JP2011246763A - SURFACE TREATED Ti MATERIAL, AND MANUFACTURING METHOD THEREFOR - Google Patents

SURFACE TREATED Ti MATERIAL, AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2011246763A
JP2011246763A JP2010121176A JP2010121176A JP2011246763A JP 2011246763 A JP2011246763 A JP 2011246763A JP 2010121176 A JP2010121176 A JP 2010121176A JP 2010121176 A JP2010121176 A JP 2010121176A JP 2011246763 A JP2011246763 A JP 2011246763A
Authority
JP
Japan
Prior art keywords
layer
thickness
base material
sputtering
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010121176A
Other languages
Japanese (ja)
Other versions
JP5631632B2 (en
Inventor
Yoshitaka Shibuya
義孝 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010121176A priority Critical patent/JP5631632B2/en
Publication of JP2011246763A publication Critical patent/JP2011246763A/en
Application granted granted Critical
Publication of JP5631632B2 publication Critical patent/JP5631632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a separator material for a fuel cell, capable of forming firmly and uniformly a layer containing Au, while reducing a deposit amount of the Au onto a Ti base material surface, and capable of securing close contact property and corrosion resistance required in a separator for the fuel cell.SOLUTION: A surface layer 6 containing Au and Cr is formed on the surface of a Ti base material 2, an intermediate layer 2a containing respectively Ti and O of 10 atm.% or more, the Au less than 20 atm.% and the Cr of 20 atm.% or more, exists at 1 nm or more of thickness between the surface layer and the Ti base material, the deposit amount of Au is 4,000 ng/cmor more and less than 70,000 ng/cm, and a thickness part tcontaining Cr of 20 atm.% or more is 30% or more with respect to total thickness tof the surface layer and the intermediate layer, in this surface treated Ti material.

Description

本発明は、燃料電池用セパレータ材料等に好適に用いることが可能で、表面にAu又はAu合金(Auを含む層)が形成された表面処理Ti材料及びその製造方法に関する。   The present invention relates to a surface-treated Ti material that can be suitably used for a fuel cell separator material and the like and on which Au or an Au alloy (a layer containing Au) is formed, and a method for manufacturing the same.

チタンは、耐食性に優れる元素として腐食環境下で多く用いられる金属のひとつである。しかしながら、チタン自体は導電率が低く、さらに表面に酸化層を形成するために接触抵抗が高く、チタンに他の部材を接触させて導電性を確保するような部位には用いにくい。
そこで、チタン基材に、湿式金めっきを施すことで接触抵抗を小さくすることが知られている。又、Ti表面にAu,Ru、Rh、Pd、Os、Ir及びPt等から選ばれる貴金属をスパッタ成膜する技術が知られている(特許文献1)。さらに、特許文献1には、Ti表面に上記貴金属の酸化物を成膜することが記載されている。
一方、Ti基材の酸化被膜の上に、Ti,Zr、Hf、V、Nb、Ta、Cr、Mo、W等からなる中間層を介してAu膜を形成する技術が知られている(特許文献2)。この中間層は、基材酸化膜との密着性、すなわちO(酸素原子)との結合性が良いとともに、金属または半金属のためにAu膜との密着性、結合性が良いとされている。
更にTi基材の表面に、Ru、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上のAuより易酸化性の貴金属からなる第1成分とAuとの合金層、又はAu単独層が形成され、
前記合金層又は前記Au単独層と前記Ti基材との間に、Ti、Oがそれぞれ10%以上でかつ前記第1成分が20%以上含まれる1nm以上の中間層が存在する技術が知られている(特許文献3)。
Titanium is one of the metals often used in corrosive environments as an element with excellent corrosion resistance. However, titanium itself has a low electrical conductivity, and further has a high contact resistance because an oxide layer is formed on the surface thereof. Therefore, it is difficult to use it in a region where another member is brought into contact with titanium to ensure conductivity.
Therefore, it is known to reduce the contact resistance by applying wet gold plating to the titanium substrate. Further, a technique is known in which a noble metal selected from Au, Ru, Rh, Pd, Os, Ir, Pt, and the like is formed on a Ti surface by sputtering (Patent Document 1). Further, Patent Document 1 describes that the oxide of the noble metal is formed on the Ti surface.
On the other hand, a technique is known in which an Au film is formed on an oxide film of a Ti substrate via an intermediate layer made of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, or the like (patent) Reference 2). This intermediate layer has good adhesion to the base oxide film, that is, good bonding with O (oxygen atom), and good adhesion and bonding to the Au film because of the metal or metalloid. .
Further, on the surface of the Ti base material, an alloy layer of Au and a first component made of a noble metal that is more oxidizable than at least one selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt, Or an Au single layer is formed,
A technique is known in which an intermediate layer of 1 nm or more containing 10% or more of Ti and O and 20% or more of the first component exists between the alloy layer or the Au single layer and the Ti base material. (Patent Document 3).

特開2001−297777号公報JP 2001-297777 A 特開2004−185998号公報JP 2004-185998 A 特開2009−35748号公報JP 2009-35748 A

しかしながら、湿式の金めっきの場合、金めっきの電着形状が粒状であり、金めっきの付着量が少ないと、チタン基材表面の一部に非めっき部分となる部分が生じる。そのため、チタン基材表面全体を均一に金めっきするためには、Auの付着量を多くする必要がある。
特許文献1記載の技術の場合、密着性の良いAu合金膜を得るためには、チタン基材表面の酸化皮膜を取り除く処理が必要であり、酸化被膜の除去が不充分な場合は貴金属膜の密着性が低下するという問題がある。
又、特許文献2記載のチタン材の場合、表面処理層や中間層が薄い場合には耐摩耗性が十分ではないことがある。一方、Au層が薄く、中間層を構成する金属が厚い場合には、耐摩耗性は良好であるが、中間層の金属によっては導電性が十分ではない場合がある。
However, in the case of wet gold plating, if the electrodeposition shape of gold plating is granular and the amount of gold plating is small, a portion that becomes a non-plated portion is formed on a part of the surface of the titanium substrate. Therefore, in order to uniformly plate the entire surface of the titanium base material with gold, it is necessary to increase the adhesion amount of Au.
In the case of the technique described in Patent Document 1, in order to obtain an Au alloy film with good adhesion, it is necessary to remove the oxide film on the surface of the titanium substrate. If the oxide film is not sufficiently removed, the precious metal film There is a problem that the adhesion is lowered.
In the case of the titanium material described in Patent Document 2, if the surface treatment layer or the intermediate layer is thin, the wear resistance may not be sufficient. On the other hand, when the Au layer is thin and the metal constituting the intermediate layer is thick, the wear resistance is good, but the conductivity may not be sufficient depending on the metal of the intermediate layer.

すなわち、本発明は上記の課題を解決するためになされたものであり、チタン基材表面に高導電性及び高摩耗性を有する表面層を設けた表面処理Ti材料及びその製造方法の提供を目的とする。   That is, the present invention has been made to solve the above-described problems, and aims to provide a surface-treated Ti material having a surface layer having high conductivity and high wear on the surface of a titanium base material, and a method for producing the same. And

本発明者らは種々検討した結果、Ti基材表面にAuとCrを含む表面層を形成させ、さらにTi,O及びCrを含む中間層を形成させると共に、表面層と中間層との合計厚み部分のCr量を規定することで、導電性を有しつつ、耐摩耗性を有する表面層が得られることを見出した。
上記の目的を達成するために、本発明の表面処理Ti材料は、Ti基材の表面にAuとCrとを含む表面層が形成され、前記表面層と前記Ti基材との間に、Ti及びOがそれぞれ10原子%以上で、Au20原子%未満かつCr20原子%以上の中間層が1nm以上存在し、Auの付着量が4000ng/cm以上70000ng/cm未満であり、前記表面層と前記中間層の合計厚みに対し、Crを20原子%以上含む厚み部分が30%以上を占める。
As a result of various studies, the inventors have formed a surface layer containing Au and Cr on the surface of the Ti base material, and further formed an intermediate layer containing Ti, O and Cr, and the total thickness of the surface layer and the intermediate layer. It has been found that by defining the Cr content of the portion, a surface layer having conductivity and wear resistance can be obtained.
In order to achieve the above object, in the surface-treated Ti material of the present invention, a surface layer containing Au and Cr is formed on the surface of a Ti base material, and a Ti layer is formed between the surface layer and the Ti base material. And O are each 10 atomic% or more, an intermediate layer of less than 20 atomic% of Au and 20 atomic% or more of Cr is present in an amount of 1 nm or more, and an adhesion amount of Au is 4000 ng / cm 2 or more and less than 70000 ng / cm 2 , The thickness portion containing 20 atomic% or more of Cr accounts for 30% or more of the total thickness of the intermediate layer.

Crの付着量が200ng/cm以上であることが好ましい。
前記Ti基材は、Tiと異なる基材表面に厚み10nm以上のTi被膜を形成してなるものであってもよい。
It is preferable that the adhesion amount of Cr is 200 ng / cm 2 or more.
The Ti base material may be formed by forming a Ti film having a thickness of 10 nm or more on the surface of a base material different from Ti.

本発明の表面処理Ti材料の製造方法は、前記表面処理Ti材料の製造方法であって、前記Ti基材の表面に、Crを乾式成膜した後、Auを乾式成膜する。
前記乾式成膜がスパッタリングであることが好ましい。
The method for producing a surface-treated Ti material according to the present invention is a method for producing the surface-treated Ti material, in which Cr is dry-formed on the surface of the Ti substrate, and then Au is dry-formed.
The dry film formation is preferably sputtering.

本発明によれば、Auの付着量を低減しつつ、Auを含む層をTi上に強固かつ均一に形成させることができ、さらに導電性、耐食性及び耐摩耗性を向上できる。   According to the present invention, it is possible to form a layer containing Au firmly and uniformly on Ti while reducing the adhesion amount of Au, and to improve conductivity, corrosion resistance, and wear resistance.

本発明の実施形態に係る表面処理Ti材料の構成を示す模式図である。It is a schematic diagram which shows the structure of the surface treatment Ti material which concerns on embodiment of this invention. 実施例1の表面処理Ti材料の断面のXPS像を示す図である。3 is a diagram showing an XPS image of a cross section of the surface-treated Ti material of Example 1. FIG.

以下、本発明の実施形態に係る表面処理Ti材料について説明する。なお、本発明において%とは、特に断らない限り、原子(at)%を示すものとする。
又、本発明の表面処理Ti材料は電気伝導性を有し、従来からAuを被覆した材料の用途である装飾品として使用する他に、半導体部品、航空宇宙材料部品、自動車部品、センサー、計測機器部品、端子、電気接点部品、電極材料等に使用することができる。
又、本発明は材料同士が接触して用いられ、導電性を維持しつつ、耐摩耗性に優れる点においては、燃料電池用セパレータとしても使用できる。
Hereinafter, the surface-treated Ti material according to the embodiment of the present invention will be described. In the present invention,% means atomic (at)% unless otherwise specified.
In addition, the surface-treated Ti material of the present invention has electrical conductivity, and has been used as a decorative product, which is the application of materials coated with Au, as well as semiconductor parts, aerospace material parts, automobile parts, sensors, and measurement. It can be used for equipment parts, terminals, electrical contact parts, electrode materials and the like.
In addition, the present invention can be used as a fuel cell separator in that the materials are used in contact with each other and maintain conductivity while being excellent in wear resistance.

図1に示すように、表面処理Ti材料は、Ti基材2の表面に中間層2aが形成され、中間層2aの表面に表面層6が形成されてなる。   As shown in FIG. 1, the surface-treated Ti material has an intermediate layer 2a formed on the surface of a Ti base 2 and a surface layer 6 formed on the surface of the intermediate layer 2a.

<Ti基材>
本発明の表面処理Ti材料は、一般的な環境下の使用で実用上問題なく使用できるが、Ti基材自身の耐食性が良好なことから、腐食環境下で或いは腐食されやすい環境下での使用が期待される。
Ti基材は無垢のチタン材であってもよいが、Tiと異なる基材表面に厚み10nm以上のTi被膜を形成したものであってもよい。Tiと異なる基材としてはステンレス鋼やアルミニウム,銅等が挙げられ、これらの表面にTiを被覆することにより、チタンと比べて耐食性の低いステンレス鋼やアルミニウム,銅等の耐食性を向上させることができる。但し、耐食性向上効果はTiを10nm以上被覆しないと得られない。
Ti基材2の材質はチタンであれば特に制限されない。又、Ti基材2の形状も特に制限されず、Cr及び金をスパッタできる形状であればよいが、セパレータ形状にプレス成形することを考えると、Ti基材の形状は板材であることが好ましく、Ti基材全体の厚みが10μm以上の板材であることが好ましい。
中間層2aに含まれるO(酸素)は、Ti基材2を空気中に放置することにより自然に形成されるが、酸化雰囲気で積極的にOを形成してもよい。
<Ti substrate>
The surface-treated Ti material of the present invention can be used without problems in practical use under a general environment. However, since the corrosion resistance of the Ti base material itself is good, it is used under a corrosive environment or a corrosive environment. There is expected.
The Ti substrate may be a solid titanium material, or may be a Ti substrate having a thickness of 10 nm or more formed on the surface of a substrate different from Ti. Examples of the base material different from Ti include stainless steel, aluminum, copper, and the like. By covering these surfaces with Ti, the corrosion resistance of stainless steel, aluminum, copper, etc., which has lower corrosion resistance than titanium, can be improved. it can. However, the corrosion resistance improving effect cannot be obtained unless Ti is covered by 10 nm or more.
The material of the Ti base material 2 is not particularly limited as long as it is titanium. Further, the shape of the Ti base material 2 is not particularly limited as long as it is a shape capable of sputtering Cr and gold. However, considering press forming into a separator shape, the shape of the Ti base material is preferably a plate material. The thickness of the entire Ti substrate is preferably 10 μm or more.
O (oxygen) contained in the intermediate layer 2a is naturally formed by leaving the Ti base 2 in the air, but O may be positively formed in an oxidizing atmosphere.

なお、Tiの濃度は、後述するXPSによる濃度検出で行い、指定元素の合計を100%として、各元素の濃度を分析して行う。又、表面処理Ti材料の最表面から1nmの深さとは、XPS分析によるチャートの横軸(厚み方向)の距離(SiO2換算での距離)である。 The Ti concentration is detected by XPS concentration detection, which will be described later, and the concentration of each element is analyzed with the total of the designated elements as 100%. The depth of 1 nm from the outermost surface of the surface-treated Ti material is a distance (distance in terms of SiO 2 ) on the horizontal axis (thickness direction) of the chart by XPS analysis.

<表面層>
Ti基材2上に、CrとAuとを含む表面層6が形成される。この表面層は、Ti基材にAuの特性(導電性)と耐磨耗性を付与するためのものであり、用途に応じて耐食性、耐水素脆性をも付与する。
Crは、a)酸素と結合しやすく、中間層を形成して表面層とTi基材との密着性を向上させる、b)Auと合金を構成することでAuとの密着性を確保させる、c)合金化して硬い層が得られる、d)Crを含む層の導電率がAuと比べて大きく低下しない、という性質を有し、導電率を維持しつつ、耐摩耗性のある表面処理層を構成することができる。また、Crは耐食性に優れ、水素を吸収しにくい。
Zr、Hf、V、Nb、Ta、Mo、Wも、酸素と結合しやすく、Auと合金化する元素ではあるが、Zr、Hf、Vの場合、Auと合金化した層の導電率がAuとCrの合金層の導電率に比べて低い。又、Wは高価であり、コストが高くなる。Nb、Ta、Moの場合、特にAuが薄い場合にCrに匹敵する耐食性が得られない。
Ru、Rh、Pd、Ir、Os及びPtも酸素と結合しやすく、Auと合金化する元素である。しかし、Ru、Pd、又はPtがAuと合金化した層の硬さは、AuとCrの合金層の硬さに比べて柔らかく、耐摩耗性がAuとCrの合金層に比べて劣る。Rh、Ir、Osは高価であり、コストが高くなる。
<Surface layer>
A surface layer 6 containing Cr and Au is formed on the Ti base 2. This surface layer is for imparting Au characteristics (conductivity) and abrasion resistance to the Ti substrate, and also imparts corrosion resistance and hydrogen embrittlement resistance depending on the application.
Cr is a) easy to bond with oxygen, and forms an intermediate layer to improve the adhesion between the surface layer and the Ti base material, b) ensures the adhesion with Au by constituting an alloy with Au, c) a hard layer obtained by alloying; d) a surface treatment layer having a property that the conductivity of the layer containing Cr is not significantly reduced compared to Au, and maintaining the conductivity while being wear resistant. Can be configured. Cr is excellent in corrosion resistance and hardly absorbs hydrogen.
Zr, Hf, V, Nb, Ta, Mo, and W are also elements that easily bond to oxygen and are alloyed with Au. However, in the case of Zr, Hf, and V, the conductivity of the layer alloyed with Au is Au. Compared to the conductivity of the alloy layer of Cr and Cr. Moreover, W is expensive and the cost becomes high. In the case of Nb, Ta, and Mo, corrosion resistance comparable to Cr cannot be obtained particularly when Au is thin.
Ru, Rh, Pd, Ir, Os, and Pt are also elements that easily bond to oxygen and alloy with Au. However, the hardness of the layer in which Ru, Pd, or Pt is alloyed with Au is softer than the hardness of the alloy layer of Au and Cr, and the wear resistance is inferior to that of the alloy layer of Au and Cr. Rh, Ir, and Os are expensive and expensive.

表面層は、後述するXPS分析により確認することができ、XPS分析により最表面から下層に向かってAuとCrを含む部分であって、以下の中間層より上層に位置する部分(Au20%以上の部分)を表面層とする。表面層の厚みは3〜100nmであることが好ましい。表面層の厚みが3nm未満であると、Ti基材上に燃料電池用セパレータに要求される耐食性を確保できなくなる場合がある。表面層の厚みがより好ましくは5nm以上、さらには好ましくは10nm以上である。   The surface layer can be confirmed by XPS analysis which will be described later, and is a portion containing Au and Cr from the outermost surface to the lower layer by XPS analysis, and a portion located above the following intermediate layer (Au 20% or more (Part) is a surface layer. The thickness of the surface layer is preferably 3 to 100 nm. If the thickness of the surface layer is less than 3 nm, the corrosion resistance required for the fuel cell separator may not be ensured on the Ti substrate. The thickness of the surface layer is more preferably 5 nm or more, and further preferably 10 nm or more.

なお、表面層6の最表にAu単独層が形成されていてもよい。Au単独層は、XPS分析によりAuの濃度がほぼ100%の部分である。   An Au single layer may be formed on the outermost surface layer 6. The Au single layer is a portion where the concentration of Au is almost 100% by XPS analysis.

<中間層>
表面層(又はAu単独層)6とTi基材2との間に、XPS分析により、Ti及びOがそれぞれ10原子%以上で、Au20原子%未満かつCr20原子%以上の中間層2aが1nm以上存在する。中間層の厚みの上限は限定されないが、Crのコストの点から100nm以下であることが好ましい。
通常、Ti基材は表面に酸化層を有しており、酸化され難いAu(含有)層をTi表面に直接形成させるのは難しい。一方、上記金属はAuに比べて酸化され易く、Ti基材の表面でTi酸化物中のO原子と酸化物を形成し、Ti基材表面に強固に結合するものと考えられる。
なお中間層にはAuは含まれないほうが好ましく、Auが20%以上含まれると密着性が低下する。中間層中のAu濃度を20%未満とするためには、Ti基材上に、Cr単体のターゲット、又は低Au濃度のCr−Au合金ターゲットを用いてスパッタすることが好ましい。
<Intermediate layer>
By XPS analysis between the surface layer (or Au single layer) 6 and the Ti substrate 2, the intermediate layer 2a with Ti and O of 10 atomic% or more, Au of less than 20 atomic% and Cr of 20 atomic% or more is 1 nm or more. Exists. The upper limit of the thickness of the intermediate layer is not limited, but is preferably 100 nm or less from the viewpoint of the cost of Cr.
Usually, a Ti substrate has an oxide layer on the surface, and it is difficult to directly form an Au (containing) layer that is difficult to be oxidized on the Ti surface. On the other hand, it is considered that the metal is more easily oxidized than Au, and forms an O atom and an oxide in the Ti oxide on the surface of the Ti base, and is firmly bonded to the surface of the Ti base.
The intermediate layer preferably does not contain Au, and if 20% or more of Au is contained, the adhesion decreases. In order to reduce the Au concentration in the intermediate layer to less than 20%, it is preferable to perform sputtering using a Cr single target or a low Au concentration Cr—Au alloy target on the Ti substrate.

ここで、XPS(X線光電子分光)分析による深さ(Depth)プロファイルを測定し、Au,Ti,O,Crの濃度分析を行ってスパッタ層の層構造を決定することができる。なお、XPSによる濃度検出は、指定元素の合計を100%として、各元素の濃度を分析する。又、XPS分析で厚み方向に1nmの距離とは、XPS分析によるチャートの横軸の距離(SiO換算での距離)である。 Here, a depth profile by XPS (X-ray photoelectron spectroscopy) analysis is measured, and concentration analysis of Au, Ti, O, Cr is performed to determine the layer structure of the sputtered layer. In the concentration detection by XPS, the concentration of each element is analyzed with the total of designated elements as 100%. In the XPS analysis, the distance of 1 nm in the thickness direction is the distance on the horizontal axis of the chart by XPS analysis (distance in terms of SiO 2 ).

Ti、Oの下限をそれぞれ10%とし、Crの下限を20%とした理由は、Crが20%未満である部分はTi基材の表面に近く、Tiが10%未満である部分は表面層に近くなるためであり、又、Oが10%未満である部分はCrとTiがO原子と充分な酸化物を形成しておらず、中間層として機能しないと考えられるからである。又、Ti、Oはそれぞれ10%から急激に減少するので、測定上から10%を下限とする。Auを20%未満とした理由は密着性を向上させるためである。中間層が1nm未満の場合には,Crが薄く,Ti基材とAuが接する部分が多くなるため、表面層の密着性が劣化する場合がある。   The reason why the lower limit of Ti and O is 10% and the lower limit of Cr is 20% is that the part where Cr is less than 20% is close to the surface of the Ti substrate, and the part where Ti is less than 10% is the surface layer. This is because the portion where O is less than 10% does not form a sufficient oxide with Cr and Ti and does not function as an intermediate layer. Moreover, since Ti and O each decrease rapidly from 10%, the lower limit is 10% from the measurement. The reason for making Au less than 20% is to improve adhesion. When the intermediate layer is less than 1 nm, Cr is thin and the portion where the Ti base material and Au are in contact with each other increases, so that the adhesion of the surface layer may deteriorate.

本発明の表面処理Ti材料において、Auの付着量が4000ng/cm以上である必要がある。
Auの付着量が4000ng/cm未満であると、燃料電池用セパレータに要求される導電性、耐食性を確保できなくなり、接触抵抗が高くなる。なお、省金化の点からAuの付着量は70000ng/cm未満であり、好ましくは40000ng/cm以下、更に好ましくは20000ng/cm以下である。Auの付着量70000ng/cmは、純Auの厚み30nmに相当する。
又、本発明の表面処理Ti材料において、Crの付着量が200ng/cm以上である必要がある。
Crの付着量が200ng/cm未満であると、Crが少ないために表面層の密着性が劣化する。
In the surface-treated Ti material of the present invention, the adhesion amount of Au needs to be 4000 ng / cm 2 or more.
When the adhesion amount of Au is less than 4000 ng / cm 2 , the conductivity and corrosion resistance required for the fuel cell separator cannot be secured, and the contact resistance increases. From the viewpoint of saving money, the adhesion amount of Au is less than 70000 ng / cm 2 , preferably 40000 ng / cm 2 or less, more preferably 20000 ng / cm 2 or less. The adhesion amount of Au of 70,000 ng / cm 2 corresponds to the thickness of pure Au of 30 nm.
In the surface-treated Ti material of the present invention, the amount of Cr deposited needs to be 200 ng / cm 2 or more.
When the adhesion amount of Cr is less than 200 ng / cm 2 , the adhesion of the surface layer is deteriorated because Cr is small.

又、本発明の表面処理Ti材料において、厚み方向のXPS分析により、表面層と中間層の合計厚みに対し、Crを20原子%以上含む厚み部分が30%以上を占める。
Crは比較的硬い(ビッカース硬度が高い)金属である一方、Auは柔らかい金属である。そのため,Auを含む膜にCrが多く含まれる(Crを20原子%以上含む厚み部分が30%以上を占める)と皮膜の硬さが向上し,結果として耐摩耗性が向上する。
In the surface-treated Ti material of the present invention, the thickness portion containing 20 atomic% or more of Cr accounts for 30% or more of the total thickness of the surface layer and the intermediate layer by XPS analysis in the thickness direction.
Cr is a relatively hard metal (high Vickers hardness), while Au is a soft metal. Therefore, if the film containing Au contains a large amount of Cr (the thickness portion containing 20 atomic% or more of Cr occupies 30% or more), the hardness of the film is improved, and as a result, the wear resistance is improved.

本発明において、Ti基材と表面層6との間に、Tiが50%未満でOが20%以上含まれる酸化層が100nm未満の厚みで形成されていることが好ましい(なお、この酸化層の一部が中間層の領域と重なる場合もある)。
酸化層が存在すると、燃料電池の連続発電試験を行った場合にチタン基材が脆化することを防止する。
ここで、Tiが50%未満の領域は,Ti濃度が全体の1/2以下であるので,チタン基材と異なる部分とみなしている。そして、Ti基材の表面には酸化膜が存在するため,Tiが50%未満の厚み部分から表面層までを酸化層と定義する。又、Oを20%以上含まれる領域を酸化層とした理由は、酸化層のO(酸素)濃度が20%未満であると、燃料電池の連続発電試験を行った場合にTi基材が脆化し、表面処理Ti材料としての耐久性が劣化するためである。
但し、酸化層の厚みが100nm以上になると、表面層の密着性や導電性が低下する場合がある。一方、酸化層が薄いと,燃料電池の連続発電試験を行った場合にチタン基材が脆化して表面処理Ti材料としての耐久性が劣化する恐れもある。従って、酸化層の厚みが好ましくは5nm以上,より好ましくは10nm以上である。
In the present invention, it is preferable that an oxide layer containing less than 100% Ti and 20% or more O is formed between the Ti base material and the surface layer 6 with a thickness of less than 100 nm (this oxide layer). Part of it may overlap the middle layer area).
When the oxide layer is present, the titanium base material is prevented from becoming brittle when a continuous power generation test of the fuel cell is performed.
Here, the region where Ti is less than 50% is regarded as a portion different from the titanium base material because the Ti concentration is ½ or less of the whole. Since an oxide film exists on the surface of the Ti base material, a portion from a thickness portion where Ti is less than 50% to the surface layer is defined as an oxide layer. Also, the reason why the region containing 20% or more of O is used as the oxide layer is that when the O (oxygen) concentration of the oxide layer is less than 20%, the Ti base material becomes brittle when the continuous power generation test of the fuel cell is performed. This is because the durability of the surface-treated Ti material deteriorates.
However, when the thickness of the oxide layer is 100 nm or more, the adhesion and conductivity of the surface layer may decrease. On the other hand, when the oxide layer is thin, the titanium base material becomes brittle when the continuous power generation test of the fuel cell is performed, and the durability as the surface-treated Ti material may be deteriorated. Therefore, the thickness of the oxide layer is preferably 5 nm or more, more preferably 10 nm or more.

表面層中のAuの割合が下層側から上層側に向かって増加する傾斜組成になっていることが好ましい。ここで、Auの割合は、上記したXPS分析で求めることができる。表面層の厚みは、XPS分析での走査距離の実寸である。
表面層を傾斜組成とすると、表面層の下層側ではAuより易酸化性のCrの割合が多くなり、Ti基材表面との結合が強固になる一方、表面層の上層側ではAuの特性が強くなるので、耐食性と耐久性が向上する。
It is preferable to have a gradient composition in which the proportion of Au in the surface layer increases from the lower layer side toward the upper layer side. Here, the ratio of Au can be obtained by the XPS analysis described above. The thickness of the surface layer is the actual size of the scanning distance in XPS analysis.
When the surface layer has a gradient composition, the proportion of Cr that is more oxidizable than Au increases on the lower layer side of the surface layer, and the bond with the Ti substrate surface becomes stronger, while the upper layer side of the surface layer has the characteristics of Au. Since it becomes stronger, corrosion resistance and durability are improved.

<表面処理Ti材料の製造>
表面処理Ti材料の中間層の形成方法としては、Ti基材の表面Ti酸化膜を除去せずに、この基材にCrをターゲットとしてスパッタ成膜することにより、表面Ti酸化膜中のOにCrが結合し、中間層を形成することができる。又、Ti基材2の表面Ti酸化膜を除去後、Crの酸化物をターゲットとしてスパッタ成膜することや、Ti基材2の表面Ti酸化膜を除去後、Crをターゲットとし酸化雰囲気でスパッタ成膜することによっても中間層を形成することができる。
なお、スパッタの際、Ti基材の表面Ti酸化膜を適度に除去し、基材表面のクリーニングを目的として逆スパッタ(イオンエッチング)を行ってもよい。逆スパッタは、例えばRF100W程度の出力で、アルゴン圧力0.2Pa程度としてアルゴンガスを基材に照射して行うことができる。
中間層のAuは、以下の表面層を形成するためのAuスパッタにより、Au原子が中間層に入り込むことによって中間層内に含まれるようになる。又、CrとAuを含む合金ターゲットを用いてTi基材表面にスパッタ成膜してもよい。
<Manufacture of surface-treated Ti material>
As a method of forming the intermediate layer of the surface-treated Ti material, the surface Ti oxide film of the Ti base material is not removed, and sputtering is performed on this base material using Cr as a target, so that the O in the surface Ti oxide film is formed. Cr can be bonded to form an intermediate layer. Also, after removing the surface Ti oxide film of the Ti base material 2, sputtering film formation is performed using the Cr oxide as a target, or after removing the surface Ti oxide film of the Ti base material 2, sputtering is performed using Cr as a target in an oxidizing atmosphere. The intermediate layer can also be formed by forming a film.
During sputtering, the surface Ti oxide film on the Ti base material may be appropriately removed, and reverse sputtering (ion etching) may be performed for the purpose of cleaning the base material surface. Reverse sputtering can be performed, for example, by irradiating the substrate with argon gas at an output of about RF 100 W and an argon pressure of about 0.2 Pa.
The Au of the intermediate layer is contained in the intermediate layer by Au atoms entering the intermediate layer by Au sputtering for forming the following surface layer. Alternatively, a sputtering film may be formed on the surface of the Ti substrate using an alloy target containing Cr and Au.

表面層の形成方法としては、例えば上記したスパッタによりTi基材上にCrを成膜した後、Cr膜の上にAuをスパッタ成膜することができる。この場合、スパッタ粒子は高エネルギーを持つため、Cr膜のみがTi基材表面に成膜されていても、そこにAuをスパッタすることにより、Cr膜にAuが入り込み、表面層となる。又、この場合、表面層中のAuの割合が下層側から上層側に向かって増加する傾斜組成となる。
Ti基材表面に最初にCrとAuのうちAu濃度が低い合金ターゲットを用いてスパッタ成膜し、その後、CrとAuのうちAu濃度が高い合金ターゲットを用いてスパッタ成膜してもよい。
As a method for forming the surface layer, for example, Cr can be deposited on a Ti base material by sputtering as described above, and then Au can be deposited by sputtering on the Cr film. In this case, since the sputtered particles have high energy, even if only the Cr film is formed on the surface of the Ti base, by sputtering Au there, Au enters the Cr film and becomes a surface layer. Further, in this case, the composition is a gradient composition in which the proportion of Au in the surface layer increases from the lower layer side toward the upper layer side.
Sputter film formation may be first performed on the Ti substrate surface using an alloy target having a low Au concentration of Cr and Au, and then using an alloy target having a high Au concentration of Cr and Au.

厚み方向のXPS分析において、表面層と中間層の合計厚みの30%以上の厚み部分がCrを20原子%以上含むようにする方法としては,スパッタ時に成膜するCrの厚みをAuに比較して厚くすることが挙げられる。好ましくは、(Auの厚み/Crの厚み)を10以下とするとよい。   In the XPS analysis in the thickness direction, as a method of making the thickness part of 30% or more of the total thickness of the surface layer and the intermediate layer contain 20 atomic% or more of Cr, the thickness of Cr formed during sputtering is compared with that of Au And thickening. Preferably, (Au thickness / Cr thickness) is 10 or less.

本発明の実施形態に係る表面処理Ti材料によれば、Auを含む層をTi上に強固かつ均一に形成させることができ、この層が導電性、耐食性及び耐久性を有する。又、本発明の実施形態によれば、Auを含む層をスパッタ成膜すればこの層が均一な層となるので、湿式の金めっきに比べて表面が平滑となり、Auを無駄に使用しなくて済むという利点がある。   According to the surface-treated Ti material according to the embodiment of the present invention, a layer containing Au can be formed firmly and uniformly on Ti, and this layer has conductivity, corrosion resistance, and durability. Further, according to the embodiment of the present invention, if a layer containing Au is sputter-deposited, this layer becomes a uniform layer. Therefore, the surface becomes smoother than wet gold plating, and Au is not wasted. There is an advantage that it can be done.

<試料の作製>
Ti基材として、厚み100μmの工業用純チタン材(JIS1種)を用い、FIB(集束イオンビーム加工)による前処理をした。FE−TEM(電解放射型透過電子顕微鏡)によるエネルギー分散型蛍光X線分析(EDX)により観察したところ、Ti基材の表面には予め約10nmのチタン酸化物層が形成されていたのを確認した。
又、一部の実施例では、厚み100μm工業用純ステンレス鋼材(SUS316L)若しくは厚み100μm純銅(C1100)に対し、表1に示す所定厚みのTiを被覆したものを用いた(Ti被覆材)。Tiの被覆は、電子ビーム蒸着装置(アルバック製、MB05−1006)を用いた真空蒸着により行った。
次に、Ti基材のチタン酸化物層の表面に、スパッタ法を用いて所定の目標厚みとなるように、Crを成膜した。ターゲットには純Crを用いた。次に、スパッタ法を用いて所定の目標厚みとなるようにAuを成膜した。ターゲットには純Auを用いた。
目標厚みは以下のように定めた。まず、予めチタン基材にスパッタで対象物(Cr、Au)を成膜し、蛍光X線膜厚計(Seiko Instruments製 SEA5100、コリメータ0.1mmΦ)で実際の厚みを測定し、このスパッタ条件におけるスパッタレート(nm/min)を把握した。そして、スパッタレートに基づき、厚み1nmとなるスパッタ時間を計算し、この条件でスパッタを行った。
Cr及びAuのスパッタは、株式会社アルバック製のスパッタ装置を用い、出力DC50W アルゴン圧力0.2Paの条件で行った。
<Preparation of sample>
As a Ti base material, an industrial pure titanium material (JIS type 1) having a thickness of 100 μm was used, and pretreatment was performed by FIB (focused ion beam processing). When observed by energy dispersive X-ray fluorescence (EDX) analysis using FE-TEM (electrolytic emission transmission electron microscope), it was confirmed that a titanium oxide layer of about 10 nm was formed on the surface of the Ti substrate in advance. did.
In some examples, a 100 μm thick industrial pure stainless steel material (SUS316L) or a 100 μm thick pure copper (C1100) coated with Ti having a predetermined thickness shown in Table 1 (Ti coating material) was used. The Ti coating was performed by vacuum vapor deposition using an electron beam vapor deposition apparatus (manufactured by ULVAC, MB05-1006).
Next, Cr was formed on the surface of the titanium oxide layer of the Ti base so as to have a predetermined target thickness by sputtering. Pure Cr was used for the target. Next, Au was deposited using a sputtering method so as to have a predetermined target thickness. Pure Au was used for the target.
The target thickness was determined as follows. First, an object (Cr, Au) is formed in advance on a titanium substrate by sputtering, and the actual thickness is measured with a fluorescent X-ray film thickness meter (SEA Instruments 100A, collimator 0.1 mmΦ) manufactured by Seiko Instruments. The sputter rate (nm / min) was grasped. Based on the sputtering rate, the sputtering time for a thickness of 1 nm was calculated, and sputtering was performed under these conditions.
Sputtering of Cr and Au was performed using a sputtering apparatus manufactured by ULVAC, Inc. under the conditions of an output DC of 50 W and an argon pressure of 0.2 Pa.

<層構造の測定>
得られた試料について、XPS(X線光電子分光)分析による深さ(Depth)プロファイルを測定し、Au,Ti,O,Crの濃度分析を行ってスパッタ層の層構造を決定した。XPS装置としては、アルバック・ファイ株式会社製5600MCを用い、到達真空度:6.5×10−8Pa、励起源:単色化AlK、出力:300W、検出面積:800μmΦ、入射角:45度、取り出し角:45度、中和銃なしとし、以下のスパッタ条件で、測定した。
イオン種:Ar+
加速電圧:3kV
掃引領域:3mm×3mm
レート:2nm/min.(SiO換算)
なお、XPSによる濃度検出は、指定元素の合計を100%として、各元素の濃度(at%)を分析した。又、XPS分析で厚み方向に1nmの距離とは、XPS分析によるチャートの横軸の距離(SiO換算での距離)である。
<Measurement of layer structure>
About the obtained sample, the depth (Depth) profile by XPS (X-ray photoelectron spectroscopy) analysis was measured, the density | concentration analysis of Au, Ti, O, and Cr was performed, and the layer structure of the sputter | spatter layer was determined. As an XPS device, ULVAC-PHI Co., Ltd. 5600MC was used, ultimate vacuum: 6.5 × 10 −8 Pa, excitation source: monochromatic AlK, output: 300 W, detection area: 800 μmΦ, incident angle: 45 degrees, The take-off angle was 45 degrees, no neutralization gun was used, and the measurement was performed under the following sputtering conditions.
Ion species: Ar +
Acceleration voltage: 3 kV
Sweep area: 3mm x 3mm
Rate: 2 nm / min. (SiO 2 equivalent)
The concentration detection by XPS was performed by analyzing the concentration (at%) of each element with the total of designated elements as 100%. In the XPS analysis, the distance of 1 nm in the thickness direction is the distance on the horizontal axis of the chart by XPS analysis (distance in terms of SiO 2 ).

図2は、実施例1の試料の断面のXPS像を示す。
Ti基材2の表面に、CrとAuとを含む表面層6が形成されている。さらにTi基材2と表面層6との間に、Ti及びOがそれぞれ10原子%以上で、Au20原子%未満かつCr20原子%以上の中間層2aが1nm以上存在することがわかる。
また、厚み方向のXPS分析により、表面層と中間層の合計厚みtに対し、Crを20原子%以上含む厚み部分tが30%以上を占めることがわかる。
なお、本発明においては、中間層を定義するためTi、O等の濃度を規定している。従って、中間層の境界は便宜上Ti、O濃度によって決められるため、中間層とその上下の層(例えばTi基材2)との間に、中間層ともTi基材とも異なる層が介在する場合もある。
FIG. 2 shows an XPS image of a cross section of the sample of Example 1.
A surface layer 6 containing Cr and Au is formed on the surface of the Ti base 2. Further, it can be seen that an intermediate layer 2a of Ti and O of 10 atomic% or more, Au of less than 20 atomic% and Cr of 20 atomic% or more is present at 1 nm or more between the Ti substrate 2 and the surface layer 6.
Further, XPS analysis in the thickness direction shows that the thickness portion t B containing 20 atomic% or more of Cr occupies 30% or more of the total thickness t A of the surface layer and the intermediate layer.
In the present invention, the concentration of Ti, O, etc. is defined in order to define the intermediate layer. Therefore, since the boundary of the intermediate layer is determined by the Ti and O concentrations for convenience, a layer different from both the intermediate layer and the Ti substrate may be interposed between the intermediate layer and the upper and lower layers (for example, the Ti substrate 2). is there.

<各試料の作製>
初期の表面Ti酸化層の厚みがそれぞれ異なるチタン基材(純Ti、Ti被覆材)に対し、スパッタ時のCr膜及びAu膜の目標厚みを種々変更して実施例1〜8の試料を作製した。
<Preparation of each sample>
Samples of Examples 1 to 8 were prepared by variously changing the target thicknesses of the Cr film and Au film at the time of sputtering for titanium substrates (pure Ti and Ti coating materials) having different thicknesses of the initial surface Ti oxide layer. did.

比較例9として、Au膜のみ成膜した。
比較例10として、Cr膜のスパッタ厚みを0.25nmに低減して試料を作製した。
比較例11として、Au膜のスパッタ厚みを3nmに低減し、Cr膜のスパッタ厚みを0.25nmに低減して試料を作製した。
比較例12として、Au膜のスパッタ厚みを15nmに厚くして試料を作製した。
比較例13として、Au膜のスパッタ厚みを30nmに厚くして試料を作製した。
比較例14として、Au膜のスパッタ厚みを2nmに低減したこと以外は実施例1と同様にして試料を作製した。
As Comparative Example 9, only an Au film was formed.
As Comparative Example 10, a sample was prepared by reducing the sputtering thickness of the Cr film to 0.25 nm.
As Comparative Example 11, a sample was prepared by reducing the sputtering thickness of the Au film to 3 nm and reducing the sputtering thickness of the Cr film to 0.25 nm.
As Comparative Example 12, a sample was manufactured by increasing the sputtering thickness of the Au film to 15 nm.
As Comparative Example 13, a sample was manufactured by increasing the sputtering thickness of the Au film to 30 nm.
As Comparative Example 14, a sample was manufactured in the same manner as in Example 1 except that the sputtering thickness of the Au film was reduced to 2 nm.

参考例15として、スパッタの代わりに、湿式めっきによりTi基材表面にAu層を5nm相当成膜した。湿式めっきは、基材の浸漬脱脂、水洗、酸洗、水洗、活性化処理、水洗を順に行った後、亜硫酸系のめっき浴で金めっきし、さらに水洗、熱処理を行った。
参考例16として、スパッタ時にCrの代わりにTiを成膜したこと以外は実施例1と同様にして試料を作製した。
参考例17として、スパッタ時にCrの代わりにTaを成膜したこと以外は実施例1と同様にして試料を作製した。
参考例18として、スパッタ時にCrの代わりにMoを成膜したこと以外は実施例1と同様にして試料を作製した。
参考例19として、スパッタ時にCrの代わりにPdを成膜したこと以外は実施例1と同様にして試料を作製した。
As Reference Example 15, an Au layer corresponding to 5 nm was formed on the surface of the Ti substrate by wet plating instead of sputtering. In wet plating, the substrate was immersed, degreased, washed with water, pickled, washed with water, activated, and washed with water, then plated with gold in a sulfite-based plating bath, and further washed with water and heat-treated.
As Reference Example 16, a sample was prepared in the same manner as in Example 1 except that Ti was deposited instead of Cr during sputtering.
As Reference Example 17, a sample was prepared in the same manner as in Example 1 except that Ta was deposited instead of Cr during sputtering.
As Reference Example 18, a sample was prepared in the same manner as in Example 1 except that Mo was deposited instead of Cr during sputtering.
As Reference Example 19, a sample was prepared in the same manner as in Example 1 except that Pd was deposited instead of Cr during sputtering.

<評価>
各試料について以下の評価を行った。
A.被膜の密着性
各試料の最表面(表面層)に1mm間隔で碁盤の目を罫書いた後、粘着性テープをはり付け、さらに各試験片を180°曲げて元の状態に戻し、曲げ部のテープを急速にかつ強く引き剥がす剥離試験を行った。
剥離が全くない場合を○とし、一部でも剥離があると目視で認められた場合を×とした。
B.成膜形状
各試料の断面のSTEM像を撮影し、数nmから数百nmの粒子が集まった凹凸構造が観察された場合を粒状とし、粒状に比べて表面が平滑な場合を層状とした。
なおSTEMは、日立製作所製の型番HD−2000を用い、加速電圧200kV、1視野横50nm領域を、1試料につき3視野を測定した。
<Evaluation>
The following evaluation was performed for each sample.
A. Adhesion of coating After marking the grids on the outermost surface (surface layer) of each sample at intervals of 1 mm, stick adhesive tape, and bend each specimen 180 ° to return it to its original state. A peel test was performed to quickly and strongly peel the tape.
The case where there was no peeling at all was marked as ◯, and the case where some peeling was visually observed was marked as x.
B. Film formation shape A STEM image of a cross section of each sample was taken, and a case where an uneven structure in which particles of several to several hundreds of nanometers were collected was observed to be granular, and a case where the surface was smoother than a particle was layered.
The STEM used was model number HD-2000 manufactured by Hitachi, Ltd., and an accelerating voltage of 200 kV and a visual field width of 50 nm were measured for three visual fields per sample.

C.付着量
試料の片面のAuとCuの付着量は,50mm×50mmの試料をフッ硝酸溶液に全量溶解し,ICP(誘導結合プラズマ)発光分光分析して評価した。なお、サンプル数は5個とし,それらの値を平均した値を採用した。
C. Amount of deposition The amount of deposition of Au and Cu on one side of the sample was evaluated by dissolving a total amount of a 50 mm × 50 mm sample in a hydrofluoric acid solution and analyzing it by ICP (inductively coupled plasma) emission spectroscopy. Note that the number of samples was five, and a value obtained by averaging these values was adopted.

D.導電性(接触抵抗)
接触抵抗の測定は、試料全面に荷重を加える方法で行った。まず、40×50mmの板状の試料の表裏にそれぞれカーボンペーパーを積層し、さらに表裏のカーボンペーパーの外側にそれぞれCu/Ni/Au板を積層した。Cu/Ni/Au板は厚み10mmの銅板に1.0μm厚のNi下地めっきをし、Ni層の上に0.5μmのAuめっきした材料であり、Cu/Ni/Au板のAuめっき面がカーボンペーパーに接するように配置した。
さらに、Cu/Ni/Au板の外側にそれぞれテフロン(登録商標)板を配置し、各テフロン(登録商標)板の外側からロードセルで圧縮方向に10kg/cmの荷重を加えた。この状態で、2枚のCu/Ni/Au板の間に電流密度100mA/cmの定電流を流した時、Cu/Ni/Au板間の電気抵抗を4端子法で測定した。
D. Conductivity (contact resistance)
The contact resistance was measured by applying a load to the entire sample surface. First, carbon papers were laminated on the front and back sides of a 40 × 50 mm plate-like sample, and Cu / Ni / Au plates were further laminated on the outer sides of the front and back carbon papers. The Cu / Ni / Au plate is a material in which a 10 μm thick copper plate is plated with a 1.0 μm thick Ni base, and the Ni layer is plated with a 0.5 μm Au plate. The carbon paper was placed in contact with it.
Further, a Teflon (registered trademark) plate was arranged outside the Cu / Ni / Au plate, and a load of 10 kg / cm 2 was applied in the compression direction from the outside of each Teflon (registered trademark) plate with a load cell. In this state, when a constant current with a current density of 100 mA / cm 2 was passed between the two Cu / Ni / Au plates, the electrical resistance between the Cu / Ni / Au plates was measured by a four-terminal method.

E.耐摩耗性
耐摩耗性は、磨耗試験機で2枚の試験片の表面層同士を対向させつつ両試料を擦り、擦る前の各試料の付着量と磨耗試験後の各試料の付着量を比較することで評価した。(磨耗試験後の付着量/磨耗試験前の付着量)=0.95以上の場合を耐摩耗性が良好とした。なお、AuとCrの付着量は、対向した2枚の試験片の付着量の平均である。
なお磨耗試験条件は次の通りである。
機器名:新東科学株式会社性 TYPE36
負荷荷重:0.01kgf
摩擦速度:0.001m/S
往復ストローク:30mm
試験片の面積:30×30mm
往復回数:100回/測定
1仕様につき測定するサンプル数:10個
E. Abrasion resistance Abrasion resistance is determined by rubbing both samples with the surface layer of two test pieces facing each other with an abrasion tester, and comparing the amount of each sample before rubbing with the amount of each sample after the abrasion test. It was evaluated by doing. (Attachment amount after abrasion test / attachment amount before abrasion test) = 0.95 or more was regarded as good abrasion resistance. In addition, the adhesion amount of Au and Cr is an average of the adhesion amount of the two test pieces which oppose.
The wear test conditions are as follows.
Device name: Shinto Science Co., Ltd. TYPE36
Applied load: 0.01kgf
Friction speed: 0.001m / S
Reciprocating stroke: 30mm
Specimen area: 30 x 30 mm
Number of reciprocations: 100 times / measurement Number of samples to be measured per specification: 10

得られた結果を表1、表2に示す。なお、中間層の存在は、試料断面の実際のXPS像から各成分の割合を求めて確認した。   The obtained results are shown in Tables 1 and 2. The presence of the intermediate layer was confirmed by obtaining the ratio of each component from the actual XPS image of the sample cross section.

Figure 2011246763
Figure 2011246763

Figure 2011246763
Figure 2011246763

表1、表2から明らかなように、Ti基材上に表面層と中間層が存在し、Auの付着量が4000ng/cm以上70000ng/cm未満であり、厚み方向のXPS分析により、表面層と中間層の合計厚みtに対し、Crを20原子%以上含む厚み部分tが30%以上を占める各実施例の場合、密着性、導電性及び耐磨耗性に優れていた。 As is clear from Table 1 and Table 2, the surface layer and the intermediate layer are present on the Ti base material, the adhesion amount of Au is 4000 ng / cm 2 or more and less than 70000 ng / cm 2 , and by XPS analysis in the thickness direction, the total thickness t a of the surface layer and the intermediate layer, in the case of each embodiment thickness portion t B containing Cr 20 atomic% or more accounts for more than 30%, were excellent in adhesion, conductivity and abrasion resistance .

一方、Cr膜を成膜しなかった比較例9の場合、密着性が劣化し、導電性及び耐磨耗性の評価ができなかった。
Cr膜のスパッタ厚みを0.25nmに低減した比較例10、11の場合、Cr付着量が200ng/cm未満となると共に、中間層の厚みが1nm未満となり、スパッタ膜の密着性が劣化した。又、導電性及び耐磨耗性の評価ができなかった。
実施例に比べてAu膜のスパッタ厚みが厚い比較例12,13の場合、tに対しtが占める割合が30%未満となり、耐磨耗性が劣化した。
実施例に比べてAu膜のスパッタ厚みが薄い比較例14の場合、導電性が劣化した。
On the other hand, in the case of Comparative Example 9 in which no Cr film was formed, the adhesion was deteriorated and the conductivity and wear resistance could not be evaluated.
In Comparative Examples 10 and 11 where the sputtering thickness of the Cr film was reduced to 0.25 nm, the Cr adhesion amount was less than 200 ng / cm 2 , and the intermediate layer thickness was less than 1 nm, which deteriorated the adhesion of the sputtering film. . Also, the conductivity and wear resistance could not be evaluated.
In Comparative Examples 12 and 13, in which the sputtering thickness of the Au film was thicker than that of the example, the ratio of t B to t A was less than 30%, and the wear resistance was deteriorated.
In the case of the comparative example 14 in which the sputtering thickness of the Au film was thinner than that of the example, the conductivity was deteriorated.

湿式めっきでAuを5nm相当成膜した参考例15の場合、耐摩耗性が劣化した。これは、湿式めっきのめっき皮膜にCrが含有されていないため,皮膜の硬さが低いためと考えられる。
Crの代わりにそれぞれTi、Ta、Mo、Pdを成膜した参考例16〜19の場合、いずれも耐摩耗性が劣化した。
In the case of Reference Example 15 in which Au was deposited to a thickness of 5 nm by wet plating, the wear resistance was deteriorated. This is probably because Cr is not contained in the plating film of wet plating, and the hardness of the film is low.
In each of Reference Examples 16 to 19 in which Ti, Ta, Mo, and Pd were formed in place of Cr, the wear resistance deteriorated in all cases.

2 Ti基材
2a 中間層
6 表面層
表面層と中間層の合計厚み
Crを20原子%以上含む厚み部分
2 Ti substrate 2a Intermediate layer 6 Surface layer t Total thickness of surface layer A and intermediate layer t B Thickness portion containing 20 atomic% or more of Cr

Claims (5)

Ti基材の表面にAuとCrとを含む表面層が形成され、
前記表面層と前記Ti基材との間に、Ti及びOがそれぞれ10原子%以上で、Au20原子%未満かつCr20原子%以上の中間層が1nm以上存在し、
Auの付着量が4000ng/cm以上70000ng/cm未満であり、
前記表面層と前記中間層の合計厚みに対し、Crを20原子%以上含む厚み部分が30%以上を占める表面処理Ti材料。
A surface layer containing Au and Cr is formed on the surface of the Ti substrate,
Between the surface layer and the Ti base material, Ti and O are each 10 atomic% or more, an intermediate layer of less than 20 atomic% of Au and 20 atomic% of Cr or more exists 1 nm or more,
Au deposition amount is 4000 ng / cm 2 or more and less than 70000 ng / cm 2 ,
A surface-treated Ti material in which a thickness portion containing 20 atomic% or more of Cr accounts for 30% or more with respect to the total thickness of the surface layer and the intermediate layer.
Crの付着量が200ng/cm以上である請求項1に記載の表面処理Ti材料。 The surface-treated Ti material according to claim 1, wherein the amount of Cr deposited is 200 ng / cm 2 or more. 前記Ti基材は、Tiと異なる基材表面に厚み10nm以上のTi被膜を形成してなる請求項1又は2に記載の表面処理Ti材料。   The surface-treated Ti material according to claim 1, wherein the Ti base material is formed by forming a Ti film having a thickness of 10 nm or more on a base material surface different from Ti. 請求項1〜3のいずれかに記載の表面処理Ti材料の製造方法であって、
前記Ti基材の表面にCrを乾式成膜した後、Auを乾式成膜する表面処理Ti材料の製造方法。
It is a manufacturing method of the surface treatment Ti material in any one of Claims 1-3,
A method for producing a surface-treated Ti material, in which Cr is dry-deposited on the surface of the Ti substrate, and then Au is dry-deposited.
前記乾式成膜がスパッタリングである請求項4に記載の表面処理Ti材料の製造方法。   The method for producing a surface-treated Ti material according to claim 4, wherein the dry film formation is sputtering.
JP2010121176A 2010-05-27 2010-05-27 Surface-treated Ti material and method for producing the same Expired - Fee Related JP5631632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121176A JP5631632B2 (en) 2010-05-27 2010-05-27 Surface-treated Ti material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121176A JP5631632B2 (en) 2010-05-27 2010-05-27 Surface-treated Ti material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011246763A true JP2011246763A (en) 2011-12-08
JP5631632B2 JP5631632B2 (en) 2014-11-26

Family

ID=45412391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121176A Expired - Fee Related JP5631632B2 (en) 2010-05-27 2010-05-27 Surface-treated Ti material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5631632B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185998A (en) * 2002-12-04 2004-07-02 Toyota Motor Corp Separator for fuel cell
WO2009041135A1 (en) * 2007-09-25 2009-04-02 Nippon Mining & Metals Co., Ltd. Fuel cell separator material and fuel cell stack
JP2009238438A (en) * 2008-03-26 2009-10-15 Kobe Steel Ltd Fuel cell separator and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185998A (en) * 2002-12-04 2004-07-02 Toyota Motor Corp Separator for fuel cell
WO2009041135A1 (en) * 2007-09-25 2009-04-02 Nippon Mining & Metals Co., Ltd. Fuel cell separator material and fuel cell stack
JP2009238438A (en) * 2008-03-26 2009-10-15 Kobe Steel Ltd Fuel cell separator and its manufacturing method

Also Published As

Publication number Publication date
JP5631632B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
Ananthakumar et al. Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings
KR101991557B1 (en) Fuel cell separator material and method for manufacturing said material
JP5325235B2 (en) FUEL CELL SEPARATOR MATERIAL, FUEL CELL SEPARATOR USING THE SAME, FUEL CELL STACK, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR MATERIAL
US20150037710A1 (en) Coating with conductive and corrosion resistance characteristics
Ghasemi et al. Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing properties
WO2007004581A1 (en) Sn-PLATED COPPER ALLOY BAR HAVING EXCELLENT FATIGUE CHARACTERISTICS
JP4859189B2 (en) Titanium or titanium alloy material with precious metal plating
Song et al. Microstructure and indentation toughness of Cr/CrN multilayer coatings by arc ion plating
WO2016166935A1 (en) Metal plate for use as separator of solid polymer fuel cell
JP5313264B2 (en) Fuel cell separator material, fuel cell separator using the same, and fuel cell stack
JP4494155B2 (en) Gold-plated structure and fuel cell separator comprising this gold-plated structure
Benchikh et al. Nickel-incorporated amorphous carbon film deposited by femtosecond pulsed laser ablation
Duhin et al. Growth study of nanoscale Re–Ni coatings on functionalized SiO2 using electroless plating
JP5631632B2 (en) Surface-treated Ti material and method for producing the same
JP2011246778A (en) Surface treated stainless steel material, and method for manufacturing the same
CN110970626B (en) Fuel cell bipolar plate and coating thereof
JP2002260681A (en) Metallic separator for solid high polymer fuel cell, and method of manufacturing the same
JP4761576B2 (en) Au-containing surface-treated Ti material
JP5291368B2 (en) Fuel cell separator material, fuel cell separator using the same, fuel cell stack, and method for producing fuel cell separator material
Zhang et al. High surface area coatings for hydrogen evolution cathodes prepared by magnetron sputtering
WO2011122282A1 (en) Separator material for fuel cell, separator for fuel cell and fuel cell stack using the same, and method for producing separator material for fuel cell
JP4847179B2 (en) Titanium or titanium alloy material with precious metal plating
JP2002254180A (en) High corrosion resistivity material and manufacturing method therefor
JP5419271B2 (en) FUEL CELL SEPARATOR MATERIAL, FUEL CELL SEPARATOR USING THE SAME, FUEL CELL STACK, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR MATERIAL
Söderlund et al. Formability and corrosion properties of metal/ceramic multilayer coated strip steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5631632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees