JP2011245512A - Method for joining metal members - Google Patents

Method for joining metal members Download PDF

Info

Publication number
JP2011245512A
JP2011245512A JP2010121428A JP2010121428A JP2011245512A JP 2011245512 A JP2011245512 A JP 2011245512A JP 2010121428 A JP2010121428 A JP 2010121428A JP 2010121428 A JP2010121428 A JP 2010121428A JP 2011245512 A JP2011245512 A JP 2011245512A
Authority
JP
Japan
Prior art keywords
diameter portion
inner diameter
outer diameter
metal member
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010121428A
Other languages
Japanese (ja)
Other versions
JP5512395B2 (en
Inventor
Akira Hashimoto
晃 橋本
Shinya Okumura
信弥 奥村
Shinji Yamamoto
真司 山本
Kazuyuki Shiino
和幸 椎野
Koji Sasaki
佐々木  広治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Origin Electric Co Ltd
Original Assignee
Mazda Motor Corp
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Origin Electric Co Ltd filed Critical Mazda Motor Corp
Priority to JP2010121428A priority Critical patent/JP5512395B2/en
Publication of JP2011245512A publication Critical patent/JP2011245512A/en
Application granted granted Critical
Publication of JP5512395B2 publication Critical patent/JP5512395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Gears, Cams (AREA)
  • General Details Of Gearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure high joint strength with a minimized joint energy.SOLUTION: First and second outer diameter portions 11, 12 of a second metal member (10) are allowed to abut respectively on first and second inner diameter portions 4, 5 of a first metal member (1), and the first metal member (1) and the second metal member (10) are electrified by use of a pair of electrodes 21, 22 while being pressed axially, whereby a first joint portion P1 in which the first inner diameter portion 4 and the first outer diameter portion 11 are joined together and a second joint portion in which the second inner diameter portion 5 and the second outer diameter portion 12 are joined together are formed between both the members (1, 10) while forming a gap portion 15 between both the joint portions P1, P2. Of a contact portion C1 between the first outer diameter portion 11 and the first inner diameter portion 4 and a contact portion C2 between the second outer diameter portion 12 and the second inner diameter portion 5, an overlap margin (S1) of the contact portion which has high temperature by the electrification is set larger than an overlap margin (S2) of the other contact portion.

Description

本発明は、開口部が設けられた第1金属部材と、上記開口部を囲む第1金属部材の内周壁部に部分的に接触可能な外周壁部を有した第2金属部材とを、軸方向に加圧しつつ通電による抵抗発熱によって接合する方法に関する。   The present invention relates to a first metal member provided with an opening and a second metal member having an outer peripheral wall part that can partially contact the inner peripheral wall part of the first metal member surrounding the opening. The present invention relates to a method of joining by resistance heat generation by energization while applying pressure in the direction.

従来から、いわゆるリングマッシュ接合法の一種として、下記特許文献1に示される接合方法が知られている。具体的に、下記特許文献1の方法では、中空状の第1金属部材と、第1金属部材の内径よりもわずかに大きい外径を有する第2金属部材とを軸方向に重ね合わせ、同方向に加圧力をかけた状態で溶接電流を流すことにより、上記第1金属部材の内周面と第2金属部材の外周面とを接合するようにしている。   Conventionally, as a kind of so-called ring mash joining method, a joining method shown in the following Patent Document 1 is known. Specifically, in the method of Patent Document 1 below, a hollow first metal member and a second metal member having an outer diameter slightly larger than the inner diameter of the first metal member are overlapped in the axial direction, and in the same direction. By applying a welding current in a state where pressure is applied to the inner surface of the first metal member, the inner peripheral surface of the first metal member and the outer peripheral surface of the second metal member are joined.

なお、この場合において、上記第1金属部材と第2金属部材との接合の形態は、溶融接合ではなく拡散接合である。すなわち、上記両金属部材に加圧力をかけて通電することにより、接触部分の金属を軟化させて塑性流動を発生させ、金属の新生面どうしを冶金的に接合するというものである。   In this case, the form of joining between the first metal member and the second metal member is not fusion melting but diffusion bonding. That is, by applying current to both the metal members while applying pressure, the metal at the contact portion is softened to generate plastic flow, and the new metal surfaces are metallurgically joined together.

特開2004−17048号公報JP 2004-17048 A

上記特許文献1に示すようなリングマッシュ接合法によれば、例えばアーク溶接等のような一般的な溶融接合と比較して、溶融による炭化物の偏析や、熱影響による凝固割れ等が発生せず、溶接に要する時間も非常に短時間で済むといった利点がある。   According to the ring mash joining method as shown in the above-mentioned Patent Document 1, there is no occurrence of carbide segregation due to melting, solidification cracking due to thermal influence, or the like as compared with general melt joining such as arc welding. There is an advantage that the time required for welding is very short.

ただし、上記特許文献1に開示された方法において、より接合強度を高めることを目的に、上記第1金属部材と第2金属部材との接合面積を増やしたような場合には、これに応じて加圧力および電流値を増大させる必要が生じ、設備の大型化を招いてしまうという問題がある。このため、接合に要するエネルギーをできるだけ低く抑えながら、接合強度をより向上させることが求められていた。   However, in the method disclosed in Patent Document 1, when the bonding area between the first metal member and the second metal member is increased for the purpose of further increasing the bonding strength, There is a problem that it is necessary to increase the applied pressure and the current value, leading to an increase in the size of the equipment. For this reason, it has been required to further improve the bonding strength while keeping the energy required for bonding as low as possible.

本発明は、上記のような事情に鑑みてなされたものであり、少ない接合エネルギーで高い接合強度を得ることが可能な金属部材の接合方法を提供することを目的とする。   This invention is made | formed in view of the above situations, and it aims at providing the joining method of the metal member which can obtain high joining strength with little joining energy.

上記課題を解決するためのものとして、本発明は、開口部が設けられた第1金属部材と、上記開口部を囲む第1金属部材の内周壁部に部分的に接触可能な外周壁部を有した第2金属部材とを、軸方向に加圧しつつ通電による抵抗発熱によって接合する方法であって、上記第1金属部材の内周壁部に、所定の内径を有する第1内径部と、これよりも内径の大きい第2内径部とを形成し、上記第2金属部材の外周壁部に、上記第1内径部および第2内径部よりも所定のオーバラップ代分だけ外径が大きい第1外径部および第2外径部を形成し、上記第1外径部と第1内径部との接触部、および上記第2外径部と第2内径部との接触部のうち、通電時により高温になる方の接触部のオーバラップ代を、もう一方の接触部のオーバラップ代よりも大きく設定し、上記第1金属部材の第1、第2内径部に、上記第2金属部材の第1、第2外径部をそれぞれ接触させた状態で、上記第1金属部材と第2金属部材とを一対の電極を用いて軸方向に加圧しつつ通電することにより、上記両金属部材の間に、上記第1内径部と第1外径部とが接合された第1接合部と、上記第2内径部と第2外径部とが接合された第2接合部とを形成し、かつこれら両接合部の間に、金属どうしが接触しない間隙部を、所定の軸方向長さにわたって形成することを特徴とするものである(請求項1)。   In order to solve the above-mentioned problems, the present invention provides a first metal member provided with an opening and an outer peripheral wall part that can partially contact the inner peripheral wall part of the first metal member surrounding the opening. A second metal member having a predetermined inner diameter on an inner peripheral wall portion of the first metal member; A second inner diameter portion having a larger inner diameter than the first inner diameter portion and the outer diameter wall portion of the second metal member having a larger outer diameter by a predetermined overlap margin than the first inner diameter portion and the second inner diameter portion. An outer diameter portion and a second outer diameter portion are formed, and among the contact portion between the first outer diameter portion and the first inner diameter portion, and the contact portion between the second outer diameter portion and the second inner diameter portion, during energization The overlap margin of the contact portion that is hotter is larger than the overlap margin of the other contact portion The first metal member and the second metal member are set in a state where the first and second outer diameter portions of the second metal member are in contact with the first and second inner diameter portions of the first metal member, respectively. And a first joint part in which the first inner diameter part and the first outer diameter part are joined between the two metal members by applying current while pressing in the axial direction using a pair of electrodes, A second joint portion is formed by joining the second inner diameter portion and the second outer diameter portion, and a gap portion where the metals do not contact each other is formed over a predetermined axial length between the two joint portions. (Claim 1).

本発明の接合方法によれば、第1金属部材の内周壁部と第2金属部材の外周壁部とを段違いに形成し、両者の間に互いに離間した2つの接合部を形成することで、これら各接合部の軸方向長さ(接合長)をむやみに大きくしなくても、特に曲げに強い優れた接合構造を構築することができ、接合エネルギーの増大を回避しつつ接合強度を効果的に向上させることができる。   According to the joining method of the present invention, the inner peripheral wall portion of the first metal member and the outer peripheral wall portion of the second metal member are formed in steps, and by forming two joint portions spaced apart from each other, Even if the axial length of each joint (joint length) is not increased unnecessarily, an excellent joint structure that is particularly resistant to bending can be constructed, and the joint strength is effectively avoided while avoiding an increase in joint energy. Can be improved.

特に、本発明では、第1金属部材と第2金属部材とを接合する際に、第1外径部と第1内径部との接触部、および第2外径部と第2内径部との接触部のうち、通電時により高温になる方の接触部のオーバラップ代を相対的に大きく設定するようにしたため、接触部の昇温幅に応じた適正なオーバラップ代に基づく良質な接合部を形成することができ、第1金属部材と第2金属部材との接合強度をより効果的に向上させることができる。   In particular, in the present invention, when the first metal member and the second metal member are joined, the contact portion between the first outer diameter portion and the first inner diameter portion, and the second outer diameter portion and the second inner diameter portion. Among the contact parts, the overlap margin of the contact section that becomes hotter when energized is set to be relatively large, so a high-quality joint based on the appropriate overlap margin according to the temperature rise width of the contact section The joint strength between the first metal member and the second metal member can be improved more effectively.

具体的に、通電時により高温になる方の接触部のオーバラップ代を大きくするには、上記第1外径部と第1内径部との接触部、および上記第2外径部と第2内径部との接触部のうち、上記電極との距離が短い方の接触部のオーバラップ代を、もう一方の接触部のオーバラップ代よりも大きく設定するとよい(請求項2)。   Specifically, in order to increase the overlap margin of the contact portion that becomes hotter when energized, the contact portion between the first outer diameter portion and the first inner diameter portion, and the second outer diameter portion and the second Of the contact portions with the inner diameter portion, the overlap margin of the contact portion having the shorter distance from the electrode may be set larger than the overlap margin of the other contact portion.

この態様によれば、電極との距離が短く、通電時により高温になり易い接触部のオーバラップ代を、もう一方のオーバラップ代よりも大きく設定することにより、接合部の良質化を適正に図ることができる。   According to this aspect, by setting the overlap margin of the contact portion that is short in distance to the electrode and is likely to become hot when energized to be larger than the other overlap margin, it is possible to appropriately improve the quality of the joint portion. Can be planned.

一方、上記第1金属部材および第2金属部材が電気抵抗値の異なる異種金属からなる場合には、上記第1外径部と第1内径部との接触部、および上記第2外径部と第2内径部との接触部のうち、通電時に流れる電流が大きい方の接触部のオーバラップ代を、もう一方の接触部のオーバラップ代よりも大きく設定するとよい(請求項3)。   On the other hand, when the first metal member and the second metal member are made of different metals having different electric resistance values, the contact portion between the first outer diameter portion and the first inner diameter portion, and the second outer diameter portion, Of the contact portions with the second inner diameter portion, an overlap margin of a contact portion having a larger current flowing during energization may be set larger than an overlap margin of the other contact portion.

この態様によれば、電気抵抗値の相違に起因して、通電時に流れる電流値が大きく高温化し易い接触部のオーバラップ代を、もう一方のオーバラップ代よりも大きく設定することにより、接合部の良質化を適正に図ることができる。   According to this aspect, due to the difference in the electric resistance value, the overlapping portion of the contact portion that has a large current value when energized and is likely to be heated to a high temperature is set to be larger than the other overlapping portion. Can be improved appropriately.

本発明の接合方法は様々な金属部材どうしの接合に適用可能であるが、具体例として、上記第1金属部材が、マニュアルトランスミッションに用いられるクラッチコーンであり、上記第2金属部材が、上記クラッチコーンに接合されるギアである場合に、本発明の接合方法を好適に適用することができる(請求項4)。   The joining method of the present invention can be applied to joining various metal members. As a specific example, the first metal member is a clutch cone used in a manual transmission, and the second metal member is the clutch. In the case where the gear is joined to the cone, the joining method of the present invention can be suitably applied (claim 4).

また、上記第1金属部材が、ディファレンシャル機構に用いられるギアであり、上記第2金属部材が、上記ギアに接合されるデフケースである場合にも、本発明の接合方法を好適に適用することができる(請求項5)。   Also, the joining method of the present invention can be suitably applied when the first metal member is a gear used for a differential mechanism and the second metal member is a differential case joined to the gear. (Claim 5).

以上説明したように、本発明の金属部材の接合方法によれば、少ない接合エネルギーで高い接合強度を得ることができる。   As described above, according to the method for joining metal members of the present invention, high joining strength can be obtained with little joining energy.

本発明の第1実施形態において接合対象とされるクラッチコーンおよびヘリカルギアの接合前の状態を示す断面図である。It is sectional drawing which shows the state before joining of the clutch cone and helical gear used as joining object in 1st Embodiment of this invention. 上記クラッチコーンとヘリカルギアとを接合する際に使用される接合装置の概略構成を示す図である。It is a figure which shows schematic structure of the joining apparatus used when joining the said clutch cone and a helical gear. 図2のA部拡大図である。It is the A section enlarged view of FIG. 接合が完了した状態を示す図3相当図である。FIG. 4 is a view corresponding to FIG. 3 showing a state where the joining is completed. 上記クラッチコーンに曲げモーメントが加わる状況を説明するための図である。It is a figure for demonstrating the condition where a bending moment is added to the said clutch cone. 上記第1実施形態の変形例を説明するための図であり、(a)は接合前の状態、(b)は接合後の状態をそれぞれ示している。It is a figure for demonstrating the modification of the said 1st Embodiment, (a) has shown the state before joining, (b) has each shown the state after joining. 本発明の第2実施形態において接合対象とされるリングギアおよびデフケースの接合前の状態を示す断面図である。It is sectional drawing which shows the state before joining of the ring gear used as joining object in 2nd Embodiment of this invention, and a differential case. 上記リングギアとデフケースとを接合する際に使用される接合装置の概略構成を示す図である。It is a figure which shows schematic structure of the joining apparatus used when joining the said ring gear and a differential case. 図8のB部拡大図である。It is the B section enlarged view of FIG. 接合が完了した状態を示す図9相当図である。FIG. 10 is a view corresponding to FIG. 9 showing a state where the joining is completed. 上記第2実施形態の変形例を説明するための図である。It is a figure for demonstrating the modification of the said 2nd Embodiment. 図11に示される部品の接合後の状態を示す図である。It is a figure which shows the state after joining of the components shown by FIG.

<実施形態1>
まず、本発明の第1実施形態について説明する。図1に示すように、当実施形態では、車両用の部品であるクラッチコーン1とヘリカルギア10とを、本発明の接合方法に基づき接合する。
<Embodiment 1>
First, a first embodiment of the present invention will be described. As shown in FIG. 1, in this embodiment, the clutch cone 1 and the helical gear 10 which are parts for vehicles are joined based on the joining method of this invention.

上記ヘリカルギア10は、マニュアルトランスミッション用のギア部品であり、本発明にかかる第2金属部材に相当する。ヘリカルギア10の材質はスチールであり、その具体例としては、SCR420H等の浸炭焼入れ鋼を挙げることができる。   The helical gear 10 is a gear part for a manual transmission and corresponds to a second metal member according to the present invention. The material of the helical gear 10 is steel, and a specific example thereof is carburized and hardened steel such as SCR420H.

上記ヘリカルギア10は、軸方向に貫通する開口部が中心部に形成された筒状体からなり、その外周壁部の形状は、大小複数の外径を有するように多段状とされている。具体的に、上記ヘリカルギア10の外周壁部には、外径Y1を有する第1外径部11と、外径Y1よりも大きい外径Y2を有する第2外径部12とが形成されている。また、第2外径部12よりもさらに径の大きい最外周部には、螺状歯からなるギア部13が形成されている。   The helical gear 10 is formed of a cylindrical body having an axially penetrating opening formed at the center, and the outer peripheral wall has a multi-stage shape with a plurality of large and small outer diameters. Specifically, a first outer diameter portion 11 having an outer diameter Y1 and a second outer diameter portion 12 having an outer diameter Y2 larger than the outer diameter Y1 are formed on the outer peripheral wall portion of the helical gear 10. Yes. Further, a gear portion 13 made of screw teeth is formed on the outermost peripheral portion having a diameter larger than that of the second outer diameter portion 12.

上記クラッチコーン1は、マニュアルトランスミッションの回転同期のために用いられる部品であり、本発明にかかる第1金属部材に相当する。クラッチコーン1の材質はスチールであり、その具体例としては、SCR420H等の浸炭焼入れ鋼を挙げることができる。   The clutch cone 1 is a part used for the rotation synchronization of the manual transmission, and corresponds to the first metal member according to the present invention. The material of the clutch cone 1 is steel, and a specific example thereof is carburized and hardened steel such as SCR420H.

上記クラッチコーン1は、軸方向に貫通する開口部2が中心部に形成された筒状体からなり、その外周面には、図外のシンクロナイザーリングに圧接されるテーパコーン面3が形成されている。また、上記開口部2を囲むクラッチコーン1の内周壁部には、内径X1を有する第1内径部4と、内径X1よりも大きい内径X2を有する第2内径部5とが形成されている。   The clutch cone 1 is formed of a cylindrical body having an axially penetrating opening 2 formed in the center, and a tapered cone surface 3 is formed on the outer peripheral surface thereof so as to be pressed against a synchronizer ring (not shown). Yes. A first inner diameter portion 4 having an inner diameter X1 and a second inner diameter portion 5 having an inner diameter X2 larger than the inner diameter X1 are formed on the inner peripheral wall portion of the clutch cone 1 surrounding the opening 2.

上記クラッチコーン1の内径X1,X2と、上記ヘリカルギア10の外径Y1,Y2との関係としては、第1外径部11の外径Y1が第1内径部4の内径X1よりもわずかに大きく、かつ第2外径部12の外径Y2が第2内径部5の内径X2よりもわずかに大きい。なお、後述する図3に示すように、上記各外形部11,12と各内径部4,5との半径差であるオーバラップ代については、第1外径部11と第1内径部4とのオーバラップ代をS1、第2外径部12と第2内径部5とのオーバラップ代をS2としたときに、S1>S2となるように設定されている。また、この場合の直径差はそれぞれ2S1,2S2であるので、(第1外径部11の外径Y1)=(第1内径部4の内径X1)+2S1、(第2外径部12の外径Y2)=(第2内径部5の内径X2)+2S2 となる。   Regarding the relationship between the inner diameters X1 and X2 of the clutch cone 1 and the outer diameters Y1 and Y2 of the helical gear 10, the outer diameter Y1 of the first outer diameter portion 11 is slightly smaller than the inner diameter X1 of the first inner diameter portion 4. The outer diameter Y2 of the second outer diameter portion 12 is slightly larger than the inner diameter X2 of the second inner diameter portion 5. In addition, as shown in FIG. 3 to be described later, with respect to the overlap margin which is a radial difference between the outer portions 11 and 12 and the inner diameter portions 4 and 5, the first outer diameter portion 11 and the first inner diameter portion 4 Is set so that S1> S2, where S1 is the overlap margin and S2 is the overlap margin of the second outer diameter portion 12 and the second inner diameter portion 5. Further, in this case, the difference in diameter is 2S1 and 2S2, respectively, (the outer diameter Y1 of the first outer diameter portion 11) = (the inner diameter X1 of the first inner diameter portion 4) + 2S1, (the outer diameter of the second outer diameter portion 12) Diameter Y2) = (Inner diameter X2 of second inner diameter portion 5) + 2S2.

図2は、上記クラッチコーン1とヘリカルギア10とを接合する際に使用される接合装置20の概略構成を示す図である。本図に示すように、接合装置20は、上部電極21および下部電極22と、各電極21,22を軸方向(図2では上下方向)に加圧する図外の加圧機構と、各電極21,22に接合用の高電流を供給する電源装置23とを備える。   FIG. 2 is a diagram showing a schematic configuration of a joining device 20 used when joining the clutch cone 1 and the helical gear 10. As shown in the figure, the bonding apparatus 20 includes an upper electrode 21 and a lower electrode 22, an unshown pressurizing mechanism that pressurizes the electrodes 21 and 22 in the axial direction (vertical direction in FIG. 2), , 22 and a power supply device 23 for supplying a high current for bonding.

このような接合装置20を用いての接合は、クラッチコーン1の開口部2にヘリカルギア10の一部を挿入して仮固定した状態で、上記上部電極21および下部電極22により上記両部材1,10を軸方向に加圧しつつ通電することで行う。なお、図2では、上部電極21および下部電極22を上下方向に対向配置して、その間にクラッチコーン1およびヘリカルギア10を挟み込んで接合する場合を例示するが、例えば、上記両電極21,22を水平方向に対向配置した状態で接合することも当然に可能である。   Such joining using the joining device 20 is performed by inserting the part of the helical gear 10 into the opening 2 of the clutch cone 1 and temporarily fixing the two members 1 by the upper electrode 21 and the lower electrode 22. , 10 by energizing while pressing in the axial direction. FIG. 2 illustrates a case where the upper electrode 21 and the lower electrode 22 are disposed to face each other in the vertical direction, and the clutch cone 1 and the helical gear 10 are sandwiched therebetween to be joined. Of course, it is also possible to join them in a state of being opposed to each other in the horizontal direction.

上記クラッチコーン1およびヘリカルギア10の接合の手順についてより詳しく説明する。クラッチコーン1およびヘリカルギア10を接合するには、まず、ヘリカルギア10を、その第2外径部12が第1外径部11よりも下になる姿勢で下部電極22上に設置する。そして、この状態のヘリカルギア10に対し、クラッチコーン1を上方から接近させる。このときのクラッチコーン1の姿勢は、その第2内径部5が第1内径部4よりも下になる姿勢とする。これにより、ヘリカルギア10は、その第1外径部11から先に、クラッチコーン1の開口部2に挿入される。   The procedure for joining the clutch cone 1 and the helical gear 10 will be described in more detail. In order to join the clutch cone 1 and the helical gear 10, first, the helical gear 10 is installed on the lower electrode 22 in a posture in which the second outer diameter portion 12 is lower than the first outer diameter portion 11. Then, the clutch cone 1 is approached from above with respect to the helical gear 10 in this state. The posture of the clutch cone 1 at this time is a posture in which the second inner diameter portion 5 is lower than the first inner diameter portion 4. As a result, the helical gear 10 is inserted into the opening 2 of the clutch cone 1 before the first outer diameter portion 11.

図3は、図2のA部を拡大して示す図である。先にも述べたが、上記ヘリカルギア10の第1外径部11の外径Y1は、クラッチコーン1の第1内径部4の内径X1よりもオーバラップ代S1の分だけ大きく(Y1=X1+2S1)、ヘリカルギア10の第2外径部12の外径Y2は、クラッチコーン1の第2内径部5の内径X2よりもオーバラップ代S2の分だけ大きい(Y2=X2+2S2)。このため、ヘリカルギア10がクラッチコーン1に挿入されると、第1外径部11の最外周部が第1内径部4の下端に当接するとともに、第2外径部12の最外周部が第2内径部5の下端に当接する。このとき、上記第1外径部11や第2内径部5等の軸方向長さの設定により、第1外径部11と第1内径部4、および第2外径部12と第2内径部5とが、同時に当接するようになっている。   FIG. 3 is an enlarged view of a portion A in FIG. As described above, the outer diameter Y1 of the first outer diameter portion 11 of the helical gear 10 is larger by the overlap margin S1 than the inner diameter X1 of the first inner diameter portion 4 of the clutch cone 1 (Y1 = X1 + 2S1). The outer diameter Y2 of the second outer diameter portion 12 of the helical gear 10 is larger than the inner diameter X2 of the second inner diameter portion 5 of the clutch cone 1 by the overlap margin S2 (Y2 = X2 + 2S2). For this reason, when the helical gear 10 is inserted into the clutch cone 1, the outermost peripheral portion of the first outer diameter portion 11 contacts the lower end of the first inner diameter portion 4, and the outermost peripheral portion of the second outer diameter portion 12 is It contacts the lower end of the second inner diameter portion 5. At this time, the first outer diameter portion 11 and the first inner diameter portion 4, and the second outer diameter portion 12 and the second inner diameter portion are set by setting the axial lengths of the first outer diameter portion 11 and the second inner diameter portion 5. The part 5 is in contact with the same at the same time.

上記のようにしてクラッチコーン1がヘリカルギア10上に仮固定されると、次いで、上部電極21および下部電極22によりクラッチコーン1およびヘリカルギア10を上下から挟み込んで加圧するとともに、上記両電極21,22に接合用の電圧を印加する。具体的には、上記下部電極22上に仮固定されたクラッチコーン1およびヘリカルギア10に対し、上部電極21を上から接近させ、その下端部をヘリカルギア10の上端面に当接させるとともに、その状態で上記両電極21,22に対し所定の加圧力を接近方向(軸方向)に加える。また、これに合わせて電源装置23を作動させることにより、上記両電極21,22に接合用の電圧を印加する。   When the clutch cone 1 is temporarily fixed on the helical gear 10 as described above, the clutch cone 1 and the helical gear 10 are sandwiched and pressurized by the upper electrode 21 and the lower electrode 22 from above and below, and the both electrodes 21 are pressed. , 22 is applied with a bonding voltage. Specifically, the upper electrode 21 is approached from above with respect to the clutch cone 1 and the helical gear 10 temporarily fixed on the lower electrode 22, and the lower end thereof is brought into contact with the upper end surface of the helical gear 10. In this state, a predetermined pressure is applied to the electrodes 21 and 22 in the approaching direction (axial direction). Further, by operating the power supply device 23 in accordance with this, a voltage for joining is applied to both the electrodes 21 and 22.

上記のような電圧の印加に応じて、上記両電極21,22の間には、クラッチコーン1およびヘリカルギア10を介して瞬時に大きな電流が流れる。このとき、クラッチコーン1とヘリカルギア10とは、第1内径部4と第1外径部11との接触部C1、および、第2内径部5と第2外径部12との接触部C2の2箇所で接触しているため、上記電流は、この2箇所の接触部C1,C2を通じて流れることになる。   A large current instantaneously flows between the electrodes 21 and 22 via the clutch cone 1 and the helical gear 10 in response to the application of the voltage as described above. At this time, the clutch cone 1 and the helical gear 10 include a contact portion C1 between the first inner diameter portion 4 and the first outer diameter portion 11, and a contact portion C2 between the second inner diameter portion 5 and the second outer diameter portion 12. Therefore, the current flows through the two contact portions C1 and C2.

すると、通電による抵抗発熱が発生し、上記両接触部C1,C2では、金属の軟化および塑性流動が起きる。このとき、上記電極21,22による加圧は継続されているため、上記金属の軟化に伴い、クラッチコーン1がヘリカルギア10に対し徐々に下方に押し込まれていく。これにより、クラッチコーン1とヘリカルギア10との接触面積(つまり第1内径部4と第1外径部11、第2内径部5と第2外径部12との各接触面積)が増大し、金属が軟化する領域も増大していく。なお、以下では、第1内径部4と第1外径部11との接触部C1のことを上側接触部C1、第2内径部5と第2外径部12との接触部C2のことを下側接触部C2ということがある。   Then, resistance heat generation due to energization occurs, and metal softening and plastic flow occur at both contact portions C1 and C2. At this time, since the pressurization by the electrodes 21 and 22 is continued, the clutch cone 1 is gradually pushed downward with respect to the helical gear 10 as the metal is softened. As a result, the contact area between the clutch cone 1 and the helical gear 10 (that is, each contact area between the first inner diameter portion 4 and the first outer diameter portion 11, and the second inner diameter portion 5 and the second outer diameter portion 12) increases. The area where the metal softens also increases. In the following, the contact portion C1 between the first inner diameter portion 4 and the first outer diameter portion 11 is referred to as the upper contact portion C1, and the contact portion C2 between the second inner diameter portion 5 and the second outer diameter portion 12 is referred to. It may be referred to as a lower contact portion C2.

ここで、上記のような通電と加圧により昇温・軟化する上記両接触部C1,C2においては、第1内径部4と第1外径部11との接触部である上側接触部C1の温度の方が、第2内径部5と第2外径部12との接触部である下側接触部C2の温度よりも高くなる傾向にある。これは、上側接触部C1から上部電極21までの距離の方が、下側接触部C2から下部電極22(図2)までの距離よりも短いからである。   Here, in the contact portions C1 and C2 that are heated and softened by energization and pressurization as described above, the upper contact portion C1 that is a contact portion between the first inner diameter portion 4 and the first outer diameter portion 11 is used. The temperature tends to be higher than the temperature of the lower contact portion C2, which is a contact portion between the second inner diameter portion 5 and the second outer diameter portion 12. This is because the distance from the upper contact portion C1 to the upper electrode 21 is shorter than the distance from the lower contact portion C2 to the lower electrode 22 (FIG. 2).

すなわち、上記上側接触部C1および下側接触部C2では、それぞれ、金属どうしの接触抵抗による発熱が起きるが、このうち上側接触部C1については、上部電極21との距離が短いために、上記のような抵抗発熱に加えて、当該電極21とクラッチコーン1の上面との接触抵抗による発熱の影響を受け易く、より高温化する傾向にある。図3では、上記上部電極21との接触抵抗により特に高温になるクラッチコーン1の上端部を符号Qで示している(以下、高温部分Qという)。上記上側接触部C1は、位置的にこの高温部分Qに近いため、当該部分Qからの熱的影響を受けて下部接触部C2よりも高温化する。   That is, in the upper contact portion C1 and the lower contact portion C2, heat is generated due to the contact resistance between the metals. Of these, the upper contact portion C1 has a short distance from the upper electrode 21, and thus In addition to such resistance heat generation, the electrode 21 is easily affected by heat generation due to contact resistance between the electrode 21 and the upper surface of the clutch cone 1 and tends to have a higher temperature. In FIG. 3, the upper end portion of the clutch cone 1 that becomes particularly hot due to the contact resistance with the upper electrode 21 is indicated by a symbol Q (hereinafter referred to as a high temperature portion Q). Since the upper contact portion C1 is close to the high temperature portion Q in position, the upper contact portion C1 is heated higher than the lower contact portion C2 due to the thermal influence from the portion Q.

このような上側接触部C1と下側接触部C2との温度差を考慮して、当実施形態では、上述したように、上側接触部C1のオーバラップ代S1を下側接触部C2のオーバラップ代S2よりも大きく設定している(S1>S2)。すなわち、第1外径部11と第1内径部4との接触部である上側接触部C1の方が、上記高温部分Qに近く、第2外径部12と第2内径部5との接触部である下側接触部C2よりも高温になるため、金属が軟化する範囲についても、上側接触部C1での軟化範囲の方が下側接触部C2での軟化範囲よりも広くなる。そこで、金属の軟化範囲に見合った適正なオーバラップ代を確保すべく、当実施形態では、第1外径部11と第1内径部4との半径差であるオーバラップ代S1を大きく、第2外径部12と第2内径部5との半径差であるオーバラップ代S2を小さくしている。例えば、S1=0.3mm、S2=0.15mmとする。   In consideration of such a temperature difference between the upper contact portion C1 and the lower contact portion C2, in this embodiment, as described above, the overlap margin S1 of the upper contact portion C1 is changed to the overlap of the lower contact portion C2. It is set larger than the cost S2 (S1> S2). That is, the upper contact portion C1, which is a contact portion between the first outer diameter portion 11 and the first inner diameter portion 4, is closer to the high temperature portion Q, and the second outer diameter portion 12 and the second inner diameter portion 5 are in contact with each other. Since the temperature is higher than that of the lower contact portion C2, which is a portion, the softening range of the upper contact portion C1 is wider than the softening range of the lower contact portion C2 in the range where the metal is softened. Therefore, in this embodiment, in order to ensure an appropriate overlap margin corresponding to the softening range of the metal, the overlap margin S1 which is a radial difference between the first outer diameter portion 11 and the first inner diameter portion 4 is increased. 2 The overlap margin S2, which is a radial difference between the outer diameter portion 12 and the second inner diameter portion 5, is reduced. For example, S1 = 0.3 mm and S2 = 0.15 mm.

図4は、上記上部電極21および下部電極22を用いた通電と加圧が継続された結果、クラッチコーン1とヘリカルギア10との接合が完了した状態を示している。すなわち、接合の完了時には、クラッチコーン1の下面に設けられた突起6がヘリカルギア10に当接するまでクラッチコーン1が下方に押し込まれ、図4に示すように、クラッチコーン1の第1、第2内径部4,5とヘリカルギア10の第1、第2外径部11,12とがそれぞれ所定の軸方向長さにわたって面接触するようになった状態で、上記電極21,22間の通電が停止される。これにより、上記各接触面の金属が再凝固し、同図に示すような2つの接合部P1,P2が形成される。   FIG. 4 shows a state in which the connection between the clutch cone 1 and the helical gear 10 is completed as a result of the energization and pressurization using the upper electrode 21 and the lower electrode 22 being continued. That is, when the joining is completed, the clutch cone 1 is pushed downward until the protrusion 6 provided on the lower surface of the clutch cone 1 contacts the helical gear 10, and as shown in FIG. When the two inner diameter portions 4 and 5 and the first and second outer diameter portions 11 and 12 of the helical gear 10 are in surface contact with each other over a predetermined axial length, the energization between the electrodes 21 and 22 is performed. Is stopped. Thereby, the metal of each said contact surface resolidifies, and two junction part P1, P2 as shown in the figure is formed.

すなわち、上記第1内径部4と第1外径部11、および第2内径部5と第2外径部12との各接触面において、金属の軟化および塑性流動が起きることにより、酸化皮膜や異物等が除去され、この状態で通電が停止されることにより、軟化した部分が再凝固し、金属の新生面どうしが冶金的に結合する(拡散接合)。これにより、第1内径部4と第1外径部11との間に第1接合部P1が形成されるとともに、第2内径部5と第2外径部12との間に第2接合部P2が形成される。   That is, metal softening and plastic flow occur on the contact surfaces of the first inner diameter portion 4 and the first outer diameter portion 11, and the second inner diameter portion 5 and the second outer diameter portion 12, thereby causing an oxide film or When the foreign matter is removed and the energization is stopped in this state, the softened portion is solidified again, and the new metal surfaces are metallurgically bonded (diffusion bonding). Thereby, the first joint P1 is formed between the first inner diameter part 4 and the first outer diameter part 11, and the second joint part is formed between the second inner diameter part 5 and the second outer diameter part 12. P2 is formed.

以上のような工程を経ることにより、クラッチコーン1とヘリカルギア10との接合が完了する。この場合に形成される第1接合部P1および第2接合部P2の間には、所定の軸方向長さにわたって金属どうしが接触しない間隙部15が存在する。すなわち、上記第1接合部P1と第2接合部P2とが軸方向に互いに離間するように、クラッチコーン1の第1、第2内径部4,5、およびヘリカルギア10の第1、第2外径部11,12の寸法関係(軸方向長さの大小関係)が設定されており、このような寸法関係の設定により、接合後の状態において、上記両接合部P1,P2の間に間隙部15が形成されるようになっている。   By passing through the above processes, joining of the clutch cone 1 and the helical gear 10 is completed. Between the first joint P1 and the second joint P2 formed in this case, there is a gap 15 where the metals do not contact each other over a predetermined axial length. That is, the first and second inner diameter portions 4 and 5 of the clutch cone 1 and the first and second of the helical gear 10 are arranged so that the first joint portion P1 and the second joint portion P2 are separated from each other in the axial direction. The dimensional relationship between the outer diameter portions 11 and 12 (the relationship between the axial lengths) is set, and by setting such a dimensional relationship, there is a gap between the joint portions P1 and P2 in the state after joining. A portion 15 is formed.

以上説明したように、本発明の第1実施形態では、クラッチコーン1とヘリカルギア10とを接合するに際して、まず、クラッチコーン1の内周壁部に、内径X1の第1内径部4と、これより大きい内径X2の第2内径部5とを形成するとともに、ヘリカルギア10の外周壁部に、上記内径X1,X2よりもオーバラップ代S1,S2の分だけ外径が大きい(外径Y1,Y2の)第1外径部11および第2外径部12を形成するようにした。そして、上記クラッチコーン1の第1、第2内径部4,5に、上記ヘリカルギア10の第1、第2外径部11,12をそれぞれ当接させるとともに、上記クラッチコーン1とヘリカルギア10とを一対の電極21,22を用いて軸方向に加圧しつつ通電することにより、上記両部材1,10の間に、上記第1内径部4と第1外径部11とが接合された第1接合部P1と、上記第2内径部5と第2外径部12とが接合された第2接合部P2とを形成し、かつこれら両接合部P1,P2の間に、金属どうしが接触しない間隙部15を、所定の軸方向長さにわたって形成するようにした。このような構成によれば、少ない接合エネルギーで高い接合強度が得られるという利点がある。   As described above, in the first embodiment of the present invention, when the clutch cone 1 and the helical gear 10 are joined, first, the first inner diameter portion 4 having the inner diameter X1 is formed on the inner peripheral wall portion of the clutch cone 1. The outer diameter of the helical gear 10 is larger by the overlap margins S1 and S2 than the inner diameters X1 and X2 (outer diameter Y1, The first outer diameter portion 11 and the second outer diameter portion 12 (of Y2) are formed. The first and second outer diameter portions 11 and 12 of the helical gear 10 are brought into contact with the first and second inner diameter portions 4 and 5 of the clutch cone 1, respectively, and the clutch cone 1 and the helical gear 10 are also brought into contact with each other. The first inner diameter portion 4 and the first outer diameter portion 11 are joined between the members 1 and 10 by energizing them while applying pressure in the axial direction using a pair of electrodes 21 and 22. The first joint portion P1 and the second joint portion P2 in which the second inner diameter portion 5 and the second outer diameter portion 12 are joined are formed, and the metal is between the joint portions P1 and P2. The non-contact gap 15 is formed over a predetermined axial length. According to such a configuration, there is an advantage that a high bonding strength can be obtained with a small bonding energy.

すなわち、上記第1実施形態では、クラッチコーン1の内周壁部とヘリカルギア10の外周壁部とを段違いに形成することで、2つの接合部P1,P2を離間して形成し、その間を間隙部15としたため、上記各接合部P1,P2の軸方向長さ(接合長)をむやみに大きくしなくても、特に曲げに強い優れた接合構造を構築することができ、接合エネルギーの増大を回避しつつ接合強度を効果的に向上させることができるという利点がある。   That is, in the first embodiment, the inner peripheral wall portion of the clutch cone 1 and the outer peripheral wall portion of the helical gear 10 are formed in steps, so that the two joint portions P1 and P2 are formed apart from each other, and a gap is formed between them. Since it is the portion 15, even if the axial length (joint length) of each of the joints P1 and P2 is not increased unnecessarily, it is possible to construct an excellent joint structure that is particularly resistant to bending and increase the joint energy. There is an advantage that the bonding strength can be effectively improved while avoiding the problem.

例えば、単に接合強度を高めるだけの目的であれば、上記第1実施形態のように接合部を2つ(P1,P2)に分けなくても、接合長の長い1つの接合部を形成することで接合強度を高められる。しかしながら、このようにした場合には、接合時に必要な電流値や加圧力が増大し、設備の大型化やコストアップを招いてしまう。   For example, if the purpose is merely to increase the bonding strength, one bonding portion having a long bonding length is formed without dividing the bonding portion into two (P1, P2) as in the first embodiment. The joint strength can be increased. However, in such a case, a current value and a pressing force required at the time of joining increase, resulting in an increase in equipment size and cost.

これに対し、上記第1実施形態のように、軸方向に離間した2つの接合部P1,P2を形成した場合には、例えば各接合部P1,P2を軸方向に連続させたような場合と比較して、接合部の断面係数が増大するため、特に図5に示すような曲げモーメントMがクラッチコーン1に作用したときに、接合部P1,P2に作用する力が軽減され、曲げ剛性がより向上する。なお、マニュアルトランスミッションの回転同期のために用いられる上記クラッチコーン1は、そのテーパコーン面3に圧接される図外のシンクロナイザーリング等から様々な方向の力を受けるため、上記のような曲げ剛性の向上により、マニュアルトランスミッションの信頼性をより高めることができる。   On the other hand, when the two joint portions P1 and P2 separated in the axial direction are formed as in the first embodiment, for example, the joint portions P1 and P2 are continuous in the axial direction. In comparison, since the section modulus of the joint portion increases, especially when a bending moment M as shown in FIG. 5 acts on the clutch cone 1, the force acting on the joint portions P1 and P2 is reduced, and the bending rigidity is reduced. More improved. The clutch cone 1 used for the rotation synchronization of the manual transmission receives forces in various directions from a synchronizer ring (not shown) that is pressed against the tapered cone surface 3. Improvements can improve the reliability of manual transmissions.

さらに、上記第1実施形態では、図3に示したように、クラッチコーン1とヘリカルギア10とを接合する際に、上部電極21との距離が短く、通電時により高温になり易い上側接触部C1(第1外径部11と第1内径部4との接触部)のオーバラップ代S1を、下側接触部C2(第2外径部12と第2内径部5との接触部)のオーバラップ代S2よりも大きく設定するようにした。このように、接触部の昇温幅に応じた適正なオーバラップ代を設定することにより、第1、第2外径部11,12と第1、第2内径部4,5との各接合部P1,P2の品質を良好に確保することができ、クラッチコーン1とヘリカルギア10との接合強度を十分に高めることができる。   Furthermore, in the first embodiment, as shown in FIG. 3, when the clutch cone 1 and the helical gear 10 are joined, the distance between the upper electrode 21 is short and the upper contact portion that is likely to become hotter when energized. The overlap margin S1 of C1 (the contact portion between the first outer diameter portion 11 and the first inner diameter portion 4) is the same as that of the lower contact portion C2 (the contact portion between the second outer diameter portion 12 and the second inner diameter portion 5). It was set to be larger than the overlap margin S2. Thus, by setting an appropriate overlap margin according to the temperature rise width of the contact portion, each joint between the first and second outer diameter portions 11 and 12 and the first and second inner diameter portions 4 and 5 is performed. The quality of the parts P1 and P2 can be ensured satisfactorily, and the joining strength between the clutch cone 1 and the helical gear 10 can be sufficiently increased.

例えば、上記第1外径部11と第1内径部4との接触部C1では、通電時の昇温幅が大きく、より広い範囲の金属が軟化するため、当該接触部C1のオーバラップ代S1が小さ過ぎると、溶融金属が飛散するスパッタ等の現象が生じ、金属どうしの拡散接合が不完全になるおそれがある。一方、第2外径部12と第2外径部5との接触部C2では、相対的に温度が低く、金属が軟化する範囲が狭いため、当該接触部C2のオーバラップ代S2が大き過ぎると、単なる圧入と同じような状態になり、やはり金属どうしの拡散接合が不完全になるおそれがある。   For example, the contact portion C1 between the first outer diameter portion 11 and the first inner diameter portion 4 has a large temperature rise during energization, and a wider range of metal softens. Therefore, the overlap margin S1 of the contact portion C1 If it is too small, a phenomenon such as sputtering in which the molten metal scatters occurs, and there is a possibility that diffusion bonding between the metals becomes incomplete. On the other hand, in the contact portion C2 between the second outer diameter portion 12 and the second outer diameter portion 5, the temperature is relatively low and the range in which the metal softens is narrow, so the overlap margin S2 of the contact portion C2 is too large. Then, it becomes the same state as mere press-fitting, and there is a possibility that diffusion bonding between metals is incomplete.

これに対し、上記第1実施形態では、第1外径部11と第1内径部4との接触部C1のオーバラップ代S1を大きく、第2外径部12と第2外径部5との接触部C2のオーバラップ代S2を小さくしたため、各接触部C1,C2の昇温幅とオーバラップ代S1,S2とのバランスがよく、上記のような事態を適正に回避でき、上記第1、第2外径部11,12と第1、第2内径部4,5とを、それぞれ良好な拡散接合により接合することができる。これにより、十分な強度をもった良質な接合部P1,P2(図4)を形成でき、クラッチコーン1とヘリカルギア10との接合強度をより効果的に向上させることができる。   In contrast, in the first embodiment, the overlap margin S1 of the contact portion C1 between the first outer diameter portion 11 and the first inner diameter portion 4 is increased, and the second outer diameter portion 12 and the second outer diameter portion 5 are Since the overlap margin S2 of the contact portion C2 is reduced, the temperature rise width of the contact portions C1 and C2 and the overlap margins S1 and S2 are well balanced, and the above situation can be avoided appropriately. The second outer diameter portions 11 and 12 and the first and second inner diameter portions 4 and 5 can be bonded by good diffusion bonding. As a result, good-quality joints P1 and P2 (FIG. 4) having sufficient strength can be formed, and the joint strength between the clutch cone 1 and the helical gear 10 can be improved more effectively.

なお、上記第1実施形態では、軸方向に離間した2箇所の接合部P1,P2を介してクラッチコーン1とヘリカルギア10とを接合したが、接合部は2箇所でなくてもよく、3箇所もしくはそれ以上の接合部を介してクラッチコーン1とヘリカルギア10とを接合してもよい。図6(a)(b)は、接合部を3箇所(P1’,P2’,P3’)に設定した場合を例示したものであり、同図(a)は接合前の状態を、同図(b)は接合後の状態をそれぞれ示している。   In the first embodiment, the clutch cone 1 and the helical gear 10 are joined via the two joints P1 and P2 that are spaced apart in the axial direction. You may join the clutch cone 1 and the helical gear 10 through the location of a part or more. 6 (a) and 6 (b) illustrate the case where the joints are set at three locations (P1 ′, P2 ′, P3 ′). FIG. 6 (a) shows the state before joining. (B) has shown the state after joining, respectively.

この場合、クラッチコーン1とヘリカルギア10との各接触部のオーバラップ代S1’,S2’,S3’については、図6(a)に示すように、上部電極21に近いほど大きくし、S1’>S2’>S3’とする。このように、電極に近く高温になり易い接触部ほどそのオーバラップ代を大きくすることで、上記第1実施形態と同様に、接合部P1’,P2’,P3’の良質化を適正に図ることができる。   In this case, the overlap margins S1 ′, S2 ′, S3 ′ of the contact portions between the clutch cone 1 and the helical gear 10 are made larger as they are closer to the upper electrode 21, as shown in FIG. '> S2'> S3 '. As described above, by increasing the overlap margin of the contact portion that is close to the electrode and easily becomes high temperature, the quality of the joint portions P1 ′, P2 ′, and P3 ′ is appropriately improved as in the first embodiment. be able to.

また、上記第1実施形態では、図3に示したように、第1外径部11と第1内径部4との接触部C1が上部電極21にかなり近く、通電時に高温になり易いという事情から、この第1外径部11と第1内径部4との接触部C1のオーバラップ代S1を、第2外径部12と第2内径部5との接触部C2のオーバラップ代S2よりも大きくしたが、上部電極21および下部電極22と各接触部C1,C2との位置関係が異なることにより、第2外径部12と第2内径部5との接触部C2の方が、第1外径部11と第1内径部4との接触部C1よりも高温になる場合には、上記とは逆に、接触部C2のオーバラップ代S2を接触部C1のオーバラップ代S1よりも大きくするとよい。   Further, in the first embodiment, as shown in FIG. 3, the contact portion C1 between the first outer diameter portion 11 and the first inner diameter portion 4 is quite close to the upper electrode 21 and is likely to become high temperature when energized. Therefore, the overlap margin S1 of the contact portion C1 between the first outer diameter portion 11 and the first inner diameter portion 4 is greater than the overlap margin S2 of the contact portion C2 between the second outer diameter portion 12 and the second inner diameter portion 5. However, since the positional relationship between the upper electrode 21 and the lower electrode 22 and the contact portions C1 and C2 is different, the contact portion C2 between the second outer diameter portion 12 and the second inner diameter portion 5 is When the temperature is higher than the contact portion C1 between the outer diameter portion 11 and the first inner diameter portion 4, the overlap margin S2 of the contact portion C2 is set to be larger than the overlap margin S1 of the contact portion C1. It should be larger.

また、上記実施形態では、スチール製のクラッチコーン1と、同じくスチール製のヘリカルギア10とを接合する場合を例に挙げて説明したが、本発明の接合方法は、その他の金属製部品にも当然に適用可能であり、その材質もスチールに限られない。本発明の接合方法は、金属の軟化・塑性流動により接合するものであるため、例えばアーク溶接やレーザ溶接といった溶融接合による場合よりも、材質の制約が少なく、様々な材質への適用が期待できる。   In the above embodiment, the case where the steel clutch cone 1 and the steel helical gear 10 are joined is described as an example. However, the joining method of the present invention can be applied to other metal parts. Of course, it is applicable and the material is not limited to steel. Since the joining method of the present invention is joined by softening and plastic flow of metal, there are fewer restrictions on materials than in the case of fusion joining such as arc welding and laser welding, and application to various materials can be expected. .

次に、接合対象の材質が異なる場合の例を本発明の第2実施形態として説明する。
<実施形態2>
本発明の第2実施形態では、図7に示すように、車両用の部品であるリングギア50とデフケース60とを、本発明の接合方法に基づき接合する。
Next, an example where the materials to be joined are different will be described as a second embodiment of the present invention.
<Embodiment 2>
In 2nd Embodiment of this invention, as shown in FIG. 7, the ring gear 50 and differential case 60 which are components for vehicles are joined based on the joining method of this invention.

上記デフケース60は、ディファレンシャル機構のピニオンギアやサイドギアを収納するケースであり、本発明にかかる第2金属部材に相当する。デフケース10の材質は鋳鉄であり、その具体例としては、FCD450やFCD550等の球状黒鉛鋳鉄を挙げることができる。   The differential case 60 is a case that houses a pinion gear and a side gear of a differential mechanism, and corresponds to a second metal member according to the present invention. The material of the differential case 10 is cast iron, and specific examples thereof include spheroidal graphite cast iron such as FCD450 and FCD550.

上記デフケース60は、軸方向の中間部が両端部よりも膨らんだ中空多段状の部材からなる。このデフケース60の軸方向一端寄りの外周壁部には、外径Y11を有する第1外径部61と、外径Y11よりも大きい外径Y12を有する第2外径部62とが形成されている。   The differential case 60 is formed of a hollow multi-stage member having an axial intermediate portion swelled more than both end portions. A first outer diameter portion 61 having an outer diameter Y11 and a second outer diameter portion 62 having an outer diameter Y12 larger than the outer diameter Y11 are formed on an outer peripheral wall portion near one end in the axial direction of the differential case 60. Yes.

上記リングギア50は、トランスミッションから伝達される駆動力を受けるギア部品であり、本発明にかかる第1金属部材に相当する。リングギア50の材質はスチールであり、その具体例としては、SCR420H等の浸炭焼入れ鋼を挙げることができる。   The ring gear 50 is a gear part that receives the driving force transmitted from the transmission, and corresponds to a first metal member according to the present invention. The material of the ring gear 50 is steel, and a specific example thereof is carburized and hardened steel such as SCR420H.

上記リングギア50は、軸方向(厚み方向)に貫通する開口部52が中心部に形成されたリング状の部材からなり、その最外周部には、トランスミッションの出力ギアと噛合されるギア部53が形成されている。また、上記開口部52を囲むリングギア1の内周壁部には、内径X11を有する第1内径部54と、内径X11よりも大きい内径X12を有する第2内径部55とが形成されている。   The ring gear 50 is made of a ring-shaped member having an opening 52 penetrating in the axial direction (thickness direction) formed at the center, and a gear portion 53 that meshes with an output gear of the transmission at the outermost peripheral portion. Is formed. A first inner diameter portion 54 having an inner diameter X11 and a second inner diameter portion 55 having an inner diameter X12 larger than the inner diameter X11 are formed on the inner peripheral wall portion of the ring gear 1 surrounding the opening 52.

上記リングギア50の内径X11,X12と、上記デフケース60の外径Y11,Y12との関係としては、第1外径部61の外径Y11が第1内径部54の内径X11よりもわずかに大きく、かつ第2外径部12の外径Y2が第2内径部5の内径X2よりもわずかに大きい。なお、後述する図9に示すように、上記各外形部61,62と各内径部54,55との半径差であるオーバラップ代については、第1外径部61と第1内径部54とのオーバラップ代をS11、第2外径部62と第2内径部55とのオーバラップ代をS12としたときに、S12>S11となるように設定されている。また、この場合の直径差はそれぞれ2S11,2S12であるので、(第1外径部61の外径Y11)=(第1内径部54の内径X11)+2S11、(第2外径部62の外径Y12)=(第2内径部55の内径X12)+2S12 となる。   Regarding the relationship between the inner diameters X11 and X12 of the ring gear 50 and the outer diameters Y11 and Y12 of the differential case 60, the outer diameter Y11 of the first outer diameter portion 61 is slightly larger than the inner diameter X11 of the first inner diameter portion 54. The outer diameter Y2 of the second outer diameter portion 12 is slightly larger than the inner diameter X2 of the second inner diameter portion 5. In addition, as shown in FIG. 9 to be described later, with respect to the overlap margin which is a radial difference between the outer portions 61 and 62 and the inner diameter portions 54 and 55, the first outer diameter portion 61 and the first inner diameter portion 54 Is set so that S12> S11, where S11 is the overlap allowance and S12 is the overlap allowance between the second outer diameter portion 62 and the second inner diameter portion 55. In this case, the difference in diameter is 2S11 and 2S12, respectively, (the outer diameter Y11 of the first outer diameter portion 61) = (the inner diameter X11 of the first inner diameter portion 54) + 2S11, (the outer diameter of the second outer diameter portion 62) Diameter Y12) = (Inner diameter X12 of second inner diameter portion 55) + 2S12.

図8は、上記リングギア50とデフケース60とを接合する際に使用される接合装置70の概略構成を示す図である。本図に示すように、当実施形態における接合装置70は、先の第1実施形態で使用した接合装置20と基本的に同様の構成を有しており、上部電極71および下部電極72と、各電極71,72を軸方向(図8では上下方向)に加圧する図外の加圧機構と、各電極71,72に接合用の高電流を供給する電源装置73とを備えている。   FIG. 8 is a diagram showing a schematic configuration of a joining device 70 used when joining the ring gear 50 and the differential case 60. As shown in this figure, the bonding apparatus 70 in the present embodiment has basically the same configuration as the bonding apparatus 20 used in the previous first embodiment, and includes an upper electrode 71 and a lower electrode 72, A pressing mechanism (not shown) that pressurizes the electrodes 71 and 72 in the axial direction (vertical direction in FIG. 8) and a power supply device 73 that supplies a high current for bonding to the electrodes 71 and 72 are provided.

このような接合装置70を用いての接合は、リングギア50の開口部52にデフケース60の一部を挿入して仮固定した状態で、上記上部電極71および下部電極72により上記両部材50,60を軸方向に加圧しつつ通電することで行う。なお、図8では、上部電極71および下部電極72を上下方向に対向配置して、その間にリングギア50およびデフケース60を挟み込んで接合する場合を例示するが、例えば、上記両電極71,72を水平方向に対向配置した状態で接合することも当然に可能である。   Such joining using the joining device 70 is performed by inserting both the members 50, the upper electrode 71 and the lower electrode 72 in a state where a part of the differential case 60 is inserted and temporarily fixed in the opening 52 of the ring gear 50. This is done by energizing 60 while pressing 60 in the axial direction. FIG. 8 illustrates a case where the upper electrode 71 and the lower electrode 72 are arranged opposite to each other in the vertical direction, and the ring gear 50 and the differential case 60 are sandwiched therebetween to be joined. It is of course possible to join in a state of being opposed to each other in the horizontal direction.

上記リングギア50およびデフケース60の接合の手順についてより詳しく説明する。リングギア50およびデフケース60を接合するには、まず、リングギア50を、その第1内径部54が第2内径部55よりも下になる姿勢で下部電極72上に設置する。そして、この状態のリングギア50に対し、デフケース60を上方から接近させる。このときのデフケース60の姿勢は、その第1外径部61が第2外径部62よりも下になる姿勢とする。これにより、デフケース60は、その第1外径部61から先に、リングギア50の開口部52に挿入される。   The procedure for joining the ring gear 50 and the differential case 60 will be described in more detail. In order to join the ring gear 50 and the differential case 60, first, the ring gear 50 is installed on the lower electrode 72 in such a posture that the first inner diameter portion 54 is lower than the second inner diameter portion 55. Then, the differential case 60 is made to approach the ring gear 50 in this state from above. The posture of the differential case 60 at this time is a posture in which the first outer diameter portion 61 is lower than the second outer diameter portion 62. Thus, the differential case 60 is inserted into the opening 52 of the ring gear 50 first from the first outer diameter portion 61.

図9は、図7のB部を拡大して示す図である。先にも述べたが、上記デフケース60の第1外径部61の外径Y11は、リングギア50の第1内径部54の内径X11よりもオーバラップ代S11の分だけ大きく(Y11=X11+2S11)、デフケース60の第2外径部62の外径Y12は、リングギア50の第2内径部55の内径X12よりもオーバラップ代S12の分だけ大きい(Y12=X12+2S12)。このため、デフケース60がリングギア50に挿入されると、第1外径部61の最外周部が第1内径部54の上端に当接するとともに、第2外径部62の最外周部が第2内径部55の上端に当接する。このとき、上記第1外径部61や第2内径部55等の軸方向長さの設定により、第1外径部61と第1内径部54、および第2外径部62と第2内径部55とが、同時に当接するようになっている。   FIG. 9 is an enlarged view of a portion B in FIG. As described above, the outer diameter Y11 of the first outer diameter portion 61 of the differential case 60 is larger by the overlap margin S11 than the inner diameter X11 of the first inner diameter portion 54 of the ring gear 50 (Y11 = X11 + 2S11). The outer diameter Y12 of the second outer diameter portion 62 of the differential case 60 is larger by the overlap margin S12 than the inner diameter X12 of the second inner diameter portion 55 of the ring gear 50 (Y12 = X12 + 2S12). For this reason, when the differential case 60 is inserted into the ring gear 50, the outermost peripheral portion of the first outer diameter portion 61 contacts the upper end of the first inner diameter portion 54, and the outermost peripheral portion of the second outer diameter portion 62 is 2 abuts on the upper end of the inner diameter portion 55. At this time, the first outer diameter portion 61 and the first inner diameter portion 54 and the second outer diameter portion 62 and the second inner diameter portion are set by setting the axial lengths of the first outer diameter portion 61, the second inner diameter portion 55, and the like. The portion 55 is in contact with the portion 55 at the same time.

上記のようにしてデフケース60がリングギア50上に仮固定されると、次いで、上部電極71および下部電極72によりリングギア50およびデフケース60を上下から挟み込んで加圧するとともに、上記両電極71,72に接合用の電圧を印加する。具体的には、上記下部電極72上に仮固定されたリングギア50およびデフケース60に対し、上部電極71を上から接近させ、その下端部をデフケース60の内壁面に当接させるとともに、その状態で上記両電極71,72に対し所定の加圧力を接近方向(軸方向)に加える。また、これに合わせて電源装置73を作動させることにより、上記両電極71,72に接合用の電圧を印加する。   When the differential case 60 is temporarily fixed on the ring gear 50 as described above, the ring gear 50 and the differential case 60 are sandwiched and pressurized by the upper electrode 71 and the lower electrode 72 from above and below, and both the electrodes 71 and 72 are pressed. A voltage for bonding is applied to. Specifically, the upper electrode 71 is approached from above with respect to the ring gear 50 and the differential case 60 temporarily fixed on the lower electrode 72, and the lower end thereof is brought into contact with the inner wall surface of the differential case 60, and the state thereof Then, a predetermined pressing force is applied to the electrodes 71 and 72 in the approaching direction (axial direction). In addition, by operating the power supply device 73 in accordance with this, a voltage for bonding is applied to the electrodes 71 and 72.

上記のような電圧の印加に応じて、上記両電極71,72の間には、リングギア50およびデフケース60を介して瞬時に大きな電流が流れる。このとき、リングギア50とデフケース60とは、第1内径部54と第1外径部61との接触部C11、および、第2内径部55と第2外径部62との接触部C12の2箇所で接触しているため、上記電流は、この2箇所の接触部C11,C12を通じて流れることになる。   A large current instantaneously flows between the electrodes 71 and 72 through the ring gear 50 and the differential case 60 in accordance with the application of the voltage as described above. At this time, the ring gear 50 and the differential case 60 include a contact portion C11 between the first inner diameter portion 54 and the first outer diameter portion 61 and a contact portion C12 between the second inner diameter portion 55 and the second outer diameter portion 62. Since they are in contact at two places, the current flows through the two contact portions C11 and C12.

すると、通電による抵抗発熱が発生し、上記両接触部C11,C12では、金属の軟化および塑性流動が起きる。このとき、上記電極71,72による加圧は継続されているため、上記金属の軟化に伴い、デフケース60がリングギア50に対し徐々に下方に押し込まれていく。これにより、リングギア50とデフケース60との接触面積(つまり第1内径部54と第1外径部61、第2内径部55と第2外径部62との各接触面積)が増大し、金属が軟化する領域も増大していく。なお、以下では、第1内径部54と第1外径部61との接触部C11のことを下側接触部C11、第2内径部55と第2外径部62との接触部C12のことを上側接触部C12ということがある。   Then, resistance heat generation due to energization occurs, and metal softening and plastic flow occur at both contact portions C11 and C12. At this time, since the pressurization by the electrodes 71 and 72 is continued, the differential case 60 is gradually pushed downward with respect to the ring gear 50 as the metal is softened. Thereby, the contact area between the ring gear 50 and the differential case 60 (that is, each contact area between the first inner diameter portion 54 and the first outer diameter portion 61 and the second inner diameter portion 55 and the second outer diameter portion 62) is increased. The area where the metal softens also increases. Hereinafter, the contact portion C11 between the first inner diameter portion 54 and the first outer diameter portion 61 is referred to as the lower contact portion C11, and the contact portion C12 between the second inner diameter portion 55 and the second outer diameter portion 62. May be referred to as the upper contact portion C12.

ここで、上記のような通電と加圧により昇温・軟化する上記両接触部C11,C12においては、第2内径部55と第2外径部62との接触部である上側接触部C12の温度の方が、第1内径部54と第1外径部61との接触部である下側接触部C11の温度よりも高くなる傾向にある。これは、上側接触部C12を通る電流I2の方が、下側接触部C11を通る電流I1よりも大きい値になるからである。   Here, in the contact portions C11 and C12 that are heated and softened by energization and pressurization as described above, the upper contact portion C12 that is a contact portion between the second inner diameter portion 55 and the second outer diameter portion 62 is used. The temperature tends to be higher than the temperature of the lower contact portion C11 that is a contact portion between the first inner diameter portion 54 and the first outer diameter portion 61. This is because the current I2 passing through the upper contact portion C12 has a larger value than the current I1 passing through the lower contact portion C11.

すなわち、当実施形態における接合対象であるリングギア50とデフケース60とを比較すると、鋳鉄製のデフケース60の方が、スチール製のリングギア50よりも電気抵抗値が大きい。一方、上側接触部C12を通過する電流I2の経路と、下側接触部C11を通過する電流I1の経路とを比較すると、電流I1の経路の方が、高抵抗のデフケース60の内部をより長い距離にわたって通過するため、相対的に電流が流れにくい経路となっている。したがって、電流I2の値の方が電流I1の値よりも大きくなり、電流I2が流れる上側接触部C12の方が、電流I1が流れる下側接触部C11よりも高温化する。   That is, when the ring gear 50 to be joined in the present embodiment and the differential case 60 are compared, the electric resistance value of the differential case 60 made of cast iron is larger than that of the ring gear 50 made of steel. On the other hand, comparing the path of the current I2 passing through the upper contact portion C12 and the path of the current I1 passing through the lower contact portion C11, the path of the current I1 is longer in the high-resistance differential case 60. Since it passes over a distance, it is a path through which current hardly flows. Therefore, the value of the current I2 becomes larger than the value of the current I1, and the upper contact portion C12 through which the current I2 flows becomes higher in temperature than the lower contact portion C11 through which the current I1 flows.

なお、先の第1実施形態でも説明したように、上側接触部C12と下側接触部C11との温度差の要因としては、上部電極71や下部電極72との距離も関係し得るが、当実施形態では、上部電極71と上側接触部C12との距離、下部電極72と下側接触部C11との距離に大きな差がないため、上記両接触部C11,C12の温度差は、主に電流値I1,I2の相違によるものと考えられる。   As described in the first embodiment, the temperature difference between the upper contact portion C12 and the lower contact portion C11 may be related to the distance between the upper electrode 71 and the lower electrode 72. In the embodiment, since there is no great difference in the distance between the upper electrode 71 and the upper contact portion C12 and the distance between the lower electrode 72 and the lower contact portion C11, the temperature difference between the two contact portions C11 and C12 is mainly a current. This is considered to be due to the difference between the values I1 and I2.

上記のような上側接触部C12と下側接触部C11との温度差を考慮して、当実施形態では、上述したように、上側接触部C12のオーバラップ代S12を下側接触部C11のオーバラップ代S11よりも大きく設定している(S12>S11)。すなわち、第2外径部62と第2内径部55との接触部である上側接触部C12の方が、より高い電流I2が流れることで、第1外径部61と第1内径部54との接触部である下側接触部C11よりも高温になるため、金属が軟化する範囲についても、上側接触部C12での軟化範囲の方が下側接触部C11での軟化範囲よりも広くなる。そこで、金属の軟化範囲に見合った適正なオーバラップ代を確保すべく、当実施形態では、第2外径部62と第2内径部55との半径差であるオーバラップ代S12を大きく、第1外径部61と第1内径部54との半径差であるオーバラップ代S11を小さくしている。例えば、S12=0.5mm、S11=0.2mmとする。   In view of the temperature difference between the upper contact portion C12 and the lower contact portion C11 as described above, in the present embodiment, as described above, the overlap margin S12 of the upper contact portion C12 is set to be greater than that of the lower contact portion C11. It is set larger than the lap margin S11 (S12> S11). That is, the upper outer contact portion C12 that is the contact portion between the second outer diameter portion 62 and the second inner diameter portion 55 causes the higher current I2 to flow, so that the first outer diameter portion 61 and the first inner diameter portion 54 Therefore, the softening range at the upper contact portion C12 is wider than the softening range at the lower contact portion C11. Therefore, in this embodiment, in order to ensure an appropriate overlap margin corresponding to the softening range of the metal, the overlap margin S12 which is a radial difference between the second outer diameter portion 62 and the second inner diameter portion 55 is increased. The overlap margin S11, which is the radius difference between the first outer diameter portion 61 and the first inner diameter portion 54, is reduced. For example, S12 = 0.5 mm and S11 = 0.2 mm.

図10は、上記上部電極71および下部電極72を用いた通電と加圧が継続された結果、リングギア50とデフケース60との接合が完了した状態を示している。すなわち、接合の完了時には、デフケース60の第1外径部61の下端が下部電極72に当接するまでデフケース60が下方に押し込まれ、図10に示すように、リングギア50の第1、第2内径部54,55とデフケース60の第1、第2外径部61,62とがそれぞれ所定の軸方向長さにわたって面接触するようになった状態で、上記電極71,72間の通電が停止される。これにより、上記各接触面の金属が再凝固し、同図に示すような2つの接合部P11,P12が形成される。   FIG. 10 shows a state where joining of the ring gear 50 and the differential case 60 is completed as a result of continuing energization and pressurization using the upper electrode 71 and the lower electrode 72. That is, when the joining is completed, the differential case 60 is pushed downward until the lower end of the first outer diameter portion 61 of the differential case 60 comes into contact with the lower electrode 72, and as shown in FIG. When the inner diameter portions 54 and 55 and the first and second outer diameter portions 61 and 62 of the differential case 60 come into surface contact over a predetermined axial length, the energization between the electrodes 71 and 72 is stopped. Is done. Thereby, the metal of each said contact surface resolidifies, and two junction part P11, P12 as shown to the same figure is formed.

すなわち、上記第1内径部54と第1外径部61、および第2内径部55と第2外径部62との各接触面において、金属の軟化および塑性流動が起きることにより、酸化皮膜や異物等が除去され、この状態で通電が停止されることにより、軟化した部分が再凝固し、金属の新生面どうしが冶金的に結合する(拡散接合)。これにより、第1内径部54と第1外径部61との間に第1接合部P11が形成されるとともに、第2内径部55と第2外径部62との間に第2接合部P12が形成される。   That is, metal softening and plastic flow occur at the contact surfaces of the first inner diameter portion 54 and the first outer diameter portion 61, and the second inner diameter portion 55 and the second outer diameter portion 62. When the foreign matter is removed and the energization is stopped in this state, the softened portion is solidified again, and the new metal surfaces are metallurgically bonded (diffusion bonding). Thus, the first joint P11 is formed between the first inner diameter portion 54 and the first outer diameter portion 61, and the second joint portion is disposed between the second inner diameter portion 55 and the second outer diameter portion 62. P12 is formed.

以上のような工程を経ることにより、リングギア50とデフケース60との接合が完了する。この場合に形成される第1接合部P11および第2接合部P12の間には、所定の軸方向長さにわたって金属どうしが接触しない間隙部65が存在する。すなわち、上記第1接合部P11と第2接合部P12とが軸方向に互いに離間するように、リングギア50の第1、第2内径部54,55、およびデフケース60の第1、第2外径部61,62の寸法関係(軸方向長さの大小関係)が設定されており、このような寸法関係の設定により、接合後の状態において、上記両接合部P11,P12の間に間隙部65が形成されるようになっている。   By passing through the above processes, joining of the ring gear 50 and the differential case 60 is completed. Between the first joint P11 and the second joint P12 formed in this case, there is a gap 65 where the metals do not contact each other over a predetermined axial length. That is, the first and second inner diameter portions 54 and 55 of the ring gear 50 and the first and second outer portions of the differential case 60 so that the first joint portion P11 and the second joint portion P12 are separated from each other in the axial direction. The dimensional relationship between the diameter portions 61 and 62 (the axial size relationship) is set, and by setting such a dimensional relationship, a gap portion is formed between the joint portions P11 and P12 in a state after joining. 65 is formed.

以上説明したように、本発明の第2実施形態では、リングギア50とデフケース60とを接合するに際して、まず、リングギア50の内周壁部に、内径X11の第1内径部54と、これより大きい内径X12の第2内径部55とを形成するとともに、デフケース60の外周壁部に、上記内径X11,X12よりもオーバラップ代S11,S12の分だけ外径が大きい(外径Y11,Y12の)第1外径部61および第2外径部62を形成するようにした。そして、上記リングギア50の第1、第2内径部54,55に、上記デフケース60の第1、第2外径部61,62をそれぞれ当接させるとともに、上記リングギア50とデフケース60とを一対の電極71,72を用いて軸方向に加圧しつつ通電することにより、上記両部材50,60の間に、上記第1内径部54と第1外径部61とが接合された第1接合部P11と、上記第2内径部55と第2外径部62とが接合された第2接合部P12とを形成し、かつこれら両接合部P11,P12の間に、金属どうしが接触しない間隙部65を、所定の軸方向長さにわたって形成するようにした。このような構成によれば、先の第1実施形態で説明したのと同様の理由により、少ない接合エネルギーでより高い接合強度を得ることができる。   As described above, in the second embodiment of the present invention, when the ring gear 50 and the differential case 60 are joined, first, the first inner diameter portion 54 with the inner diameter X11 is formed on the inner peripheral wall portion of the ring gear 50, A second inner diameter portion 55 having a larger inner diameter X12 is formed, and the outer diameter of the outer peripheral wall portion of the differential case 60 is larger than the inner diameters X11 and X12 by the overlap margins S11 and S12 (the outer diameters Y11 and Y12). ) The first outer diameter portion 61 and the second outer diameter portion 62 are formed. Then, the first and second outer diameter portions 61 and 62 of the differential case 60 are brought into contact with the first and second inner diameter portions 54 and 55 of the ring gear 50 respectively, and the ring gear 50 and the differential case 60 are connected to each other. The first inner diameter portion 54 and the first outer diameter portion 61 are joined between the members 50 and 60 by energizing the pair of electrodes 71 and 72 while applying pressure in the axial direction. The joint portion P11 and the second joint portion P12 in which the second inner diameter portion 55 and the second outer diameter portion 62 are joined are formed, and the metals do not contact each other between the joint portions P11 and P12. The gap 65 is formed over a predetermined axial length. According to such a configuration, higher bonding strength can be obtained with less bonding energy for the same reason as described in the first embodiment.

また、上記第2実施形態では、図9に示したように、スチール製のリングギア50と鋳鉄製のデフケース60とを接合する際に、両者の電気抵抗値の相違による電流値I1,I2の大小に起因して、通電時により高温になり易い上側接触部C12(第2外径部62と第2内径部55との接触部)のオーバラップ代S12を、下側接触部C11(第1外径部12と第2内径部5との接触部)のオーバラップ代S2よりも大きく設定するようにした。このように、接触部の昇温幅に応じた適正なオーバラップ代に設定することにより、先の第1実施形態と同様に、第1、第2外径部61,62と第1、第2内径部54,55との各接合部P11,P12の品質を良好に確保することができ、クラッチコーン1とヘリカルギア10との接合強度を十分に高めることができる。   Further, in the second embodiment, as shown in FIG. 9, when the steel ring gear 50 and the cast iron differential case 60 are joined, the current values I1 and I2 due to the difference in the electric resistance values of the two are obtained. Due to the size, the overlap margin S12 of the upper contact portion C12 (the contact portion between the second outer diameter portion 62 and the second inner diameter portion 55), which is likely to become higher temperature when energized, is changed to the lower contact portion C11 (the first contact portion C11). The overlap margin S2 of the outer diameter portion 12 and the second inner diameter portion 5) is set to be larger. As described above, by setting an appropriate overlap margin according to the temperature rise width of the contact portion, the first and second outer diameter portions 61 and 62 and the first and second outer diameter portions 61 and 62 are set in the same manner as in the first embodiment. The quality of each joint part P11 and P12 with 2 inner diameter parts 54 and 55 can be ensured favorably, and the joint strength of the clutch cone 1 and the helical gear 10 can fully be raised.

なお、上記第2実施形態では、軸方向に離間した2箇所の接合部P11,P12を介してリングギア50とデフケース60とを接合したが、先に説明した図6(a)(b)と同様、接合部は2箇所でなくてもよく、3箇所もしくはそれ以上の接合部を介してリングギア50とデフケース60とを接合してもよい。   In the second embodiment, the ring gear 50 and the differential case 60 are joined through the two joint portions P11 and P12 that are spaced apart in the axial direction. However, FIGS. 6A and 6B described above. Similarly, the number of joints may not be two, and the ring gear 50 and the differential case 60 may be joined via three or more joints.

また、上記第2実施形態では、デフケース60の中で最も外径の大きい軸方向中間部分ではなく、これよりも外径の小さい下端寄りの部分に、第1、第2外径部61,62を形成し、これをリングギア50の第1、第2内径部54,55と接合するようにしたが、デフケース60の最も外径の大きい部分とリングギア50とを接合することも当然に可能である。以下では、このような態様によるデフケース160とリングギア150との接合について、図11および図12に基づき説明する。   In the second embodiment, the first and second outer diameter portions 61 and 62 are not located in the axial direction intermediate portion having the largest outer diameter in the differential case 60 but in the portion near the lower end having a smaller outer diameter. This is joined to the first and second inner diameter portions 54 and 55 of the ring gear 50, but it is naturally possible to join the ring gear 50 to the portion with the largest outer diameter of the differential case 60. It is. Below, joining of the differential case 160 and the ring gear 150 by such an aspect is demonstrated based on FIG. 11 and FIG.

図11に示すように、デフケース160の中で最も外径の大きい軸方向中間部分の外周壁部には、外径Y101を有する第1外径部161と、外径Y101よりも大きい外径Y102を有する第2外径部162とが形成されている。一方、これら第1、第2外径部161,162に対応して、リングギア150の内周壁部(開口部152の周壁)には、内径X101を有する第1内径部154と、内径X101よりも大きい内径X102を有する第2内径部155とが形成されている。第1外径部161の外径Y101は第1内径部154の内径X101よりもわずかに大きく、第2外径部162の外径Y102は第2内径部155の内径X102よりもわずかに大きい。   As shown in FIG. 11, a first outer diameter portion 161 having an outer diameter Y <b> 101 and an outer diameter Y <b> 102 larger than the outer diameter Y <b> 101 are formed on the outer peripheral wall portion of the axially intermediate portion having the largest outer diameter in the differential case 160. And a second outer diameter portion 162 having the shape. On the other hand, corresponding to the first and second outer diameter portions 161 and 162, the inner peripheral wall portion of the ring gear 150 (the peripheral wall of the opening 152) has a first inner diameter portion 154 having an inner diameter X101 and an inner diameter X101. And a second inner diameter portion 155 having a larger inner diameter X102. The outer diameter Y101 of the first outer diameter portion 161 is slightly larger than the inner diameter X101 of the first inner diameter portion 154, and the outer diameter Y102 of the second outer diameter portion 162 is slightly larger than the inner diameter X102 of the second inner diameter portion 155.

このような構成のリングギア150とデフケース160とを、上記第2実施形態と同様の方法で接合すると、図12に示すような接合構造が得られる。本図に示すように、リングギア150とデフケース160とは、第1内径部154と第1外径部161との間に形成される第1接合部P101と、第2内径部155と第2外径部162との間に形成される第2接合部P102とを介して接合され、両接合部P101,P102の間には間隙部165が形成される。   When the ring gear 150 and the differential case 160 having such a configuration are joined by the same method as in the second embodiment, a joined structure as shown in FIG. 12 is obtained. As shown in the figure, the ring gear 150 and the differential case 160 include a first joint P101 formed between the first inner diameter portion 154 and the first outer diameter portion 161, the second inner diameter portion 155, and the second It joins via the 2nd junction part P102 formed between the outer diameter parts 162, and the clearance gap part 165 is formed between both the junction parts P101 and P102.

以上のような図11および図12の例では、先の第2実施形態の場合(図7〜図10)と比べて、接合部P101,P102の径が大きいため、トータルの接合面積が大きく、より接合強度が向上することが期待される。ただし、接合面積があまりに大きいと、接合に要するエネルギーが過大になるとともに、接合部P101,P102の品質を確実な精度で維持することが難しくなると考えられる。したがって、デフケース160の外形が大きく、接合部P101,P102の径がかなり大きくなる場合には、やはり上記第2実施形態(図7〜図10)に示したように、デフケース60における比較的外径の小さい部分に第1、第2外径部61,62を形成し、これをリングギア50の第1、第2内径部54,55と接合することが望ましい。   In the example of FIGS. 11 and 12 as described above, since the diameters of the joint portions P101 and P102 are larger than those in the case of the second embodiment (FIGS. 7 to 10), the total joint area is large. It is expected that the bonding strength is further improved. However, if the bonding area is too large, the energy required for bonding becomes excessive, and it is considered difficult to maintain the quality of the bonding portions P101 and P102 with a certain degree of accuracy. Therefore, when the outer shape of the differential case 160 is large and the diameters of the joints P101 and P102 are considerably large, as shown in the second embodiment (FIGS. 7 to 10), the outer diameter of the differential case 60 is relatively large. It is desirable that first and second outer diameter portions 61 and 62 are formed in a small portion of the ring gear 50 and joined to the first and second inner diameter portions 54 and 55 of the ring gear 50.

1 クラッチコーン(第1金属部材)
2 開口部
4 第1内径部
5 第2内径部
10 ヘリカルギア(第2金属部材)
11 第1外径部
12 第2外径部
15 間隙部
21 上部電極(電極)
22 下部電極(電極)
C1 (第1外径部と第1内径部との)接触部
C2 (第2外径部と第2内径部との)接触部
P1 第1接合部
P2 第2接合部
S1,S2 オーバラップ代

50 リングギア(第1金属部材)
52 開口部
54 第1内径部
55 第2内径部
60 デフケース(第2金属部材)
61 第1外径部
62 第2外径部
65 間隙部
71 上部電極(電極)
72 下部電極(電極)
C11 (第1外径部と第1内径部との)接触部
C12 (第2外径部と第2内径部との)接触部
P11 第1接合部
P12 第2接合部
S11,S12 オーバラップ代
I1,I2 電流
1 Clutch cone (first metal member)
2 Opening portion 4 First inner diameter portion 5 Second inner diameter portion 10 Helical gear (second metal member)
11 First outer diameter portion 12 Second outer diameter portion 15 Gap portion 21 Upper electrode (electrode)
22 Lower electrode (electrode)
C1 Contact portion (the first outer diameter portion and the first inner diameter portion) Contact portion C2 Contact portion (the second outer diameter portion and the second inner diameter portion) P1 First joint portion P2 Second joint portion S1, S2 Overlap allowance

50 Ring gear (first metal member)
52 Opening 54 First Inner Diameter 55 Second Inner Diameter 60 Differential Case (Second Metal Member)
61 1st outer diameter part 62 2nd outer diameter part 65 Gap part 71 Upper electrode (electrode)
72 Lower electrode (electrode)
C11 Contact portion (the first outer diameter portion and the first inner diameter portion) Contact portion C12 Contact portion (the second outer diameter portion and the second inner diameter portion) P11 First joint portion P12 Second joint portion S11, S12 Overlap allowance I1, I2 current

Claims (5)

開口部が設けられた第1金属部材と、上記開口部を囲む第1金属部材の内周壁部に部分的に接触可能な外周壁部を有した第2金属部材とを、軸方向に加圧しつつ通電による抵抗発熱によって接合する方法であって、
上記第1金属部材の内周壁部に、所定の内径を有する第1内径部と、これよりも内径の大きい第2内径部とを形成し、
上記第2金属部材の外周壁部に、上記第1内径部および第2内径部よりも所定のオーバラップ代分だけ外径が大きい第1外径部および第2外径部を形成し、
上記第1外径部と第1内径部との接触部、および上記第2外径部と第2内径部との接触部のうち、通電時により高温になる方の接触部のオーバラップ代を、もう一方の接触部のオーバラップ代よりも大きく設定し、
上記第1金属部材の第1、第2内径部に、上記第2金属部材の第1、第2外径部をそれぞれ接触させた状態で、上記第1金属部材と第2金属部材とを一対の電極を用いて軸方向に加圧しつつ通電することにより、上記両金属部材の間に、上記第1内径部と第1外径部とが接合された第1接合部と、上記第2内径部と第2外径部とが接合された第2接合部とを形成し、かつこれら両接合部の間に、金属どうしが接触しない間隙部を、所定の軸方向長さにわたって形成することを特徴とする金属部材の接合方法。
A first metal member provided with an opening and a second metal member having an outer peripheral wall that can partially contact the inner peripheral wall of the first metal member surrounding the opening are pressurized in the axial direction. While joining by resistance heating by energization,
Forming a first inner diameter portion having a predetermined inner diameter and a second inner diameter portion having an inner diameter larger than the first inner diameter wall portion of the first metal member;
Forming a first outer diameter portion and a second outer diameter portion having an outer diameter larger than the first inner diameter portion and the second inner diameter portion by a predetermined overlap margin on the outer peripheral wall portion of the second metal member;
Of the contact portion between the first outer diameter portion and the first inner diameter portion, and the contact portion between the second outer diameter portion and the second inner diameter portion, the overlap margin of the contact portion that becomes hotter when energized , Set larger than the overlap margin of the other contact part,
The first metal member and the second metal member are paired with the first and second inner diameter portions of the first metal member in contact with the first and second outer diameter portions of the second metal member, respectively. The first joint part in which the first inner diameter part and the first outer diameter part are joined between the two metal members by applying current while pressing in the axial direction using the electrode of the electrode, and the second inner diameter Forming a second joining portion in which the portion and the second outer diameter portion are joined, and forming a gap between the joining portions so that the metals do not contact each other over a predetermined axial length. A method for joining metal members.
請求項1記載の金属部材の接合方法において、
上記第1外径部と第1内径部との接触部、および上記第2外径部と第2内径部との接触部のうち、上記電極との距離が短い方の接触部のオーバラップ代を、もう一方の接触部のオーバラップ代よりも大きく設定することを特徴とする金属部材の接合方法。
In the joining method of the metal member of Claim 1,
Of the contact portion between the first outer diameter portion and the first inner diameter portion, and the contact portion between the second outer diameter portion and the second inner diameter portion, the overlap margin of the contact portion having a shorter distance from the electrode Is set to be larger than the overlap margin of the other contact portion.
請求項1記載の金属部材の接合方法において、
上記第1金属部材および第2金属部材が電気抵抗値の異なる異種金属からなり、
上記第1外径部と第1内径部との接触部、および上記第2外径部と第2内径部との接触部のうち、通電時に流れる電流が大きい方の接触部のオーバラップ代を、もう一方の接触部のオーバラップ代よりも大きく設定することを特徴とする金属部材の接合方法。
In the joining method of the metal member of Claim 1,
The first metal member and the second metal member are made of different metals having different electric resistance values,
Of the contact portion between the first outer diameter portion and the first inner diameter portion, and the contact portion between the second outer diameter portion and the second inner diameter portion, an overlap margin of a contact portion having a larger current flowing during energization is set. The method of joining metal members, characterized in that the metal member is set to be larger than an overlap margin of the other contact portion.
請求項1〜3のいずれか1項に記載の金属部材の接合方法において、
上記第1金属部材が、マニュアルトランスミッションに用いられるクラッチコーンであり、上記第2金属部材が、上記クラッチコーンに接合されるギアであることを特徴とする金属部材の接合方法。
In the joining method of the metal member of any one of Claims 1-3,
The metal member joining method, wherein the first metal member is a clutch cone used in a manual transmission, and the second metal member is a gear joined to the clutch cone.
請求項1〜3のいずれか1項に記載の金属部材の接合方法において、
上記第1金属部材が、ディファレンシャル機構に用いられるギアであり、上記第2金属部材が、上記ギアに接合されるデフケースであることを特徴とする金属部材の接合方法。
In the joining method of the metal member of any one of Claims 1-3,
The metal member joining method, wherein the first metal member is a gear used for a differential mechanism, and the second metal member is a differential case joined to the gear.
JP2010121428A 2010-05-27 2010-05-27 Method for joining metal members Active JP5512395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121428A JP5512395B2 (en) 2010-05-27 2010-05-27 Method for joining metal members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121428A JP5512395B2 (en) 2010-05-27 2010-05-27 Method for joining metal members

Publications (2)

Publication Number Publication Date
JP2011245512A true JP2011245512A (en) 2011-12-08
JP5512395B2 JP5512395B2 (en) 2014-06-04

Family

ID=45411418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121428A Active JP5512395B2 (en) 2010-05-27 2010-05-27 Method for joining metal members

Country Status (1)

Country Link
JP (1) JP5512395B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039709A (en) * 2013-08-21 2015-03-02 マツダ株式会社 Method and device for joining metallic members
JP2015039708A (en) * 2013-08-21 2015-03-02 マツダ株式会社 Method of and device for joining metallic members
WO2016056386A1 (en) * 2014-10-10 2016-04-14 オリジン電気株式会社 Electrical bonding method and electrical bonding device
WO2016093232A1 (en) * 2014-12-09 2016-06-16 オリジン電気株式会社 Bonded article manufacturing method and bonded article
JP2016209926A (en) * 2015-05-13 2016-12-15 マツダ株式会社 Joining method for metal component and junction structure of metallic component
KR20160148468A (en) * 2015-06-16 2016-12-26 니바록스-파 에스.에이. Component fabrication method including a modified burnishing step
KR20160148472A (en) * 2015-06-16 2016-12-26 니바록스-파 에스.에이. Timepiece component with a part with a decoupled welding surface
KR20160148474A (en) * 2015-06-16 2016-12-26 니바록스-파 에스.에이. Timepiece component with a part having an improved welding surface
KR101837071B1 (en) * 2017-09-13 2018-03-09 정연택 Methode of flywheel for engines
WO2019182005A1 (en) * 2018-03-23 2019-09-26 株式会社オリジン Fitting member, annular member, bonding agent member, and method for manufacturing bonding agent member
CN111059247A (en) * 2015-03-30 2020-04-24 武藏精密工业株式会社 Transmission device
EP3530398A4 (en) * 2016-10-18 2020-06-17 Kabushiki Kaisha F.C.C. Joint component manufacturing method
WO2021010121A1 (en) * 2019-07-17 2021-01-21 マツダ株式会社 Method and structure for bonding metal member
JP6868733B1 (en) * 2020-06-02 2021-05-12 株式会社オリジン Manufacturing method and manufacturing equipment for joined articles
WO2021246037A1 (en) * 2020-06-02 2021-12-09 株式会社オリジン Method and apparatus for manufacturing joined article

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039709A (en) * 2013-08-21 2015-03-02 マツダ株式会社 Method and device for joining metallic members
JP2015039708A (en) * 2013-08-21 2015-03-02 マツダ株式会社 Method of and device for joining metallic members
WO2016056386A1 (en) * 2014-10-10 2016-04-14 オリジン電気株式会社 Electrical bonding method and electrical bonding device
CN106715028B (en) * 2014-10-10 2018-05-08 欧利生电气株式会社 Electric joint method and electric engagement device
US9925615B2 (en) 2014-10-10 2018-03-27 Origin Electric Company, Limited Electrical bonding method
JP6009690B2 (en) * 2014-10-10 2016-10-19 オリジン電気株式会社 Electrical joining method and electrical joining apparatus
KR101814354B1 (en) 2014-10-10 2018-01-30 오리진 일렉트릭 캄파니 리미티드 Electrical bonding method and electrical bonding device
CN106715028A (en) * 2014-10-10 2017-05-24 欧利生电气株式会社 Electrical bonding method and electrical bonding device
US9849539B2 (en) 2014-12-09 2017-12-26 Origin Electric Company, Limited Bonded article and method for manufacturing bonded article
CN107000111A (en) * 2014-12-09 2017-08-01 欧利生电气株式会社 The manufacture method and engagement member of engagement member
CN107000111B (en) * 2014-12-09 2018-09-21 欧利生电气株式会社 The manufacturing method and engagement member of engagement member
EP3231547A4 (en) * 2014-12-09 2018-12-05 Origin Electric Company, Limited Bonded article manufacturing method and bonded article
JP5998308B1 (en) * 2014-12-09 2016-09-28 オリジン電気株式会社 Method for manufacturing joined article and joined article
WO2016093232A1 (en) * 2014-12-09 2016-06-16 オリジン電気株式会社 Bonded article manufacturing method and bonded article
CN111059247A (en) * 2015-03-30 2020-04-24 武藏精密工业株式会社 Transmission device
CN111059247B (en) * 2015-03-30 2023-03-17 武藏精密工业株式会社 Transmission device
JP2016209926A (en) * 2015-05-13 2016-12-15 マツダ株式会社 Joining method for metal component and junction structure of metallic component
KR101971320B1 (en) * 2015-06-16 2019-04-22 니바록스-파 에스.에이. Timepiece component with a part having an improved welding surface
KR20160148472A (en) * 2015-06-16 2016-12-26 니바록스-파 에스.에이. Timepiece component with a part with a decoupled welding surface
KR20160148468A (en) * 2015-06-16 2016-12-26 니바록스-파 에스.에이. Component fabrication method including a modified burnishing step
KR20160148474A (en) * 2015-06-16 2016-12-26 니바록스-파 에스.에이. Timepiece component with a part having an improved welding surface
KR101983433B1 (en) * 2015-06-16 2019-05-28 니바록스-파 에스.에이. Timepiece component with a part with a decoupled welding surface
KR101881641B1 (en) * 2015-06-16 2018-07-24 니바록스-파 에스.에이. Component fabrication method including a modified burnishing step
EP3530398A4 (en) * 2016-10-18 2020-06-17 Kabushiki Kaisha F.C.C. Joint component manufacturing method
US10730096B2 (en) 2016-10-18 2020-08-04 Kabushiki Kaisha F.C.C. Joint component manufacturing method
EP3785846A1 (en) * 2016-10-18 2021-03-03 Kabushiki Kaisha F.C.C. Joint component manufacturing method
KR101837071B1 (en) * 2017-09-13 2018-03-09 정연택 Methode of flywheel for engines
WO2019182005A1 (en) * 2018-03-23 2019-09-26 株式会社オリジン Fitting member, annular member, bonding agent member, and method for manufacturing bonding agent member
US11484963B2 (en) 2018-03-23 2022-11-01 Origin Company, Limited Fitting member, annular member, joined member and method of manufacturing joined member
CN114080292A (en) * 2019-07-17 2022-02-22 马自达汽车株式会社 Method for joining metal members and joined structure
WO2021010121A1 (en) * 2019-07-17 2021-01-21 マツダ株式会社 Method and structure for bonding metal member
US20220258287A1 (en) * 2019-07-17 2022-08-18 Mazda Motor Corporation Metal member joining method and joining structure
JP6868733B1 (en) * 2020-06-02 2021-05-12 株式会社オリジン Manufacturing method and manufacturing equipment for joined articles
CN114599470A (en) * 2020-06-02 2022-06-07 株式会社欧利生 Method and apparatus for manufacturing bonded article
KR20220087574A (en) * 2020-06-02 2022-06-24 가부시키가이샤 오리진 Manufacturing method and manufacturing apparatus of joined article
JP2021186842A (en) * 2020-06-02 2021-12-13 株式会社オリジン Manufacturing method and manufacturing apparatus for jointed article
KR102444935B1 (en) * 2020-06-02 2022-09-19 가부시키가이샤 오리진 Manufacturing method and manufacturing apparatus of joined article
WO2021246037A1 (en) * 2020-06-02 2021-12-09 株式会社オリジン Method and apparatus for manufacturing joined article
CN114599470B (en) * 2020-06-02 2023-02-28 株式会社欧利生 Method and apparatus for manufacturing bonded article
WO2021246036A1 (en) * 2020-06-02 2021-12-09 株式会社オリジン Method and device for manufacturing bonded article
US11731217B2 (en) 2020-06-02 2023-08-22 Origin Company, Limited Method and device for manufacturing joining apparatus

Also Published As

Publication number Publication date
JP5512395B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5512395B2 (en) Method for joining metal members
JP5399206B2 (en) Metal member joining method and metal joined body
JP6119795B2 (en) Metal member joining method and metal member joining structure
KR101256973B1 (en) Liquid phase diffusion bonding pipe joint and manufacturing method therefor
US10060482B2 (en) Joint-site design comprising a hub and a shaft or a gear being friction welded
CN103104627A (en) Connection between a shaft and a hub component and method of preparing the connection
JP2009241136A (en) Series spot or indirect spot welding method for high tensile strength steel sheet
CN103025467B (en) For being manufactured the method for large-sized component by spheroidal graphite cast-iron
JP5136184B2 (en) Method for joining metal members
WO2014034225A1 (en) Method for manufacturing propeller shaft, and propeller shaft
CN104607783A (en) Welding Device for Welding a Connecting Portion and Method for Welding the Connecting Portion with the Welding Assembly
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP6516247B2 (en) One side spot welding method
JP2013208647A (en) Method for joining copper tube and aluminum tube, and joined tube
CN112091462A (en) Pipe axial plate type integrated welding process
JP2016190255A (en) Joined body, joining method and joining device
WO2008011148A2 (en) Conductive heat resistance deformation welding method
JP6868733B1 (en) Manufacturing method and manufacturing equipment for joined articles
WO2016047619A1 (en) Bonded body, magnetic rotating arc bonding method, and method for manufacturing bonded body
JP6882581B1 (en) Manufacturing method and manufacturing equipment for joined articles
WO2014006998A1 (en) Welding method
JP2006102755A (en) Spot friction welding method
JP2008518784A (en) Plasma tap hole welding of hardenable steel
JP4962611B2 (en) Resin-welded core, composite member and manufacturing method thereof
WO2017026222A1 (en) Weldment, magnetically impelled arc welding method, and method for manufacturing weldment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250