JP2011244030A - Acoustic reproducer - Google Patents

Acoustic reproducer Download PDF

Info

Publication number
JP2011244030A
JP2011244030A JP2010111601A JP2010111601A JP2011244030A JP 2011244030 A JP2011244030 A JP 2011244030A JP 2010111601 A JP2010111601 A JP 2010111601A JP 2010111601 A JP2010111601 A JP 2010111601A JP 2011244030 A JP2011244030 A JP 2011244030A
Authority
JP
Japan
Prior art keywords
sound
acoustic tube
acoustic
frequency
sound source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010111601A
Other languages
Japanese (ja)
Inventor
Ikuichiro Kinoshita
郁一郎 木下
Yoichi Haneda
陽一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010111601A priority Critical patent/JP2011244030A/en
Publication of JP2011244030A publication Critical patent/JP2011244030A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an acoustic producer which produces good sound even though the acoustic producer is used in a small place such as a mobile communications device where an acoustic device cannot have sufficiently large space to resonate an acoustic field inside a housing, making it difficult to obtain enough output power of low-frequency components, and sometimes causing significant changes in input and output characteristics especially in high frequencies, and due to these, sound quality may greatly change by slight difference in placement or shapes of members.SOLUTION: An acoustic producer comprises an acoustic tube whose radius from the center gradually changes according to a revolving angle, and a sound source in the center of the acoustic tube, and a sound hole at the other end of the acoustic tube. An inner radius of the acoustic tube is made shorter than a half wavelength corresponding to an upper limit frequency, and a path length is made longer than a half wavelength corresponding to a lower limit frequency. The acoustic tube is made to expand on a flat plane parallel to a revolution plane of the acoustic tube.

Description

本願発明は、音響信号の入力に伴い音波を発生させる音響再生装置に関する。例えば、携帯電話等の携帯音響機器の受話手段として用いるものに関する。   The present invention relates to an acoustic reproduction apparatus that generates sound waves in response to input of acoustic signals. For example, the present invention relates to a device used as a receiving means for portable audio equipment such as a mobile phone.

小型の音響再生装置では、音波を共鳴させるために十分な内部空間を取ることができないために、低域の入出力特性が劣る。また、一定の大きさの内部空間における音波の反射により共鳴が生じることで、入出力特性の周波数特性が顕著に変動する課題がある。   A small-sized sound reproduction device cannot provide sufficient internal space for resonating sound waves, and therefore has low input / output characteristics in a low frequency range. In addition, there is a problem that the frequency characteristics of the input / output characteristics fluctuate significantly due to resonance caused by the reflection of sound waves in an internal space of a certain size.

そこで、従来からこの課題の解決が試みられている。小型の受話器において発音源から音波を放射する面に空洞部を付加し、その空洞部内で音を共鳴させることにより音圧の周波数特性の平坦化を図ったものが、例えば特許文献1に開示されている。   Thus, attempts have been made to solve this problem. For example, Patent Document 1 discloses a compact handset in which a cavity is added to a surface that emits sound waves from a sound source, and the frequency characteristics of sound pressure are flattened by resonating sound in the cavity. ing.

また、特許文献2には、音源で発生した音波を、らせん形状の音波案内手段に導き、その他端から音波を放射する音響再生装置が開示されている。この方法は、十分な長さを持つ音波案内手段の内部で、低域成分を共鳴させて出力特性を改善するものである。   Patent Document 2 discloses a sound reproducing device that guides sound waves generated by a sound source to a spiral-shaped sound wave guiding means and emits sound waves from the other end. In this method, the output characteristics are improved by resonating the low frequency components inside the sound wave guiding means having a sufficient length.

特開2004−129192号公報JP 2004-129192 A 特表2006−506003号公報JP 2006-506003 A

従来の空洞部を付加する方法では、空洞部の形状によってその共鳴に伴う入出力特性の周波数特性が大きく変動する課題があった。図1に例示する直方体の空洞部を想定し、その形状を変えた場合の音源からの入力と空洞部からの出力とのパワー比の特性変動について検討を行った。   In the conventional method of adding a cavity, there is a problem that the frequency characteristics of the input / output characteristics accompanying the resonance vary greatly depending on the shape of the cavity. Considering the cavity of the rectangular parallelepiped illustrated in FIG. 1, the characteristics variation of the power ratio between the input from the sound source and the output from the cavity when the shape is changed were studied.

図1(a)は、空洞部1の縦横の寸法を50mm、高さを19mmとし、底面中央部に置かれた音源2から音波を放射し、その対向する面に直径3mmの音孔3を設けた例である。図1(b)は図1(a)の高さを11mmにしたものである。図1(c)は、図1(a)の音孔3の位置を一方の辺寄りに12mmずらしたものである。図1(d)は、空洞部1の形状を図1(a)と同じとし、音孔3を中心に直交する方向に30mmの間隔を空けて2個ずつ計4個の音孔を設けたものである。   FIG. 1 (a) shows that the cavity 1 has a vertical and horizontal dimension of 50 mm and a height of 19 mm, and radiates sound waves from a sound source 2 placed in the center of the bottom, and a sound hole 3 having a diameter of 3 mm is formed on the opposite surface. This is an example. FIG. 1 (b) shows the height of FIG. 1 (a) being 11 mm. FIG. 1C shows the position of the sound hole 3 in FIG. 1A shifted by 12 mm toward one side. In FIG. 1 (d), the shape of the cavity 1 is the same as FIG. 1 (a), and a total of four sound holes are provided, two at a distance of 30 mm in the direction orthogonal to the sound hole 3. Is.

直方体の筐体の肉厚は2mm、空気と筐体の反射率は1.0である。この条件において、音孔3の外部正面から1cm離れた場所での入出力のパワー比の周波数特性を測定した結果を図2に示す。図2の横軸は周波数(kHz)、縦軸は音源からの入力と、空洞部からの出力とのパワー比(dB)である。図1(a)の条件で測定した周波数特性を実線で示す。図1(b)を破線、図1(c)を一点鎖線、図1(d)を二点鎖線で示す。各特性の原点はずらしている。   The thickness of the rectangular parallelepiped housing is 2 mm, and the reflectivity of air and the housing is 1.0. FIG. 2 shows the result of measuring the frequency characteristics of the input / output power ratio at a location 1 cm away from the outside front of the sound hole 3 under these conditions. The horizontal axis in FIG. 2 is the frequency (kHz), and the vertical axis is the power ratio (dB) between the input from the sound source and the output from the cavity. The frequency characteristics measured under the conditions of FIG. 1B is indicated by a broken line, FIG. 1C is indicated by a one-dot chain line, and FIG. 1D is indicated by a two-dot chain line. The origin of each characteristic is shifted.

10kHz以上の周波数においては極大値や極小値の変動が大きく、1kHz以下の低域においては十分な出力が得られない。このように空洞部1の形状や音孔3の数によって入出力の周波数特性が大きく変動する。この例の空洞部1の寸法は、昨今普及している携帯電話の受話機構と略同等であることを鑑みれば、それらの機器においてこの現象はより顕著に現れることになる。   The maximum and minimum values fluctuate greatly at frequencies above 10 kHz, and sufficient output cannot be obtained at low frequencies below 1 kHz. Thus, the input / output frequency characteristics vary greatly depending on the shape of the cavity 1 and the number of sound holes 3. In view of the fact that the dimensions of the cavity portion 1 in this example are substantially the same as the receiving mechanisms of mobile phones that have become widespread recently, this phenomenon appears more prominently in those devices.

また、らせん形状の音波案内手段を設ける方法は、その音波案内手段の外形が、らせん形状の回転軸方向に伸びているために音響再生装置のかさが高くなる。よって、小型の携帯機器には不向きである。   In addition, the method of providing the spiral-shaped sound wave guiding means increases the bulk of the sound reproducing device because the outer shape of the sound wave guiding means extends in the direction of the helical rotation axis. Therefore, it is not suitable for small portable devices.

本願発明は、このような課題に鑑みてなされたものであり、音源からの入力出力特性を平坦化しつつ低域における出力を十分確保すると共に、携帯音響機器に利用するのに好適な音響再生装置を提供することを目的とする。   The invention of the present application has been made in view of such problems, and an acoustic reproduction device suitable for use in portable audio equipment while ensuring sufficient output in a low range while flattening input / output characteristics from a sound source. The purpose is to provide.

本願発明の音響再生装置は、音源と導音部を有し、導音部の一部より音波を放射する音響再生装置であって、導音部の経路長が再生周波数帯の下限周波数に対応する第一の半波長よりも大きく、導音部の内径が上限周波数に対応する第二の半波長よりも小さく、導音部の直線経路が第二の半波長よりも小さくなるように導音部が旋回する。   The sound reproduction device of the present invention is a sound reproduction device that has a sound source and a sound guide part and emits sound waves from a part of the sound guide part, and the path length of the sound guide part corresponds to the lower limit frequency of the reproduction frequency band The sound guide part is larger than the first half wavelength, the inner diameter of the sound guide part is smaller than the second half wavelength corresponding to the upper limit frequency, and the linear path of the sound guide part is smaller than the second half wavelength. The part turns.

本願発明の音響再生装置によれば、導音部の内径が上限周波数に対応する第二の半波長よりも小さいため、上限周波数以下の周波数では導音部の内径方向における共振を生じず周波数による入出力特性の顕著な変化を生じない。また、導音部の経路長は、下限周波数に対応する第一の半波長よりも大きく、その内部の直線経路が上限周波数に対応する第二の半波長よりも大きく、下限周波数に対応する第一の半波長よりも小さいものを有さないため、下限周波数から上限周波数による入出力特性の顕著な変化を生じない。   According to the sound reproducing device of the present invention, since the inner diameter of the sound guide section is smaller than the second half wavelength corresponding to the upper limit frequency, resonance does not occur in the inner diameter direction of the sound guide section at frequencies below the upper limit frequency. No noticeable change in input / output characteristics. The path length of the sound guide section is larger than the first half wavelength corresponding to the lower limit frequency, and the linear path inside thereof is larger than the second half wavelength corresponding to the upper limit frequency and corresponds to the lower limit frequency. Since it does not have anything smaller than one half wavelength, there is no significant change in input / output characteristics from the lower limit frequency to the upper limit frequency.

なお、下限周波数を低域代表周波数とすることで当該周波数付近において導音部内部の共振が生じるものの音波の放射や放射されるまでの経路での減衰により緩やかに入出力特性が増強される。   Note that by setting the lower limit frequency to the low-frequency representative frequency, resonance within the sound guide section occurs near the frequency, but the input / output characteristics are gradually enhanced by the emission of sound waves and the attenuation in the path until they are emitted.

よって、再生周波数帯において入出力特性の平坦化を図りつつ小型携帯音響機器で不足がちな低域成分が増強される。よって、当該再生周波数帯領域を通話帯域や音楽再生における周波数帯域とすることで、通話や音楽再生において良好な入出力特性をもたらす。   Therefore, the low frequency component that tends to be insufficient in a small portable audio device is enhanced while the input / output characteristics are flattened in the reproduction frequency band. Therefore, by setting the reproduction frequency band region as a call band or a frequency band for music reproduction, favorable input / output characteristics are brought about in a call or music reproduction.

さらに、導音部は旋回軸に垂直な方向に旋回しているため、旋回軸に並行な方向に凹凸が生じず一平面内に構成される。よって、導音部が必要以上にかさ高くならず、小型携帯音響機器に用いるのに好適な音響再生装置を提供することができる。   Furthermore, since the sound guide portion is swiveled in a direction perpendicular to the swivel axis, the unevenness does not occur in the direction parallel to the swivel axis, and the sound guide portion is configured in one plane. Therefore, the sound reproducing unit is not bulky more than necessary, and a sound reproducing apparatus suitable for use in a small portable audio device can be provided.

空洞部1の形状が入出力特性に与える影響を検討するための空洞部1の例を示す図。The figure which shows the example of the cavity part 1 for examining the influence which the shape of the cavity part 1 has on input-output characteristics. 音源からの入力と空洞部からの出力とのパワー比の周波数特性の例を示す図。The figure which shows the example of the frequency characteristic of the power ratio of the input from a sound source, and the output from a cavity part. 本願発明の音響再生装置100を示す図であり、(a)は平面図、(b)はA−A断面図である。It is a figure which shows the sound reproduction apparatus 100 of this invention, (a) is a top view, (b) is AA sectional drawing. 音響管30の一部を拡大して直線経路の最大値gを説明する図。The figure explaining the maximum value g of a straight path by enlarging a part of the acoustic tube 30. 本願第二の発明の一種である第三の発明に係る音響再生装置200の一態様を示す図であり、(a)は平面図、(b)はA−A断面図である。It is a figure which shows the one aspect | mode of the sound reproduction apparatus 200 which concerns on 3rd invention which is 1 type of 2nd invention of this application, (a) is a top view, (b) is AA sectional drawing. 本願第二の発明の一種である本願第四の発明に係る音響再生装置300の一態様を示す図であり、(a)は平面図、(b)はA−A断面図、(c)はB−B断面図である。It is a figure which shows one aspect | mode of the sound reproduction apparatus 300 which concerns on this invention 4th invention which is 1 type of this invention 2nd invention, (a) is a top view, (b) is AA sectional drawing, (c) is FIG. It is BB sectional drawing. 音響再生装置100の出力信号のパワーを入力信号のパワーで周波数毎に除算して得られる入出力特性の例を示す図。The figure which shows the example of the input-output characteristic obtained by dividing the power of the output signal of the sound reproduction apparatus 100 for every frequency by the power of an input signal. 音響再生装置200の出力信号のパワーを入力信号のパワーで周波数毎に除算して得られる入出力特性の例を示す図。The figure which shows the example of the input-output characteristic obtained by dividing the power of the output signal of the sound reproduction apparatus 200 for every frequency by the power of an input signal. 低域の入出力特性が劣る電気音響変換器の周波数特性の例を示す図。The figure which shows the example of the frequency characteristic of the electroacoustic transducer with inferior low-frequency input / output characteristics.

以下、本願発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。     Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same components in a plurality of drawings, and the description will not be repeated.

図3に、本願第一の発明に係る音響再生装置100の一態様を示す。図3(a)は平面図であり、図3(b)はA−A断面図である。音響再生装置100は、導音部25と、音源20とを備える。これらを、ほぼ円盤状で音響振動を絶縁する素材からなる外部ケース80に収納する。導音部25は、音響管30からなり空洞部10と連続した空間を構成し、音源20と反対側の端に音孔40を備える。   FIG. 3 shows an aspect of the sound reproducing device 100 according to the first invention of the present application. FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along line AA. The sound reproducing device 100 includes a sound guide unit 25 and a sound source 20. These are housed in an outer case 80 made of a material that is substantially disk-shaped and insulates acoustic vibrations. The sound guide portion 25 is composed of the acoustic tube 30 and constitutes a space continuous with the cavity portion 10, and includes a sound hole 40 at the end opposite to the sound source 20.

音源20は、中央部に位置する空洞部10に設けられる。音響管30は、空洞部10の一端から、外側に向かって滑らかに旋回し、その他端は丸みを帯びて終端し、その終端付近に旋回軸と平行な方向に音孔40を有している。外部ケース80の音孔40の位置には外部音孔90が設けられている。この外部ケース80に、導音部25や音源20を収納することで音響再生装置100の機械的強度を高めることができ、その取り扱いを容易にすることができる。なお、外部ケース80は無くてもよい。   The sound source 20 is provided in the cavity 10 located in the center. The acoustic tube 30 smoothly turns outward from one end of the cavity 10, and the other end is rounded and has a sound hole 40 in a direction parallel to the turning axis near the end. . An external sound hole 90 is provided at the position of the sound hole 40 of the external case 80. By storing the sound guide section 25 and the sound source 20 in the outer case 80, the mechanical strength of the sound reproducing device 100 can be increased, and the handling thereof can be facilitated. Note that the outer case 80 may be omitted.

音源20には、例えば、ダイナミックレシーバや圧電素子などの電気音響変換器を用いてもよい。音源20の形状は、例えば円盤状であり、円柱状の空洞部10の一端の底面にその表面が接するように設けられる。空洞部10の内径と音源20の直径は大体等しい。図3(b)の断面図から明らかなように空洞部10と音響管30とは、空洞部10の一端で一体化して連続した空間を構成する。   As the sound source 20, for example, an electroacoustic transducer such as a dynamic receiver or a piezoelectric element may be used. The shape of the sound source 20 is, for example, a disk shape, and is provided such that the surface thereof is in contact with the bottom surface of one end of the cylindrical cavity portion 10. The inner diameter of the cavity 10 and the diameter of the sound source 20 are approximately equal. As apparent from the cross-sectional view of FIG. 3B, the cavity 10 and the acoustic tube 30 are integrated at one end of the cavity 10 to form a continuous space.

音源20に電気信号が入力されると、音波が空洞部10に放射されその内壁で音波が反射し共鳴する。と共に、音波は音響管30を伝達し一部の音波が音孔40から外部に放射される。   When an electric signal is input to the sound source 20, sound waves are radiated to the cavity 10, and the sound waves are reflected and resonated on the inner wall. At the same time, the sound wave is transmitted through the acoustic tube 30 and a part of the sound wave is radiated from the sound hole 40 to the outside.

ここで、音響再生装置100は再生周波数帯として下限周波数f1から上限周波数f2の音響再生を行うものとする。再生周波数帯域は、通例、電話では0.3〜3.4kHz、ラジオ放送や高音質通信会議では0.2〜7.0kHzである。よってこれらの用途に用いる場合は、その周波数帯での入出力周波数特性が平坦であることが望ましい。 Here, it is assumed that the sound reproducing device 100 performs sound reproduction from the lower limit frequency f 1 to the upper limit frequency f 2 as a reproduction frequency band. The reproduction frequency band is typically 0.3 to 3.4 kHz for telephones and 0.2 to 7.0 kHz for radio broadcasting and high-quality communication conferences. Therefore, when used in these applications, it is desirable that the input / output frequency characteristics in the frequency band be flat.

そこで、空洞部10の直径や音響管30の幅、すなわち延長方向に垂直な断面の内径dも、上限周波数f2に対応する半波長λ2/2よりも小さくする。一般に周波数fと波長λはλ=c/f(cは音速、常温の一気圧の大気中では約340m/s)と一意に関係付けられるため、λ2/2=c/2f2となる。なお、内径dとは断面が長方形の場合は縦及び横の長さ、断面が円の場合は直径、というように断面をまたぐ大きさの代表値をいう。ここでは、図3(b)の断面図に示すように縦横の寸法のうち大きい方(横幅)を指す。これにより、上限周波数f2よりも低い再生帯域では断面方向に共振が生じない。 Therefore, the width of the diameter and the acoustic pipe 30 of the cavity 10, i.e. the inner diameter d of the cross section perpendicular to the extension direction, smaller than half the wavelength lambda 2/2 corresponding to the upper limit frequency f 2. In general the frequency f and wavelength λ λ = c / f (c is speed of sound, about 340m / s in air of one atmosphere at room temperature) for uniquely associated with, the λ 2/2 = c / 2f 2. The inner diameter d is a representative value of the size across the cross section, such as vertical and horizontal lengths when the cross section is rectangular, and diameter when the cross section is circular. Here, as shown in the cross-sectional view of FIG. 3B, the larger one (horizontal width) of the vertical and horizontal dimensions is indicated. Thus, it does not occur resonance sectional direction in the lower regeneration zone than the upper limit frequency f 2.

音響管30の両端、すなわち延長方向の経路長Lは、下限周波数f1に対応する半波長λ1/2よりも大きくする。ここで経路長Lとは、図3(a)に示すように音源20が空洞部10に接する一端の部分から外側に向かって旋回し、その他端に至るまでの破線で示す総延長である。これにより下限周波数f1よりも高い再生周波数帯域では断面方向に共振が生じない。更に音響管30の内壁は滑らか、つまり少なくとも半波長λ1/2よりも小さく且つ半波長λ2/2よりも大きな直線経路を有しないように旋回しているため、再生周波数帯域内での共振が回避され、入出力周波数特性は平坦となる。言い換えれば、半波長λ1/2よりも小さく且つ半波長λ2/2よりも大きい直線経路による共振を回避し、入出力周波数特性が顕著に変動することが避けられる。 Both ends of the acoustic tube 30, that is, the path length L in the extending direction are set larger than the half wavelength λ 1/2 corresponding to the lower limit frequency f 1 . Here, the path length L is a total extension indicated by a broken line until the sound source 20 turns outward from one end portion in contact with the cavity 10 and reaches the other end as shown in FIG. As a result, no resonance occurs in the cross-sectional direction in the reproduction frequency band higher than the lower limit frequency f 1 . Furthermore the inner wall of the acoustic tube 30 is smooth, that is because the vehicle is turning so as not to have a larger linear path than small and the half wavelength lambda 2/2 than at least half the wavelength lambda 1/2, the resonance in the reproduction frequency band Is avoided, and the input / output frequency characteristics are flat. In other words, to avoid resonance by half wavelength lambda 1/2 less than and half wavelength lambda 2/2 larger linear path than output frequency characteristics can be avoided that vary significantly.

直線経路とは、音響管30の内部において内壁に音波が衝突せずに信号できる距離をいう。旋回半径が旋回角について一定の割合で増加する場合には、直線経路の最大値を容易に見積もることができる。   The straight path refers to a distance that can be signaled without a sound wave colliding with the inner wall inside the acoustic tube 30. When the turning radius increases at a constant rate with respect to the turning angle, the maximum value of the straight path can be easily estimated.

図4に音響管30の一部を拡大した図を示す。図4においてr1を旋回半径の最大値とし、これに対面する部分の旋回半径をr2とおくと、直線経路の最大値gはg=2r1cosθ12(但しθ12=cos−1(r2/r1),r1=r2+d、dは音響管30の旋回半径方向の内径)と与えられる。図4では説明のために、音響管30の外周における最大旋回半径が一定とおいているため、実際にはgはこの値よりも若干小さくなるが一応の目安となる。この直線経路の最大値gが上限周波数f2に対応する半波長λ2/2よりも小さくなるようにすればよい。この音響管30を滑らかに旋回させるために、旋回半径は旋回角について一定の割合で増加させ渦巻型とすれば設計が容易である。 FIG. 4 shows an enlarged view of a part of the acoustic tube 30. In FIG. 4, when r 1 is the maximum value of the turning radius and the turning radius of the portion facing this is r 2 , the maximum value g of the straight path is g = 2r 1 cos θ 12 (where θ 12 = cos −1 ( r 2 / r 1 ), r 1 = r 2 + d, where d is the inner diameter of the acoustic tube 30 in the turning radius direction). In FIG. 4, for the sake of explanation, the maximum turning radius on the outer periphery of the acoustic tube 30 is constant, so g is slightly smaller than this value in practice, but is only a guide. It is sufficient to be smaller than a half wavelength lambda 2/2 the maximum value g of the straight line path corresponds to the upper limit frequency f 2. In order to smoothly turn the acoustic tube 30, the turning radius is increased at a constant rate with respect to the turning angle, and the design is easy if it is a spiral type.

また、音響管30は、旋回軸に垂直な方向に旋回し、一定の平面内に拡がるため必要以上にかさ高くならずに済む。即ち、音響再生装置100の厚みは、外部ケース80の厚みに他ならず、その内部の厚みが少なくとも音響管30の外形の高さと音源20の厚みの何れか厚い方にしかならず、小型携帯音響再生装置として実装するのに便宜である。音響管30は音源10と周囲の音場を絶縁するものであるが、内径dを小さくし、その旋回間隔を空けることによって、音響管30の間のスペースに配線その他の微小な部材を配置することが可能になる。この音響管30の間のスペースは実装に好都合である。   In addition, the acoustic tube 30 swivels in a direction perpendicular to the swivel axis and spreads in a certain plane, so that it does not have to be bulky more than necessary. That is, the thickness of the sound reproducing device 100 is nothing but the thickness of the outer case 80, and the thickness of the inner portion of the sound reproducing device 100 is only at least one of the height of the outer shape of the acoustic tube 30 and the thickness of the sound source 20. Convenient for mounting as a device. The acoustic tube 30 insulates the sound source 10 from the surrounding sound field. However, the inner diameter d is reduced and the turning interval is increased to arrange wiring and other minute members in the space between the acoustic tubes 30. It becomes possible. This space between the acoustic tubes 30 is convenient for mounting.

図3では、音響管30の他端に音孔40を設けているが、空洞部10の音源20の正面に音孔を設けるようにしてもよい。音源20の周波数特性が比較的平坦な場合、その正面に音孔を設けることでその特性を有効に活用することができる。この場合でも、音響管30の作用によって、外部に漏洩し難く周囲で検知されにくい低域成分が補強されるので、携帯音響機器で問題になる周囲への音漏れの影響を低減することができる。   In FIG. 3, the sound hole 40 is provided at the other end of the acoustic tube 30, but a sound hole may be provided in front of the sound source 20 in the cavity 10. When the frequency characteristic of the sound source 20 is relatively flat, the characteristic can be effectively utilized by providing a sound hole in front of the sound source 20. Even in this case, the effect of the acoustic tube 30 reinforces low-frequency components that are difficult to leak to the outside and difficult to be detected in the surroundings, so that it is possible to reduce the influence of sound leakage to the surroundings, which is a problem in portable audio equipment. .

図5に、本願第二の発明の一種である第三の発明に係る音響再生装置200の一態様を示す。図5(a)は音響再生装置200の平面図、図5(b)はA−A断面図である。音響再生装置200は、音響再生装置100に対して第1の導音部25′と第2の導音部55を備える点で異なる。第1の導音部25′は、表面側音響管30′からなり表面側空洞部10′と連続した空間を構成し、音源20と反対側の端に音孔40′を備える。表面側空洞部10′は空洞部10と、表面側音響管30′は音響管30と対応する。音源20も音響再生装置100の音源と対応している。   FIG. 5 shows an aspect of the sound reproducing device 200 according to the third invention which is a kind of the second invention of the present application. FIG. 5A is a plan view of the sound reproducing device 200, and FIG. 5B is a cross-sectional view taken along line AA. The sound reproducing device 200 is different from the sound reproducing device 100 in that a first sound guiding unit 25 ′ and a second sound guiding unit 55 are provided. The first sound guide portion 25 ′ is composed of the surface side acoustic tube 30 ′ and forms a space continuous with the surface side cavity portion 10 ′, and includes a sound hole 40 ′ at the end opposite to the sound source 20. The surface side cavity 10 ′ corresponds to the cavity 10, and the surface side acoustic tube 30 ′ corresponds to the acoustic tube 30. The sound source 20 also corresponds to the sound source of the sound reproducing device 100.

第2の導音部55は、裏面側音響管60からなり裏面側空洞部50と連続した空間である。図5(a)に示されるように第1の導音部25′と第2の導音部55は各々旋回面が相対して重ねられ、各部の一端と連続する空洞部10′,50に挟まれるように音源20が配置される。つまり、第1の導音部25′の旋回面と第2の導音部55の旋回面が並行して相対し、音源20の一面が第1の導音部25′の一端に格納又は接し、音源20の他面が第2の導音部55の一端に格納又は接することにより、音源20が第1の導音部25′と第2の導音部55の間に挟まれるように配置される。なお、図5は上記した構成が、外側ケース80′内に収納される例で示している。音孔40′の位置に外部音孔90′が設けられている。   The second sound guide portion 55 is a space that is composed of the back surface side acoustic tube 60 and is continuous with the back surface side cavity portion 50. As shown in FIG. 5 (a), the first sound guide portion 25 'and the second sound guide portion 55 are overlapped with each other in the swivel plane, and are formed in the cavity portions 10' and 50 that are continuous with one end of each portion. The sound source 20 is arranged so as to be sandwiched. That is, the turning surface of the first sound guide portion 25 'and the turning surface of the second sound guide portion 55 face each other in parallel, and one surface of the sound source 20 is stored or in contact with one end of the first sound guide portion 25'. The other surface of the sound source 20 is stored or in contact with one end of the second sound guide portion 55 so that the sound source 20 is sandwiched between the first sound guide portion 25 ′ and the second sound guide portion 55. Is done. FIG. 5 shows an example in which the above-described configuration is housed in the outer case 80 ′. An external sound hole 90 'is provided at the position of the sound hole 40'.

表面側空洞部10′の底面の一端に、音源20の表面が接するように設けられ、その音源20の背面に裏面側空洞部50の底面の一端が接する。音源20によって表面側空洞部10′と裏面側空洞部50とは垂直方向に二分される。表面側空洞部10′と裏面側空洞部50の内径と音源20の直径は大体等しい。この表面側空洞部10′音源20と裏面側空洞部50とで中央部が構成される。   The sound source 20 is provided so that the surface of the sound source 20 is in contact with one end of the bottom surface of the front surface side cavity portion 10 ′, and one end of the bottom surface of the back surface side cavity portion 50 is in contact with the back surface of the sound source 20. The sound source 20 divides the front side cavity 10 ′ and the back side cavity 50 into two halves in the vertical direction. The inner diameter of the front surface side cavity 10 'and the rear surface side cavity 50 and the diameter of the sound source 20 are approximately equal. The front side cavity 10 'sound source 20 and the back side cavity 50 constitute a central part.

表面側音響管30′は、音響再生装置100(図3)と同じように、表面側空洞部10′の一端から、外側に向かって滑らかに旋回し、その他端は丸みを帯びて終端し、その終端付近に旋回軸と平行な方向に音孔40′を有している。裏面側音響管60は、表面側音響管30と同方向の裏面側空洞部50の一端から、外部に向かって滑らかに旋回し、その他端は丸みを帯びて終端する。裏面側音響管60の他端側には音孔は設けられない。   Similarly to the sound reproducing device 100 (FIG. 3), the surface-side acoustic tube 30 ′ smoothly turns outward from one end of the surface-side cavity 10 ′, and the other end is rounded and terminated. Near the terminal end, a sound hole 40 'is provided in a direction parallel to the pivot axis. The back surface side acoustic tube 60 smoothly turns outward from one end of the back surface side cavity 50 in the same direction as the front surface side acoustic tube 30, and the other end is rounded and ends. No sound hole is provided on the other end side of the back-side acoustic tube 60.

図5(a)の平面図から明らかなように、この例の表面側音響管30′と裏面側音響管60とは同じ形状である。表面側空洞部10′と裏面側空洞部50、表面側音響管30′と裏面側音響管60、は中心部すなわち音源20と接している面以外では音場が絶縁される。   As is clear from the plan view of FIG. 5A, the front surface side acoustic tube 30 'and the back surface side acoustic tube 60 in this example have the same shape. The front side cavity 10 ′ and the back side cavity 50, and the front side acoustic tube 30 ′ and the back side acoustic tube 60 are insulated from the sound field except at the center, that is, the surface in contact with the sound source 20.

音源20に音響信号が入力されると、その表裏から表面側空洞部10′と裏面側空洞部50に同位相の音波が放射され、それぞれの内壁で音波が反射して共振する。表面側音響管30′と裏面側音響管60の経路長を等しくすると、音源20は音響管全体の中間に位置することになる。そうすると、表面側音響管30′の他端に設けられた音孔40′に達した音波の一部が旋回軸と並行な方向に向けて外部に放射され、残りの一部が反射して音響管の内部で共振することとなる。   When an acoustic signal is input to the sound source 20, sound waves having the same phase are radiated from the front and back to the front surface side cavity portion 10 'and the back surface side cavity portion 50, and the sound waves are reflected and resonated on the respective inner walls. If the path lengths of the front surface side acoustic tube 30 'and the back surface side acoustic tube 60 are equal, the sound source 20 is positioned in the middle of the entire acoustic tube. Then, a part of the sound wave reaching the sound hole 40 ′ provided at the other end of the surface side acoustic tube 30 ′ is radiated to the outside in the direction parallel to the turning axis, and the remaining part is reflected to be acoustically reflected. It will resonate inside the tube.

ここで、音響再生装置200は下限周波数f1から上限周波数f2の帯域で音響再生を行うものとする。表面側空洞部10′と裏面側空洞部50の内径は、上限周波数f2に対応する第二の半波長λ2/2よりも小さくする。そして、表面側音響管30′と裏面側音響管60の幅、すなわち延長方向に垂直な断面の内径dは、上限周波数f2に対応する第二の半波長λ2/2よりも小さくする。これにより、上限周波数f2よりも低い再生周波数帯域ではそれぞれの内径方向での共振は生じない。 Here, it is assumed that the sound reproducing device 200 performs sound reproduction in the band from the lower limit frequency f 1 to the upper limit frequency f 2 . The inner diameter of the front side cavity 10 'and the backside cavity 50 smaller than the second half-wave lambda 2/2 corresponding to the upper limit frequency f 2. Then, the surface-side sound tube 30 'and the width of the back side the acoustic tube 60, i.e. the inner diameter d of the cross section perpendicular to the extending direction is smaller than the second half-wave lambda 2/2 corresponding to the upper limit frequency f 2. Thus, there is no resonance in the low regeneration frequency band than the upper limit frequency f 2 in the respective inner diameter direction.

また、表面側音響管30′と裏面側音響管60の経路長Lを下限周波数f1に対応する第一の波長λ1よりも大きくする。表面側音響管30′と裏面側音響管60の一端は、同位相で音波を放射する音源20に接しているため、共振パターンはその部分の音圧が最も大きくなり、表面側音響管30′と裏面側音響管60の経路長が等しいため、音響管全体の経路長が半波長、即ち表面側音響管30′と裏面側音響管60の各々の経路長に対応する波長となる周波数の音波の共振が誘発される。これに対し、表面側音響管30′と裏面側音響管60が、音源20を挟み音波が伝搬する経路が物理的に折れ曲がっているが表面側音響管30′及び裏面側音響管60各々の経路長に対応する半波長となる周波数(又はこれと偶数倍の周波数)の音波の共振は下限周波数f1よりも高いにもかかわらず生じ難くなる。 Further, the path length L between the front surface side acoustic tube 30 ′ and the back surface side acoustic tube 60 is made larger than the first wavelength λ 1 corresponding to the lower limit frequency f 1 . Since one end of the front surface side acoustic tube 30 'and the back surface side acoustic tube 60 is in contact with the sound source 20 that emits sound waves in the same phase, the resonance pattern has the highest sound pressure at that portion, and the front surface side acoustic tube 30' And the back-side acoustic tube 60 have the same path length, so that the entire acoustic tube has a half-wavelength, that is, a sound wave having a frequency corresponding to the path length of each of the front-side acoustic tube 30 ′ and the back-side acoustic tube 60. Resonance is induced. On the other hand, although the surface side acoustic tube 30 'and the back surface side acoustic tube 60 sandwich the sound source 20 and the path through which the sound waves propagate is physically bent, the surface side acoustic tube 30' and the back surface side acoustic tube 60 have their respective paths. Resonance of a sound wave having a frequency (or a frequency that is an even multiple thereof) corresponding to a half wavelength corresponding to the length hardly occurs despite being higher than the lower limit frequency f 1 .

更に両音響管30′,60の内壁は何れも滑らか、つまり少なくとも半波長λ1/2よりも小さく且つ半波長λ2/2よりも大きい直線経路を有しないように旋回しているため、この再生周波数帯域内での共振が回避され、入出力周波数特性は平坦となる。言い換えれば、半波長λ1/2よりも小さく且つ半波長λ2/2よりも大きい直線経路による共振が回避され、入出力周波数特性が顕著に変動することが避けられる。そのために上述のように直線経路の最大値gを半波長λ2/2よりも小さくすればよい。 Furthermore both the acoustic tube 30 ', none of 60 the inner wall of the smooth, i.e. because the vehicle is turning so as not to have at least half wavelength lambda 1/2 small and the half wavelength lambda 2/2 larger linear path than than this Resonance within the reproduction frequency band is avoided, and the input / output frequency characteristics are flat. In other words, the resonance due to small and the half wavelength lambda 2/2 larger linear path than than half the wavelength lambda 1/2 can be avoided, input-output frequency characteristic is avoided can vary significantly. The maximum value g of a linear path as described above for the may be smaller than a half wavelength lambda 2/2.

表面側音響管30′及び裏面側音響管60を滑らかに旋回させるために、旋回半径は旋回角について一定の割合で増加させ渦巻型とすれば設計が容易である。   In order to smoothly turn the front surface side acoustic tube 30 ′ and the back surface side acoustic tube 60, the turning radius is increased at a constant rate with respect to the turning angle, and the design is easy if a spiral type is used.

また、表面側音響管30′及び裏面側音響管60を旋回軸に垂直な方向に旋回させ、一定の平面内に拡げる。これらは音場を絶縁しており各々の内部で伝搬する音波は干渉しない。これらを並列に重ね合わせても、音響再生装置200の厚みは、外部ケース80′の厚みに他ならず、その内部の厚みが少なくとも表面側音響管30′と裏面側音響管60のそれぞれの外形の高さと音源20の厚みの合計にしかならず、小型携帯音響再生装置としての実装に便宜である。   In addition, the front surface side acoustic tube 30 'and the back surface side acoustic tube 60 are swung in a direction perpendicular to the swivel axis and spread in a certain plane. These insulate the sound field and the sound waves propagating inside each do not interfere. Even if these are superposed in parallel, the thickness of the sound reproducing device 200 is nothing but the thickness of the outer case 80 ′, and the inner thickness of each of the outer shapes of the front acoustic tube 30 ′ and the rear acoustic tube 60 is at least. The total height of the sound source 20 and the thickness of the sound source 20 is convenient for mounting as a small portable sound reproducing apparatus.

表面側音響管30′及び裏面側音響管60各々の内径を小さくすることにより本実施例のように旋回間隔を設けると、これを通じて配線その他の微小な部材の配置も可能になる。これにより実装に好都合となる。そればかりではなく直線経路の最大値gを小さくし上限周波数f2を高くして再生周波数帯域を広げることができる。 If the turning interval is provided as in the present embodiment by reducing the inner diameter of each of the front surface side acoustic tube 30 'and the back surface side acoustic tube 60, wiring and other minute members can be arranged therethrough. This is convenient for implementation. In addition, the reproduction frequency band can be widened by reducing the maximum value g of the straight path and increasing the upper limit frequency f 2 .

図5では表面側音響管30′の他端に音孔40を設けているが、表側空洞部10′の一端、すなわち音源20に対向する位置に音孔を設けることもできる。そうすれば、音源20からの出力を直に放射しやすい。そのため音源20の入出力特性が周波数により比較的平坦で良好な特性を示し、その特性を活用する場合には望ましい。このときでも機器の外部に漏洩し難い低域成分が補強され不快感を与える高域の出力が抑えられるため携帯音響機器で問題となる周囲への音漏れによる周囲への影響を低減できる。   In FIG. 5, the sound hole 40 is provided at the other end of the surface side acoustic tube 30 ′. However, the sound hole may be provided at one end of the front side cavity 10 ′, that is, at a position facing the sound source 20. If it does so, it will be easy to radiate | emit the output from the sound source 20 directly. For this reason, the input / output characteristics of the sound source 20 are relatively flat and good depending on the frequency, which is desirable when utilizing the characteristics. Even at this time, low-frequency components that are difficult to leak outside the device are reinforced, and high-frequency output that causes discomfort is suppressed, so that it is possible to reduce the influence on the surroundings due to sound leakage to the surroundings, which is a problem in portable audio devices.

なお、表面側音響管30′の他端側に音孔40′を設けたが、音孔40は、何れか一方の音響管の他端に設ければよい。また、音孔40′は裏面側音響管60の他端側に設けるようにしてもよい。   Although the sound hole 40 'is provided on the other end side of the surface side acoustic tube 30', the sound hole 40 may be provided on the other end of any one of the acoustic tubes. Further, the sound hole 40 ′ may be provided on the other end side of the back surface side acoustic tube 60.

本願第二の発明の音響再生装置も、表面側音響管30′と裏面側音響管60の内径が上限周波数に対応する第二の半波長よりも小さいため、上限周波数以下の周波数では両音響管30′,60の内径方向における共振を生じず周波数による入出力特性の顕著な変化を生じない。   Since the inner diameters of the front-side acoustic tube 30 'and the rear-side acoustic tube 60 are smaller than the second half wavelength corresponding to the upper limit frequency, the acoustic reproduction device according to the second invention of the present application also has both acoustic tubes at frequencies below the upper limit frequency. Resonance in the inner diameter direction of 30 'and 60 does not occur, and a significant change in input / output characteristics due to frequency does not occur.

経路長が下限周波数に対応する波長よりも大きい両音響管30′,60は、それぞれ表面側空洞部10′と裏面側空洞部50に接続され、その表面側空洞部10′と裏面側空洞部50に挟まれた音源10はその両空洞部10′,50に同位相で音波を放射する。従って、放射された音波の波長が両音響管30′,60の全経路にわたる。   Both acoustic tubes 30 ′ and 60 whose path length is longer than the wavelength corresponding to the lower limit frequency are connected to the front side cavity 10 ′ and the back side cavity 50, respectively. The sound source 10 sandwiched between 50 radiates sound waves in the same phase in both the cavity portions 10 ′ and 50. Therefore, the wavelength of the radiated sound wave extends over the entire path of both acoustic tubes 30 ′ and 60.

ここで、両音響管30′,60の内部の直線経路が上限周波数に対応する第二の半波長よりも大きく、下限周波数に対応する第一の半波長よりも小さいものを有しないため、下限周波数から上限の間の周波数領域では音響管の経路長方向における共振を生じず周波数による入出力特性の顕著な変化を生じない。音響管が旋回軸に垂直な方向に旋回することで、小型形態音響機器の実装に便宜であることは第一の発明と同様である。   Here, since the linear path inside the acoustic tubes 30 ', 60 does not have anything smaller than the second half wavelength corresponding to the upper limit frequency and smaller than the first half wavelength corresponding to the lower limit frequency, the lower limit In the frequency region between the frequency and the upper limit, resonance in the path length direction of the acoustic tube does not occur and no significant change in input / output characteristics due to frequency occurs. It is the same as in the first invention that the acoustic tube is swiveled in a direction perpendicular to the swivel axis, which is convenient for mounting the small form acoustic device.

本願第三の発明は、第二の発明について表面側空洞部10′と裏面側空洞部50との間の音波を相互に絶縁しているため、音響管全経路にわたる共振が誘発される。表面側空洞部10′と裏面側空洞部50とは、両音響管30′,60の旋回面に対し垂直に配置されており物理的に折れ曲がっているが、同位相で音波を発生する音源20を挟んでいるため波長が各側の経路長とほぼ等しい共振は顕著に生じないためである。従って、表面側音響管30′と裏面側音響管60とを旋回面の垂直方向に多重化しながら音波が共振する経路を長くすることができるため、実装に要する空間を節約することができる。   In the third invention of the present application, since the sound waves between the front surface side cavity 10 'and the back surface side cavity 50 are insulated from each other in the second invention, resonance over the entire path of the acoustic tube is induced. The front-side cavity 10 'and the back-side cavity 50 are arranged perpendicular to the swiveling surfaces of both acoustic tubes 30', 60 and are physically bent, but the sound source 20 that generates sound waves in the same phase. This is because the resonance with the wavelength substantially equal to the path length on each side does not occur significantly. Therefore, since the path on which the sound wave resonates can be lengthened while multiplexing the front surface side acoustic tube 30 ′ and the back surface side acoustic tube 60 in the direction perpendicular to the swiveling surface, the space required for mounting can be saved.

図6に、本願第二の発明の一種である本願第四の発明に係る音響再生装置300の一態様を示す。図6(a)は音響再生装置300の平面図、図6(b)はA−A断面図、図6(c)はB−B断面図である。音響再生装置300は、第1の導音部67と第2の導音部68を同一面に配置するようにしたものである。第1の導音部67は、表面側音響管64からなり、その一端が表面側空洞部61と連続した空間を構成する。第2の導音部68は、裏面側音響管65からなり、その一端が裏面側空洞部62と連続した空間である。各導音部67,68は、裏表を反転させれば同一形状であり、互いに嵌合する。表面側空洞部61に表面が、裏面側空洞部62に裏面が向けられるように音源63が挟まれるように配置される。つまり、第1の導音部67の旋回面と第2の導音部68の旋回面が同一平面上に嵌合し、第1の導音部67と第2の導音部68の音源68の一面が第1の導音部67の一端と、音源67の他面が第2の導音部68の一端の間に挟まれるように配置される。なお、図6は上記した構成が、外側ケース80″内に収納される例で示している。音孔66の位置に外部音孔90″が設けられている。   FIG. 6 shows an aspect of the sound reproducing device 300 according to the fourth invention of the present application which is a kind of the second invention of the present application. 6A is a plan view of the sound reproducing device 300, FIG. 6B is a cross-sectional view taken along line AA, and FIG. 6C is a cross-sectional view taken along line BB. In the sound reproducing device 300, the first sound guide portion 67 and the second sound guide portion 68 are arranged on the same surface. The first sound guide portion 67 is composed of a surface-side acoustic tube 64, and one end thereof constitutes a space continuous with the surface-side cavity portion 61. The second sound guide portion 68 is composed of a back surface side acoustic tube 65, and one end thereof is a space continuous with the back surface side cavity portion 62. The sound guide portions 67 and 68 have the same shape and are fitted to each other if the front and back sides are reversed. The sound source 63 is disposed so that the front surface is directed to the front surface side cavity portion 61 and the back surface is directed to the back surface side cavity portion 62. That is, the turning surface of the first sound guiding unit 67 and the turning surface of the second sound guiding unit 68 are fitted on the same plane, and the sound source 68 of the first sound guiding unit 67 and the second sound guiding unit 68. Is arranged so that one surface of the sound source 67 is sandwiched between one end of the first sound guide portion 67 and the other surface of the sound source 67 is sandwiched between one end of the second sound guide portion 68. FIG. 6 shows an example in which the above-described configuration is housed in the outer case 80 ″. An external sound hole 90 ″ is provided at the position of the sound hole 66.

音響再生装置300は、略半円柱状の2個の空洞部である表面側空洞部61と裏面側空洞部62の平面側を、音源63を挟んで相対させて中央部を構成する。表面側音響管64は、表面側空洞部61の平面側の一方の端から裏面側空洞部62に沿うように所定の幅をもって外側に滑らかに旋回し、その他方の端は丸みを帯びた形状で終端する。裏面側音響管65は、表面側空洞部61の平面側の一方の端と反対側の裏面側空洞部62の端から表面側音響管64と同じ幅でその外側に沿うように外側に向かって旋回し、その他方の端は丸みを帯びた形状で終端し、その終端付近に旋回軸と平行な方向に音孔66を有している。音孔66以外の部分では両音響管64,65は、外部と音場を絶縁する。表面側空洞部61と裏面側空洞部62との間も、音源63と接している面以外では音場が絶縁される。   The sound reproducing device 300 constitutes a central portion by causing the sound source 63 to face each other with the plane sides of the front-side cavity 61 and the back-side cavity 62, which are two substantially semi-cylindrical cavities. The surface-side acoustic tube 64 smoothly turns outward from the one end on the plane side of the surface-side cavity 61 along the back-side cavity 62 with a predetermined width, and the other end is rounded. Terminate with The back surface side acoustic tube 65 is directed outward from the end of the back surface side cavity portion 62 opposite to the one end on the plane side of the surface side cavity portion 61 with the same width as the surface side acoustic tube 64 and along the outside thereof. The other end is terminated with a rounded shape, and a sound hole 66 is provided near the end in a direction parallel to the pivot axis. In parts other than the sound hole 66, the two acoustic tubes 64 and 65 insulate the sound field from the outside. The sound field is also insulated between the front surface side cavity portion 61 and the back surface side cavity portion 62 except for the surface in contact with the sound source 63.

この例の音源63は、図6(b)のA−A断面から明らかなように角型の例えば圧電素子である。その音源63に音響信号が入力されると各々その表面及び裏面から表面側空洞部61と裏面側空洞部62に同位相の音波が放射されその内壁で反射して共振する。表面側音響管64と裏面側音響管65の経路長を各々等しくすると音源63は、音響管全体の中間に配置されることになる。そうすると、裏面側音響管65の他端に設けられた音孔66に達した音波の一部が旋回軸と並行な方向に向けて外部に放射され、残りの一部が反射して両音響管64,65の内部で共振することとなる。   The sound source 63 in this example is a square-shaped piezoelectric element, for example, as is apparent from the AA cross section of FIG. When an acoustic signal is input to the sound source 63, sound waves having the same phase are radiated from the front surface and the back surface to the front surface side cavity portion 61 and the back surface side cavity portion 62, and are reflected by the inner wall to resonate. If the path lengths of the front surface side acoustic tube 64 and the back surface side acoustic tube 65 are equal to each other, the sound source 63 is arranged in the middle of the entire acoustic tube. Then, a part of the sound wave reaching the sound hole 66 provided at the other end of the back surface side acoustic tube 65 is radiated to the outside in the direction parallel to the turning axis, and the other part is reflected to reflect both acoustic tubes. It will resonate inside 64,65.

表面側空洞部61と裏面側空洞部62の内径及び、表面側音響管64と裏面側音響管65の内径d及びその経路長Lとその直線経路についての形状条件は、上記した音響再生装置100,200と同じである。音響再生装置300は、2個の音響管が同一平面に配置されるため全体の形状を薄くすることができる。   The inner diameters of the front surface side cavity portion 61 and the rear surface side cavity portion 62, the inner diameter d of the front surface side acoustic tube 64 and the rear surface side acoustic tube 65, the path length L, and the shape conditions for the straight path are as described above. , 200. Since the two sound tubes are arranged on the same plane, the overall shape of the sound reproducing device 300 can be reduced.

本願第四の発明は、第二の発明について表面側空洞部61と裏面側空洞部62との間の音波を相互に絶縁しているため、音響管全経路にわたる共振が誘発される。両側の外径と旋回間隔幅を等しくし、同一旋回面上で嵌合していることで物理的に折れ曲がっているが同位相で音波を発生する音源を挟んでいるため波長が各側の経路長とほぼ等しい共振が顕著に生じない。従って、音響管を同一旋回面で多重化しながら音波が共振する経路を長くすることができるため実装に要する空間を節約することができる。   In the fourth invention of the present application, since the sound waves between the front surface side cavity portion 61 and the back surface side cavity portion 62 are insulated from each other in the second invention, resonance over the entire path of the acoustic tube is induced. The outer diameter on both sides is equal to the swivel interval width, and it is physically bent by fitting on the same swivel plane, but the sound source that generates sound waves in the same phase is sandwiched, so the wavelength is the path on each side Resonance approximately equal to the length does not occur significantly. Accordingly, since the acoustic tube can be multiplexed on the same swivel plane and the path through which the sound wave resonates can be lengthened, the space required for mounting can be saved.

本願第五の発明は、第一ないし第四の発明について音響管の旋回半径は旋回角について一定の割合で増加する渦巻形状をとる。これにより音響管内部の曲率や直線部が上限周波数に対応する第二の半波長よりも大きく、下限周波数に対応する第一の半波長よりも小さいものを有せずに滑らかな形状をとる。そのため、下限周波数から上限周波数の間の周波数領域では音響管の経路長方向における共振を生じず周波数による入出力特性の顕著な変化を生じない。   The fifth invention of the present application takes a spiral shape in which the turning radius of the acoustic tube increases at a constant rate with respect to the turning angle in the first to fourth inventions. As a result, the curvature and the straight line portion inside the acoustic tube are larger than the second half wavelength corresponding to the upper limit frequency and have a smooth shape without having the smaller one than the first half wavelength corresponding to the lower limit frequency. For this reason, in the frequency region between the lower limit frequency and the upper limit frequency, resonance in the path length direction of the acoustic tube does not occur, and a significant change in input / output characteristics due to frequency does not occur.

なお、上記何れの実施例についていえることであるが、下限周波数f1以下の周波数帯域の成分の再生を排除することを必ずしも意味しない。むしろ、この周波数帯域で生じる共振を利用して、小型の音響再生装置で実現が困難な低域における入出力特性を助長することができる。音波が音響管内部を伝搬する過程で減衰したり、音孔からの音波の放射により必ずしも下限周波数f1付近で入出力特性が顕著に極大化せず、なだらかに増強するからである。従って、入出力特性を補強する低域の代表周波数を当該下限周波数f1とすることで、低域、すなわちその周辺の周波数帯域における入出力特性を改善できる。 As can be said with any of the above embodiments, it does not necessarily mean that the reproduction of the component in the frequency band below the lower limit frequency f 1 is excluded. Rather, the resonance that occurs in this frequency band can be used to promote low-frequency input / output characteristics that are difficult to achieve with a small-sized sound reproducing device. This is because the sound wave is attenuated in the process of propagating inside the acoustic tube, or the input / output characteristics are not remarkably maximized near the lower limit frequency f 1 due to the sound wave emission from the sound hole, and are gradually enhanced. Therefore, by setting the low-frequency representative frequency that reinforces the input / output characteristics as the lower limit frequency f 1 , the input / output characteristics in the low frequency range, that is, in the surrounding frequency band, can be improved.

それでも極大化が著しい場合には空洞部や音響管に音波の吸収・減衰が著しい部材を用いたり、音孔からの音波の放射を促進するため音孔の径を大きくすることが望ましい。逆に入出力特性の増強が不十分な場合には空洞部や音響管に音波の吸収・減衰を抑えるために音響インピーダンスの高く滑らかな内部表面を有する部材を用いたり、音波の放射を抑制するために径の小さい音孔を構成したり、より音波が透過しにくい部材で構成することが考えられる。   If the maximization is still remarkable, it is desirable to use a member that absorbs and attenuates sound waves in the cavity and the acoustic tube, or to increase the diameter of the sound holes in order to promote the radiation of sound waves from the sound holes. Conversely, if the input / output characteristics are not sufficiently enhanced, a member with a high acoustic impedance and a smooth inner surface is used to suppress absorption and attenuation of sound waves in the cavity and acoustic tube, and sound wave emission is suppressed. For this reason, it is conceivable to form a sound hole with a small diameter or a member that is less likely to transmit sound waves.

また、音源から空洞部や音響管や外部ケースに、直接振動を伝達すると異音の原因となる。振動を伝達させず、吸収させる部材として、これらに接触する部分に緩衝部をおくことが望ましい。例えば、塑性変形しやすい合成ゴム(ポリイソプレン、ブタジェンゴムなど)やゲル状の長鎖炭化水素類で接触させるとよい。   Further, if vibration is directly transmitted from the sound source to the cavity, the acoustic tube, or the outer case, abnormal noise is caused. As a member that absorbs vibration without transmitting it, it is desirable to place a buffer portion in a portion that contacts these members. For example, the contact may be made with a synthetic rubber (polyisoprene, butadiene rubber, etc.) or gel-like long chain hydrocarbons that are easily plastically deformed.

上記実施例1及び2に係る音響再生装置について、いずれも音波を絶縁する性質を有するABS(アクリロニトリル(Acrylonitrile)、ブタジエン(Butadiene)、スチレン(Styrene)共重合合成樹脂)樹脂で空洞部や音響管を構成し、直径13mm、厚さ2mmの電気音響変換器を中心部に備え、経路長220mm(実施例2については表面側、裏面側各々一方)、断面の内径を4mm(旋回面に並行な方向)、5mm(旋回面に垂直な方向)として入出力特性を測定した。また最大旋回半径r1を21mmとした。これにより最大直線経路gは34mmとなり、その半波長よりも短くなるように上限周波数f2を5.0kHzと選択した。音孔の直径は3mmとし、音波を透過する部材は備えずに開放されている。これにより下限周波数f1については実施例1,2各々0.39,0.77kHzとなる。そこで、図7に実施例1の、図8に実施例2の出力信号のパワーを入力信号のパワーで周波数ごとに除算して得られる入出力特性を示す。 As for the sound reproducing devices according to Examples 1 and 2, the cavity and the sound tube are made of ABS (Acrylonitrile, Butadiene, Styrene Copolymerized Synthetic Resin) resin having the property of insulating sound waves. With an electroacoustic transducer having a diameter of 13 mm and a thickness of 2 mm in the center, a path length of 220 mm (one for each of the front side and the back side for Example 2), and an inner diameter of the cross section of 4 mm (parallel to the turning surface) Direction), 5 mm (direction perpendicular to the turning surface), and the input / output characteristics were measured. The maximum turning radius r 1 was 21 mm. As a result, the maximum linear path g is 34 mm, and the upper limit frequency f 2 is selected to be 5.0 kHz so as to be shorter than the half wavelength. The sound hole has a diameter of 3 mm and is open without a member that transmits sound waves. As a result, the lower limit frequency f 1 is 0.39 and 0.77 kHz for the first and second embodiments, respectively. FIG. 7 shows the input / output characteristics obtained by dividing the output signal power of the first embodiment in FIG. 7 and the output signal of the second embodiment in FIG. 8 by the frequency of the input signal for each frequency.

図7のうち(i)は音孔を音響管の他端に、(ii)は音孔を音源に対向する空洞部の表面に設けた例である。何れも、図2に見られるように低域で入出力特性が劣ったり顕著な周波数特性を示すものではない。とりわけ(ii)の周波数特性は平坦である。(i)においても上限周波数f2=5.0kHz以下では十数dB程度の変動に過ぎない。また、相対的に低域における入出力特性が補強され、下限周波数f1=0.77kHz付近で緩やかな極大値をもつ。 In FIG. 7, (i) is an example in which the sound hole is provided at the other end of the acoustic tube, and (ii) is an example in which the sound hole is provided on the surface of the cavity facing the sound source. In either case, as shown in FIG. 2, the input / output characteristics are inferior at low frequencies or do not show remarkable frequency characteristics. In particular, the frequency characteristic of (ii) is flat. Even in (i), the fluctuation is only about a dozen dB at the upper limit frequency f 2 = 5.0 kHz or less. In addition, the input / output characteristics in a relatively low frequency range are reinforced, and have a gradual maximum near the lower limit frequency f 1 = 0.77 kHz.

図8のうち(iii)は音孔を音響管の他端に、(iv)は音孔を音源に対向する空洞部の表面に設けた場合である。何れも、図2にみられるように低域で入出力特性が劣ったり顕著な周波数特性を示すものではない。図7よりも入出力特性の周波数依存性が顕著に変動するようにみえるが、音響管の実質的な経路長が2倍になり下限周波数f2=0.39kHzと半分になったために、内部での共振周波数もこれに応じて半分になり変動周期が短くなったに過ぎない。 In FIG. 8, (iii) is the case where the sound hole is provided on the other end of the acoustic tube, and (iv) is the case where the sound hole is provided on the surface of the cavity facing the sound source. In either case, as shown in FIG. 2, the input / output characteristics are inferior at low frequencies, or do not show remarkable frequency characteristics. Although the frequency dependence of the input / output characteristics seems to fluctuate more significantly than in FIG. 7, the substantial path length of the acoustic tube is doubled and the lower limit frequency f 2 is halved to 0.39 kHz. Accordingly, the resonance frequency of the first half is also halved and the fluctuation period is only shortened.

何れも上限周波数f2=5.0kHz以下では十数dBの変動に過ぎない。(iii)では高域での入出力特性の変動がやや顕著であるが、低域における補強効果も相対的に顕著となる。音源の入出力特性も考慮して、入力信号から出力される音圧までの系全体として周波数特性を考慮して、何れが適切か選択することができる。すなわち、再生周波数帯域の範囲内での入出力特性が周波数により平坦か否かを重視するか、相対的に低域の補強度合いを重視するかで選択が異なる。 In either case, the fluctuation is only a few tens of dB at the upper limit frequency f 2 = 5.0 kHz or less. In (iii), the fluctuation of the input / output characteristics in the high range is somewhat remarkable, but the reinforcing effect in the low range is also relatively significant. In consideration of the input / output characteristics of the sound source, it is possible to select which one is appropriate in consideration of the frequency characteristics of the entire system from the input signal to the output sound pressure. That is, the selection differs depending on whether the input / output characteristics within the reproduction frequency band are flat or not depending on the frequency, or whether the reinforcement degree in the low band is emphasized relatively.

例えば、図9に示すように低域における入出力特性が劣る音源(電気音響変換器)を用いた場合には、入力信号と出力される音波の間の周波数特性の平坦性を求める場合、(i),(iii)のように低域成分が相対的に補強されるものが適切となる。   For example, when using a sound source (electroacoustic transducer) having inferior input / output characteristics in a low frequency region as shown in FIG. 9, when obtaining flatness of frequency characteristics between an input signal and an output sound wave, It is appropriate that the low-frequency component is relatively reinforced as in i) and (iii).

これらの実施例に示されるように、再生周波数帯域において平坦な入出力特性が得られ、入力信号により忠実な音響再生が可能になる。更に従来の小型の音響再生装置では得られにくい低域成分が増強される。ことに機器の外部に漏洩し難い低域成分が補強され、不快感を与える高域の出力が抑えられるため携帯音響機器で問題になる周囲への音漏れによる周囲への影響を低減できる。実施例3についても実施例2とほぼ同様な効果が得られる。   As shown in these embodiments, flat input / output characteristics are obtained in the reproduction frequency band, and sound reproduction more faithful to the input signal becomes possible. Furthermore, low frequency components that are difficult to obtain with conventional small-sized sound reproducing devices are enhanced. In particular, low frequency components that are difficult to leak to the outside of the device are reinforced, and high frequency output that causes discomfort is suppressed, so that it is possible to reduce the influence on the surroundings due to sound leakage to the surroundings, which is a problem in portable audio devices. In Example 3, the same effect as in Example 2 can be obtained.

Claims (5)

音源と導音部を有し、導音部の一部より音波を放射する音響再生装置であって、
前記導音部の経路長が再生周波数帯の下限周波数に対応する第一の半波長よりも大きく、前記導音部の内径が上限周波数に対応する第二の半波長よりも小さく、
前記導音部の直線経路が前記第二の半波長よりも小さくなるように前記導音部が旋回することを特徴とする音響再生装置。
A sound reproducing device having a sound source and a sound guide part, and emitting sound waves from a part of the sound guide part,
The path length of the sound guide portion is larger than the first half wavelength corresponding to the lower limit frequency of the reproduction frequency band, and the inner diameter of the sound guide portion is smaller than the second half wavelength corresponding to the upper limit frequency,
The sound reproducing device according to claim 1, wherein the sound guiding unit is rotated so that a linear path of the sound guiding unit is smaller than the second half wavelength.
前記導音部は互いに同一形状からなる第1の導音部と第2の導音部からなり、
前記音源の一面が前記第1の導音部の一端に格納又は接し、
前記音源の他面が前記第2の導音部の一端に格納又は接し、
前記音源の両面から同位相で音波を放射し、
前記第1の導音部の他端より音波を放射することを特徴とする請求項1記載の音響再生装置。
The sound guide portion is composed of a first sound guide portion and a second sound guide portion having the same shape,
One surface of the sound source is stored or in contact with one end of the first sound guide part,
The other surface of the sound source is stored or in contact with one end of the second sound guide part,
Radiates sound waves in phase from both sides of the sound source,
The sound reproducing apparatus according to claim 1, wherein a sound wave is radiated from the other end of the first sound guide section.
前記第1の導音部の旋回面と第2の導音部の旋回面が並行に相対し、
前記音源の一面が前記第1の導音部の一端に格納又は接し、
前記音源の他面が前記第2の導音部の一端に格納又は接することにより、
前記音源が前記第1の導音部と前記第2の導音部の間に挟まれるように配置されることを特徴とする請求項2記載の音響再生装置。
The turning surface of the first sound guiding portion and the turning surface of the second sound guiding portion are opposed in parallel,
One surface of the sound source is stored or in contact with one end of the first sound guide part,
By storing or contacting the other surface of the sound source at one end of the second sound guide unit,
3. The sound reproducing device according to claim 2, wherein the sound source is arranged so as to be sandwiched between the first sound guiding unit and the second sound guiding unit.
前記第1の導音部の旋回面と第2の導音部の旋回面が同一平面上に嵌合し、
前記第1の導音部と前記第2の導音部の前記音源の一面が前記第1の導音部の一端と、前記音源の他面が前記第2の導音部の一端の間に挟まれるように配置されることを特徴とする請求項2記載の音響再生装置。
The swiveling surface of the first sound guiding portion and the swiveling surface of the second sound guiding portion are fitted on the same plane,
One surface of the sound source of the first sound guide portion and the second sound guide portion is between one end of the first sound guide portion and the other surface of the sound source is between one end of the second sound guide portion. The sound reproducing device according to claim 2, wherein the sound reproducing device is disposed so as to be sandwiched.
前記導音部の旋回半径は、旋回角について一定の割合で変化することを特徴とする請求項1乃至4の何れか1項に記載の音響再生装置。   5. The sound reproducing device according to claim 1, wherein the turning radius of the sound guide section changes at a constant rate with respect to the turning angle.
JP2010111601A 2010-05-14 2010-05-14 Acoustic reproducer Pending JP2011244030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111601A JP2011244030A (en) 2010-05-14 2010-05-14 Acoustic reproducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111601A JP2011244030A (en) 2010-05-14 2010-05-14 Acoustic reproducer

Publications (1)

Publication Number Publication Date
JP2011244030A true JP2011244030A (en) 2011-12-01

Family

ID=45410279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111601A Pending JP2011244030A (en) 2010-05-14 2010-05-14 Acoustic reproducer

Country Status (1)

Country Link
JP (1) JP2011244030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010113A (en) * 2019-07-01 2021-01-28 ホシデン株式会社 Speaker housing
US11798525B2 (en) 2021-09-07 2023-10-24 Kabushiki Kaisha Toshiba Sound emitting apparatus and blade noise reduction apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010113A (en) * 2019-07-01 2021-01-28 ホシデン株式会社 Speaker housing
JP7294916B2 (en) 2019-07-01 2023-06-20 ホシデン株式会社 speaker housing
US11798525B2 (en) 2021-09-07 2023-10-24 Kabushiki Kaisha Toshiba Sound emitting apparatus and blade noise reduction apparatus

Similar Documents

Publication Publication Date Title
JP5044043B2 (en) Passive directional acoustic radiation
US9762994B2 (en) Active acoustic meta material loudspeaker system and the process to make the same
EP1685741B1 (en) Sonic emitter arrangements
WO2008059802A1 (en) Speaker system
US20100272295A1 (en) Speaker device having directivity adjustment panel
JPH09149487A (en) Electroacoustic conversion system
US8205712B2 (en) Ported loudspeaker enclosure with tapered waveguide absorber
KR102167420B1 (en) Dynamic receiver with resonance protector for ear phone
JP2011244030A (en) Acoustic reproducer
KR20060116159A (en) Speaker apparatus and reproducing apparatus
US10652637B2 (en) Audio speaker and method of producing an audio speaker
CN111698620A (en) Electronic equipment
TW201334579A (en) Speaker device
US11595755B1 (en) In-ear audio system
CN111163396B (en) Loudspeaker and electronic device thereof
CN207835763U (en) A kind of sound body with Horn
JP5867705B2 (en) Speaker cabinet and speaker
TWI323135B (en) Speaker set and portable electronic device incorporating the same
JP7369943B2 (en) sound reproduction device
CN219919094U (en) Sound body, sound equipment and sound system
FI20197057A1 (en) Modular sound reproduction arrangement in a personal radio transmitter-receiver
FI12171U1 (en) Sound reproducer in a personal radio transmitter-receiver
CN217063997U (en) Horn and loudspeaker
US20230051986A1 (en) Electronic device
CN212850982U (en) Reflection cone and audio equipment