JP2011246695A - Composite polymer electrolyte membrane and method for producing the same - Google Patents

Composite polymer electrolyte membrane and method for producing the same Download PDF

Info

Publication number
JP2011246695A
JP2011246695A JP2011092638A JP2011092638A JP2011246695A JP 2011246695 A JP2011246695 A JP 2011246695A JP 2011092638 A JP2011092638 A JP 2011092638A JP 2011092638 A JP2011092638 A JP 2011092638A JP 2011246695 A JP2011246695 A JP 2011246695A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
polymer
aromatic hydrocarbon
electrolyte membrane
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011092638A
Other languages
Japanese (ja)
Inventor
Masaya Adachi
眞哉 足立
Mayumi Hara
まゆみ 原
Yuka Yachi
佑佳 矢地
Masayuki Kidai
聖幸 希代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011092638A priority Critical patent/JP2011246695A/en
Publication of JP2011246695A publication Critical patent/JP2011246695A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a composite polymer electrolyte membrane, which contains an aromatic hydrocarbon-based polymer fiber suitable for compounding with polymer electrolyte and is hardly soluble in solvents, without using such a method as melt blowing or electrolytic spinning by laser beam melting; and to provide a composite polymer electrolyte membrane that is excellent in ionic conductivity, and is controlled from dimensional change and from deterioration of mechanical strength both in a hydrated state.SOLUTION: The method for producing the composite polymer electrolyte membrane is a method for producing a composite polymer electrolyte membrane comprised of an aromatic hydrocarbon-based polymer fiber and a polymer electrolyte membrane, and comprises: a step of making up a nonwoven fabric by electrolytic spinning using spinning stock solution comprised of an aromatic hydrocarbon-based polymer containing a solubility-giving group and a solvent; and a step of impregnating an electrolytic polymer solution to the nonwoven fabric. The spun aromatic hydrocarbon-based polymer fiber is made insoluble in the electrolytic polymer solution by removing the solubility-giving group before the step of impregnating the electrolytic polymer solution. Moreover, the composite polymer electrolyte membrane is a composite polymer electrolyte membrane consisting an aromatic hydrocarbon-based polymer nonwoven fabric and a polymer electrolyte. Since the aromatic hydrocarbon-based polymer nonwoven fabric and the polymer electrolyte have the same polymer structure, the both has compatibility.

Description

本発明は複合化高分子電解質膜およびその製造方法に関するものである。   The present invention relates to a composite polymer electrolyte membrane and a method for producing the same.

燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも高分子電解質型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。   BACKGROUND ART A fuel cell is a kind of power generation device that extracts electrical energy by electrochemically oxidizing a fuel such as hydrogen or methanol, and has recently attracted attention as a clean energy supply source. In particular, the polymer electrolyte fuel cell has a low standard operating temperature of around 100 ° C. and a high energy density, so that it is a relatively small-scale distributed power generation facility, a mobile power generator such as an automobile or a ship. As a wide range of applications are expected. It is also attracting attention as a power source for small mobile devices and portable devices, and is expected to be installed in mobile phones and personal computers in place of secondary batteries such as nickel metal hydride batteries and lithium ion batteries.

高分子電解質型燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックしたものである。膜電極接合体は、触媒層を有するアノードおよびカソードと、アノードとカソードとの間に配置される高分子電解質膜とから構成される。高分子電解質膜には、スルホン酸基を有するパーフルオロカーボンポリマー等のフッ素系イオン伝導性ポリマーが適用されてきたが、将来の高分子電解質型燃料電池の普及期を見据え、低コスト、低環境負荷が期待できる点からスルホン酸基を有する芳香族ポリエーテルエーテルケトンや芳香族ポリエーテルケトンおよび芳香族ポリエーテルスルホンなどの炭化水素系イオン伝導性ポリマー、について特に活発に検討がなされてきた。そして、該高分子電解質膜には、プロトン伝導性が高いことが求められている。特に自動車用燃料電池や家庭用燃料電池などは水管理システムの簡素化のために、80℃を越える高温で相対湿度60%以下の低加湿条件下で作動することが望まれており、高いレベルのイオン伝導性と耐久性の両立を図る必要があった。   In the polymer electrolyte fuel cell, for example, a cell is formed by sandwiching a membrane electrode assembly between two separators, and a plurality of cells are stacked. The membrane electrode assembly includes an anode and a cathode having a catalyst layer, and a polymer electrolyte membrane disposed between the anode and the cathode. Fluorine ion conductive polymers such as perfluorocarbon polymers having sulfonic acid groups have been applied to polymer electrolyte membranes. However, low cost and low environmental impact are anticipated in the future of polymer electrolyte fuel cells. In particular, hydrocarbon-based ion conductive polymers such as aromatic polyether ether ketones having a sulfonic acid group and aromatic polyether ketones and aromatic polyether sulfones have been actively studied. The polymer electrolyte membrane is required to have high proton conductivity. In particular, automobile fuel cells and household fuel cells are required to operate under low humidification conditions with a relative humidity of 60% or less at high temperatures exceeding 80 ° C in order to simplify the water management system. It was necessary to achieve both ion conductivity and durability.

この高分子電解質膜のイオン伝導性を高めるためには、高分子電解質膜を薄くするか、イオン性基密度を高めることが好ましい。しかし、高分子電解質膜を薄くすると、該膜の機械的強度が低下し、膜電極接合体を製造する際に、加工しにくくなったり、取り扱いにくくなったりする。また、イオン性基密度を高めた高分子電解質膜は、含水時に該膜の長さ方向に寸法が増大しやすく、さまざまな弊害を生じやすい。たとえば、反応により生成した水や、燃料ガスとともに供給される水蒸気等により高分子電解質膜が膨潤し、膜電極接合体は、セパレータ等で拘束されているため、高分子電解質膜の寸法増大分は局部的な応力集中の原因となる。また、燃料電池の作動条件によっては逆に高分子電解質膜が乾燥収縮する。この膨潤・収縮のサイクルで高分子電解質膜が破損し発電性能の低下や故障の原因となる場合がある。   In order to increase the ionic conductivity of the polymer electrolyte membrane, it is preferable to make the polymer electrolyte membrane thin or increase the ionic group density. However, when the polymer electrolyte membrane is thinned, the mechanical strength of the membrane decreases, and it becomes difficult to process or handle when manufacturing a membrane electrode assembly. In addition, a polymer electrolyte membrane having an increased ionic group density is likely to increase in dimensions in the length direction of the membrane when it contains water, and various adverse effects are likely to occur. For example, since the polymer electrolyte membrane swells due to water generated by the reaction, water vapor supplied with the fuel gas, etc., and the membrane electrode assembly is restrained by a separator or the like, the dimension increase of the polymer electrolyte membrane is It causes local stress concentration. On the contrary, depending on the operating conditions of the fuel cell, the polymer electrolyte membrane is dried and contracted. In this swelling / shrinking cycle, the polymer electrolyte membrane may be damaged, resulting in a decrease in power generation performance or failure.

特許文献1にはフッ素系プロトン伝導性ポリマーや炭化水素系イオン伝導性ポリマーを含フッ素ポリマーと溶媒を含む紡糸原液を用いた電界紡糸法にて製造されたフッ素系不織布で補強した、高分子電解質膜が開示されている。   Patent Document 1 discloses a polymer electrolyte in which a fluorine-based proton conductive polymer or a hydrocarbon-based ion conductive polymer is reinforced with a fluorine-based nonwoven fabric produced by an electrospinning method using a spinning stock solution containing a fluorine-containing polymer and a solvent. A membrane is disclosed.

また、特許文献2にはメルトブロー法で得られるポリエーテルエーテルケトン系不織布が提案され、特許文献3では、レーザー光で熱可塑性樹脂を溶融させて電解紡糸し不織布とする方法も提案されている。   Patent Document 2 proposes a polyether ether ketone non-woven fabric obtained by a melt-blowing method, and Patent Document 3 also proposes a method of melting a thermoplastic resin with a laser beam and electrospinning it into a non-woven fabric.

一方、特許文献4ではポリマー溶液の泡を利用して電解紡糸し、不織布を得る方法が提案され、特許文献5にはイオン性基含有ポリマーとイオン性基非含有ポリマーの非相溶性を利用してまずナノファイバーを作製し、シート状にした後に、加熱溶融でイオン性基非含有ポリマーを溶融してイオン伝導性複合高分子膜とする方法が提案されている。   On the other hand, Patent Document 4 proposes a method for obtaining a nonwoven fabric by electrospinning using bubbles of a polymer solution, and Patent Document 5 utilizes the incompatibility of an ionic group-containing polymer and an ionic group-free polymer. First, a method has been proposed in which nanofibers are first prepared and formed into a sheet, and then an ionic group-free polymer is melted by heating and melting to form an ion conductive composite polymer film.

特開2008−243419号公報JP 2008-243419 A 特開2008−81893号公報JP 2008-81893 A 特開2009−299212号公報JP 2009-299212 A 特開2008−25057号公報JP 2008-25057 A 特開2010−21126号公報JP 2010-21126 A

本発明者らは以下の課題があることを見出した。   The present inventors have found that there are the following problems.

まず、特許文献1に記載の不織布で補強した高分子電解質膜の製造方法としては、不織布に、プロトン伝導性ポリマーを含む溶液を塗布または含浸させる方法(a−1−1)や、不織布に、プロトン伝導性ポリマーの分散液を塗布または含浸させる方法(a−1−2)や、不織布に、プロトン伝導性ポリマーの膜状物を積層する方法(a−2)が記載されている。ここで、(a−1−1)のように、一旦プロトン伝導性ポリマーが溶液化すればともかく、(a−1−2)や(a−2)のようにプロトン伝導性ポリマーが固体状のままでは、密着性が不十分であり、燃料ガスの透過性が大きくなる問題があった。   First, as a method for producing a polymer electrolyte membrane reinforced with a nonwoven fabric described in Patent Document 1, a method of applying or impregnating a solution containing a proton conductive polymer to a nonwoven fabric (a-1-1), or a nonwoven fabric, A method (a-1-2) of applying or impregnating a dispersion of a proton conductive polymer and a method (a-2) of laminating a membrane of a proton conductive polymer on a nonwoven fabric are described. Here, as in (a-1-1), once the proton conductive polymer is in solution, the proton conductive polymer is in a solid state as in (a-1-2) and (a-2). As it is, there is a problem that the adhesion is insufficient and the permeability of the fuel gas is increased.

そしてさらに、(a−1−1)のように、プロトン伝導性ポリマーを溶液化させる方法では、不織布がポリマー溶液から紡糸されている、すなわち紡糸時の溶媒をプロトン伝導性ポリマーの溶液化に用いると不織布が溶解してしまうという問題があり、使用する溶媒が制限される問題があった。   Further, in the method of dissolving the proton conductive polymer as in (a-1-1), the nonwoven fabric is spun from the polymer solution, that is, the solvent at the time of spinning is used for the solution of the proton conductive polymer. There is a problem that the nonwoven fabric dissolves and the solvent to be used is limited.

ここで、特許文献2,3では不織布となるポリマーを溶液から紡糸しないが、特許文献2のようなメルトブロー法で得られる不織布は平均繊維径が太く、電解質膜と複合しても、逆に欠陥や膜破れの起点となり使用できなかった。そして、特許文献3のようなレーザー光で熱可塑性樹脂を溶融させる方法では、レーザーで加熱するため温度制御が難しくポリマーの熱分解が起こりやすい上、装置が高価で生産性が悪いといった問題があった。さらにいずれの方法も、結局は上記密着性が不十分になる問題は内在している。   Here, in Patent Documents 2 and 3, the polymer that becomes the nonwoven fabric is not spun from the solution, but the nonwoven fabric obtained by the melt-blowing method as in Patent Document 2 has a large average fiber diameter. It could not be used because it was the starting point of film breakage. The method of melting a thermoplastic resin with a laser beam as in Patent Document 3 has problems that the temperature is difficult to control because it is heated with a laser, the polymer is easily decomposed, and the apparatus is expensive and the productivity is poor. It was. Furthermore, in any method, the problem that the above-mentioned adhesion is insufficient is inherent.

そして、特許文献4のポリマー溶液の泡を利用して電解紡糸する方法も、生産性が改善されているが、溶媒に可溶なポリマーにのみにしか適用できないため、上述のとおり、電解質ポリマー溶液を塗布・含浸させる工程で、使用する溶媒が制限される問題があり、高性能な複合化高分子電解質膜の設計に制約があった。また、溶媒に不溶なポリエーテルケトンなどの結晶性ポリマーは適用できなかった。   The method of electrospinning using the foam of the polymer solution of Patent Document 4 is also improved in productivity, but can be applied only to a polymer soluble in a solvent. In the process of coating and impregnating, there is a problem that the solvent to be used is limited, and there is a restriction on the design of a high performance composite polymer electrolyte membrane. Also, crystalline polymers such as polyether ketones that are insoluble in the solvent could not be applied.

最後に特許文献5においても、イオン性基含有ポリマーとイオン性基非含有ポリマーの「非相溶性」を利用していることから、上述のとおり、やはり高性能な複合化高分子電解質膜の実現は困難であった。   Finally, in Patent Document 5 as well, as described above, the realization of a high-performance composite polymer electrolyte membrane is realized by utilizing the “incompatibility” of an ionic group-containing polymer and an ionic group-free polymer. Was difficult.

本発明はメルトブロー法やレーザー溶融による電解紡糸方法を用いることなく、高分子電解質との複合に適した溶剤難溶性の芳香族炭化水素系ポリマー繊維を含む複合化高分子電解質膜の製造方法を提供する。また、イオン伝導性が優れ、かつ含水寸法変化および含水時の機械的強度の低下が抑制された複合化高分子電解質膜を提供する。   The present invention provides a method for producing a composite polymer electrolyte membrane comprising a solvent-insoluble aromatic hydrocarbon polymer fiber suitable for composite with a polymer electrolyte without using a melt blow method or an electrospinning method by laser melting. To do. Moreover, the present invention provides a composite polymer electrolyte membrane that has excellent ionic conductivity and suppresses changes in water-containing dimensions and a decrease in mechanical strength when containing water.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の複合化高分子電解質膜の製造方法は芳香族炭化水素系ポリマー繊維と高分子電解質膜を含む複合化高分子電解質膜の製造方法であって、可溶性付与基を含む芳香族炭化水素系ポリマーと溶媒からなる紡糸原液を用いた電解紡糸による不織布化工程、得られた不織布に電解質ポリマー溶液を含浸させる工程を有し、高分子電解質溶液を含浸させる工程より前に可溶性付与基を除去して、紡糸した芳香族炭化水素系ポリマー繊維を電解質ポリマー溶液に不溶化することを特徴とする。   The present invention employs the following means in order to solve such problems. That is, the method for producing a composite polymer electrolyte membrane of the present invention is a method for producing a composite polymer electrolyte membrane comprising an aromatic hydrocarbon polymer fiber and a polymer electrolyte membrane, and comprising an aromatic carbonization containing a solubility-imparting group. It has a process of making a nonwoven fabric by electrospinning using a spinning stock solution consisting of a hydrogen-based polymer and a solvent, and a process of impregnating the obtained nonwoven fabric with an electrolyte polymer solution. The aromatic hydrocarbon polymer fiber that has been removed and spun is insolubilized in the electrolyte polymer solution.

また、本発明の複合化高分子電解質膜は、芳香族炭化水素系ポリマー不織布と高分子電解質を含む複合化高分子電解質膜であって、芳香族炭化水素系ポリマー繊維と高分子電解質が同じポリマー構造であり、相溶性を有することを特徴とする。   The composite polymer electrolyte membrane of the present invention is a composite polymer electrolyte membrane comprising an aromatic hydrocarbon polymer nonwoven fabric and a polymer electrolyte, wherein the aromatic hydrocarbon polymer fiber and the polymer electrolyte are the same polymer. It has a structure and is compatible.

本発明の複合化高分子電解質膜の製造方法は溶剤難溶性の芳香族炭化水素系ポリマー繊維を生産性高く製造できることから、電解質ポリマー溶液に使用する溶媒に制約がなくなり、該繊維からなる機械的強度、耐熱性、耐酸性、耐溶剤性に優れた不織布得られるとともに、該不織布への電解質ポリマー溶液の含浸性が向上できる。また本発明の複合化高分子電解質膜は、プロトン伝導性が優れ、乾湿サイクルでの寸法変化が小さく、湿潤時の機械的強度が向上できるため、高温・低加湿発電性能が優れ、かつ発電耐久性の優れた燃料電池が実現できる。特に自動車用や家庭用燃料電池など80℃を越える高温で相対湿度60%以下の低加湿条件下で作動する燃料電池用途に最適である。   Since the method for producing a composite polymer electrolyte membrane of the present invention can produce a solvent-insoluble aromatic hydrocarbon polymer fiber with high productivity, there is no restriction on the solvent used in the electrolyte polymer solution, and the mechanical polymer composed of the fiber is used. A nonwoven fabric excellent in strength, heat resistance, acid resistance and solvent resistance can be obtained, and the impregnation property of the electrolyte polymer solution into the nonwoven fabric can be improved. In addition, the composite polymer electrolyte membrane of the present invention has excellent proton conductivity, small dimensional change in the wet / dry cycle, and improved mechanical strength when wet, so it has excellent high-temperature / low-humidity power generation performance and power generation durability. A fuel cell with excellent performance can be realized. In particular, it is optimal for fuel cell applications that operate under high humidification conditions such as automobiles and household fuel cells at temperatures exceeding 80 ° C. and a relative humidity of 60% or less.

電解紡糸による不織布製造装置の概略構成図Schematic configuration diagram of non-woven fabric manufacturing equipment using electrospinning

以下、本発明の好ましい実施形態の詳細を説明する。   Hereinafter, details of preferred embodiments of the present invention will be described.

本発明の複合化高分子電解質膜の製造方法は芳香族炭化水素系ポリマー繊維と高分子電解質膜を含む複合化高分子電解質膜の製造方法であって、可溶性付与基を含む芳香族炭化水素系ポリマーと溶媒からなる紡糸原液を用いた電解紡糸工程、得られた芳香族炭化水素系ポリマー繊維を不織布化する工程、および得られた芳香族炭化水素系ポリマー不織布に高分子電解質溶液を含浸させる工程を有し、高分子電解質溶液を含浸させる工程より前に可溶性付与基を除去して、紡糸した芳香族炭化水素系ポリマー繊維を高分子電解質溶液に不溶化することが必須である。   The method for producing a composite polymer electrolyte membrane according to the present invention is a method for producing a composite polymer electrolyte membrane comprising an aromatic hydrocarbon polymer fiber and a polymer electrolyte membrane, and comprising an aromatic hydrocarbon type containing a solubility-imparting group An electrospinning process using a spinning solution composed of a polymer and a solvent, a process of making the obtained aromatic hydrocarbon polymer fiber into a nonwoven fabric, and a process of impregnating the obtained aromatic hydrocarbon polymer nonwoven fabric with a polymer electrolyte solution It is essential to remove the solubility-imparting group before the step of impregnating the polymer electrolyte solution and insolubilize the spun aromatic hydrocarbon polymer fiber in the polymer electrolyte solution.

発明者らは、複合化高分子電解質膜の設計指針として、結晶化能を有する、分子鎖中に相互作用が強い部分があり疑似架橋的な構造を示す、分子量が極めて大きいなどの溶剤に難溶な芳香族炭化水素系ポリマー繊維を主体とすることにより、機械的強度、耐熱性、耐酸性、耐溶剤性の優れた複合化高分子電解質膜に適した不織布が得られることを着想した。   As a design guideline for the composite polymer electrolyte membrane, the inventors have difficulty in using a solvent having a crystallization ability, a part having a strong interaction in the molecular chain, showing a pseudo-crosslinking structure, and a very large molecular weight. It was conceived that a nonwoven fabric suitable for a composite polymer electrolyte membrane having excellent mechanical strength, heat resistance, acid resistance, and solvent resistance can be obtained by mainly using soluble aromatic hydrocarbon polymer fibers.

また、芳香族炭化水素系ポリマー繊維と同じポリマー構造で相溶性のある高分子電解質膜との複合化は、複合化高分子電解質膜の機械的強度、耐熱性、耐酸性、耐溶剤性が優れるだけではなく、優れたプロトン伝導性と湿潤時の機械的強度が向上の両立が可能となる。   In addition, when combined with a compatible polymer electrolyte membrane with the same polymer structure as the aromatic hydrocarbon polymer fiber, the mechanical strength, heat resistance, acid resistance, and solvent resistance of the composite polymer electrolyte membrane are excellent. In addition, it is possible to achieve both excellent proton conductivity and improved mechanical strength when wet.

さらには複合化高分子電解質膜中の芳香族炭化水素系ポリマー繊維と高分子電解質膜が同じポリマー構造で相溶性を有することにより、補強効果を有する芳香族炭化水素系ポリマー繊維とマトリックスになる高分子電解質膜の界面の親和性が良好になり、両者の含水性に起因する寸法変化による界面剥離が抑制でき、特に自動車用や家庭用燃料電池など80℃を越える高温で相対湿度60%以下の低加湿条件下で、停止・運転を繰り返すような運転を模擬した乾湿サイクル発電試験でも優れた耐久性を示すことも見出した。   Furthermore, the aromatic hydrocarbon polymer fiber in the composite polymer electrolyte membrane and the polymer electrolyte membrane have the same polymer structure and are compatible with each other. The affinity of the interface of the molecular electrolyte membrane is improved, and the interfacial peeling due to the dimensional change caused by the water content of the two can be suppressed. Especially, the relative humidity is 60% or less at a high temperature exceeding 80 ° C. It has also been found that in a wet and dry cycle power generation test that simulates the operation of repeatedly stopping and operating under low humidification conditions, it exhibits excellent durability.

しかしながら、上記溶媒に難溶なポリマー系を使用した、複合化高分子電解質膜として使用できるような繊維および不織布の製造は、これまでの知られている技術ではなし得ることができなかった。つまり、芳香族炭化水素系ポリマー繊維と高分子電解質膜は同じポリマー構造と相溶性を有するため、芳香族炭化水素系ポリマー繊維の電解紡糸工程で使用する溶媒と高分子電解質溶液を含浸する工程で使用する溶媒は一般的に同じ溶媒系を使用することになり、該含浸工程で芳香族炭化水素系ポリマー繊維が高分子電解質溶液に溶解し、プロトン伝導パスを遮断し、複合化高分子電解質膜としての性能を著しく低下させる。   However, the production of fibers and non-woven fabrics that can be used as a composite polymer electrolyte membrane using a polymer system that is hardly soluble in the above-described solvent has not been able to be achieved by the techniques known so far. In other words, since the aromatic hydrocarbon polymer fiber and the polymer electrolyte membrane have the same polymer structure and compatibility, in the process of impregnating the solvent and polymer electrolyte solution used in the electrospinning process of the aromatic hydrocarbon polymer fiber. Generally, the same solvent system is used as the solvent to be used. In the impregnation step, the aromatic hydrocarbon polymer fiber is dissolved in the polymer electrolyte solution, the proton conduction path is blocked, and the composite polymer electrolyte membrane is used. As a result, the performance is significantly reduced.

そこで、発明者らは、上記溶媒に難溶なポリマー系に可溶性付与基を導入して溶媒に可溶化することによって、電解紡糸法により溶媒難溶化繊維の前駆体を含む不織布が製造可能となることを着想した。そして高分子電解質溶液を該不織布に含浸させる工程より前に、該可溶性付与基を除去する事により、該繊維前駆体を高分子電解質溶液に不溶化できること見出し、高分子電解質溶液の含浸工程でも、芳香族炭化水素系ポリマー繊維を主体とする不織布が高分子電解質溶液に溶解し、プロトン伝導性を阻害する現象を抑制に成功した。   Therefore, the inventors can manufacture a nonwoven fabric containing a precursor of a solvent-solubilized fiber by an electrospinning method by introducing a solubility-imparting group into the polymer system that is hardly soluble in the solvent and solubilizing it in the solvent. I was inspired by that. And before the step of impregnating the non-woven fabric with the polymer electrolyte solution, it was found that the fiber precursor can be insolubilized by removing the solubility-imparting group. Nonwoven fabrics mainly composed of aromatic hydrocarbon polymer fibers dissolved in the polymer electrolyte solution and succeeded in suppressing the phenomenon that inhibits proton conductivity.

本発明の複合化高分子電解質において、同じポリマー構造とは、ポリマーの主成分の芳香族炭化水素構造を結合する基が同じであれば、同じポリマー構造とする。例えば芳香族炭化水素系ポリマー繊維がポリエーテルケトン構造を含む骨格であれば、高分子電解質膜もポリエーテルケトン構造を含む骨格のことであり、ケトン基とエーテル基の間の芳香族炭化水素の部分は特に制限はなく、同じであっても異なっていてもよい。芳香族炭化水素系ポリマー繊維についてはその部分はフェニルやビフェニル構造が可溶性付与基除去後の耐溶剤性の観点から好ましい。また、スルホン酸基などの置換基の有無は関係なく、含有量や置換基の種類が異なっていても芳香族炭化水素構造を結合する基が同じであれば同じポリマー構造を含むこととする。   In the composite polymer electrolyte of the present invention, the same polymer structure is the same polymer structure as long as the groups that bond the aromatic hydrocarbon structure of the main component of the polymer are the same. For example, if the aromatic hydrocarbon polymer fiber is a skeleton containing a polyetherketone structure, the polymer electrolyte membrane is also a skeleton containing a polyetherketone structure, and an aromatic hydrocarbon between a ketone group and an ether group. The portion is not particularly limited, and may be the same or different. As for the aromatic hydrocarbon polymer fiber, the phenyl or biphenyl structure is preferred from the viewpoint of solvent resistance after removal of the solubility-imparting group. Further, regardless of the presence or absence of a substituent such as a sulfonic acid group, the same polymer structure is included as long as the group that binds the aromatic hydrocarbon structure is the same even if the content and the type of the substituent are different.

また、本発明の複合化高分子電解質膜において、相溶性とは、例えば、可溶性基付与基を導入した芳香族炭化水素系ポリマー繊維を構成するポリマー溶液と高分子電解質膜を構成するポリマー溶液を別々に準備し、混合して混合溶液とし、流延塗布してシート状に乾燥後、可溶性基付与基を除去してフィルムを得た場合、共連続構造となったり、目視で反対方向が透けて見える程度に互いに混じりあえる構造となったりすることを意味する。本発明の複合化高分子電解質膜においては、芳香族炭化水素系ポリマー繊維は高分子電解質溶液には不溶化するが、該繊維表面は高分子電解質溶液に一部膨潤し、芳香族炭化水素系ポリマー繊維と高分子電解質の界面が互いに混じり合った状態となり、吸湿乾燥の寸法変化で容易に剥離しない状態が形成できる。同じポリマー構造を有していても、選択する芳香族炭化水素の構造によっては芳香族炭化水素系ポリマー繊維と高分子電解質の相溶性が不十分なケースも考えられ、本発明の複合化高分子電解質膜は相溶性も考慮したポリマー構造設計が重要である。   Further, in the composite polymer electrolyte membrane of the present invention, the compatibility means, for example, a polymer solution constituting an aromatic hydrocarbon polymer fiber introduced with a soluble group-providing group and a polymer solution constituting a polymer electrolyte membrane. Separately prepared, mixed to make a mixed solution, cast coated, dried into a sheet, then removed the soluble group-providing group to obtain a film, resulting in a co-continuous structure, or the opposite direction through It means that the structure can be mixed with each other to the extent that it can be seen. In the composite polymer electrolyte membrane of the present invention, the aromatic hydrocarbon polymer fiber is insoluble in the polymer electrolyte solution, but the fiber surface is partly swollen in the polymer electrolyte solution, and the aromatic hydrocarbon polymer fiber The interface between the fiber and the polymer electrolyte is mixed with each other, and a state in which the fiber and the polymer electrolyte are not easily peeled off due to the dimensional change of moisture absorption drying can be formed. Even if they have the same polymer structure, depending on the structure of the aromatic hydrocarbon to be selected, there may be a case where the compatibility between the aromatic hydrocarbon polymer fiber and the polymer electrolyte is insufficient. It is important to design the polymer structure considering the compatibility of the electrolyte membrane.

相溶性を向上する目的で、芳香族炭化水素系ポリマー繊維を構成するポリマーに複合する高分子電解質膜が有するイオン性基を導入することも好ましい。この場合のイオン性基密度は、湿潤時の寸法変化低減、機械的強度が向上の観点から、芳香族炭化水素系ポリマー繊維の方が小さい方が好ましく、複合する高分子電解質のイオン性基密度の50%以下がより好ましく、20%以下がさらに好ましい。   In order to improve the compatibility, it is also preferable to introduce an ionic group possessed by the polymer electrolyte membrane that is combined with the polymer constituting the aromatic hydrocarbon polymer fiber. In this case, the ionic group density is preferably smaller in the aromatic hydrocarbon polymer fiber from the viewpoint of reducing dimensional change when wet and improving the mechanical strength, and the ionic group density of the composite polymer electrolyte is preferable. Is preferably 50% or less, more preferably 20% or less.

まず、可溶性付与基を含む芳香族炭化水素系ポリマーについて説明する。   First, an aromatic hydrocarbon polymer containing a solubility-imparting group will be described.

本発明における芳香族炭化水素系ポリマーとは芳香環を主鎖または側鎖に含有し、炭素と結合したフッ素より水素の方が多いポリマーからなる繊維であり、機械強度や化学的安定性などの点から、主鎖に芳香環を有する芳香族炭化水素系ポリマーがさらに好ましい。すなわち、主鎖構造は、芳香環を有するものであれば特に限定されるものではないが、例えばエンジニアリングプラスチックとして使用されるような十分な機械強度を有するものが好ましい。   The aromatic hydrocarbon polymer in the present invention is a fiber made of a polymer containing an aromatic ring in the main chain or side chain and containing more hydrogen than fluorine bonded to carbon, such as mechanical strength and chemical stability. From the viewpoint, an aromatic hydrocarbon polymer having an aromatic ring in the main chain is more preferable. That is, the main chain structure is not particularly limited as long as it has an aromatic ring, but a structure having sufficient mechanical strength to be used, for example, as an engineering plastic is preferable.

本発明の芳香族炭化水素系ポリマーの具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホン等の構成成分の少なくとも1種を含むポリマーが挙げられる。なお、ここでいうポリスルホン、ポリエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有するポリマーの総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含むとともに、特定のポリマー構造を限定するものではない。   Specific examples of the aromatic hydrocarbon polymer of the present invention include polysulfone, polyethersulfone, polyphenylene oxide, polyarylene ether polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer, polyarylene ketone, A polymer containing at least one component such as polyether ketone, polyarylene phosphine oxide, polyether phosphine oxide, polybenzoxazole, polybenzthiazole, polybenzimidazole, polyamide, polyimide, polyetherimide, polyimidesulfone, etc. Can be mentioned. Polysulfone, polyethersulfone, polyetherketone, etc., as used herein are generic terms for polymers having a sulfone bond, an ether bond, and a ketone bond in their molecular chains. Polyetherketoneketone, polyetheretherketone, polyetherether It includes ketone ketone, polyether ketone ether ketone ketone, polyether ketone sulfone and the like, and does not limit the specific polymer structure.

前記ポリマーのなかでも、ポリフェニレンスルフィド、ポリエーテルケトン(PEK)等のポリマーが機械強度と燃料電池用電解質膜としたときの耐水性、耐酸性など耐久性の面からより好ましい。PEK系ポリマーを例に挙げて説明すると、そのパッキングの良さおよび極めて強い分子間凝集力から結晶性を示し、一般的な溶剤に溶解しない性質がある。   Among the polymers, polymers such as polyphenylene sulfide and polyetherketone (PEK) are more preferable in terms of durability such as mechanical strength and water resistance and acid resistance when used as an electrolyte membrane for fuel cells. The PEK-based polymer will be described as an example. The polymer exhibits crystallinity because of its good packing and extremely strong intermolecular cohesion, and does not dissolve in common solvents.

これに対し、本発明の複合化高分子電解質膜の製造方法は、芳香族炭化水素系ポリマー中に可溶性付与基を含有させることにより、特にこれまで溶液化が困難なものが多かったPEKポリマー等の結晶性の芳香族炭化水素系ポリマーの結晶性を低減させることで溶媒への溶解性を付与し、電解紡糸や溶液製膜に使用できるようにしたものである。   On the other hand, the method for producing a composite polymer electrolyte membrane of the present invention includes a PEK polymer that has been particularly difficult to be made into a solution by incorporating a solubility-imparting group in an aromatic hydrocarbon polymer. By reducing the crystallinity of the crystalline aromatic hydrocarbon-based polymer, solubility in a solvent is imparted so that it can be used for electrospinning and solution casting.

また、本発明では電解紡糸で繊維状に成形され不織布化した後や溶剤を乾燥し膜状に成形した後には、該ポリマーの分子鎖のパッキングを良くし、分子間凝集力や再び結晶性を付与させるために可溶性付与基の一部を除去せしめ、再び溶剤不溶化する必要がある。   Further, in the present invention, after forming into a nonwoven fabric by electrospinning and forming into a non-woven fabric, or after drying the solvent and forming into a film, the molecular chain packing of the polymer is improved, and the intermolecular cohesion and crystallinity are improved. In order to impart, it is necessary to remove a part of the solubility-imparting group and insolubilize the solvent again.

本発明の芳香族炭化水素系ポリマーに使用する可溶性付与基としては、有機合成で一般的に用いられる加水分解性基などがあげられ、該加水分解性基とは、後の段階で、加水分解で除去することを前提に、一時的に導入される置換基である。この可溶性付与基は溶媒溶解性や除去時の反応性や収率、可溶性付与基含有状態の安定性、製造コスト等を考慮して適宜選択することが可能である。また、重合反応において可溶性付与基を導入する段階としては、モノマー段階からでも、オリゴマー段階からでも、ポリマー段階でもよく、適宜選択することが可能である。   Examples of the solubility-imparting group used in the aromatic hydrocarbon polymer of the present invention include a hydrolyzable group generally used in organic synthesis, and the hydrolyzable group is a hydrolyzable group at a later stage. It is a substituent that is temporarily introduced on the assumption that it will be removed in step (b). This solubility-imparting group can be appropriately selected in consideration of solvent solubility, reactivity at the time of removal, yield, stability of the solubility-containing group-containing state, production cost, and the like. In addition, the step of introducing the solubility-imparting group in the polymerization reaction may be performed from the monomer stage, the oligomer stage, or the polymer stage, and can be appropriately selected.

PEK系ポリマーを例に挙げて説明すると、ケトン部位をアセタールまたはケタール部位で置換し可溶性付与基とする方法、ケトン部位をアセタールまたはケタール部位のヘテロ原子類似体、例えばチオアセタールやチオケタールで置換し可溶性付与基とする方法が挙げられる。また、スルホン酸を可溶性エステル誘導体として可溶性付与基とする方法、芳香環に可溶性付与基としてt−ブチル基を導入する方法等が挙げられ、可溶性付与効果と後工程で除去可能であれば、これらに限定されることなく好ましく使用できる。一般的な溶剤に対する溶解性を向上させ、結晶性を低減する点では、立体障害が大きいという点で脂肪族基、特に環状部分を含む脂肪族基が可溶性付与基として好ましく用いられる。   For example, a PEK-based polymer is described as a method of substituting a ketone moiety with an acetal or ketal moiety to form a solubility-imparting group. Examples of the method include an imparting group. In addition, there are a method of using a sulfonic acid as a soluble ester derivative and a method of introducing a t-butyl group as a solubility-imparting group into an aromatic ring, and the like. It can use preferably, without being limited to. In terms of improving solubility in general solvents and reducing crystallinity, an aliphatic group, particularly an aliphatic group containing a cyclic moiety, is preferably used as the solubility-imparting group in terms of large steric hindrance.

可溶性付与基を導入する位置としては、ポリマーの主鎖に存在する官能基であることがより好ましい。ここで、ポリマーの主鎖に存在する官能基とは、その官能基を削除した場合にポリマー鎖が切れてしまう官能基と定義する。例えば、芳香族ポリエーテルケトンのケトン基を削除するとベンゼン環とベンゼン環が切れてしまうことを意味するものである。
ポリマーの主鎖に存在する官能基に可溶性付与基を導入すれば、可溶性付与基を除去した場合に芳香族炭化水素系ポリマーの分子鎖のパッキングを良くし、分子間凝集力や再び結晶性を付与しやすい。
The position for introducing the solubility-imparting group is more preferably a functional group present in the main chain of the polymer. Here, the functional group present in the main chain of the polymer is defined as a functional group that breaks the polymer chain when the functional group is deleted. For example, this means that if the ketone group of the aromatic polyether ketone is deleted, the benzene ring and the benzene ring are broken.
If a solubility-imparting group is introduced into the functional group present in the main chain of the polymer, the packing of the molecular chain of the aromatic hydrocarbon polymer will be improved when the solubility-imparting group is removed, and intermolecular cohesion and crystallinity will be improved. Easy to grant.

次ぎに可溶性付与基を含む芳香族炭化水素系ポリマーと溶媒からなる紡糸原液を用いた電解紡糸工程、得られた芳香族炭化水素系ポリマー繊維を不織布化する工程について説明する。   Next, an electrospinning process using a spinning stock solution composed of an aromatic hydrocarbon polymer containing a solubility-imparting group and a solvent, and a process for forming the resulting aromatic hydrocarbon polymer fiber into a nonwoven fabric will be described.

前記可溶性付与基を含む芳香族炭化水素系ポリマーを紡糸原液とする際に使用する溶媒としては、可溶性付与基を含む芳香族炭化水素系ポリマーが溶解可能であれば特に制限はない。溶解性や取り扱い性、コストの面などからN−メチル−2−ピロリドン、N、N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、テトラメチルウレア、ジメチルイミダゾリジノン、ジメチルスルホキシド、ヘキサメチルホスホンアミドなどの有機極性溶媒が望ましく、また、これらの混合物であってもよい。溶解温度には特に限定はなく、室温下であっても、加熱下であってもよい。可溶性付与基を含む芳香族炭化水素系ポリマーが析出しない範囲で、水やアルコール類、メチルセロソルブ類、テトラヒドロフラン、トルエンなど低沸点の溶媒を加えてもよい。また、紡糸原液の延伸性を付与する目的で、エチレングリコールやグリセリンなどの多価アルコールの添加も好ましく、芳香族炭化水素系ポリマーにスルホン酸基やカルボン酸基などのイオン性基が導入されている場合は特に好ましい。   The solvent used when the aromatic hydrocarbon polymer containing the solubility-imparting group is used as a spinning dope is not particularly limited as long as the aromatic hydrocarbon polymer containing the solubility-imparting group can be dissolved. N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, tetramethylurea, dimethylimidazolidinone, dimethyl sulfoxide, hexamethylphosphonamide, etc. due to solubility, handleability and cost Organic polar solvents are desirable and may be mixtures thereof. There is no particular limitation on the dissolution temperature, and it may be at room temperature or under heating. A low-boiling solvent such as water, alcohols, methyl cellosolves, tetrahydrofuran and toluene may be added as long as the aromatic hydrocarbon polymer containing the solubility-imparting group does not precipitate. Also, for the purpose of imparting stretchability of the spinning dope, addition of a polyhydric alcohol such as ethylene glycol or glycerin is also preferable, and an ionic group such as a sulfonic acid group or a carboxylic acid group is introduced into the aromatic hydrocarbon polymer. Is particularly preferred.

上記紡糸原液を用いた電解紡糸工程も特に制限はなく通常公知の方法、設備が使用できる。電解紡糸とは、紡糸原液に高電圧を印加することによって電気的に繊維を紡糸する方
法である。通常の不織布設備を用いて直径5μm以下の繊維を主体とする不織布を製造することは、条件的にも厳しく、原料の粘度、延伸性等、多くの制約がある。一方、電解紡糸法は、紡糸原液を用いた紡糸法であるため、その乾燥過程において体積収縮が起こること、および紡糸原液が低粘度あるため、極細ノズルでの成形が可能であることにより、直径5μm以下の連続繊維を得やすい。
The electrospinning process using the spinning dope is not particularly limited, and generally known methods and equipment can be used. Electrospinning is a method in which fibers are spun electrically by applying a high voltage to a spinning dope. Manufacturing a non-woven fabric mainly composed of fibers having a diameter of 5 μm or less using a normal non-woven fabric facility is severe in terms of conditions and has many restrictions such as the viscosity of the raw material and stretchability. On the other hand, since the electrospinning method is a spinning method using a spinning raw solution, volume shrinkage occurs during the drying process, and since the spinning raw solution has a low viscosity, molding with an ultrafine nozzle is possible. It is easy to obtain continuous fibers of 5 μm or less.

得られた芳香族炭化水素系ポリマー繊維を不織布化する工程についても、電解紡糸工程においては、紡糸原液からの固化と延伸による紡糸とが同時に、または逐次的に起こるため、紡糸した繊維をターゲットに直接捕捉することで繊維同士が結合した不織布として得ることができる。また、得られた繊維を短繊維としフリースを形成し、通常の乾式方や水中に分散して抄紙工程など不織布化する湿式法で不織布化してもよい。その場合はフリースを結合する方法として、サーマルボンド法、ケミカルボンド法、ニードルパンチ法、水流絡合法などが利用できる。   Also in the process of making the obtained aromatic hydrocarbon polymer fiber into a nonwoven fabric, in the electrospinning process, solidification from the spinning stock solution and spinning by stretching occur simultaneously or sequentially, so that the spun fiber is used as a target. By capturing directly, it can be obtained as a nonwoven fabric in which fibers are bonded. Alternatively, the obtained fiber may be made into a short fiber to form a fleece, which may be made into a non-woven fabric by a normal dry method or a wet method in which it is dispersed in water to make a non-woven fabric such as a paper making process. In that case, as a method for bonding the fleece, a thermal bond method, a chemical bond method, a needle punch method, a hydroentanglement method, or the like can be used.

本発明の複合化高分子電解質膜の製造方法においては、繊維径が細い方が好ましいため、生産性の観点から電解紡糸で得られた繊維をターゲット上に直接捕捉、集積する不織布化方法が好ましい。   In the method for producing a composite polymer electrolyte membrane of the present invention, since a fiber having a smaller fiber diameter is preferable, a nonwoven fabric forming method in which fibers obtained by electrospinning are directly captured and accumulated on a target is preferable from the viewpoint of productivity. .

電解紡糸による不織布化工程の一例を図1に示す。不織布製造装置は、紡糸原液が充填されるシリンジ10と、シリンジの針20に対向するように、コンベア式ドラム30と、シリンジの針20とコンベア式ドラム30との間に高電圧を印加する高電圧電源40と、シリンジのプランジャー部分を吐出方向に一定速度で動かすことで一定の流量で紡糸原液をシリンジから吐出させるシリンジポンプ50とを具備する。   An example of the non-woven fabric forming process by electrospinning is shown in FIG. The nonwoven fabric manufacturing apparatus is configured to apply a high voltage between the syringe 10 filled with the spinning dope and the needle 20 of the syringe, and between the conveyor needle 30 and the needle 20 of the syringe and the conveyor drum 30. A voltage power source 40 and a syringe pump 50 that discharges the spinning solution from the syringe at a constant flow rate by moving the plunger portion of the syringe at a constant speed in the discharge direction.

まず、シリンジ10内に紡糸原液を充填する。コンベア式ドラム30を回転させながら、高電圧電源によってシリンジの針20とコンベア式ドラム30との間に高電圧を印加する。シリンジポンプ50を作動させシリンジの針20の先から紡糸原液を一定の速度で吐出させる。針の先端に電圧を印加した際、静電的な引力が紡糸原液の表面張力を超えると、紡糸原液が針の先端においてTaylor coneと呼ばれる円錐状に変形し、さらに該coneの先端は引き伸ばされる。引き伸ばされた紡糸原液は、正に帯電した紡糸原液の静電反発により微細化する。微細化した紡糸原液から溶媒が瞬時に蒸発し、極細の繊維が形成される。正に帯電した繊維は、負に帯電したコンベア式ドラム30に付着する。該繊維が回転するコンベア式ドラム30上にしだいに堆積することにより、コンベア式ドラム30上に不織布が形成される。   First, the spinning solution is filled in the syringe 10. A high voltage is applied between the syringe needle 20 and the conveyor drum 30 by a high voltage power source while rotating the conveyor drum 30. The syringe pump 50 is operated to discharge the spinning solution from the tip of the syringe needle 20 at a constant speed. When a voltage is applied to the tip of the needle and the electrostatic attractive force exceeds the surface tension of the spinning stock solution, the spinning stock solution is deformed into a conical shape called Taylor cone at the tip of the needle, and the tip of the cone is further stretched. . The stretched spinning dope is refined by electrostatic repulsion of the positively charged spinning dope. The solvent instantly evaporates from the refined spinning dope, and ultrafine fibers are formed. Positively charged fibers adhere to the negatively charged conveyor drum 30. The nonwoven fabric is formed on the conveyor drum 30 as the fibers gradually accumulate on the rotating conveyor drum 30.

電解紡糸工程においては、紡糸原液の粘度は適宜実験的に決定することができるが、0.1〜100Pa・secが好ましく、1〜10Pa・secがより好ましい。また、紡糸原液の吐出量は、シリンジ一本あたり0.001cc/min〜1cc/minの範囲が好ましく、針の先端の内径は、0.1〜2mmが好ましく、0.1〜1mmがより好ましい。針の先端からドラムまでの距離は、5〜20cmが好ましい。針とドラムとの間に印加する電圧は、5〜100kVが好ましい。製造する芳香族炭化水素系ポリマー不織布の幅、長さ、厚みによりシリンジの数やドラムの周速度や繊維捕集用基材の送り速度は適宜実験的に決めることができる。また、ロールトゥロールで芳香族炭化水素系ポリマー繊維の捕集用基材を供給したり、コンベア式ドラムの一定個所から不織布を剥がしとり巻き取り機で巻きとったりすることで連続的に芳香族炭化水素系ポリマー不織布を製造することも好ましい例である。   In the electrospinning step, the viscosity of the spinning solution can be appropriately determined experimentally, but is preferably 0.1 to 100 Pa · sec, more preferably 1 to 10 Pa · sec. The discharge amount of the spinning solution is preferably in the range of 0.001 cc / min to 1 cc / min per syringe, and the inner diameter of the tip of the needle is preferably 0.1 to 2 mm, more preferably 0.1 to 1 mm. . The distance from the tip of the needle to the drum is preferably 5 to 20 cm. The voltage applied between the needle and the drum is preferably 5 to 100 kV. The number of syringes, the peripheral speed of the drum, and the feed speed of the fiber collecting base material can be appropriately determined experimentally depending on the width, length, and thickness of the aromatic hydrocarbon polymer nonwoven fabric to be manufactured. Aromatic carbonization can be performed continuously by supplying a substrate for collecting aromatic hydrocarbon polymer fibers by roll-to-roll, or by stripping the nonwoven fabric from a certain part of a conveyor drum and winding it with a winder. Producing a hydrogen-based polymer nonwoven fabric is also a preferred example.

本発明の電解紡糸工程で得られる芳香族炭化水素系ポリマー不織布の繊維径としては5μm以下の繊維を主体とすることが好ましい。ここでの主体とは電子顕微鏡などで観察した場合、観察視野内の繊維の50%以上を占めるという意味である。5μm以下の繊維を主体とすることで複合化高分子電解質膜の薄膜化が可能でありプロトン伝導性の観点から好ましい。また、繊維径が5μm以上の繊維のみからなる不織布では、複合化高分子電解質膜を薄膜化するためには、繊維の重なりを減らす、すなわち単位面積あたりの繊維量(以下目付量)を低く設計することになるが、必然的に繊維間の距離が広がり、最大孔径が大きくなり、膜厚方向でみると局所的に複合化されていない部分が生じる場合がある。その部分は、複合化高分子電解質膜の厚みによっては、複合化高分子電解質膜の劣化のトリガーとなる可能性があるので、この現象を防止する目的として、平均径5μm以下の繊維を主体とすることが好ましい。特に1μm以下の繊維を主体とする不織布が、複合化高分子電解質膜の厚みの増大によるプロトン伝導性の低下を抑制でき、かつ膜厚方向に複合化されていない部分を低減することができる。0.5μm以下の繊維を含むことがさらに好ましい。また、ポリプロピレンやポリエチレンなどのオレフィン系ポリマーやポリテトラフルオロエチレンなどのフッ素系ポリマー、ポリフェニレンスルフィド、ポリエチレンテレフタレートなどの溶媒に不溶な素材からなる不織布や抄紙体や織物を芳香族炭化水素系ポリマー繊維の捕集基材とし、電解紡糸で芳香族炭化水素系ポリマー繊維を積層し複合不織布として本発明に使用してもよい。その場合、捕集基材に直径5μm以上の繊維を含んでいても差し支えないが、繊維間の空隙は直径5μm以下の繊維の集合体で面方向から見て塞がれている状態が好ましい。   The fiber diameter of the aromatic hydrocarbon polymer nonwoven fabric obtained by the electrospinning process of the present invention is preferably mainly composed of fibers of 5 μm or less. The term “subject” as used herein means that it accounts for 50% or more of the fibers in the observation field when observed with an electron microscope or the like. The composite polymer electrolyte membrane can be made thin by mainly using fibers of 5 μm or less, which is preferable from the viewpoint of proton conductivity. In addition, in a non-woven fabric consisting only of fibers having a fiber diameter of 5 μm or more, in order to reduce the thickness of the composite polymer electrolyte membrane, the fiber overlap is reduced, that is, the amount of fibers per unit area (hereinafter referred to as the basis weight) is designed to be low. However, the distance between the fibers is inevitably widened, the maximum pore diameter is increased, and a portion that is not locally combined may be generated in the film thickness direction. Depending on the thickness of the composite polymer electrolyte membrane, this part may trigger the deterioration of the composite polymer electrolyte membrane. Therefore, for the purpose of preventing this phenomenon, fibers mainly having an average diameter of 5 μm or less are mainly used. It is preferable to do. In particular, a nonwoven fabric mainly composed of fibers of 1 μm or less can suppress a decrease in proton conductivity due to an increase in the thickness of the composite polymer electrolyte membrane, and can reduce a portion that is not composited in the film thickness direction. More preferably, the fibers contain fibers of 0.5 μm or less. In addition, non-woven fabrics and paper bodies and fabrics made of materials insoluble in solvents such as olefin polymers such as polypropylene and polyethylene, fluorine polymers such as polytetrafluoroethylene, polyphenylene sulfide, and polyethylene terephthalate are used as aromatic hydrocarbon polymer fibers. A collection base material may be used in the present invention as a composite nonwoven fabric obtained by laminating aromatic hydrocarbon polymer fibers by electrospinning. In that case, the collection base material may contain fibers having a diameter of 5 μm or more, but the gap between the fibers is preferably closed by a collection of fibers having a diameter of 5 μm or less as viewed from the surface direction.

また、複合化高分子電解質膜の全面に繊維が存在するような構造が、好ましく、繊維は複数層積層されている状態が好ましい。   Further, a structure in which fibers are present on the entire surface of the composite polymer electrolyte membrane is preferable, and a state in which a plurality of layers of fibers are laminated is preferable.

このような、繊維径0.5μm以下の芳香族炭化水素系ポリマーの繊維を効率よく製造するためには、前述したエチレングリコールやグリセリンなどの多価アルコールを紡糸原液に添加する技術を採用することが好ましい。多価アルコールの添加により紡糸原液中の可溶性付与基を含む芳香族炭化水素系ポリマーの濃度が低い設定でも糸が断裂することなく電解紡糸が可能となり、0.5μm以下の繊維を得るのに極めて有効であることを発見した。   In order to efficiently produce such an aromatic hydrocarbon polymer fiber having a fiber diameter of 0.5 μm or less, a technique of adding the above-described polyhydric alcohol such as ethylene glycol or glycerin to the spinning dope should be adopted. Is preferred. Addition of polyhydric alcohol enables electrospinning without tearing the yarn even when the concentration of the aromatic hydrocarbon polymer containing the solubility-imparting group in the spinning dope is low, and is extremely useful for obtaining fibers of 0.5 μm or less. I found it effective.

このような0.5μm以下の繊維径にする場合は、紡糸原液中の可溶性付与基を含む芳香族炭化水素系ポリマーの濃度は15重量%以下が好ましく、多価アルコールの添加量は紡糸原液中に0.1%以上10%以下の添加が好ましい。多価アルコールとポリマーとの作用により水素結合数が増加し、疑似的な架橋により見掛けの分子量が大きくなり、低い固形分でも曳糸性が向上し、0.5μm以下の長繊維からなる不織布化が可能となる。特にグリセリンの添加が最も効果的である。   When the fiber diameter is 0.5 μm or less, the concentration of the aromatic hydrocarbon polymer containing the solubility-imparting group in the spinning dope is preferably 15% by weight or less, and the amount of polyhydric alcohol added is in the spinning dope. The addition of 0.1% or more and 10% or less is preferable. The number of hydrogen bonds is increased by the action of polyhydric alcohol and polymer, the apparent molecular weight is increased by pseudo-crosslinking, the spinnability is improved even at a low solid content, and the nonwoven fabric is made of long fibers of 0.5 μm or less. Is possible. In particular, the addition of glycerin is most effective.

次ぎに得られた芳香族炭化水素系ポリマー不織布に高分子電解質溶液を含浸させる工程について説明する。   Next, the step of impregnating the polymer electrolyte solution into the obtained aromatic hydrocarbon polymer nonwoven fabric will be described.

本発明に使用できる高分子電解質については、特に制限されないが、例としてイオン性基含有ポリフェニレンオキシド、イオン性基含有ポリエーテルケトン、イオン性基含有ポリエーテルエーテルケトン、イオン性基含有ポリエーテルスルホン、イオン性基含有ポリエーテルエーテルスルホン、イオン性基含有ポリエーテルホスフィンオキシド、イオン性基含有ポリエーテルエーテルホスフィンオキシド、イオン性基含有ポリフェニレンスルフィド、イオン性基含有ポリアミド、イオン性基含有ポリイミド、イオン性基含有ポリエーテルイミド、イオン性基含有ポリイミダゾール、イオン性基含有ポリオキサゾール、イオン性基含有ポリフェニレンなどの、イオン性基を有する芳香族炭化水素系ポリマーが挙げられる。   The polymer electrolyte that can be used in the present invention is not particularly limited, but examples include ionic group-containing polyphenylene oxide, ionic group-containing polyether ketone, ionic group-containing polyether ether ketone, ionic group-containing polyether sulfone, Ionic group-containing polyether ether sulfone, ionic group-containing polyether phosphine oxide, ionic group-containing polyether ether phosphine oxide, ionic group-containing polyphenylene sulfide, ionic group-containing polyamide, ionic group-containing polyimide, ionic group Examples thereof include aromatic hydrocarbon polymers having an ionic group, such as a containing polyetherimide, an ionic group-containing polyimidazole, an ionic group-containing polyoxazole, and an ionic group-containing polyphenylene.

ここでの、イオン性基については、負電荷を有する原子団であれば特に限定されるものではないが、プロトン交換能を有するものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。かかるイオン性基は塩となっている場合を含むものとする。前記塩を形成するカチオンとしては、任意の金属カチオン、NR4+(Rは任意の有機基)等を例として挙げることができる。金属カチオンの場合、その価数等特に限定されるものではなく、使用することができる。   Here, the ionic group is not particularly limited as long as it is a negatively charged atomic group, but is preferably one having proton exchange ability. As such a functional group, a sulfonic acid group, a sulfonimide group, a sulfuric acid group, a phosphonic acid group, a phosphoric acid group, and a carboxylic acid group are preferably used. Such an ionic group includes a case where it is a salt. Examples of the cation forming the salt include an arbitrary metal cation, NR4 + (R is an arbitrary organic group), and the like. In the case of a metal cation, the valence and the like are not particularly limited and can be used.

好ましい金属イオンの具体例を挙げるとすれば、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Ti、V、Mn、Al、Fe、Co、Ni、Cu、Zn、Zr、Mo、W、Pt、Rh、Ru、Ir、Pd等が挙げられる。これらの中でもLi、Na、K、Ca、Sr、Baがより好ましく、中でも、安価で、溶解性に悪影響を与えず、容易にプロトン置換可能なNa、Kがより好ましく使用される。また、イオン性基は金属塩以外にエステルなどに置換されていてもよい。   Specific examples of preferred metal ions include Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Ti, V, Mn, Al, Fe, Co, Ni, Cu, Zn, Zr, Mo, W, Pt, Rh, Ru, Ir, Pd, etc. are mentioned. Among these, Li, Na, K, Ca, Sr, and Ba are more preferable, and among them, Na and K that are inexpensive and can be easily proton-substituted without adversely affecting the solubility are more preferably used. In addition to the metal salt, the ionic group may be substituted with an ester or the like.

これらのイオン性基は前記高分子電解質中に2種類以上含むことができ、組み合わせることにより好ましくなる場合がある。組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、耐加水分解性の点から少なくともスルホン酸基を有することが最も好ましい。   Two or more kinds of these ionic groups can be contained in the polymer electrolyte, and may be preferable by combining them. The combination is appropriately determined depending on the structure of the polymer. Among them, it is more preferable to have at least a sulfonic acid group, a sulfonimide group, and a sulfuric acid group from the viewpoint of high proton conductivity, and most preferable to have at least a sulfonic acid group from the viewpoint of hydrolysis resistance.

近年、自動車用燃料電池や家庭用燃料電池など本格普及のためには水管理システムの簡素化が重要と考えられ、発電条件が80℃を越える高温で相対湿度60%以下の低加湿条件下となる場合がある。従って、このような高温低加湿化で十分な発電性能を発揮するためには、高分子電解質のイオン性基密度は2.0mmol/g以上が好ましく、芳香族炭化水素系ポリマー繊維と高分子電解質膜を含む複合化高分子電解質膜のイオン性基密度は1.5mmol/g以上が好ましい。   In recent years, simplification of the water management system is considered important for full-scale spread of fuel cells for automobiles and household fuel cells, and power generation conditions are high temperatures exceeding 80 ° C. and low humidification conditions with a relative humidity of 60% or less. There is a case. Therefore, in order to exhibit sufficient power generation performance at such high temperature and low humidity, the ionic group density of the polymer electrolyte is preferably 2.0 mmol / g or more, and the aromatic hydrocarbon polymer fiber and the polymer electrolyte are preferred. The ionic group density of the composite polymer electrolyte membrane including the membrane is preferably 1.5 mmol / g or more.

高分子電解質を溶解する溶媒も特に制限はなく、上記イオン性基含有ポリマーによって選択できる。例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ−ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられ、単独でも二種以上の混合物でもよい。   The solvent for dissolving the polymer electrolyte is not particularly limited, and can be selected according to the ionic group-containing polymer. For example, aprotic such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphontriamide, etc. Polar solvents, ester solvents such as γ-butyrolactone and butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, alkylene such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Glycol monoalkyl ether is suitably used, and may be used alone or as a mixture of two or more.

また、電解質溶液の粘度調整にメタノール、イソプロパノールなどのアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル系溶媒、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ジクロロメタン、パークロロエチレン、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ化炭化水素系溶媒、水などの各種低沸点溶剤も混合して使用できる。   Also, for adjusting the viscosity of the electrolyte solution, alcohol solvents such as methanol and isopropanol, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate, butyl acetate and ethyl lactate, hydrocarbon solvents such as hexane and cyclohexane, Aromatic hydrocarbon solvents such as benzene, toluene, xylene, halogenated hydrocarbon solvents such as chloroform, dichloromethane, 1,2-dichloroethane, dichloromethane, perchloroethylene, chlorobenzene, dichlorobenzene, diethyl ether, tetrahydrofuran, 1, Ether solvents such as 4-dioxane, nitrile solvents such as acetonitrile, nitrated hydrocarbon solvents such as nitromethane and nitroethane, and various low-boiling solvents such as water can also be mixed and used.

芳香族炭化水素系ポリマー不織布に高分子電解質溶液を含浸する方法についても通常公知の方法を採用できる。   As a method of impregnating the aromatic hydrocarbon polymer nonwoven fabric with the polymer electrolyte solution, a generally known method can be adopted.

例えば、芳香族炭化水素系ポリマー不織布を高分子電解質溶液中に浸漬し、(1)引き上げながら余剰の高分子電解質溶液を除去して膜厚を制御する方法や、(2)芳香族炭化水素系ポリマー不織布上に高分子電解質溶液を流延塗布する方法、(3)高分子電解質溶液を流延塗布した別の基材上に芳香族炭化水素系ポリマー不織布を積層し高分子電解質溶液を含浸させる方法などが挙げられる。また、(1)および(2)の方法でも別の基材に貼り付けて高分子電解質溶液中の溶媒を乾燥する方法が、複合化高分子電解質膜の皺や厚みムラなどが低減でき、膜品位の点で好ましい。   For example, an aromatic hydrocarbon polymer nonwoven fabric is immersed in a polymer electrolyte solution, and (1) a method of controlling the film thickness by removing excess polymer electrolyte solution while pulling up, or (2) an aromatic hydrocarbon system A method of casting a polymer electrolyte solution on a polymer nonwoven fabric, (3) Laminating an aromatic hydrocarbon polymer nonwoven fabric on another substrate on which the polymer electrolyte solution is cast coated, and impregnating the polymer electrolyte solution The method etc. are mentioned. Also, in the methods (1) and (2), the method of adhering to another base material and drying the solvent in the polymer electrolyte solution can reduce wrinkles and thickness unevenness of the composite polymer electrolyte membrane. It is preferable in terms of quality.

複合化高分子電解質膜に使用する別の基材としては通常公知の材料が使用できるが、ステンレスなどの金属からなるエンドレスベルトやドラム、ポリエチレンテレフタレート、ポリイミド、ポリスルホンなどのポリマーからなるフィルム、硝子、剥離紙などが挙げられる。金属などは表面に鏡面処理を施したり、ポリマーフィルムなどは塗工面にコロナ処理を施したり、剥離処理をしたり、ロール状に連続塗工する場合は塗工面の裏に剥離処理を施し、巻き取った後に電解質膜と塗工基材の裏側が接着したりするのを防止することもできる。フィルム基材の場合、厚みは特に限定がないが、30μm〜200μmがハンドリングの観点から好ましい。   As another base material used for the composite polymer electrolyte membrane, generally known materials can be used, but endless belts and drums made of metal such as stainless steel, films made of polymers such as polyethylene terephthalate, polyimide, polysulfone, glass, Examples include release paper. For metal, etc., the surface is mirror-finished, for polymer films, etc., the coated surface is corona-treated, peeled off, and when continuously coated in roll form, the back of the coated surface is peeled off and wound. It is also possible to prevent the electrolyte membrane and the back side of the coated base material from adhering after removal. In the case of a film substrate, the thickness is not particularly limited, but 30 μm to 200 μm is preferable from the viewpoint of handling.

流延塗工方法としては、ナイフコート、ダイレクトロールコート、グラビアコート、スプレーコート、刷毛塗り、ディップコート、ダイコート、バキュームダイコート、カーテンコート、フローコート、スピンコート、リバースコート、スクリーン印刷などの手法が適用できる。含浸時に減圧や加圧、高分子電解質溶液の加温、基材や含浸雰囲気の加温などを実施し含浸性の向上を図ることも、プロトン伝導性の向上や生産性の向上に有効である。   Cast coating methods include knife coating, direct roll coating, gravure coating, spray coating, brush coating, dip coating, die coating, vacuum die coating, curtain coating, flow coating, spin coating, reverse coating, and screen printing. Applicable. Improving the impregnation property by reducing pressure and pressure during the impregnation, heating the polymer electrolyte solution, heating the base material and the impregnation atmosphere, etc. is also effective for improving proton conductivity and productivity. .

本発明で得られる複合化高分子電解質膜の膜厚としては特に制限がなく、使用する芳香族炭化水素系ポリマー不織布により決定することができるが、通常3〜500μmのものが好適に使用される。実用に耐える膜の強度を得るには3μmより厚い方が好ましく、膜抵抗の低減つまり発電性能の向上のためには500μmより薄い方が好ましい。膜厚のより好ましい範囲は5〜200μm、さらに好ましい範囲は10〜100μmである。この膜厚は、高分子電解質溶液の塗工方法により種々の方法で制御できる。例えば、コンマコーターやダイレクトコーターで塗工する場合は、溶液濃度あるいは基板上への塗布厚により制御することができ、スリットダイコートでは吐出圧や口金のクリアランス、口金と基材のギャップなどで制御することができる。   The film thickness of the composite polymer electrolyte membrane obtained in the present invention is not particularly limited and can be determined by the aromatic hydrocarbon polymer nonwoven fabric to be used, but usually 3 to 500 μm is suitably used. . A thickness of more than 3 μm is preferable to obtain a membrane strength that can withstand practical use, and a thickness of less than 500 μm is preferable for reducing membrane resistance, that is, improving power generation performance. A more preferable range of the film thickness is 5 to 200 μm, and a more preferable range is 10 to 100 μm. This film thickness can be controlled by various methods depending on the coating method of the polymer electrolyte solution. For example, when coating with a comma coater or direct coater, it can be controlled by the solution concentration or the coating thickness on the substrate, and by slit die coating, it is controlled by the discharge pressure, the clearance of the die, the gap between the die and the base material, etc. be able to.

本発明の複合化高分子電解質膜の製造方法において、高分子電解質溶液を香族炭化水素系ポリマー不織布に含浸した後は、該塗液の溶剤を乾燥するが、乾燥時間や温度は適宜実験的に決めることができる。少なくとも基材から剥離しても自立膜になる程度に乾燥することが好ましい。その際、香族炭化水素系ポリマー不織布の耐熱性を考慮し分解温度以下で乾燥することが好ましい。使用する香族炭化水素系ポリマー不織布と得られる複合化高分子電解質膜の性能とのバランスで加熱温度は実験的に決定することが好ましく、場合によっては香族炭化水素系ポリマー不織布のガラス転位点や融点以下の温度で乾燥することも、香族炭化水素系ポリマー不織布の強度を維持する目的から好ましい。乾燥の方法は基材の加熱、熱風、赤外線ヒーター等の公知の方法が選択できる。   In the method for producing a composite polymer electrolyte membrane of the present invention, after impregnating the polymer electrolyte solution into the aromatic hydrocarbon polymer nonwoven fabric, the solvent of the coating solution is dried. Can be decided. It is preferable to dry at least to such an extent that it becomes a self-supporting film even if it is peeled off from the substrate. In that case, it is preferable to dry at a decomposition temperature or less in consideration of the heat resistance of the aromatic hydrocarbon-based polymer nonwoven fabric. It is preferable to experimentally determine the heating temperature based on the balance between the aromatic hydrocarbon polymer nonwoven fabric used and the performance of the resulting composite polymer electrolyte membrane. In some cases, the glass transition point of the aromatic hydrocarbon polymer nonwoven fabric And drying at a temperature below the melting point is also preferable for the purpose of maintaining the strength of the aromatic hydrocarbon polymer nonwoven fabric. The drying method can be selected from known methods such as heating of the substrate, hot air, and an infrared heater.

本発明の複合化高分子電解質膜の製造方法は高分子電解質溶液を含浸させる工程より前に可溶性付与基を除去して、紡糸した芳香族炭化水素系ポリマー繊維を高分子電解質溶液に不溶化する必要がある。可溶性付与基の除去方法は導入した可溶性付与基により適宜選択でき、酸やアルカリ溶液などの化学的処理や加熱処理、紫外線処理、放射線処理などが挙げられ、これらを組み合わせて使用できる。中でも、可溶性付与基由来成分の残留を低減する目的においては、酸水溶液などの化学的処理や熱風による加熱処理が好まし。さらには、電圧、捕集基材温度、紡糸雰囲気温度などの条件を制御し、電解紡糸工程と同時に芳香族炭化水素系ポリマーの可溶性付与基を除去することが、生産性の観点から最も好ましい。   In the method for producing a composite polymer electrolyte membrane of the present invention, it is necessary to remove the solubility-imparting group before the step of impregnating the polymer electrolyte solution, and to insolubilize the spun aromatic hydrocarbon polymer fiber in the polymer electrolyte solution. There is. The method for removing the solubility-imparting group can be appropriately selected depending on the introduced solubility-imparting group, and includes chemical treatment such as acid or alkaline solution, heat treatment, ultraviolet treatment, radiation treatment, and the like, which can be used in combination. Of these, chemical treatment with an aqueous acid solution or heat treatment with hot air is preferred for the purpose of reducing the residue of components derived from the solubility-imparting group. Furthermore, it is most preferable from the viewpoint of productivity to control conditions such as voltage, collection substrate temperature, spinning atmosphere temperature, etc., and to remove the solubility-imparting group of the aromatic hydrocarbon polymer simultaneously with the electrospinning step.

また、本発明の複合化高分子電解質膜の製造方法では、複合化電解質膜中のスルホン酸基などのイオン性基が金属塩の状態で使用される場合、酸性水溶液と接触させ、金属塩をプロトン交換する工程を有することが好ましい。また、複合化高分子電解質膜を水や酸性水溶液に接触させることにより、製造過程で残留した、膜中の水溶性の不純物、残存モノマー、溶媒、残存塩などが除去可能であり、さらに前述の可溶性付与基を高分子電解質溶液にも含む場合はこの工程で除去できる。水、酸性水溶液は反応促進のために加熱してもよい。酸性水溶液は硫酸、塩酸、硝酸、酢酸など特に限定されず、温度、濃度等は適宜実験的に選択可能である。生産性の観点から80℃以下の30重量%以下の硫酸水溶液を使用することが好ましい。   In the method for producing a composite polymer electrolyte membrane of the present invention, when an ionic group such as a sulfonic acid group in the composite electrolyte membrane is used in a metal salt state, the metal salt is contacted with an acidic aqueous solution. It is preferable to have a step of proton exchange. Further, by bringing the composite polymer electrolyte membrane into contact with water or an acidic aqueous solution, water-soluble impurities, residual monomers, solvents, residual salts, etc. remaining in the membrane can be removed. When the solubility-imparting group is also contained in the polymer electrolyte solution, it can be removed in this step. Water and acidic aqueous solution may be heated to promote the reaction. The acidic aqueous solution is not particularly limited, such as sulfuric acid, hydrochloric acid, nitric acid, and acetic acid, and the temperature, concentration, and the like can be appropriately selected experimentally. From the viewpoint of productivity, it is preferable to use a 30% by weight or less sulfuric acid aqueous solution of 80 ° C. or less.

特に、複合化高分子電解質膜を連続的に製造する際には、基材などの支持体に貼り付けたまま、水および/または酸性溶水液との接触を行なうことが好ましい。基材から剥離せず水および/または酸性溶水液に接触させることで、膨潤による膜の破断や乾燥時の皺や表面欠陥を防止できる。特に、複合化高分子電解質膜としての厚みが薄い場合に有効である。複合化高分子電解質膜が薄い場合は液体膨潤時の機械的強度が低下し製造時の膜の破断が発生しやすくなり、さらに水および/または酸性溶水液との接触後の乾燥時に皺が入り、表面欠陥が発生しやすくなる。例えば、乾燥時で厚み50μm以下の複合化高分子電解質膜を製造する場合は、基材から膜状物を剥離することなく水および/または酸性溶水液との接触を行なうことが好ましく、厚み30μm以下ではより好ましい。   In particular, when the composite polymer electrolyte membrane is continuously produced, it is preferable to perform contact with water and / or an acidic solution while being attached to a support such as a substrate. By contacting with water and / or an acidic solution without peeling off from the substrate, it is possible to prevent rupture of the film due to swelling, wrinkles during drying, and surface defects. This is particularly effective when the composite polymer electrolyte membrane is thin. When the composite polymer electrolyte membrane is thin, the mechanical strength during liquid swelling decreases, the membrane tends to break during manufacturing, and wrinkles occur during drying after contact with water and / or acidic solution. And surface defects are likely to occur. For example, when producing a composite polymer electrolyte membrane having a thickness of 50 μm or less at the time of drying, it is preferable to perform contact with water and / or an acidic solution without peeling off the membrane from the substrate. A thickness of 30 μm or less is more preferable.

また、本発明の複合化高分子電解質膜中には機械的強度の向上およびイオン性基の熱安定性向上、耐水性向上、耐溶剤性向上、耐ラジカル性向上、塗液の塗工性の向上、保存安定性向上などの目的のために、架橋剤や通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、離型剤、酸化防止剤、ラジカル補足剤、無機微粒子、ポリエーテルケトンやポリフェニレンスルフィドのフィラーまたは微粒子などの添加剤を、本発明の目的に反しない範囲内で添加することができる。   In addition, the composite polymer electrolyte membrane of the present invention has improved mechanical strength and improved thermal stability of ionic groups, improved water resistance, improved solvent resistance, improved radical resistance, and coating properties of the coating liquid. Crystallization nucleating agents, plasticizers, stabilizers, mold release agents, antioxidants, radical scavengers, inorganic fine particles used in crosslinking agents and ordinary polymer compounds for purposes such as improving storage stability Additives such as fillers or fine particles of polyetherketone and polyphenylene sulfide can be added within the range not contrary to the object of the present invention.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. In addition, the measurement conditions of each physical property are as follows.

A.イオン酸基密度
下記手順を5回行い、最大値と最小値を除いた3点の平均値をイオン酸基密度(mmol/g)とする。濃度の単位は重量%、重量の単位はgである。
(1)作製した電解質膜を5cm×5cmに切り取り真空乾燥機にて80℃12時間以上減圧乾燥後、重量(Wm)を正確(小数点下4桁)に測定した。
(2)蓋付きのサンプル瓶に約0.2wt%のKCl水溶液約30ml準備し、KCl水溶液の重量(Wk)とKイオン濃度(C)を測定した。Kイオン濃度は大塚電子製キャピラリー電気泳動装置”CAPI-3300”で測定した。測定条件は下記の通りである。
A. Ionic acid group density The following procedure is repeated 5 times, and the average value of the three points excluding the maximum and minimum values is defined as the ionic acid group density (mmol / g). The unit of concentration is% by weight, and the unit of weight is g.
(1) The produced electrolyte membrane was cut into 5 cm × 5 cm, dried under reduced pressure at 80 ° C. for 12 hours or more with a vacuum dryer, and the weight (Wm) was measured accurately (four digits after the decimal point).
(2) About 30 ml of about 0.2 wt% KCl aqueous solution was prepared in a sample bottle with a lid, and the weight (Wk) and K ion concentration (C 1 ) of the KCl aqueous solution were measured. The K ion concentration was measured with a capillary electrophoresis apparatus “CAPI-3300” manufactured by Otsuka Electronics. The measurement conditions are as follows.

測定方式:落差法(25mm)
泳動液:大塚電子製 陽イオン分析用泳動液5(α-CFI105)
測定電圧:20kV
(3)重量とKイオン濃度既知のKCl水溶液に上記電解質膜を2時間浸漬した。
(4)該KCl水溶液のKイオン濃度(C)を再度キャピラリー電気泳動装置で測定した。測定した値から、下記式に従いスルホン酸基密度を算出した。
スルホン酸基密度(mmol/g)=〔{Wk×(C−C)×1000}/39〕/Wm
B.繊維径の測定方法
光学顕微鏡または走査形電子顕微鏡(SEM)で芳香族炭化水素系ポリマー不織布を観察し、画面上の任意繊維の直径を20箇所計測した平均値で示した。また繊維径が計測困難な場合や複合化高分子電解質膜は下記方法で観察した。
Measurement method: Drop method (25mm)
Electrophoresis: Otsuka Electronics Cation Analysis Electrophoresis 5 (α-CFI105)
Measurement voltage: 20kV
(3) The electrolyte membrane was immersed in an aqueous KCl solution having a known weight and K ion concentration for 2 hours.
(4) The K ion concentration (C 2 ) of the aqueous KCl solution was measured again with a capillary electrophoresis apparatus. From the measured value, the sulfonic acid group density was calculated according to the following formula.
Sulfonic acid group density (mmol / g) = [{Wk × (C 1 -C 2 ) × 1000} / 39] / Wm
B. Measurement Method of Fiber Diameter The aromatic hydrocarbon polymer nonwoven fabric was observed with an optical microscope or a scanning electron microscope (SEM), and the average value of the diameter of 20 arbitrary fibers on the screen was shown. Further, when the fiber diameter was difficult to measure and the composite polymer electrolyte membrane were observed by the following method.

60℃で24時間減圧乾燥した複合化高分子電解質膜をカッターで切り出し、電顕用エポキシ樹脂(日新EM社製Quetol812)で包埋し、60℃のオーブン中で48時間かけて該エポキシ樹脂を硬化させた後、ウルトラミクロトーム(ライカ社製Ultracut S)で厚さ約100nmの超薄切片を作製した。   A composite polymer electrolyte membrane dried under reduced pressure at 60 ° C. for 24 hours is cut out with a cutter, embedded with an electron microscope epoxy resin (Quetol 812 manufactured by Nissin EM), and the epoxy resin is placed in an oven at 60 ° C. for 48 hours. After curing, an ultrathin section having a thickness of about 100 nm was prepared with an ultramicrotome (Ultracut S manufactured by Leica).

作製した超薄切片を応研商事社製100メッシュのCuグリッドに搭載して、日立製透過型電子顕微鏡H-7100FAを使用し加速電圧100kVでTEM観察を行い、繊維径を測定した。   The prepared ultrathin section was mounted on a 100-mesh Cu grid manufactured by Oken Shoji Co., Ltd., and TEM observation was performed at 100 kV acceleration voltage using a Hitachi transmission electron microscope H-7100FA, and the fiber diameter was measured.

C.膜厚
ミツトヨ製グラナイトコンパレータスタンドBSG−20にセットしたミツトヨ製ID−C112型を用いて測定した。
C. Film thickness It measured using Mitutoyo ID-C112 type | mold set to Mitutoyo granite comparator stand BSG-20.

D.粘度測定
回転型粘度計(レオテック社製レオメータRC20型)を用いて剪断速度100(s−1)の条件で温度25℃の粘度を測定した。ジオメトリーは(試料を充填するアタッチメント)コーン&プレートを使用して、RHEO2000ソフトウェアで得られた値を採用した。コーンはC25−1(2.5cmφ)を使用し、測定困難な場合は(10poise未満)C50−1(5.0cmφ)に変更した。
D. Viscosity measurement Viscosity at a temperature of 25 ° C. was measured using a rotary viscometer (Rheometer RC20 manufactured by Rheotech Co., Ltd.) at a shear rate of 100 (s −1 ). The geometry was taken from the RHEO2000 software using a cone and plate (attachment to fill the sample). C25-1 (2.5 cmφ) was used as the cone, and when measurement was difficult (less than 10 poise), it was changed to C50-1 (5.0 cmφ).

E.複合化高分子電解質寸法変化率
電解質膜を6cm×1cmの短冊状に切り出し、長尺側の両端から約5mmのところに標線を記入した(標線間距離5cm)。前記サンプルを温度23℃、湿度45%の恒温槽に2h放置後、素早く2枚のスライドガラスに挟み込み標線間距離(L)をノギスで測定した。さらに、同サンプルを80℃の熱水に2h浸漬後、素早く2枚のスライドガラスに挟み込み標線間距離(L)をノギスで測定し下記式に従い寸法変化率を算出した。
E. Composite Polymer Electrolyte Dimensional Change Rate The electrolyte membrane was cut into a 6 cm × 1 cm strip, and a marked line was written about 5 mm from both ends on the long side (distance between marked lines: 5 cm). The sample was allowed to stand for 2 hours in a constant temperature bath at a temperature of 23 ° C. and a humidity of 45%, and was quickly sandwiched between two slide glasses, and the distance between marked lines (L 1 ) was measured with a caliper. Further, after immersing the sample in hot water at 80 ° C. for 2 hours, the sample was quickly sandwiched between two glass slides, the distance between the marked lines (L 2 ) was measured with calipers, and the dimensional change rate was calculated according to the following formula.

寸法変化率(%)=(L−L)/L×100
F.複合化高分子電解質膜の湿潤時の引っ張り強度
JIS K7127に基づいてサンプル片はダンベル2号形の1/2サイズ(試料幅:3.0mm、試料長:16.5mm、つかみ具間40mm)を用い、装置としては恒温恒湿槽付き島津製作所製オートグラフAG-IS 100Nを使用し、200mm/minの速度で試験を行った。測定雰囲気としては80℃相対湿度94%で測定を行った。
Dimensional change rate (%) = (L 2 −L 1 ) / L 1 × 100
F. Tensile strength of composite polymer electrolyte membrane when wet
Based on JIS K7127, the sample piece is 1/2 size of dumbbell No. 2 (sample width: 3.0mm, sample length: 16.5mm, 40mm between grips), and the equipment is auto made by Shimadzu with constant temperature and humidity chamber The test was performed at a speed of 200 mm / min using Graph AG-IS 100N. The measurement atmosphere was 80 ° C. and a relative humidity of 94%.

G.複合化高分子電解質膜を使用した膜電極複合体(MEA)の発電評価
(1)水素透過電流の測定
市販の電極、BASF社製燃料電池用ガス拡散電極“ELAT(登録商標)LT120ENSI”5g/mPtを5cm角にカットしたものを1対準備し、燃料極、酸化極として複合化高分子電解質膜を挟むように対向して重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、評価用MEAを得た。
G. Electricity generation evaluation of membrane electrode assembly (MEA) using composite polymer electrolyte membrane (1) Measurement of hydrogen permeation current Commercial electrode, gas diffusion electrode for fuel cell “ELAT (registered trademark) LT120ENSI” 5 g / Prepare a pair of m 2 Pt cut to 5 cm square, overlap each other so as to sandwich the composite polymer electrolyte membrane as a fuel electrode and an oxidation electrode, and perform a heat press at 150 ° C. and 5 MPa for 3 minutes, An evaluation MEA was obtained.

このMEAを英和(株)製 JARI標準セル“Ex−1”(電極面積25cm)にセットし、セル温度:80℃、一方の電極に燃料ガスとして水素、もう一方の電極に窒素ガスを供給し、加湿条件:水素ガス90%RH、窒素ガス:90%RHで試験を行った。OCVで0.2V以下になるまで保持し、0.2〜0.7Vまで1mV/secで電圧を掃引し電流値の変化を調べた。本実施例においては下記の起動停止試験の前後で測定し0.6V時の値を調べた。膜が破損した場合、水素透過量が多くなり透過電流が大きくなる。また、この評価はSolartron製電気化学測定システム(Solartron 1480 Electrochemical InterfaceおよびSolartron 1255B Frequency ResponseAnalyzer)を使用して実施した。 Set this MEA in JARI standard cell “Ex-1” (electrode area 25 cm 2 ) manufactured by Eiwa Co., Ltd., cell temperature: 80 ° C., supply hydrogen as fuel gas to one electrode and supply nitrogen gas to the other electrode The test was conducted under humidifying conditions: hydrogen gas 90% RH and nitrogen gas 90% RH. The voltage was kept at OCV until it became 0.2 V or less, and the voltage was swept from 0.2 to 0.7 V at 1 mV / sec to examine the change in the current value. In this example, measurement was performed before and after the following start / stop test, and the value at 0.6 V was examined. When the membrane breaks, the amount of hydrogen permeation increases and the permeation current increases. In addition, this evaluation was carried out using a Solartron electrochemical measurement system (Solartron 1480 Electrochemical Interface and Solartron 1255B Frequency Response Analyzer).

(2)耐久性試験
上記セルを使用し、セル温度:80℃、燃料ガス:水素、酸化ガス:空気、ガス利用率:水素70%/酸素40%、加湿条件:水素ガス60%RH、空気:50%RHの条件で試験を行った。条件としては、OCVで1分間保持し、1A/cmの電流密度で2分間発電し、最後に水素ガスおよび空気の供給を停止して2分間発電を停止し、これを1サイクルとして繰り返す耐久性試験を実施した。耐久性試験前と3000サイクル後に上記水素透過電流の測定を実施しその差を調べた。また、この試験の負荷変動は菊水電子工業社製の電子負荷装置“PLZ664WA”を使用して行った。
(2) Durability test Using the above cell, cell temperature: 80 ° C., fuel gas: hydrogen, oxidizing gas: air, gas utilization rate: hydrogen 70% / oxygen 40%, humidification condition: hydrogen gas 60% RH, air : The test was performed under the condition of 50% RH. The conditions are: hold for 1 minute at OCV, generate electricity for 2 minutes at a current density of 1 A / cm 2 , finally stop supplying hydrogen gas and air for 2 minutes, and repeat this as one cycle A sex test was performed. The hydrogen permeation current was measured before and after 3000 cycles and the difference was examined. In addition, the load fluctuation in this test was performed using an electronic load device “PLZ664WA” manufactured by Kikusui Electronics Corporation.

(3)低加湿下での発電評価
上記燃料電池セルをセル温度80℃、燃料ガス:水素、酸化ガス:空気、ガス利用率:水素70%/酸素40%、加湿条件;アノード側30%RH/カソード30%RH、背圧0.1MPa(両極)において電流−電圧(I−V)測定した。電流−電圧曲線の電流と電圧の積が最高になる点を電極面積で割った値を出力密度とした。
(3) Evaluation of power generation under low humidification The above fuel cell has a cell temperature of 80 ° C., fuel gas: hydrogen, oxidizing gas: air, gas utilization rate: hydrogen 70% / oxygen 40%, humidification condition; anode side 30% RH / Current-voltage (IV) measurement was performed at a cathode of 30% RH and a back pressure of 0.1 MPa (both electrodes). A value obtained by dividing the point at which the product of the current and voltage in the current-voltage curve becomes the highest by the electrode area was taken as the output density.

〔合成例1;可溶性付与基を有するモノマー〕
2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン(G1)の合成
モンモリロナイトクレイK10(150g)、ジヒドロキシベンゾフェノン99gをエチレングリコール242mL/オルトギ酸トリメチル99mL中、生成する副生成物を蒸留させながら110℃で反応させた。18h後、オルトギ酸トリメチルを66g追加し、合成48h反応させた。反応溶液に酢酸エチル300mLを追加し、濾過後、2%炭酸水素ナトリウム水溶液で4回抽出を行った。さらに、濃縮後、ジクロロエタンで再結晶する事により目的の2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソランを得た。
[Synthesis Example 1; monomer having a solubility-imparting group]
Synthesis of 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane (G1) Montmorillonite clay K10 (150 g), 99 g of dihydroxybenzophenone were distilled in 242 mL of ethylene glycol / 99 mL of trimethyl orthoformate to produce by-products. The reaction was carried out at 110 ° C. After 18 hours, 66 g of trimethyl orthoformate was added and reacted for 48 hours of synthesis. To the reaction solution was added 300 mL of ethyl acetate, and after filtration, extraction was performed 4 times with a 2% aqueous sodium hydrogen carbonate solution. Further, after concentration, the desired 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane was obtained by recrystallization from dichloroethane.

〔合成例2;イオン性基を有するモノマー〕
ジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン(G2)の合成
4,4’−ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO3)150mL(和光純薬試薬)中、100℃で10h反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、ジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンを得た。
[Synthesis Example 2: Monomer having ionic group]
Synthesis of disodium 3,3′-disulfonate-4,4′-difluorobenzophenone (G2) 109.1 g of 4,4′-difluorobenzophenone (Aldrich reagent) and 150 mL of fuming sulfuric acid (50% SO3) (Wako Pure Chemicals) The mixture was reacted at 100 ° C. for 10 hours. Thereafter, the mixture was poured little by little into a large amount of water, neutralized with NaOH, and 200 g of sodium chloride was added to precipitate the composite. The resulting precipitate was filtered off and recrystallized with an aqueous ethanol solution to obtain disodium 3,3′-disulfonate-4,4′-difluorobenzophenone.

〔参考例1;可溶性基付与基を有する芳香族炭化水素系ポリマーの紡糸原液Aの製造例〕
撹拌機、窒素導入管、Dean−Starkトラップを備えた5Lの反応容器に、4,4’−ビフェノール37g(アルドリッチ試薬)、合成例1で合成した可溶性付与基を有するモノマー2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン207g、4,4’−ジフルオロベンゾフェノン223g(アルドリッチ試薬)、を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)1500g、トルエン500gを加え、モノマーが全て溶解したことを確認後、炭酸カリウム152g(アルドリッチ試薬)を加え、環流しながら160℃で脱水後に昇温してトルエン除去し、190℃で1時間脱塩重縮合を行った。次に重合原液の粘度が0.5Pa・sになるようにNMPを添加して希釈した。
次ぎに、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、粘度が5Pa・sになるまでNMPを除去し、さらに5μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して紡糸原液Aを得た。
Reference Example 1 Production Example of Spinning Stock Solution A of Aromatic Hydrocarbon Polymer Having Soluble Group-Providing Group
In a 5 L reaction vessel equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark trap, 37 g of 4,4′-biphenol (Aldrich reagent) and monomer 2,2-bis (having a solubility-imparting group synthesized in Synthesis Example 1) 4-hydroxyphenyl) -1,3-dioxolane 207 g, 4,4′-difluorobenzophenone 223 g (Aldrich reagent), and after nitrogen substitution, N-methyl-2-pyrrolidone (NMP) 1500 g and toluene 500 g were added, After confirming that all the monomers were dissolved, 152 g of potassium carbonate (Aldrich reagent) was added, dehydrated at 160 ° C. while refluxing, heated to remove toluene, and subjected to desalting polycondensation at 190 ° C. for 1 hour. Next, NMP was added and diluted so that the viscosity of the polymerization stock solution was 0.5 Pa · s.
Next, the polymerization stock solution was directly centrifuged using an inverter / compact high-speed cooling centrifuge manufactured by Kubota Seisakusho (model No. 6930 with an angle rotor RA-800, 25 ° C., 30 minutes, centrifugal force 20000 G). Since the precipitated solid (cake) and the supernatant (coating solution) could be separated cleanly, the supernatant was recovered. Next, the solution was distilled under reduced pressure at 80 ° C. with stirring to remove NMP until the viscosity reached 5 Pa · s, and further filtered under pressure with a 5 μm polytetrafluoroethylene (PTFE) filter to obtain a spinning dope A. .

〔参考例2;可溶性基付与基を有する芳香族炭化水素系ポリマーの紡糸原液Bの製造例〕
撹拌機、窒素導入管、Dean−Starkトラップを備えた5Lの反応容器に、4,4’−ジヒドロキシベンゾフェノン43g(アルドリッチ試薬)、合成例1で合成した可溶性付与基を有するモノマー2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン207g、4,4’−ジフルオロベンゾフェノン200g(アルドリッチ試薬)、(アルドリッチ試薬)、および合成例2で合成したイオン性基を含有するモノマーであるジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン44gを入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)1700g、トルエン500g、重合安定剤として18−クラウン−6 24g(和光純薬試薬)を加え、モノマーが全て溶解したことを確認後、炭酸カリウム276g(アルドリッチ試薬、2.0mol)を加え、環流しながら160℃で脱水後、昇温してトルエン除去し、190℃で1時間脱塩重縮合を行った。得られたポリマーのイオン性基密度は0.45mmol/gで、重量平均分子量は36万であった。次に重合原液の粘度が0.5Pa・sになるようにNMPを添加し、次に重合原液の粘度が0.5Pa・sになるようにNMPを添加して希釈した。
[Reference Example 2: Production Example of Spinning Stock Solution B of Aromatic Hydrocarbon Polymer Having Soluble Group-Providing Group]
Monomer 2,2-bis having a solubility-imparting group synthesized in Synthesis Example 1 and 43 g of 4,4′-dihydroxybenzophenone (Aldrich reagent) in a 5 L reaction vessel equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark trap 207 g of (4-hydroxyphenyl) -1,3-dioxolane, 200 g of 4,4′-difluorobenzophenone (Aldrich reagent), (Aldrich reagent), and disodium 3 which is a monomer containing the ionic group synthesized in Synthesis Example 2 , 3′-disulfonate-4,4′-difluorobenzophenone 44 g, and after nitrogen substitution, 1700 g of N-methyl-2-pyrrolidone (NMP), 500 g of toluene, 24 g of 18-crown-6 as a polymerization stabilizer (Wako Pure) Drug reagent) and after confirming that all of the monomer has dissolved, 276 g (Aldrich reagent, 2.0 mol) and the mixture was dehydrated at 160 ° C. under reflux, heated and then toluene is removed and subjected to 1 hour desalting polycondensation 190 ° C.. The resulting polymer had an ionic group density of 0.45 mmol / g and a weight average molecular weight of 360,000. Next, NMP was added so that the viscosity of the polymerization stock solution was 0.5 Pa · s, and then NMP was added and diluted so that the viscosity of the polymerization stock solution was 0.5 Pa · s.

次ぎに、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、粘度が10Pa・sになるまでNMPを除去し、さらに5μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して紡糸原液Bを得た。   Next, the polymerization stock solution was directly centrifuged using an inverter / compact high-speed cooling centrifuge manufactured by Kubota Seisakusho (model No. 6930 with an angle rotor RA-800, 25 ° C., 30 minutes, centrifugal force 20000 G). Since the precipitated solid (cake) and the supernatant (coating solution) could be separated cleanly, the supernatant was recovered. Next, the solution was distilled under reduced pressure at 80 ° C. with stirring to remove NMP until the viscosity reached 10 Pa · s, and further filtered under pressure through a 5 μm polytetrafluoroethylene (PTFE) filter to obtain a spinning dope B .

〔参考例3;可溶性基付与基を有する芳香族炭化水素系ポリマーの紡糸原液Cの製造例〕
撹拌機、窒素導入管、Dean−Starkトラップを備えた5Lの反応容器に、4,4’−ビフェノール37g(アルドリッチ試薬)、合成例1で合成した可溶性付与基を有するモノマー2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン207g、4,4’−ジフルオロベンゾフェノン223g(アルドリッチ試薬)、を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)1500g、トルエン500gを加え、モノマーが全て溶解したことを確認後、炭酸カリウム152g(アルドリッチ試薬)を加え、環流しながら160℃で脱水後に昇温してトルエン除去し、190℃で1時間脱塩重縮合を行った。次に重合原液の粘度が0.5Pa・sになるようにNMPを添加して希釈した。
Reference Example 3 Production Example of Spinning Stock Solution C of Aromatic Hydrocarbon Polymer Having Soluble Group-Providing Group
In a 5 L reaction vessel equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark trap, 37 g of 4,4′-biphenol (Aldrich reagent) and monomer 2,2-bis (having a solubility-imparting group synthesized in Synthesis Example 1) 4-hydroxyphenyl) -1,3-dioxolane 207 g, 4,4′-difluorobenzophenone 223 g (Aldrich reagent), and after nitrogen substitution, N-methyl-2-pyrrolidone (NMP) 1500 g and toluene 500 g were added, After confirming that all the monomers were dissolved, 152 g of potassium carbonate (Aldrich reagent) was added, dehydrated at 160 ° C. while refluxing, heated to remove toluene, and subjected to desalting polycondensation at 190 ° C. for 1 hour. Next, NMP was added and diluted so that the viscosity of the polymerization stock solution was 0.5 Pa · s.

次ぎに、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、粘度が1Pa・sになるまでNMPを除去した。この液に対してグリセリンを3重量部添加し、さらに5μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して紡糸原液Cを得た。   Next, the polymerization stock solution was directly centrifuged using an inverter / compact high-speed cooling centrifuge manufactured by Kubota Seisakusho (model No. 6930 with an angle rotor RA-800, 25 ° C., 30 minutes, centrifugal force 20000 G). Since the precipitated solid (cake) and the supernatant (coating solution) could be separated cleanly, the supernatant was recovered. Next, NMP was removed under reduced pressure at 80 ° C. with stirring until the viscosity reached 1 Pa · s. 3 parts by weight of glycerin was added to this solution, followed by pressure filtration with a 5 μm polytetrafluoroethylene (PTFE) filter to obtain a spinning dope C.

〔参考例4;高分子電解質溶液Aの製造例〕
撹拌機、窒素導入管、Dean−Starkトラップを備えた5Lの反応容器に、合成例1で合成した可溶性付与基を有するモノマー2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン129g、4,4’−ビフェノール93g(アルドリッチ試薬)、および合成例2で合成したイオン性基を含有するモノマーであるジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン422g(1.0mol)を入れ、窒素置換後、N−メチル−2−ピロリドン(NMP)3000g、トルエン450g、重合安定剤として18−クラウン−6 232g(和光純薬試薬)を加え、モノマーが全て溶解したことを確認後、炭酸カリウム304g(アルドリッチ試薬)を加え、環流しながら160℃で脱水後、昇温してトルエン除去し、200℃で1時間脱塩重縮合を行った。得られたポリマーのイオン性基密度は3.52mmol/gで、重量平均分子量は32万であった。次に重合原液の粘度が0.5Pa・sになるようにNMPを添加して希釈し、久保田製作所製インバーター・コンパクト高速冷却遠心機(型番6930にアングルローターRA−800をセット、25℃、30分間、遠心力20000G)で重合原液の直接遠心分離を行った。沈降固形物(ケーキ)と上澄み液(塗液)がきれいに分離できたので上澄み液を回収した。次に、撹拌しながら80℃で減圧蒸留し、粘度が2Pa・sになるまでNMPを除去し、さらに5μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して高分子電解質溶液Aを得た。
[Reference Example 4: Production Example of Polymer Electrolyte Solution A]
129 g of monomer 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane having a solubility-imparting group synthesized in Synthesis Example 1 in a 5 L reaction vessel equipped with a stirrer, nitrogen introduction tube, and Dean-Stark trap , 4,4′-biphenol 93 g (Aldrich reagent) and 422 g (1.0 mol) of disodium 3,3′-disulfonate-4,4′-difluorobenzophenone which is a monomer containing the ionic group synthesized in Synthesis Example 2 ), And after nitrogen substitution, 3000 g of N-methyl-2-pyrrolidone (NMP), 450 g of toluene, and 232 g of 18-crown-6 (Wako Pure Chemical Reagent) as a polymerization stabilizer were added, and it was confirmed that all the monomers were dissolved. Then, 304 g of potassium carbonate (Aldrich reagent) was added, dehydrated at 160 ° C. while refluxing, and heated to increase the temperature. And ene removed and subjected to 1 hour desalting polycondensation 200 ° C.. The obtained polymer had an ionic group density of 3.52 mmol / g and a weight average molecular weight of 320,000. Next, NMP is added and diluted so that the viscosity of the polymerization stock solution becomes 0.5 Pa · s, and an inverter / compact high-speed cooling centrifuge manufactured by Kubota Manufacturing Co., Ltd. (Model No. 6930 is set with an angle rotor RA-800, 25 ° C., 30 ° C.) The polymerization stock solution was directly centrifuged at a centrifugal force of 20000 G) for a minute. Since the precipitated solid (cake) and the supernatant (coating solution) could be separated cleanly, the supernatant was recovered. Next, it is distilled under reduced pressure at 80 ° C. while stirring, NMP is removed until the viscosity becomes 2 Pa · s, and further filtered under pressure with a 5 μm polytetrafluoroethylene (PTFE) filter to obtain the polymer electrolyte solution A. Obtained.

実施例1
紡糸原液Aを使用し、カトーテック社製エレクトロスピニングユニットを使用し、電圧40kV、シリンジポンプ吐出速度0.05cc/min、トラバース速度50mm/min、ドラム式ターゲット(直径100mm)の周速度0.8m/min、シリンジとターゲット間の距離100mmの条件で電解紡糸を実施した。
Example 1
Using spinning stock solution A, using an electrospinning unit manufactured by Kato Tech Co., Ltd., voltage 40 kV, syringe pump discharge speed 0.05 cc / min, traverse speed 50 mm / min, peripheral speed of drum type target (diameter 100 mm) 0.8 m Electrospinning was performed under the conditions of 100 mm / min and a distance between the syringe and the target of 100 mm.

得られた芳香族炭化水素系ポリマー繊維の直径の平均は400nmであり、ターゲット上に繊維を捕集し厚み15μmの芳香族炭化水素系ポリマー不織布Aを得た。   The average diameter of the obtained aromatic hydrocarbon polymer fibers was 400 nm, and the fibers were collected on a target to obtain an aromatic hydrocarbon polymer nonwoven fabric A having a thickness of 15 μm.

この芳香族炭化水素系ポリマー不織布Aの一部切り出しNMPに浸漬したところ、不溶物が見られ、可溶性付与基が電解紡糸工程で除去されていることがわかった。   When this aromatic hydrocarbon polymer nonwoven fabric A was partially cut out and immersed in NMP, it was found that insoluble matter was seen and the solubility-imparting group was removed in the electrospinning process.

次ぎに参考例4の高分子電解質溶液Aを基材である125μmのPETフィルム(東レ製“ルミラー(登録商標)”)上に流延塗布し、その上に、芳香族炭化水素系ポリマー不織布Aを貼り合わせて、芳香族炭化水素系ポリマー不織布Aの空隙に高分子電解質溶液Aを含浸させた。芳香族炭化水素系ポリマー不織布Aは同じ溶媒を含む高分子電解質溶液Aに溶解することなく原型を保ったままであった。次ぎに熱風乾燥機に投入し100℃で10分間、150℃で20分間、溶媒を乾燥除去した。次ぎに、PET基材にはりついたままの状態で40℃の10重量%の硫酸水溶液に30分間浸漬し高分子電解質のプロトン交換と可溶性付与基を除去し、洗浄水が中性を示すまで水洗を繰り返し、60℃で再乾燥後、PET基材から剥離し、複合化高分子電解質膜Aを得た。製造した芳香族炭化水素系ポリマー繊維と高分子電解質は同じポリマー構造で相溶性を有していた。   Next, the polymer electrolyte solution A of Reference Example 4 was cast and applied onto a 125 μm PET film (“Lumirror (registered trademark)” manufactured by Toray), and an aromatic hydrocarbon polymer nonwoven fabric A was formed thereon. The polymer electrolyte solution A was impregnated in the voids of the aromatic hydrocarbon polymer nonwoven fabric A. The aromatic hydrocarbon-based polymer nonwoven fabric A remained in its original form without dissolving in the polymer electrolyte solution A containing the same solvent. Next, it was put into a hot air dryer, and the solvent was removed by drying at 100 ° C. for 10 minutes and at 150 ° C. for 20 minutes. Next, it is immersed in a 10% by weight sulfuric acid aqueous solution at 40 ° C. for 30 minutes while remaining attached to the PET substrate to remove proton exchange and solubility-imparting groups of the polymer electrolyte, and is washed until the washing water becomes neutral. And after re-drying at 60 ° C., it was peeled off from the PET substrate to obtain a composite polymer electrolyte membrane A. The produced aromatic hydrocarbon polymer fibers and the polymer electrolyte were compatible with the same polymer structure.

この複合化高分子電解質膜Aのイオン性基密度は2.6mmol/gであった。この複合化高分子電解質膜Aを使用し寸法変化率を測定したところ1.0%であり、湿潤時の引っ張り破断強度は50MPaであった。また、複合化高分子電解質膜Aを使用した燃料電池の低加湿下での出力は550mW/cmであり、発電耐久性評価試験前後の水素透過電流を測定したところ、評価前が0.40mA/cmで評価後は0.51mA/cmであり耐久性が良好であった。 The ionic group density of this composite polymer electrolyte membrane A was 2.6 mmol / g. Using this composite polymer electrolyte membrane A, the dimensional change was measured and found to be 1.0%, and the tensile strength at break when wet was 50 MPa. The output of the fuel cell using the composite polymer electrolyte membrane A under low humidification is 550 mW / cm 2 , and the hydrogen permeation current before and after the power generation durability evaluation test was measured. after evaluated at / cm 2 was good is durability 0.51MA / cm 2.

実施例2
紡糸原液Bを使用し、電圧を20kVにした以外は、実施例1と同様に電解紡糸を実施し、平均繊維径450nmの芳香族炭化水素系ポリマー繊維からなる、厚み20μmの芳香族炭化水素系ポリマー不織布Bを得た。この芳香族炭化水素系ポリマー不織布Bの可溶性付与基除去工程として、60℃の10重量%の硫酸水溶液に60分間浸漬し、可溶性付与基を加水分解で除去し、洗浄水が中性を示すまで水洗を繰り返し、60℃で熱風乾燥した。この可溶性付与基除去後の芳香族炭化水素系ポリマー不織布Bの一部を切り出しNMPに浸漬したところ、不溶物が見られた。
Example 2
Except that the spinning solution B was used and the voltage was set to 20 kV, the electrospinning was carried out in the same manner as in Example 1, and the aromatic hydrocarbon type having an average fiber diameter of 450 nm and consisting of an aromatic hydrocarbon type polymer fiber having a thickness of 20 μm. A polymer nonwoven fabric B was obtained. As the solubility-imparting group removal step of this aromatic hydrocarbon-based polymer nonwoven fabric B, it is immersed in a 10% by weight sulfuric acid aqueous solution at 60 ° C. for 60 minutes until the solubility-imparting group is removed by hydrolysis, and the washing water becomes neutral. Washing with water was repeated, followed by drying with hot air at 60 ° C. When a part of the aromatic hydrocarbon polymer nonwoven fabric B after removal of the solubility-imparting group was cut out and immersed in NMP, insoluble matters were observed.

次ぎに参考例4の高分子電解質溶液Aを基材である125μmのPETフィルム(東レ製“ルミラー(登録商標)”)上に流延塗布し、その上に、芳香族炭化水素系ポリマー不織布Bを貼り合わせて、芳香族炭化水素系ポリマー不織布Bの空隙に高分子電解質溶液Aを含浸させた。芳香族炭化水素系ポリマー不織布Bは同じ溶媒を含む高分子電解質溶液Aに溶解することなく原型を保ったままであった。次ぎに熱風乾燥機に投入し100℃で10分間、150℃で20分間、溶媒を乾燥除去した。次ぎに、PET基材にはりついたままの状態で40℃の10重量%の硫酸水溶液に30分間浸漬し高分子電解質のプロトン交換と可溶性付与基を除去し、洗浄水が中性を示すまで水洗を繰り返し、60℃で熱風乾燥後PET基材から剥離し、複合化高分子電解質膜Bを得た。製造した芳香族炭化水素系ポリマー繊維と高分子電解質は同じポリマー構造で相溶性を有していた。   Next, the polymer electrolyte solution A of Reference Example 4 was cast and applied onto a 125 μm PET film (“Lumirror (registered trademark)” manufactured by Toray Industries, Inc.), and an aromatic hydrocarbon polymer nonwoven fabric B was formed thereon. The polymer electrolyte solution A was impregnated into the voids of the aromatic hydrocarbon polymer nonwoven fabric B. The aromatic hydrocarbon polymer non-woven fabric B remained in its original form without dissolving in the polymer electrolyte solution A containing the same solvent. Next, it was put into a hot air dryer, and the solvent was removed by drying at 100 ° C. for 10 minutes and at 150 ° C. for 20 minutes. Next, it is immersed in a 10% by weight sulfuric acid aqueous solution at 40 ° C. for 30 minutes while remaining attached to the PET substrate to remove proton exchange and solubility-imparting groups of the polymer electrolyte, and is washed until the washing water becomes neutral. Was repeated after drying with hot air at 60 ° C., and then peeled off from the PET substrate to obtain a composite polymer electrolyte membrane B. The produced aromatic hydrocarbon polymer fibers and the polymer electrolyte were compatible with the same polymer structure.

この複合化高分子電解質膜Bのイオン性基密度は2.8mmol/gであった。この複合化高分子電解質膜Bを使用し寸法変化率を測定したところ1.0%であり、湿潤時の引っ張り破断強度は60MPaであった。また、複合化高分子電解質膜Bを使用した燃料電池の低加湿下での出力は590mW/cmであり、発電耐久性評価試験前後の水素透過電流を測定したところ、評価前が0.55mA/cmで評価後は0.60mA/cmであり耐久性が良好であった。 The ionic group density of this composite polymer electrolyte membrane B was 2.8 mmol / g. Using this composite polymer electrolyte membrane B, the dimensional change was measured and found to be 1.0%, and the tensile strength at break when wet was 60 MPa. The output of the fuel cell using the composite polymer electrolyte membrane B under low humidification is 590 mW / cm 2 , and the hydrogen permeation current before and after the power generation durability evaluation test was measured. After the evaluation at / cm 2, it was 0.60 mA / cm 2 and the durability was good.

比較例1
実施例2の芳香族炭化水素系ポリマー不織布Bの可溶性付与基除去工程を採用しなかった以外は、実施例2と同様に高分子電解質溶液の含浸工程を実施し、複合化高分子電解質膜Cを得た。しかし、芳香族炭化水素系ポリマー繊維が高分子電解質溶液Aに溶解し原形をとどめておらず、TEMでも繊維が観察できなかった。この複合化高分子電解質膜Cのイオン性基密度は2.8mmol/gであり、寸法変化率を測定したところ1.0%であり、湿潤時の引っ張り破断強度は60MPaであった。しかしながら、複合化高分子電解質膜Cを使用した燃料電池の低加湿下での出力は81mW/cmであり、複合化高分子電解質膜Cの膜中に芳香族炭化水素系ポリマー不織布Bが溶解したプロトン伝導性が低い層ができていた。
Comparative Example 1
Except not adopting the solubility-imparting group removal step of the aromatic hydrocarbon polymer nonwoven fabric B of Example 2, the impregnation step of the polymer electrolyte solution was carried out in the same manner as in Example 2, and the composite polymer electrolyte membrane C Got. However, the aromatic hydrocarbon polymer fiber was dissolved in the polymer electrolyte solution A and did not remain in its original form, and the fiber could not be observed even with TEM. The composite polymer electrolyte membrane C had an ionic group density of 2.8 mmol / g, a dimensional change rate of 1.0%, and a tensile strength at break of 60 MPa when wet. However, the output of the fuel cell using the composite polymer electrolyte membrane C under low humidification is 81 mW / cm 2 , and the aromatic hydrocarbon polymer nonwoven fabric B is dissolved in the composite polymer electrolyte membrane C. A layer with low proton conductivity was formed.

比較例2
芳香族炭化水素系ポリマー不織布Aの代わりに平均繊維径300nmポリビニルアルコール製(PVA)不織布を使用し、実施例1と同様に複合化高分子電解質膜Dを得た。この複合化高分子電解質膜Dのイオン性基密度は2.5mmol/gであった。この複合化高分子電解質膜Dを使用し寸法変化率を測定したところ1.8%であり、湿潤時の引っ張り破断強度は45MPaであった。また、複合化高分子電解質膜Dを使用した燃料電池の低加湿下での出力は350mW/cmであり、発電耐久性評価試験前後の水素透過電流を測定したところ、評価前が0.55mA/cmで評価後は40.5mA/cmであり耐久性が不良であった。このPVA製不織布は電解紡糸法で製造されておらず、また高分子電解質と異なるポリマー構造で相溶性を有していなかったため、耐久性が不十分であった。
Comparative Example 2
In place of the aromatic hydrocarbon polymer nonwoven fabric A, a polyvinyl alcohol (PVA) nonwoven fabric having an average fiber diameter of 300 nm was used, and a composite polymer electrolyte membrane D was obtained in the same manner as in Example 1. The ionic group density of this composite polymer electrolyte membrane D was 2.5 mmol / g. Using this composite polymer electrolyte membrane D, the dimensional change rate was measured and found to be 1.8%, and the tensile strength at break when wet was 45 MPa. The output of the fuel cell using the composite polymer electrolyte membrane D under low humidification is 350 mW / cm 2 , and the hydrogen permeation current before and after the power generation durability evaluation test was measured. After evaluation at 4 cm / cm 2, it was 40.5 mA / cm 2 and the durability was poor. This non-woven fabric made of PVA was not manufactured by the electrospinning method, and had no compatibility with a polymer structure different from that of the polymer electrolyte, so that the durability was insufficient.

実施例3
実施例1の電解紡糸工程のターゲット上に、平均繊維径10μmからなる目付量10g/mのポリフェニレンスルフィド(PPS)抄紙体(東レ製“トルコンペーパー(登録商標)”)をセットした以外は紡糸原液Aを使用して同様に電解紡糸を行い、平均は400nmの繊維径の芳香族炭化水素系ポリマー繊維でPPS抄紙体の空隙を埋めた、複合化芳香族炭化水素系ポリマー不織布Aを得た。
Example 3
Spinning was performed except that a polyphenylene sulfide (PPS) paper product (Toray Industries Paper (registered trademark)) manufactured by Toray was set on the target of the electrospinning process of Example 1 and having an average fiber diameter of 10 μm and a basis weight of 10 g / m 2. Electrospinning was performed in the same manner using the stock solution A, and a composite aromatic hydrocarbon polymer nonwoven fabric A in which the voids of the PPS paper body were filled with an aromatic hydrocarbon polymer fiber having an average fiber diameter of 400 nm was obtained. .

参考例4の高分子電解質溶液Aを基材である125μmのPETフィルム(東レ製“ルミラー(登録商標)”)上に流延塗布し、その上に、得られた複合化芳香族炭化水素系ポリマー不織布Aを貼り合わせて、複合化芳複合化香族炭化水素系ポリマー不織布Aの空隙に高分子電解質溶液Aを含浸させた。複合化芳香族炭化水素系ポリマー不織布Aは同じ溶媒を含む高分子電解質溶液Aに溶解することなく原型を保ったままであった。次ぎに熱風乾燥機に投入し100℃で10分間、150℃で20分間、溶媒を乾燥除去した。次ぎに、PET基材にはりついたままの状態で40℃の10重量%の硫酸水溶液に30分間浸漬し高分子電解質のプロトン交換と可溶性付与基を除去し、洗浄水が中性を示すまで水洗を繰り返し、60℃で再乾燥後、PET基材から剥離し、複合化高分子電解質膜Eを得た。複合化芳香族炭化水素系ポリマー不織布Aの主体成分である芳香族炭化水素系ポリマー繊維と高分子電解質は同じポリマー構造で相溶性を有していた。   The polymer electrolyte solution A of Reference Example 4 was cast coated on a 125 μm PET film (“Lumirror (registered trademark)” manufactured by Toray Industries, Inc.), and the resultant composite aromatic hydrocarbon system was obtained thereon. The polymer nonwoven fabric A was bonded together, and the polymer electrolyte solution A was impregnated in the voids of the composite aromatic hydrocarbon-based polymer nonwoven fabric A. The composite aromatic hydrocarbon polymer nonwoven fabric A remained in its original form without being dissolved in the polymer electrolyte solution A containing the same solvent. Next, it was put into a hot air dryer, and the solvent was removed by drying at 100 ° C. for 10 minutes and at 150 ° C. for 20 minutes. Next, it is immersed in a 10% by weight sulfuric acid aqueous solution at 40 ° C. for 30 minutes while remaining attached to the PET substrate to remove proton exchange and solubility-imparting groups of the polymer electrolyte, and is washed until the washing water becomes neutral. And after re-drying at 60 ° C., it was peeled from the PET base material to obtain a composite polymer electrolyte membrane E. The aromatic hydrocarbon polymer fiber, which is a main component of the composite aromatic hydrocarbon polymer nonwoven fabric A, and the polymer electrolyte had compatibility with the same polymer structure.

この複合化高分子電解質膜Eのイオン性基密度は2.5mmol/gであった。この複合化高分子電解質膜Eを使用し寸法変化率を測定したところ0.6%であり、湿潤時の引っ張り破断強度は80MPaであった。また、複合化高分子電解質膜Eを使用した燃料電池の低加湿下での出力は530mW/cmであり、発電耐久性評価試験前後の水素透過電流を測定したところ、評価前が0.30mA/cmで評価後は0.35mA/cmであり耐久性が良好であった。
実施例4
紡糸原液Cを使用し、実施例1と同様に電解紡糸を実施し、平均繊維径150nmの芳香族炭化水素系ポリマー繊維からなる、厚み20μmの芳香族炭化水素系ポリマー不織布Cを得た。この芳香族炭化水素系ポリマー不織布Cの可溶性付与基除去工程として、60℃の10重量%の硫酸水溶液に60分間浸漬し、可溶性付与基を加水分解で除去し、洗浄水が中性を示すまで水洗を繰り返し、60℃で熱風乾燥した。この可溶性付与基除去後の芳香族炭化水素系ポリマー不織布C一部を切り出しNMPに浸漬したところ、不溶物が見られた。
The ionic group density of this composite polymer electrolyte membrane E was 2.5 mmol / g. Using this composite polymer electrolyte membrane E, the dimensional change was measured and found to be 0.6%, and the tensile strength at break when wet was 80 MPa. The output of the fuel cell using the composite polymer electrolyte membrane E under low humidification is 530 mW / cm 2 , and the hydrogen permeation current before and after the power generation durability evaluation test was measured. After the evaluation at / cm 2, it was 0.35 mA / cm 2 and the durability was good.
Example 4
Using the spinning dope C, electrospinning was carried out in the same manner as in Example 1 to obtain an aromatic hydrocarbon polymer nonwoven fabric C having a thickness of 20 μm and comprising aromatic hydrocarbon polymer fibers having an average fiber diameter of 150 nm. As a process for removing the solubility-imparting group of the aromatic hydrocarbon-based nonwoven fabric C, it is immersed in a 10% by weight sulfuric acid aqueous solution at 60 ° C. for 60 minutes until the solubility-imparting group is removed by hydrolysis, and the washing water shows neutrality. Washing with water was repeated, followed by drying with hot air at 60 ° C. When a part of the aromatic hydrocarbon polymer nonwoven fabric C after the removal of the solubilizing group was cut out and immersed in NMP, insoluble matters were observed.

次ぎに参考例4の高分子電解質溶液Aを基材である125μmのPETフィルム(東レ製“ルミラー(登録商標)”)上に流延塗布し、その上に、芳香族炭化水素系ポリマー不織布Cを貼り合わせて、芳香族炭化水素系ポリマー不織布Cの空隙に高分子電解質溶液Aを含浸させた。芳香族炭化水素系ポリマー不織布Cは同じ溶媒を含む高分子電解質溶液Aに溶解することなく原型を保ったままであった。次ぎに熱板上にPET基材が接触するようにし100℃で15分間、含浸の促進と溶媒を乾燥除去した。次ぎに、PET基材にはりついたままの状態で60℃の10重量%の硫酸水溶液に30分間浸漬し高分子電解質のプロトン交換と可溶性付与基を除去し、洗浄水が中性を示すまで水洗を繰り返し、60℃で熱風乾燥後PET基材から剥離し、複合化高分子電解質膜Fを得た。製造した芳香族炭化水素系ポリマー繊維と高分子電解質は同じポリマー構造で相溶性を有していた。   Next, the polymer electrolyte solution A of Reference Example 4 was cast and applied onto a 125 μm PET film (“Lumirror (registered trademark)” manufactured by Toray), on which an aromatic hydrocarbon polymer nonwoven fabric C was applied. And the polymer electrolyte solution A was impregnated in the voids of the aromatic hydrocarbon polymer nonwoven fabric C. The aromatic hydrocarbon-based polymer nonwoven fabric C remained intact without being dissolved in the polymer electrolyte solution A containing the same solvent. Next, the PET substrate was brought into contact with the hot plate, and the impregnation promotion and the solvent were removed by drying at 100 ° C. for 15 minutes. Next, it is immersed in a 10% by weight sulfuric acid aqueous solution at 60 ° C. for 30 minutes while remaining attached to the PET substrate to remove proton exchange and solubility-imparting groups of the polymer electrolyte, and is washed until the washing water becomes neutral. Was repeated after drying with hot air at 60 ° C., and then peeled off from the PET substrate to obtain a composite polymer electrolyte membrane F. The produced aromatic hydrocarbon polymer fibers and the polymer electrolyte were compatible with the same polymer structure.

この複合化高分子電解質膜Fのイオン性基密度は3.2mmol/gであった。この複合化高分子電解質膜Fを使用し寸法変化率を測定したところ1.1%であり、湿潤時の引っ張り破断強度は58MPaであった。また、複合化高分子電解質膜Fを使用した燃料電池の低加湿下での出力は605mW/cmであり、発電耐久性評価試験前後の水素透過電流を測定したところ、評価前が0.45mA/cmで評価後は0.53mA/cmであり耐久性が良好であった。 The ionic group density of this composite polymer electrolyte membrane F was 3.2 mmol / g. Using this composite polymer electrolyte membrane F, the dimensional change rate was measured and found to be 1.1%, and the tensile strength at break when wet was 58 MPa. The output of the fuel cell using the composite polymer electrolyte membrane F under low humidification is 605 mW / cm 2 , and the hydrogen permeation current before and after the power generation durability evaluation test was measured. After the evaluation at / cm 2, it was 0.53 mA / cm 2 and the durability was good.

本発明の複合化高分子電解質膜の製造方法は、イオン伝導性が優れ、かつ乾湿サイクルでの寸法変化が小さい複合化高分子電解質膜が製造でき、本発明で得られた複合化高分子電解質膜は、種々の電気化学装置(例えば、燃料電池、水電解装置、クロロアルカリ電解装置等)に適用可能である。これら装置の中でも、燃料電池用に好適であり、特に水素やメタノール水溶液を燃料とする燃料電池に好適であり、携帯電話、パソコン、PDA、ビデオカメラ(カムコーダー)、デジタルカメラ、ハンディターミナル、RFIDリーダー、デジタルオーディオプレーヤー、各種ディスプレー類などの携帯機器、電動シェーバー、掃除機等の家電、電動工具、家庭用電力供給機、乗用車、バスおよびトラックなどの自動車、二輪車、フォークリフト、電動アシスト付自転車、電動カート、電動車椅子や船舶および鉄道などの移動体、各種ロボット、サイボーグなどの電力供給源として好ましく用いられる。特に携帯用機器では、電力供給源だけではなく、携帯機器に搭載した二次電池の充電用にも使用され、さらには二次電池やキャパシタ、太陽電池と併用するハイブリッド型電力供給源としても好適に利用できる。   The method for producing a composite polymer electrolyte membrane of the present invention is capable of producing a composite polymer electrolyte membrane having excellent ionic conductivity and small dimensional change in a wet / dry cycle, and the composite polymer electrolyte obtained in the present invention. The membrane can be applied to various electrochemical devices (for example, a fuel cell, a water electrolysis device, a chloroalkali electrolysis device, etc.). Among these devices, it is suitable for a fuel cell, particularly suitable for a fuel cell using hydrogen or a methanol aqueous solution as a fuel, a mobile phone, a personal computer, a PDA, a video camera (camcorder), a digital camera, a handy terminal, an RFID reader. , Digital audio players, portable devices such as various displays, electric appliances such as electric shavers and vacuum cleaners, electric tools, household power supply machines, cars such as passenger cars, buses and trucks, motorcycles, forklifts, electric assist bicycles, electric It is preferably used as a power supply source for a cart, an electric wheelchair, a moving body such as a ship and a railway, various robots, and a cyborg. Especially in portable devices, it is used not only for power supply sources, but also for charging secondary batteries installed in portable devices, and also suitable as a hybrid power supply source used in combination with secondary batteries, capacitors, and solar cells. Available to:

10:シリンジ
20:シリンジの針
30:コンベア式ドラム
40:高電圧電源
50:シリンジポンプ
10: Syringe 20: Needle 30 of syringe: Conveyor drum 40: High voltage power supply 50: Syringe pump

Claims (3)

芳香族炭化水素系ポリマー繊維と高分子電解質膜を含む複合化高分子電解質膜の製造方法であって、可溶性付与基を含む芳香族炭化水素系ポリマーと溶媒からなる紡糸原液を用いた電解紡糸工程、得られた芳香族炭化水素系ポリマー繊維を不織布化する工程、および得られた芳香族炭化水素系ポリマー不織布に高分子電解質溶液を含浸させる工程を有し、高分子電解質溶液を含浸させる工程より前に可溶性付与基を除去して、紡糸した芳香族炭化水素系ポリマー繊維を高分子電解質溶液に不溶化することを特徴とする複合化高分子電解質膜の製造方法。 A method for producing a composite polymer electrolyte membrane comprising an aromatic hydrocarbon polymer fiber and a polymer electrolyte membrane, the electrospinning process using a spinning stock solution comprising an aromatic hydrocarbon polymer containing a solubility-imparting group and a solvent A step of making the obtained aromatic hydrocarbon polymer fiber into a non-woven fabric, and a step of impregnating the obtained aromatic hydrocarbon polymer non-woven fabric with a polymer electrolyte solution, and a step of impregnating the polymer electrolyte solution A method for producing a composite polymer electrolyte membrane, comprising removing a solubility-imparting group previously and insolubilizing a spun aromatic hydrocarbon polymer fiber in a polymer electrolyte solution. 紡糸原液に多価アルコールを添加する請求項1記載の複合化高分子電解質膜の製造方法。 The method for producing a composite polymer electrolyte membrane according to claim 1, wherein a polyhydric alcohol is added to the spinning dope. 芳香族炭化水素系ポリマー不織布と高分子電解質を含む複合化高分子電解質膜であって、芳香族炭化水素系ポリマー繊維と高分子電解質が同じポリマー構造であり、相溶性を有することを特徴とする複合化高分子電解質膜。 A composite polymer electrolyte membrane comprising an aromatic hydrocarbon polymer nonwoven fabric and a polymer electrolyte, wherein the aromatic hydrocarbon polymer fiber and the polymer electrolyte have the same polymer structure and are compatible Composite polymer electrolyte membrane.
JP2011092638A 2010-04-27 2011-04-19 Composite polymer electrolyte membrane and method for producing the same Withdrawn JP2011246695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092638A JP2011246695A (en) 2010-04-27 2011-04-19 Composite polymer electrolyte membrane and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010101681 2010-04-27
JP2010101681 2010-04-27
JP2011092638A JP2011246695A (en) 2010-04-27 2011-04-19 Composite polymer electrolyte membrane and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011246695A true JP2011246695A (en) 2011-12-08

Family

ID=45412355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092638A Withdrawn JP2011246695A (en) 2010-04-27 2011-04-19 Composite polymer electrolyte membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011246695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566844A (en) * 2018-02-02 2020-08-21 罗地亚经营管理公司 Composite electrolyte
JP2020526002A (en) * 2016-09-27 2020-08-27 ガードネック カンパニー リミテッドGuardnec Co.,Ltd. Electrolyte membrane for fuel cells containing nanofiber spinning layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020526002A (en) * 2016-09-27 2020-08-27 ガードネック カンパニー リミテッドGuardnec Co.,Ltd. Electrolyte membrane for fuel cells containing nanofiber spinning layer
CN111566844A (en) * 2018-02-02 2020-08-21 罗地亚经营管理公司 Composite electrolyte

Similar Documents

Publication Publication Date Title
JP6300985B2 (en) Method for producing polymer electrolyte membrane
JP5994476B2 (en) Method for producing composite polymer electrolyte membrane
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
JP5434079B2 (en) Ultrafine fiber, ion conductive composite polymer membrane, and method for producing the same
KR101995527B1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
JP5678754B2 (en) Method for producing composite polymer electrolyte membrane
US9059448B2 (en) Process for producing polymeric electrolyte membrane
US11545689B2 (en) Electrolyte membrane
KR102098639B1 (en) Polymer electrolyte membrane, method for manufacturing the same and membrane-electrode assembly comprising the same
WO2020196278A1 (en) Multilayer electrolyte membrane, membrane electrode assembly, water electrolysis-type hydrogen generator and method for producing multilayer electrolyte membrane
US10916783B2 (en) Separator for fuel cell, method of fabricating the same, and fuel cell electrode assembly
JP2008098152A (en) Manufacturing method of membrane/electrode assembly
JP2011246695A (en) Composite polymer electrolyte membrane and method for producing the same
JP2013077554A (en) Laminate polymer electrolytic film and manufacturing method thereof
JP5867093B2 (en) Composite polymer electrolyte membrane and method for producing the same
JP2021051995A (en) Composite polymer electrolyte membrane, as well as electrolyte membrane having catalyst layer, membrane electrode assembly, and solid polymer fuel cell in which the composite polymer electrolyte membrane is used
JP2013045502A (en) Composite polymer electrolyte membrane
JP2010021126A (en) Ion-conductive composite polymeric membrane, and process for producing the same
JP2010170769A (en) Method of manufacturing electrolyte membrane
WO2004076079A1 (en) Electrostatic processing of electrochemical device components
JP7318259B2 (en) Method for producing composite polymer electrolyte membrane
KR101491993B1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising same
JP2013131490A (en) Production method of polymer electrolytic film
JP5481880B2 (en) Manufacturing method of electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140403

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20141015