JP2011249054A - Charged corpuscular beam apparatus - Google Patents

Charged corpuscular beam apparatus Download PDF

Info

Publication number
JP2011249054A
JP2011249054A JP2010118884A JP2010118884A JP2011249054A JP 2011249054 A JP2011249054 A JP 2011249054A JP 2010118884 A JP2010118884 A JP 2010118884A JP 2010118884 A JP2010118884 A JP 2010118884A JP 2011249054 A JP2011249054 A JP 2011249054A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
current
deflection
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010118884A
Other languages
Japanese (ja)
Inventor
Atsushi Okita
篤士 沖田
Satoru Takada
哲 高田
Tatsuichi Kato
達一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010118884A priority Critical patent/JP2011249054A/en
Publication of JP2011249054A publication Critical patent/JP2011249054A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide measuring technique with which a beam current can be measured and set highly accurately in a short time in a charged corpuscular beam apparatus.SOLUTION: In a charged corpuscular beam apparatus, a sample is irradiated with a charged particle source and a signal generated from the sample is detected. The charged corpuscular beam apparatus includes: a charged particle optical system for converging or radiating a charged corpuscular beam onto the sample; detection means for detecting a signal generated from the sample by scanning of the charged corpuscular beam; a detection element for measuring a current of the charged corpuscular beam; a control section which includes a deflection electrode or a deflection coil for implementing scanning of charged particles and applies a voltage or a current for controlling this deflection electrode or deflection coil; and an arithmetic unit capable of storing an optical condition of the charged corpuscular beam. By previously storing a condition for obtaining a peak current of the beam current and referring to a beam deflection range in accordance with the optical condition, a current value of the charged corpuscular beam is measured while restricting beam deflection only in the vicinity of the detection element.

Description

本発明は、荷電粒子ビームを試料に照射し、試料から発生する信号粒子を検出する荷電粒子線装置において、荷電粒子ビームの電流測定および設定が高速かつ高精度に行うことができる荷電粒子線装置に関するものである。   The present invention relates to a charged particle beam apparatus that irradiates a sample with a charged particle beam and detects signal particles generated from the sample, and that can perform current measurement and setting of the charged particle beam at high speed and with high accuracy. It is about.

荷電粒子線装置は、一次荷電粒子ビームを試料に照射し、試料から発生する二次電子あるいは試料から後方散乱される後方散乱電子(反射電子)を二次信号として検出する装置である。検出された二次信号は、画像化あるいは画像信号として各種の計測・検査に使用される。一次荷電粒子ビームの電流値が変化すると、試料から放出される信号量も変化する。そのため、良好な画像あるいは画像信号を取得するためには、画像あるいは画像信号の取得範囲内では、照射する一次荷電粒子ビームの電流量をなるべく均一にする必要がある。従って、実際に画像や画像信号するに際しては、荷電粒子ビームの電流値を事前に高精度に測定し、電流値が設定値から外れている場合には、電流値を調整しなおす必要がある。   A charged particle beam device is a device that irradiates a sample with a primary charged particle beam and detects secondary electrons generated from the sample or backscattered electrons (backscattered electrons) backscattered from the sample as secondary signals. The detected secondary signal is used for various measurements and inspections as an image or an image signal. As the current value of the primary charged particle beam changes, the amount of signal emitted from the sample also changes. Therefore, in order to acquire a good image or image signal, it is necessary to make the current amount of the primary charged particle beam to be irradiated as uniform as possible within the acquisition range of the image or image signal. Therefore, when actually performing an image or image signal, it is necessary to measure the current value of the charged particle beam with high accuracy in advance, and to adjust the current value again if the current value deviates from the set value.

荷電粒子線装置のビーム電流の測定方法は、2つの方式に大別される。一つは、ファラデーカップに代表される検出素子を荷電粒子ビーム光軸上に機械的に移動させて電流を測定する方式である。もう一方は、荷電粒子ビームを電磁偏向もしくは静電偏向によって固定した検出素子に入射させ、電流値を測定する方法である。後者の方式は、機械的調整が不必要であり、容易に電流測定が可能であり、多くの荷電粒子線装置で採用されている。例えば、特許文献1には、E×B偏向器の近傍に縦長の溝状体形状を有する電流量検出器を設けた荷電粒子線装置の発明が開示されている。   The beam current measuring method of the charged particle beam apparatus is roughly classified into two methods. One is a method of measuring a current by mechanically moving a detection element typified by a Faraday cup on the optical axis of a charged particle beam. The other is a method in which a charged particle beam is incident on a detection element fixed by electromagnetic deflection or electrostatic deflection, and the current value is measured. The latter method does not require mechanical adjustment, can easily measure current, and is used in many charged particle beam apparatuses. For example, Patent Document 1 discloses an invention of a charged particle beam apparatus in which a current amount detector having a vertically long groove shape is provided in the vicinity of an E × B deflector.

特開平9−171790号公報JP-A-9-171790

特許文献1に開示されたビーム電流計測の場合、電流量検出器は試料上ではなく電子光学系の途中に配置されている。従って、ビーム電流測定を行う場合、まず荷電粒子ビームを所定量偏向し、電流検出回路に接続された深溝形状の検出素子に入射させ、検出回路で得られる電流最大値が電流値であると判断していた。深溝形状の検出素子の場合、電流計測面において溝の内壁面であり、ピーク電流が得られるのは、荷電粒子ビームがうまく検出素子の溝底に照射された場合である。この場合、荷電粒子ビームが検出素子周辺の金属部品に照射されると、照射された金属部で荷電粒子の放出や吸収が発生する。これらの荷電粒子が検出素子に到達してしまうと、本来測定すべき荷電粒子ビームの電流値が正確に測定できないという問題がある。   In the case of the beam current measurement disclosed in Patent Document 1, the current amount detector is arranged not in the sample but in the middle of the electron optical system. Therefore, when beam current measurement is performed, a charged particle beam is first deflected by a predetermined amount and incident on a deep groove-shaped detection element connected to the current detection circuit, and it is determined that the maximum current value obtained by the detection circuit is the current value. Was. In the case of a deep groove-shaped detection element, it is the inner wall surface of the groove on the current measurement surface, and the peak current is obtained when the charged particle beam is successfully irradiated to the groove bottom of the detection element. In this case, when the charged particle beam is irradiated onto the metal parts around the detection element, emission and absorption of charged particles occur in the irradiated metal part. If these charged particles reach the detection element, there is a problem that the current value of the charged particle beam that should be measured cannot be measured accurately.

また、検出素子が荷電粒子ビームを検出するために必要な移動量、あるいは荷電粒子ビームが検出素子に入射するために必要な偏向量は、荷電粒子ビームの光学条件によって変化する。そのため従来方式ではビーム偏向を制御する制御電流ならびに制御電圧を広い範囲に渡って変化させる必要があり、高速な測定が困難であった。   Further, the amount of movement necessary for the detection element to detect the charged particle beam or the amount of deflection necessary for the charged particle beam to enter the detection element varies depending on the optical conditions of the charged particle beam. Therefore, in the conventional method, it is necessary to change the control current and the control voltage for controlling the beam deflection over a wide range, and high-speed measurement is difficult.

本発明の目的は、上記の従来技術の欠点を排除し、高速かつ高精度に荷電粒子ビームの電流値の測定及び設定できる荷電粒子線装置を提供することにある。   An object of the present invention is to provide a charged particle beam apparatus capable of measuring and setting a current value of a charged particle beam at high speed and with high accuracy while eliminating the above-described drawbacks of the prior art.

上記の目的を達成するために、本発明の荷電粒子線装置は、一次荷電粒子ビームを試料上に走査して、検出される反射電子や2次電子などの二次荷電粒子に基づく信号を出力する機能を有する荷電粒子光学系と、上記一次荷電粒子ビームが持つ電流量を計測する電流検出素子と、上記荷電粒子光学系に設けられた走査偏向手段の駆動電圧あるいは駆動電流を制御する荷電粒子光学系制御部とを備え、一次荷電粒子のビーム電流計測時に、ビーム偏向量が適切な値になるように上記走査偏向手段を制御することを特徴とする。   In order to achieve the above object, the charged particle beam apparatus of the present invention scans a sample with a primary charged particle beam and outputs a signal based on detected secondary electrons such as reflected electrons and secondary electrons. A charged particle optical system having a function to perform the above, a current detection element for measuring the amount of current of the primary charged particle beam, and a charged particle for controlling the drive voltage or drive current of the scanning deflection means provided in the charged particle optical system And an optical system control unit for controlling the scanning deflection means so that the beam deflection amount becomes an appropriate value when measuring the beam current of the primary charged particles.

より具体的には、上記電流検出素子を用いて一次荷電粒子ビームの電流計測を行い、一次ビームの偏向量と電流との関係を適当な記憶手段に予め記憶しておく。その後、ビーム電流計測を再度行う際には、上記荷電粒子光学系制御部が上記の関係を参照して、荷電粒子ビームの偏向範囲を電流検出素子の近傍のみに制限する偏向制御電流あるいは偏向制御電圧を与えることにより、ピーク電流値の計測を可能とする。   More specifically, the current of the primary charged particle beam is measured using the current detection element, and the relationship between the deflection amount of the primary beam and the current is stored in advance in an appropriate storage unit. Thereafter, when the beam current measurement is performed again, the charged particle optical system control unit refers to the above relationship, and controls the deflection control current or deflection control to limit the deflection range of the charged particle beam only to the vicinity of the current detection element. By applying a voltage, the peak current value can be measured.

本発明によれば、荷電粒子ビームのビーム電流値測定に関して、短時間かつ高精度に測定および設定できる荷電粒子線装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the charged particle beam apparatus which can be measured and set with high precision for a short time regarding the beam current value measurement of a charged particle beam.

走査電子顕微鏡の実施例を示した説明図。(実施例1)Explanatory drawing which showed the Example of the scanning electron microscope. Example 1 検出素子(ファラデーカップ)と周辺部品の説明図。(実施例2)Explanatory drawing of a detection element (Faraday cup) and peripheral components. (Example 2) 所定の加速電圧に対して一定のビーム偏向量を得るために必要な電子ビーム偏向制御電圧の関係。The relationship of the electron beam deflection control voltage necessary to obtain a constant beam deflection amount for a predetermined acceleration voltage. 各偏向制御電流における電子ビーム電流検出回路出力電流量と偏向制御電圧の関係を示す特性図。The characteristic view which shows the relationship between the amount of electron beam current detection circuit output currents in each deflection control current, and a deflection control voltage. 実施例1または2のビーム電流測定のフローを示すフローチャート。5 is a flowchart showing a flow of beam current measurement according to the first or second embodiment. 実施例3または4のビーム電流測定のフローを示すフローチャート。6 is a flowchart showing a flow of beam current measurement according to the third or fourth embodiment.

以下、本発明の実施形態について走査型電子顕微鏡を実施例に、図面に基づいて詳細を述べる。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings, taking a scanning electron microscope as an example.

図1は走査電子顕微鏡の実施例の図面である。走査電子顕微鏡の上方には電子源1が取り付けられ、電子源1近傍にはビーム制御電極2が設けられている。これは引き出し電極3,加速電極4と共にビーム制御高圧電源5に接続され、演算器(CPU)および記憶装置を搭載した中央制御装置6の電源制御部によって制御される。引き出し電極3,加速電極4等の印加電圧を調整することで、電子源1から放出される電流量を制御することができる。電子源1,ビーム制御電極2,引き出し電極3および加速電極4は電子銃を構成し、以下の説明では、以上の光学要素の集合を「電子銃」として適宜引用する。なお、他の光学要素を含めて電子銃と称する場合もあるが、その場合であっても本発明の適用は可能である。   FIG. 1 is a drawing of an embodiment of a scanning electron microscope. An electron source 1 is attached above the scanning electron microscope, and a beam control electrode 2 is provided in the vicinity of the electron source 1. This is connected to the beam control high voltage power source 5 together with the extraction electrode 3 and the acceleration electrode 4, and is controlled by a power source control unit of the central control unit 6 equipped with a computing unit (CPU) and a storage device. The amount of current emitted from the electron source 1 can be controlled by adjusting the voltage applied to the extraction electrode 3 and the acceleration electrode 4. The electron source 1, the beam control electrode 2, the extraction electrode 3, and the acceleration electrode 4 constitute an electron gun. In the following description, the set of optical elements described above is appropriately referred to as an “electron gun”. In addition, although it may call an electron gun including another optical element, application of this invention is possible even in that case.

電子源1から放出した電子により形成される電子ビーム7は、第一収束レンズ8のレンズ作用により絞り板10の上方でクロスオーバを形成する。収束された電子ビーム7は、ビーム絞り板10によって機械的にビーム径が制限され、その後、さらに、絞り板10より下方に取り付けられた第二収束レンズ11と収束レンズ制御電源9、さらに、対物レンズ12と対物レンズ制御電源13を中央制御装置6により制御することで、電子ビーム7を試料17上に収束させる。第一収束レンズ8および第二収束レンズ11は、収束レンズ制御電源9により動作が制御される。   The electron beam 7 formed by the electrons emitted from the electron source 1 forms a crossover above the diaphragm plate 10 by the lens action of the first converging lens 8. The beam diameter of the converged electron beam 7 is mechanically limited by the beam diaphragm plate 10, and then, the second convergent lens 11 and the convergent lens control power source 9 that are mounted below the diaphragm plate 10, and the objective The electron beam 7 is converged on the sample 17 by controlling the lens 12 and the objective lens control power source 13 by the central controller 6. The operations of the first convergent lens 8 and the second convergent lens 11 are controlled by a convergent lens control power supply 9.

収束した電子ビーム7はビーム走査偏向手段、例えば偏向コイル14による電磁偏向あるいは偏向電極15による静電偏向により、試料上に走査させることができる。電子ビーム7の走査は、観察倍率に応じて偏向制御電源16の制御電圧または制御電流を変化することにより制御可能である。電磁偏向の場合は偏向コイル14,偏向制御電源16からコイルの駆動電流が供給される。静電偏向の場合は偏向電極15,偏向制御電源16から制御電圧が供給される。図1では偏向コイル14両方の偏向制御手段を搭載している場合を示しているが、実際にはいずれか一つのみが設けられる場合が多い。観察電子ビームの走査条件は、観察倍率や画素サイズといった光学条件に応じて偏向制御電源16の制御電圧もしくは制御電流を変化させて制御に応じて偏向制御電源16が制御される。   The converged electron beam 7 can be scanned on the sample by beam scanning deflection means, for example, electromagnetic deflection by the deflection coil 14 or electrostatic deflection by the deflection electrode 15. The scanning of the electron beam 7 can be controlled by changing the control voltage or control current of the deflection control power supply 16 in accordance with the observation magnification. In the case of electromagnetic deflection, the coil drive current is supplied from the deflection coil 14 and the deflection control power supply 16. In the case of electrostatic deflection, a control voltage is supplied from the deflection electrode 15 and the deflection control power source 16. Although FIG. 1 shows a case where the deflection control means for both of the deflection coils 14 are mounted, in reality, only one of them is often provided. As the scanning condition of the observation electron beam, the deflection control power supply 16 is controlled according to the control by changing the control voltage or the control current of the deflection control power supply 16 according to the optical conditions such as the observation magnification and the pixel size.

一次電子ビーム7を照射することで試料17から照射することで発生する二次電子18または後方散乱される反射電子は、直接もしくは、検出効率を上げるための反射板19を介し、電子検出器20にて検出される。電子検出器20によって検出された検出信号は、増幅機能,A/D変換機能,画像処理機能を有する信号検出回路21によって画像化され、画像表示装置22に表示される。   The secondary electrons 18 generated by irradiating from the sample 17 by irradiating the primary electron beam 7 or the backscattered reflected electrons are directly or via a reflector 19 for increasing the detection efficiency, to the electron detector 20. Is detected. The detection signal detected by the electronic detector 20 is imaged by a signal detection circuit 21 having an amplification function, an A / D conversion function, and an image processing function, and is displayed on the image display device 22.

また一次電子ビーム7のビーム電流量はビーム電流検出素子23を用いて計測される。本実施例の場合、ビーム電流検出素子23は、二段の偏向コイル14の下部に配置されている。偏向コイル14に制御電流を流す、あるいは偏向電極15に制御電圧を印加すると、電子ビーム7が偏向され、ビーム電流検出素子23に入射される。ビーム電流検出素子23は電子ビームの光軸方向に対して長い溝状の構造を有しており、溝の内壁面に形成された電子検出部に入射した荷電粒子線量に比例する検出電流を電流検出回路24に出力する。   Further, the beam current amount of the primary electron beam 7 is measured using the beam current detecting element 23. In the case of the present embodiment, the beam current detection element 23 is disposed below the two-stage deflection coil 14. When a control current is supplied to the deflection coil 14 or a control voltage is applied to the deflection electrode 15, the electron beam 7 is deflected and is incident on the beam current detection element 23. The beam current detection element 23 has a groove-like structure that is long with respect to the optical axis direction of the electron beam, and a detection current proportional to the charged particle dose incident on the electron detector formed on the inner wall surface of the groove is a current. Output to the detection circuit 24.

以上説明した電子源1,引き出し電極3,加速電極4、あるいは収束レンズ8,11や対物レンズ12といった各種レンズなどの光学要素は電子光学系を構成している。以下の説明においては、以上の光学要素の集合を「電子光学系」あるいは「荷電粒子光学系」として参照する場合もある。   The optical elements such as the electron source 1, the extraction electrode 3, the acceleration electrode 4, or the various lenses such as the converging lenses 8 and 11 and the objective lens 12 described above constitute an electron optical system. In the following description, the set of optical elements described above may be referred to as “electron optical system” or “charged particle optical system”.

図2にビーム電流検出素子23と周辺部品の配置関係を示す。ビーム電流検出素子23は、電子顕微鏡内部に設けられたシールド101を構成する金属部材の内壁面の内部に絶縁体102を介して取り付けられ、ビーム電流測定以外のときはアース電位となるように設置される。ビーム電流値測定時には、電流検出素子23をアースから切り放し、ビーム電流検出回路24に接続する。そして、中央制御装置6に搭載されたCPUによって偏向制御電源16の制御電圧を設定し、シールド101や上方の金属部品103に照射されないように電子ビーム7をビーム検出素子23に入射させることで、そのときのビーム電流検出回路24出力のピーク値をビーム電流値として測定できる。   FIG. 2 shows an arrangement relationship between the beam current detection element 23 and peripheral components. The beam current detection element 23 is attached to the inside of the inner wall surface of the metal member constituting the shield 101 provided in the electron microscope via the insulator 102, and is installed so as to be at the ground potential in cases other than the beam current measurement. Is done. When measuring the beam current value, the current detection element 23 is disconnected from the ground and connected to the beam current detection circuit 24. Then, the control voltage of the deflection control power supply 16 is set by the CPU mounted on the central control device 6, and the electron beam 7 is incident on the beam detection element 23 so as not to irradiate the shield 101 and the upper metal part 103. The peak value of the output of the beam current detection circuit 24 at that time can be measured as the beam current value.

ここで、ビーム電流検出素子23の溝の内壁面に、二次電子または反射電子発生の抑制効果のあるカーボン等の抑制材料を塗布することにより、二次電子あるいは反射電子の検出面が溝の底面のみに限定することができる。これにより、ビーム電流検出素子23周辺の金属部品から放出される荷電粒子が比較的到達しやすい溝の内壁面ではなく、比較的届きにくい溝の底面のみで一次荷電粒子ビームの電流量を計測できるため、ビーム電流検出素子23の検出信号に含まれる一次荷電粒子ビーム以外の原因によるノイズ成分を低減し、ビーム電流量の計測精度を向上することができる。   Here, by applying a suppressing material such as carbon having an effect of suppressing generation of secondary electrons or reflected electrons to the inner wall surface of the groove of the beam current detecting element 23, the detection surface of the secondary electrons or reflected electrons becomes the groove surface. It can be limited to the bottom only. As a result, the current amount of the primary charged particle beam can be measured only from the bottom surface of the groove, which is relatively difficult to reach, rather than the inner wall surface of the groove where the charged particles emitted from the metal parts around the beam current detection element 23 are relatively easy to reach. Therefore, noise components caused by causes other than the primary charged particle beam included in the detection signal of the beam current detection element 23 can be reduced, and the measurement accuracy of the beam current amount can be improved.

また、内壁面に抑制材料を塗布することで、電子ビーム7の溝の内壁面への照射により発生する二次電子あるいは反射電子の生成量を抑制することができる。これにより、荷電粒子線の検出部である溝の底面への二次電子あるいは反射電子の入射量が低減されるため、やはりビーム電流検出素子23の検出信号に含まれるノイズ成分を低減することができる。   Further, by applying a suppression material to the inner wall surface, it is possible to suppress the generation amount of secondary electrons or reflected electrons generated by irradiation of the inner wall surface of the groove of the electron beam 7. As a result, the amount of secondary electrons or reflected electrons incident on the bottom surface of the groove, which is a charged particle beam detector, is reduced, so that the noise component contained in the detection signal of the beam current detector 23 can also be reduced. it can.

以上説明したように、正確なビーム電流量計測を行うためには、一次電子ビーム7がビーム検出素子23にのみ入射される必要がある。このためには、一次電子ビーム7がシールド101や金属部品103などに照射されないように、精密なビーム偏向を行う必要があるが、一次電子ビーム7の偏向量は、電子銃の加速電圧やビーム制御電圧に影響される。以下では、図3を用いて、電子ビーム7の偏向量と電子銃の加速電圧との関係について説明する。   As described above, in order to perform accurate beam current amount measurement, the primary electron beam 7 needs to be incident only on the beam detection element 23. For this purpose, it is necessary to perform precise beam deflection so that the primary electron beam 7 does not irradiate the shield 101, the metal part 103, etc., but the deflection amount of the primary electron beam 7 depends on the acceleration voltage of the electron gun and the beam. Influenced by control voltage. Hereinafter, the relationship between the deflection amount of the electron beam 7 and the acceleration voltage of the electron gun will be described with reference to FIG.

図3には、電子銃の加速電圧Vaccとビーム偏向量との関係を示した。図3は、電磁偏向の場合におけるVaccとビーム偏向量との関係を示した図であり、図の横軸は、Vaccの平方根(1/2乗)を、縦軸は電子ビーム7を一定量偏向するために必要な偏向コイル14に流す偏向制御電流量をそれぞれ示す。図示されるように、一定のビーム偏向量を得るために必要な偏向コイル電流量は加速電圧Vaccに伴って増加する。静電偏向の場合も、静電偏向電圧と加速電圧との関係はほぼ同様であり、一定のビーム偏向量を得るために必要な静電偏向電極15への印加電圧はVaccに伴って増加する。   FIG. 3 shows the relationship between the acceleration voltage Vacc of the electron gun and the beam deflection amount. FIG. 3 is a diagram showing the relationship between Vacc and the amount of beam deflection in the case of electromagnetic deflection. The horizontal axis of the figure is the square root (1/2 power) of Vacc, and the vertical axis is a fixed amount of electron beam 7. A deflection control current amount to be supplied to the deflection coil 14 necessary for deflection is shown. As shown in the figure, the amount of deflection coil current required to obtain a constant beam deflection amount increases with the acceleration voltage Vacc. Also in the case of electrostatic deflection, the relationship between the electrostatic deflection voltage and the acceleration voltage is substantially the same, and the voltage applied to the electrostatic deflection electrode 15 necessary for obtaining a constant beam deflection amount increases with Vacc. .

また、ビーム電流量値(Ip)は、加速電圧Vaccだけではなく電子ビーム電子銃内のビーム制御電極2への印加電圧(以下、電子ビーム制御電圧Vsと称する)にも影響され、制御電圧Vsを調整することにより、電子ビーム電流量を制御することができる。   The beam current value (Ip) is influenced not only by the acceleration voltage Vacc but also by the voltage applied to the beam control electrode 2 in the electron beam electron gun (hereinafter referred to as the electron beam control voltage Vs), and the control voltage Vs. The amount of electron beam current can be controlled by adjusting.

図3に実線で示した加速電圧と偏向制御電流量との関係は以下の式(1)で表される。   The relationship between the acceleration voltage and the deflection control current amount indicated by the solid line in FIG. 3 is expressed by the following equation (1).

Figure 2011249054
Figure 2011249054

また、静電偏向の場合、加速電圧と静電偏向電極15へ印加する偏向制御電圧との関係は、以下の式(2)で表される。   In the case of electrostatic deflection, the relationship between the acceleration voltage and the deflection control voltage applied to the electrostatic deflection electrode 15 is expressed by the following equation (2).

Figure 2011249054
Figure 2011249054

ここでLは電子ビーム偏向量を、Vaccは電子銃の実効的な加速電圧を、Idefは電磁偏向の場合に偏向コイル14に流れる制御電流を、Vdefは静電偏向の場合に偏向電極15に印加される偏向制御電圧を、α1,α2は電子ビーム7の電子光学条件によって決定する比例定数をそれぞれ意味する。 Here, L is an electron beam deflection amount, Vacc is an effective acceleration voltage of the electron gun, Idef is a control current flowing through the deflection coil 14 in the case of electromagnetic deflection, and Vdef is applied to the deflection electrode 15 in the case of electrostatic deflection. The applied deflection control voltages, α 1 and α 2 , mean proportional constants determined by the electron optical conditions of the electron beam 7.

さて、式(1)あるいは式(2)を利用すれば、設定された加速電圧Vaccに対するビーム偏向量が分かる。よって、目的とするビーム偏向量、つまりシールド101や金属部品103といった電子ビーム電流量計測に影響を与える構成要素に電子ビームが照射されないようにビーム電流検出素子23に電子ビームを入射するためのビーム偏向量が決まれば、与えられた加速電圧Vaccの下で所定のビーム偏向を実現するための偏向コイル14の電流値あるいは静電偏向電極15の電圧値が定まる。   Now, if the formula (1) or the formula (2) is used, the beam deflection amount with respect to the set acceleration voltage Vacc can be known. Therefore, the beam for making the electron beam incident on the beam current detection element 23 so that the target beam deflection amount, that is, the component that affects the electron beam current amount measurement such as the shield 101 and the metal part 103 is not irradiated with the electron beam. When the deflection amount is determined, the current value of the deflection coil 14 or the voltage value of the electrostatic deflection electrode 15 for realizing a predetermined beam deflection is determined under a given acceleration voltage Vacc.

次に、電子ビームの偏向制御について図4を用いて説明する。図4に、電磁偏向の場合における、電子ビーム7の走査時に偏向コイル14に流す電流(偏向制御電流)と電子ビーム電流量との関係を示す。図4の横軸は偏向コイル14への印加電流値を示し、縦軸はビーム電流検出素子23の検出電流値を示している。   Next, the deflection control of the electron beam will be described with reference to FIG. FIG. 4 shows the relationship between the current (deflection control current) flowing through the deflection coil 14 during scanning of the electron beam 7 and the amount of electron beam current in the case of electromagnetic deflection. The horizontal axis in FIG. 4 indicates the current value applied to the deflection coil 14, and the vertical axis indicates the detection current value of the beam current detection element 23.

従来の電流計測においては、前述の通り、単純に広い範囲でビーム偏向を行いピーク電流を測定している。この場合、電子ビーム7がビーム電流検出素子23の周辺のシールド101あるいは上方に取り付けられた金属部品103等を照射する場合があり、金属部から多くの反射電子や二次電子18が発生してビーム電流検出素子23がこれらを捕捉してしまう場合や、二次電子の収率によって本来の電子ビーム電流値よりも大きいピークの電流値を検出してしまう。この場合、図4の場合では“金属部品へのビーム照射時の電流値”として示されるような電流値を本来計測されるべき電流値として検出してしまうことになり問題となってしまう。そこでまず、ビームが電流検出素子23の溝壁内に入射するような偏向量Lを式(1)から算出し、周辺のシールド101あるいは上方に取り付けられた絶縁体102に電子ビーム7が照射しないような偏向となるように偏向制御電源16を設定し、ビーム電流を測定する。   In conventional current measurement, as described above, the beam current is simply deflected over a wide range and the peak current is measured. In this case, the electron beam 7 may irradiate the shield 101 around the beam current detection element 23 or the metal part 103 attached above, and many reflected electrons and secondary electrons 18 are generated from the metal part. When the beam current detection element 23 captures these, or the yield of secondary electrons, a peak current value larger than the original electron beam current value is detected. In this case, in the case of FIG. 4, a current value as shown as “a current value at the time of beam irradiation to a metal part” is detected as a current value to be originally measured, which causes a problem. Therefore, first, the deflection amount L such that the beam is incident on the groove wall of the current detection element 23 is calculated from the equation (1), and the electron beam 7 is not irradiated to the peripheral shield 101 or the insulator 102 attached above. The deflection control power supply 16 is set so as to achieve such deflection, and the beam current is measured.

図4の縦軸の検出電流値の計測時には、ビーム電流検出素子23の内壁に電子ビーム7が入射するように電子ビーム7を偏向させており、この際に電流検出素子23の溝内壁および底面(内壁面に抑制材料のコーティングを行った場合は底面)に入射したときの電流検出回路24の出力が電子ビーム電流値の計測値となる。電子ビーム電流値の計測時に必要なビーム偏向量Lは式(1)または式(2)より算出できるが、電子ビーム7が光軸104からずれている場合もあるため、ビーム電流量を予め図4で“参照データ生成用のビーム偏向制御範囲”という矢印で示された程度の広さの偏向範囲で測定しておき、電流ピーク値が得られる偏向制御電流を把握することが必要となる。   When measuring the detected current value on the vertical axis in FIG. 4, the electron beam 7 is deflected so that the electron beam 7 is incident on the inner wall of the beam current detecting element 23. The output of the current detection circuit 24 when entering the inner wall surface (bottom surface when the suppression material is coated) becomes the measurement value of the electron beam current value. The beam deflection amount L required for measuring the electron beam current value can be calculated from the equation (1) or (2). However, since the electron beam 7 may be displaced from the optical axis 104, the beam current amount is shown in advance. It is necessary to measure the deflection control current at which the current peak value is obtained by measuring in the deflection range as large as indicated by the arrow “beam deflection control range for reference data generation” in 4.

図4に示されるようなピークを含んだ周辺部分のみのビーム偏向を実現するためには、図3で説明したように、ビーム電流量と加速電圧Vaccとの関係を記述したテーブルあるいは式(1)または式(2)の比例定数の情報を中央制御装置6内に設けられたメモリに記憶し、更にビーム電流量と電子ビーム制御電圧Vsの関係情報をメモリ内に記憶させる。ビーム電流の計測時には、中央制御装置6が、メモリ内に記憶された各データを参照して、現在設定されている電子ビーム照射条件(例えば加速電圧Vaccなど)の条件下で目的とする偏向量を得るための偏向電流値あるいは偏向電圧値を算出し、算出された偏向電流値あるいは偏向電圧値に応じて偏向制御電源16を制御することにより、ピーク電流値が得られる近傍のみが走査されるような偏向制御範囲を設定する。これにより、電子ビーム7の軸ずれの影響や周辺絶縁体102の影響を受けることなく、ビーム電流を測定することが可能となる。   In order to realize the beam deflection only in the peripheral portion including the peak as shown in FIG. 4, as described with reference to FIG. 3, a table or formula (1) describing the relationship between the beam current amount and the acceleration voltage Vacc. ) Or the proportionality constant information of the formula (2) is stored in a memory provided in the central control unit 6, and the relationship information between the beam current amount and the electron beam control voltage Vs is further stored in the memory. When measuring the beam current, the central control device 6 refers to each data stored in the memory, and makes a target deflection amount under the conditions of the currently set electron beam irradiation conditions (for example, acceleration voltage Vacc). By calculating the deflection current value or deflection voltage value for obtaining the value, and controlling the deflection control power supply 16 according to the calculated deflection current value or deflection voltage value, only the vicinity where the peak current value is obtained is scanned. Such a deflection control range is set. As a result, the beam current can be measured without being affected by the axial deviation of the electron beam 7 or the influence of the peripheral insulator 102.

上記手段を利用し、高精度かつ高速にビーム電流を測定する手順は、図のフローチャートで表すことができる。また詳しいビーム電流の測定,ビーム設定のシーケンスを図5のフローチャートに示す。上記手段を利用し、高精度かつ高速にビーム電流を測定する手順は、図5のフロー図により表される。まず荷電粒子線装置の立ち上げを行い(ステップS01)、初期設定により装置パラメータを設定(ステップS02)した後、荷電粒子光学条件を設定・調整する(ステップS03;以下、本光学条件を基本光学条件と略す)。このビーム電流量を変化させる基本光学条件には、ビーム制御高圧電源5により制御する加速電圧,引き出し電圧,ビーム制御電圧、また収束レンズ制御電源9,対物レンズ制御電源13により制御するコンデンサレンズ励磁電流等の設定がある。これら基本光学条件の設定を行い、偏向コイル14に流す制御電流量、あるいは、偏向電極15に印加する電圧を偏向制御電源16にて制御し、荷電粒子ビームを偏向する。荷電粒子ビーム電流値の測定は、このビームを電流検出素子23に入射するように偏向し、ビーム電流検出回路24における出力値を測定する。ここで、ビーム制御高圧電源5に印加する電圧と偏向コイル14に流す制御電流、あるいは、偏向電極15に印加する制御電圧との関係を記憶装置に記憶する(ステップS04)。この結果を利用し、高速にビーム電流値のピーク値が得られるように、荷電粒子ビームを偏向するための制御電流値、あるいは、制御電圧値を、ビーム照射範囲がビーム電流値のピーク値近傍となるように設定する(ステップS05)。以上の5ステップは装置メーカ側の作業となる。   The procedure for measuring the beam current with high accuracy and high speed using the above means can be represented by the flowchart of the figure. A detailed beam current measurement and beam setting sequence is shown in the flowchart of FIG. The procedure for measuring the beam current with high accuracy and high speed using the above means is represented by the flowchart of FIG. First, the charged particle beam apparatus is started up (step S01), the apparatus parameters are set by the initial setting (step S02), and then the charged particle optical conditions are set and adjusted (step S03; hereinafter, the optical conditions are the basic optical conditions). Abbreviated condition). The basic optical conditions for changing the beam current amount include acceleration voltage, extraction voltage, beam control voltage controlled by the beam control high-voltage power supply 5, and condenser lens excitation current controlled by the convergent lens control power supply 9 and objective lens control power supply 13. There are settings such as. The basic optical conditions are set, and the amount of control current flowing through the deflection coil 14 or the voltage applied to the deflection electrode 15 is controlled by the deflection control power supply 16 to deflect the charged particle beam. In the measurement of the charged particle beam current value, the beam is deflected so as to enter the current detection element 23, and the output value in the beam current detection circuit 24 is measured. Here, the relationship between the voltage applied to the beam control high-voltage power supply 5 and the control current applied to the deflection coil 14 or the control voltage applied to the deflection electrode 15 is stored in the storage device (step S04). Using this result, the beam irradiation range is in the vicinity of the peak value of the beam current value so that the charged particle beam can be deflected so that the peak value of the beam current value can be obtained at high speed. (Step S05). The above five steps are the work of the equipment manufacturer.

ユーザ側は、荷電粒子ビームの電流量の測定もしくは電流量の設定を行う際、所望の加速電圧と荷電粒子ビームの電流値のみをインターフェイスより設定する。これにより、中央制御装置6に記憶された基本光学条件(ステップS03)から検査に必要な光学条件が呼び出され、ビーム制御高圧電源5の設定値が決まる。また同時に、中央制御装置6に記憶されたビーム照射範囲が呼び出され、偏向制御電源16が設定される。これにより荷電粒子ビームはビーム電流検出素子23近傍のみに照射され、高速かつ高精度にビーム電流値の測定・設定することができる(ステップS06)。   The user sets only the desired acceleration voltage and the current value of the charged particle beam from the interface when measuring the current amount of the charged particle beam or setting the current amount. Thereby, the optical condition necessary for the inspection is called from the basic optical condition (step S03) stored in the central controller 6, and the set value of the beam control high voltage power source 5 is determined. At the same time, the beam irradiation range stored in the central controller 6 is called up and the deflection control power supply 16 is set. As a result, the charged particle beam is irradiated only in the vicinity of the beam current detecting element 23, and the beam current value can be measured and set at high speed and with high accuracy (step S06).

次に図6に荷電粒子ビーム装置における電流測定フロー図を示す。まず所望の加速電圧とビーム電流量を選択する(ステップS07)。設定した条件に応じて、中央制御装置6によりビーム制御高圧電源5に印加する制御電圧と基本光学条件が設定される。このとき、アースに接続していたビーム電流検出素子23は電流検出回路24に接続され(ステップS08)、設定した加速電圧と、予め取得した偏向制御する電流量、もしくは、印加電圧との関係を参照し、電子ビーム7の偏向範囲をビーム検出素子23の溝近傍のみとなるように偏向制御電源16を設定する(ステップS09)。これにより電流のピーク値を検出するビームの偏向制御範囲を制限し、この偏向範囲内でビーム電流検出素子23にてビーム電流のピーク値を検出する(ステップS10)。これにより、高精度かつ瞬時に荷電粒子ビームを電流検出素子23に入射させることができるため、電流測定の高速化と高精度化が両立できる。電子ビーム電流量を設定する場合には、ステップS10の後、ビーム制御高圧電源5の制御電圧を所望の増減分に変化するように制御電圧を中央制御装置6に記録された参照データより呼び出すことで、ビーム電流量を高速に設定することができる(ステップS11)。これにより高速にビーム電流量を測定し、測定結果を画像表示装置22等に表示する(ステップS12)。測定後は、再びビーム検出素子23をアースに接続して測定を終了する(ステップS13)。   Next, FIG. 6 shows a current measurement flowchart in the charged particle beam apparatus. First, a desired acceleration voltage and beam current amount are selected (step S07). In accordance with the set conditions, the central controller 6 sets the control voltage and basic optical conditions to be applied to the beam control high voltage power source 5. At this time, the beam current detection element 23 connected to the ground is connected to the current detection circuit 24 (step S08), and the relationship between the set acceleration voltage and the previously acquired deflection control current amount or applied voltage is obtained. The deflection control power supply 16 is set so that the deflection range of the electron beam 7 is only in the vicinity of the groove of the beam detection element 23 (step S09). As a result, the beam deflection control range for detecting the current peak value is limited, and the beam current detection element 23 detects the peak value of the beam current within this deflection range (step S10). Thereby, since the charged particle beam can be incident on the current detection element 23 with high accuracy and instantaneously, both high-speed current measurement and high accuracy can be achieved. When setting the amount of electron beam current, after step S10, the control voltage is called from the reference data recorded in the central controller 6 so that the control voltage of the beam control high-voltage power supply 5 is changed to a desired increase / decrease. Thus, the beam current amount can be set at a high speed (step S11). Thereby, the beam current amount is measured at high speed, and the measurement result is displayed on the image display device 22 or the like (step S12). After the measurement, the beam detection element 23 is again connected to the ground, and the measurement is finished (step S13).

1 電子源
2 ビーム制御電極
3 引き出し電極
4 加速電極
5 ビーム制御高圧電源
6 中央制御装置
7 電子ビーム
8 第一収束レンズ
9 収束レンズ制御電源
10 絞り板
11 第二収束レンズ
12 対物レンズ
13 対物レンズ制御電源
14 偏向コイル
15 偏向電極
16 偏向制御電源
17 試料
18 二次電子
19 反射板
20 電子検出器
21 信号検出回路
22 画像表示装置
23 ビーム電流検出素子
24 電流検出回路
101 シールド
102 絶縁体
103 金属部品
104 光軸
1 Electron Source 2 Beam Control Electrode 3 Extraction Electrode 4 Acceleration Electrode 5 Beam Control High Voltage Power Supply 6 Central Controller 7 Electron Beam 8 First Converging Lens 9 Converging Lens Control Power Supply 10 Aperture Plate 11 Second Converging Lens 12 Objective Lens 13 Objective Lens Control Power supply 14 Deflection coil 15 Deflection electrode 16 Deflection control power supply 17 Sample 18 Secondary electron 19 Reflector 20 Electron detector 21 Signal detection circuit 22 Image display device 23 Beam current detection element 24 Current detection circuit 101 Shield 102 Insulator 103 Metal component 104 optical axis

Claims (6)

一次荷電粒子ビームを試料に照射して検出される二次信号を信号出力する機能を備えた荷電粒子光学系を備える荷電粒子線装置において、
前記荷電粒子光学系は、
前記一次荷電粒子ビームを前記試料上に走査させる走査偏向器と、
前記走査偏向器により偏向された一次荷電粒子ビームの電流値を測定する電流検出素子とを有し、
前記荷電粒子線装置は、前記一次荷電粒子ビームのビーム電流計測時には、
前記一次荷電粒子ビームに対する偏向範囲が、前記電流検出素子の検出電流ピーク位置近傍から開始されるように前記走査偏向器を制御する制御手段を更に備えることを特徴とする荷電粒子線装置。
In a charged particle beam apparatus including a charged particle optical system having a function of outputting a secondary signal detected by irradiating a sample with a primary charged particle beam,
The charged particle optical system includes:
A scanning deflector for scanning the sample with the primary charged particle beam;
A current detection element for measuring a current value of the primary charged particle beam deflected by the scanning deflector,
The charged particle beam device is configured to measure a beam current of the primary charged particle beam.
The charged particle beam apparatus further comprising control means for controlling the scanning deflector so that a deflection range with respect to the primary charged particle beam is started in the vicinity of a detection current peak position of the current detection element.
請求項1に記載の荷電粒子線装置において、
前記荷電粒子光学系は、前記一次荷電粒子ビームの加速電圧を調整可能な電子銃を備え、
前記加速電圧に応じて、前記一次荷電粒子ビーム偏向開始位置を制御することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle optical system includes an electron gun capable of adjusting an acceleration voltage of the primary charged particle beam,
A charged particle beam apparatus that controls the primary charged particle beam deflection start position in accordance with the acceleration voltage.
請求項2に記載の荷電粒子線装置において、
前記制御手段は、前記走査偏向器に供給する偏向電圧値が前記加速電圧に応じて格納されたテーブルを備えることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 2,
The charged particle beam apparatus according to claim 1, wherein the control unit includes a table in which a deflection voltage value supplied to the scanning deflector is stored in accordance with the acceleration voltage.
請求項2に記載の荷電粒子線装置において、
前記制御手段は、前記走査偏向器に供給する偏向電圧を、所定の演算式および前記加速電圧に基づき算出することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 2,
The charged particle beam apparatus according to claim 1, wherein the control unit calculates a deflection voltage supplied to the scanning deflector based on a predetermined arithmetic expression and the acceleration voltage.
請求項1に記載の荷電粒子線装置において、
前記測定した荷電粒子ビームの電流値を表示する表示手段を備えたことを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
A charged particle beam apparatus comprising display means for displaying the measured current value of the charged particle beam.
請求項1から5のいずれか1項に記載の荷電粒子線装置において、
前記電流検出素子の形状は、前記一次荷電粒子線の光軸方向に長い溝状であることを特徴とする荷電粒子線装置。
In the charged particle beam device according to any one of claims 1 to 5,
The charged particle beam device according to claim 1, wherein a shape of the current detection element is a groove shape long in an optical axis direction of the primary charged particle beam.
JP2010118884A 2010-05-25 2010-05-25 Charged corpuscular beam apparatus Pending JP2011249054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118884A JP2011249054A (en) 2010-05-25 2010-05-25 Charged corpuscular beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118884A JP2011249054A (en) 2010-05-25 2010-05-25 Charged corpuscular beam apparatus

Publications (1)

Publication Number Publication Date
JP2011249054A true JP2011249054A (en) 2011-12-08

Family

ID=45414091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118884A Pending JP2011249054A (en) 2010-05-25 2010-05-25 Charged corpuscular beam apparatus

Country Status (1)

Country Link
JP (1) JP2011249054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217207A (en) * 2014-05-20 2015-12-07 住友重機械工業株式会社 Neutron capture therapy apparatus and nuclear transformation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224545A (en) * 1985-07-24 1987-02-02 Hitachi Ltd Charged particle optical system
JPH03283247A (en) * 1990-03-30 1991-12-13 Mitsubishi Electric Corp Beam blanking device for charged beam device
JPH09171790A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Scanning electron microscope
JP2000208405A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Charged particle beam device and semiconductor integrated circuit using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224545A (en) * 1985-07-24 1987-02-02 Hitachi Ltd Charged particle optical system
JPH03283247A (en) * 1990-03-30 1991-12-13 Mitsubishi Electric Corp Beam blanking device for charged beam device
JPH09171790A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Scanning electron microscope
JP2000208405A (en) * 1999-01-18 2000-07-28 Hitachi Ltd Charged particle beam device and semiconductor integrated circuit using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217207A (en) * 2014-05-20 2015-12-07 住友重機械工業株式会社 Neutron capture therapy apparatus and nuclear transformation device

Similar Documents

Publication Publication Date Title
US10283313B2 (en) X-ray generator and adjustment method therefor
JP5937171B2 (en) Scanning electron microscope and sample observation method
US9324540B2 (en) Charged particle beam device
JP6242745B2 (en) Charged particle beam apparatus and inspection method using the apparatus
JP2001273861A (en) Charged beam apparatus and pattern incline observation method
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
JP2009043936A (en) Electron microscope
JP2006032107A (en) Reflection image forming electron microscope and pattern defect inspection device using it
JP2007171193A (en) Method and instrument for measuring distance
JP2001052642A (en) Scanning electron microscope and micro-pattern measuring method
JP2007194126A (en) Scanning electron microscope
US8124940B2 (en) Charged particle beam apparatus
KR102278301B1 (en) Charged particle beam apparatus
US20230078510A1 (en) Method for focusing and operating a particle beam microscope
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP6950088B2 (en) Charged particle beam device and detector position adjustment method for charged particle beam device
JP6075306B2 (en) Charged particle beam irradiation apparatus and charged particle beam axis adjusting method
JP2011249054A (en) Charged corpuscular beam apparatus
JPH09171790A (en) Scanning electron microscope
KR101639581B1 (en) Apparatus and method for controlling Charged Particle Beam in Charged Particle Microscope
JP5470194B2 (en) Charged particle beam equipment
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
KR102628711B1 (en) Charged particle beam device
KR101618693B1 (en) Method for controlling scanning profile in Charged Particle Microscope and apparatus using thereof
JP2006292671A (en) Method of measuring surface potential distribution, and for measuring device surface potential distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008