏波多重光伝送システムを簡略な構成で提供することができ、将来の全光ネットワークにおいて有用となる。
<Effect of embodiment>
As described above, according to the embodiments of the present invention, a polarization multiplexed optical transmission system that can reduce or mitigate the influence of the polarization dependent loss (PDL) of the optical transmission line on the transmission characteristics can be simplified. And can be useful in future all-optical networks.

PDLの影響を低減化あるいは緩和するために、中継ノード毎に偏波分離し、X偏波及びY偏波のレベルが同一になるように制御した後、再度、偏波多重し、光伝送路に送出するという解決策も考えられる。しかし、各中継ノードにこのようなPDL補償機能を実装する場合、波長毎にPDL補償機能を実装する必要がある。この理由は、各波長は異なる光パスを経由しているため、PDLの影響は様々であるからである。本発明の実施形態では、各中継ノードにPDL補償機能を実装するのではなく、送信元と送信先との間で偏波の出力を制御するため、簡略な構成でPDLの影響を低減化あるいは緩和することができ、システム全体としてのコストを削減できる。   In order to reduce or mitigate the effects of PDL, polarization separation is performed for each relay node, control is performed so that the levels of X polarization and Y polarization are the same, and then polarization multiplexing is performed again to obtain an optical transmission line. A solution of sending to the network is also possible. However, when such a PDL compensation function is implemented in each relay node, it is necessary to implement a PDL compensation function for each wavelength. This is because the influence of PDL varies because each wavelength passes through a different optical path. In the embodiment of the present invention, the PDL compensation function is not implemented in each relay node, but the polarization output is controlled between the transmission source and the transmission destination. It can be mitigated and the cost of the entire system can be reduced.

以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、特許請求の範囲内において、種々の変更・応用が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and applications are possible within the scope of the claims.

本発明は、全光ネットワークに適用され、特に光分岐挿入機能を有する波長多重光ネットワークに有用である。   The present invention is applied to an all-optical network, and is particularly useful for a wavelength division multiplexing optical network having an optical add / drop function.

10A,20A,20C 偏波分離機能付き受信部
11A,21A,21C X偏波送信部
12A,22A,22C Y偏波送信部
13A,23A,23C 偏波多重部
14A,24A,24C 制御処理部
15A,25A 可変光減衰器
16A,26A 可変光減衰器
27C 信号処理回路
18A 制御回路
19A VOAドライバ
10A, 20A, 20C Polarization separation function receiving unit 11A, 21A, 21C X polarization transmission unit 12A, 22A, 22C Y polarization transmission unit 13A, 23A, 23C Polarization multiplexing unit 14A, 24A, 24C Control processing unit 15A , 25A Variable optical attenuator 16A, 26A Variable optical attenuator 27C Signal processing circuit 18A Control circuit 19A VOA driver

Claims (5)

第1ノードと第2ノードとの間で、同一波長の二つの光信号を互いに直交する偏波で多重して伝送する偏波多重光伝送システムであって、
前記第1ノードは、
前記第2ノードから送信された二つの光信号の状態情報を取得する受信部と、
前記状態情報を前記第2ノードに送信する送信部と、
を有し、
前記第2ノードは、
前記第1ノードから送信された前記状態情報を受信する受信部と、
前記状態情報に基づいて、前記第1ノードに送信する二つの光信号の伝送路への入射パワーのレベル差を制御する制御処理部と、
を有する偏波多重光伝送システム。
A polarization multiplexing optical transmission system that multiplexes and transmits two optical signals having the same wavelength with mutually orthogonal polarizations between a first node and a second node,
The first node is
A receiving unit for acquiring state information of two optical signals transmitted from the second node;
A transmitter for transmitting the state information to the second node;
Have
The second node is
A receiving unit for receiving the state information transmitted from the first node;
A control processing unit for controlling a difference in level of incident power to a transmission path of two optical signals to be transmitted to the first node based on the state information;
A polarization multiplexed optical transmission system.
前記第1ノードの前記送信部は、双方向に光パスが設定されている場合、対向する光パスを用いて前記状態情報を前記第2ノードに送信する、請求項1に記載の偏波多重光伝送システム。   2. The polarization multiplexing according to claim 1, wherein the transmission unit of the first node transmits the state information to the second node using an opposite optical path when an optical path is set in both directions. Optical transmission system. 前記第2ノードの前記制御処理部は、光可変減衰器の減衰量を制御することにより、前記レベル差を制御する、請求項1又は2に記載の偏波多重光伝送システム。   The polarization multiplexing optical transmission system according to claim 1, wherein the control processing unit of the second node controls the level difference by controlling an attenuation amount of an optical variable attenuator. 前記状態情報は、パワーレベルと、ビット誤り率と、光信号対雑音比と、Q値とのうち少なくとも1つである、請求項1乃至3のうちいずれか1項に記載の偏波多重光伝送システム。   4. The polarization multiplexed light according to claim 1, wherein the state information is at least one of a power level, a bit error rate, an optical signal-to-noise ratio, and a Q value. 5. Transmission system. 前記第1ノードの前記受信部は、光学的処理による偏波分離部と、ディジタル信号処理による偏波分離部とを有し、前記第2ノードから送信された二つの光信号のレベル差が所定の閾値以下になるまで、前記光学的処理による偏波分離部により、当該二つの光信号の状態情報を取得する、請求項1乃至4のうちいずれか1項に記載の偏波多重光伝送システム。   The receiving unit of the first node has a polarization separation unit by optical processing and a polarization separation unit by digital signal processing, and a level difference between two optical signals transmitted from the second node is predetermined. The polarization multiplexed optical transmission system according to any one of claims 1 to 4, wherein state information of the two optical signals is acquired by the polarization separation unit using the optical processing until the threshold value is equal to or less than a threshold value. .
JP2010119797A 2010-05-25 2010-05-25 Polarization multiplexing optical transmission system Pending JP2011250037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119797A JP2011250037A (en) 2010-05-25 2010-05-25 Polarization multiplexing optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119797A JP2011250037A (en) 2010-05-25 2010-05-25 Polarization multiplexing optical transmission system

Publications (1)

Publication Number Publication Date
JP2011250037A true JP2011250037A (en) 2011-12-08

Family

ID=45414772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119797A Pending JP2011250037A (en) 2010-05-25 2010-05-25 Polarization multiplexing optical transmission system

Country Status (1)

Country Link
JP (1) JP2011250037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117670A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Pdl compensator, optical device, and pdl compensation method
US20130259479A1 (en) * 2012-03-28 2013-10-03 Fujitsu Limited Optical transceiving apparatus, optical transmitting method, and optical transmitting device
JP2015005973A (en) * 2013-06-19 2015-01-08 富士通株式会社 Method and system for relaxing degradation in optical signal-noise ratio of optical network
JPWO2013114629A1 (en) * 2012-02-03 2015-05-11 富士通株式会社 Optical transmission system and optical signal transmission method
WO2020138118A1 (en) * 2018-12-28 2020-07-02 日本電信電話株式会社 Polarization multiplexing optical transmission circuit and polarization multiplexing optical reception circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081287A (en) * 2008-09-26 2010-04-08 Fujitsu Ltd Optical signal transmitting device
JP2010109705A (en) * 2008-10-30 2010-05-13 Fujitsu Ltd Optical transmission and reception system, optical transmitter, optical receiver, and optical transmission and reception method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081287A (en) * 2008-09-26 2010-04-08 Fujitsu Ltd Optical signal transmitting device
JP2010109705A (en) * 2008-10-30 2010-05-13 Fujitsu Ltd Optical transmission and reception system, optical transmitter, optical receiver, and optical transmission and reception method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117670A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Pdl compensator, optical device, and pdl compensation method
JPWO2013114629A1 (en) * 2012-02-03 2015-05-11 富士通株式会社 Optical transmission system and optical signal transmission method
US9467228B2 (en) 2012-02-03 2016-10-11 Fujitsu Limited Optical transmission system and optical transmission method
US20130259479A1 (en) * 2012-03-28 2013-10-03 Fujitsu Limited Optical transceiving apparatus, optical transmitting method, and optical transmitting device
JP2013207569A (en) * 2012-03-28 2013-10-07 Fujitsu Ltd Optical transmission/reception apparatus, optical transmission method, and optical transmission device
US9537570B2 (en) 2012-03-28 2017-01-03 Fujitsu Limited Optical transceiving apparatus, optical transmitting method, and optical transmitting device
US10044463B2 (en) 2012-03-28 2018-08-07 Fujitsu Limited Optical transceiving apparatus, optical transmitting method, and optical transmitting device
JP2015005973A (en) * 2013-06-19 2015-01-08 富士通株式会社 Method and system for relaxing degradation in optical signal-noise ratio of optical network
WO2020138118A1 (en) * 2018-12-28 2020-07-02 日本電信電話株式会社 Polarization multiplexing optical transmission circuit and polarization multiplexing optical reception circuit
JP2020108062A (en) * 2018-12-28 2020-07-09 日本電信電話株式会社 Polarization multiplexed optical transmitter circuit and polarization multiplexed optical transceiver circuit
JP7095592B2 (en) 2018-12-28 2022-07-05 日本電信電話株式会社 Polarized multiplex optical transmission circuit and polarized multiplex optical transmission / reception circuit

Similar Documents

Publication Publication Date Title
JP7070599B2 (en) Optical transmitter / receiver and optical transceiver method
US8630538B2 (en) Communication system, communication device, and communication method
JP4053389B2 (en) Optical signal-to-noise ratio monitoring method and optical transmission system using the same
WO2018198478A1 (en) Transmission device and transmission method
CN111988109B (en) Apparatus and method for an optical transceiver having multiple switching state configurations
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
US8270835B2 (en) Method and system for reducing cross-phase modulation in an optical signal
JP5699760B2 (en) Optical amplification device, optical amplification device control method, optical receiving station, and optical transmission system
US20110058820A1 (en) Optical transmission system, optical transmission equipment, and chromatic dispersion compensation method
US20130039643A1 (en) Optical communication system
US20090317078A1 (en) Optical transmission device and optical transmission method
JP2012004691A (en) Polarized multiplex optical transmission system
US8543000B2 (en) System and method for reducing polarization dependent loss cross-talk effects
JP2011250037A (en) Polarization multiplexing optical transmission system
US20120141121A1 (en) Optical transmission equipment
WO2018193835A1 (en) Bidirectional optical transmission system and bidirectional optical transmission method
US8705167B2 (en) System and method for compensating for polarization dependent loss
WO2012067878A9 (en) Multi-stage polarization mode dispersion compensation
US20110236023A1 (en) Signal light processing apparatus, light transmission apparatus, wavelength selection switch, wavelength division multiplexing transmission system, and signal light processing method
JP2001136125A (en) Optical transmission system
US8355631B2 (en) Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems
US11294258B2 (en) Transmission device and transmission system
JP6155803B2 (en) Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device
JP5827379B2 (en) Polarization multiplexed optical transmission system
JP4916387B2 (en) Center side optical communication device and optical communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408