JP2011243289A - Fuel cell and manufacturing method thereof - Google Patents

Fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP2011243289A
JP2011243289A JP2010111593A JP2010111593A JP2011243289A JP 2011243289 A JP2011243289 A JP 2011243289A JP 2010111593 A JP2010111593 A JP 2010111593A JP 2010111593 A JP2010111593 A JP 2010111593A JP 2011243289 A JP2011243289 A JP 2011243289A
Authority
JP
Japan
Prior art keywords
fuel cell
side electrode
electrode
membrane
hydrophilic gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010111593A
Other languages
Japanese (ja)
Inventor
Masaaki Mori
昌昭 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010111593A priority Critical patent/JP2011243289A/en
Priority to PCT/IB2011/001241 priority patent/WO2011141818A1/en
Publication of JP2011243289A publication Critical patent/JP2011243289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biofuel cell with high power generation efficiency by using a gel-like substance to immobilize enzymes onto electrodes.SOLUTION: A fuel cell at least has a structure in which an anode-side electrode 3 and a cathode-side electrode 5 face each other across an ion conductive membrane 4. In the fuel cell, a hydrophilic gel film 7 formed in advance is held between the electrode and the membrane. By interposing the hydrophilic gel film 7 that has been formed in advance, ion transport efficiency between the electrodes is improved, the cell output is enhanced, and the manufacturing process is facilitated.

Description

本発明は、燃料電池とその製造方法に関する。   The present invention relates to a fuel cell and a manufacturing method thereof.

アノード側電極とカソード側電極がイオン伝導性を有する膜を介して対向した構造を有する燃料電池は、例えば、固体高分子型燃料電池などとして知られている。燃料電池は、一般に、イオン伝導性を有する膜(例えば、イオン交換樹脂からなる電解質膜)の一方の面にアノード側電極が、他方の面にカソード側電極が積層配置された構成を持つ。   A fuel cell having a structure in which an anode side electrode and a cathode side electrode are opposed to each other via a membrane having ion conductivity is known as a polymer electrolyte fuel cell, for example. A fuel cell generally has a configuration in which an anode side electrode is laminated on one surface of a membrane having ion conductivity (for example, an electrolyte membrane made of an ion exchange resin), and a cathode side electrode is laminated on the other surface.

アノード側電極に燃料(水素)が供給され、そこで触媒の作用によりプロトン(H)となり、2個の電子(e)はカソード側電極に向けて放出される。アノード側電極で生成されたプロトンは、イオン伝導性を有する膜を通ってカソード側電極に達し、そこで触媒の作用により、アノード側電極からの2個の電子(e)を受け取るとともに、外部から供給される酸素から生成される酸素イオンとともに、水が生成される。そして、この外部回路を通る電子の移動が、電流として取り出される。 Fuel (hydrogen) is supplied to the anode side electrode, where it becomes proton (H + ) by the action of the catalyst, and two electrons (e ) are emitted toward the cathode side electrode. Protons generated at the anode-side electrode pass through a membrane having ion conductivity to reach the cathode-side electrode, where they receive two electrons (e ) from the anode-side electrode by the action of the catalyst, and from the outside. Water is generated along with oxygen ions generated from the supplied oxygen. Then, the movement of electrons through the external circuit is taken out as a current.

すなわち、アノード側では、H→2H+2eの反応が、カソード側では、2H+1/2O+2e→HOの反応が起こり、全体反応としては、H+1/2O→HOの反応が起こることで、発電が行われる。化学反応を効率よく進めるために、電極には上記のように触媒が使用されており、例えば、固体高分子型燃料電池では、白金が多く使われている。 That is, a reaction of H 2 → 2H + + 2e occurs on the anode side, and a reaction of 2H + + 1 / 2O 2 + 2e → H 2 O occurs on the cathode side, and the overall reaction is H 2 + 1 / 2O 2 → Electricity is generated by the reaction of H 2 O. In order to advance the chemical reaction efficiently, a catalyst is used for the electrode as described above. For example, in a polymer electrolyte fuel cell, platinum is often used.

近年になり、生物内で行われている生体代謝が高効率なエネルギー変換機構であることに着目し、これを燃料電池に適用する提案がなされている。生体代謝は、エネルギー利用効率が高く、また、室温程度の穏やかな条件で反応が進行するという特長を備えている。しかし、微生物および細胞には化学エネルギーから電気エネルギーへの変換といった目的の反応以外にも不要な反応が多く存在するため、十分なエネルギー変換効率が発揮されない。そこで、酵素を触媒として用いて所望の反応のみを行う燃料電池(バイオ燃料電池)が提案されている。このバイオ燃料電池は、燃料を、触媒として機能する酵素により分解してプロトンと電子とに分離するもので、燃料としては、メタノールやエタノールのようなアルコール類あるいはグルコースのような単糖類あるいはデンプンのような多糖類を用いたものが開発されている。   In recent years, attention has been paid to the fact that biological metabolism performed in living organisms is a highly efficient energy conversion mechanism, and proposals have been made to apply this to fuel cells. Biological metabolism is characterized by high energy utilization efficiency and a reaction that proceeds under mild conditions at room temperature. However, since microorganisms and cells have many unnecessary reactions other than the intended reaction such as conversion from chemical energy to electrical energy, sufficient energy conversion efficiency cannot be exhibited. Thus, a fuel cell (biofuel cell) that performs only a desired reaction using an enzyme as a catalyst has been proposed. In this biofuel cell, fuel is decomposed by an enzyme that functions as a catalyst and separated into protons and electrons. As fuel, alcohols such as methanol and ethanol, monosaccharides such as glucose, or starches are used. Those using such polysaccharides have been developed.

バイオ燃料電池においては、電極に対する酵素の固定化が非常に重要であり、出力特性、寿命、効率などに非常に大きな影響を与える。したがって、酵素固定化電極の製造過程において酵素にダメージをなるべく与えずに固定化することが非常に重要である。そのことから、特許文献1には、正極およびまたは負極に、酵素を光硬化性樹脂およびまたは熱硬化性樹脂により固定化するようにした燃料電池が記載されている。また、特許文献2には、酵素を電極表面上にイオン導電性を有するゲル状物質で固定するようにした燃料電池が記載されている。それにより、酵素から電極に電子を伝達する反応と、電極がプロトンを放出する反応とが両立することが可能になるとしている。   In a biofuel cell, immobilization of an enzyme on an electrode is very important, and has a great influence on output characteristics, lifetime, efficiency, and the like. Therefore, it is very important to immobilize the enzyme-immobilized electrode without damaging the enzyme as much as possible. Therefore, Patent Document 1 describes a fuel cell in which an enzyme is immobilized on a positive electrode and / or a negative electrode with a photocurable resin and / or a thermosetting resin. Patent Document 2 describes a fuel cell in which an enzyme is immobilized on an electrode surface with a gel-like substance having ionic conductivity. As a result, it is possible to achieve both a reaction in which electrons are transferred from an enzyme to an electrode and a reaction in which an electrode releases protons.

特開2009−48833号公報JP 2009-48833 A 特開2007−225444号公報JP 2007-225444 A

水素を燃料とし、触媒として白金などの貴金属を用いる燃料電池においても、また、アルコール類あるいはグルコースのような単糖類あるいはデンプンのような多糖類を燃料とし、触媒として酵素を用いる燃料電池においても、イオン伝導性を有する膜と、アノード側電極およびカソード側電極との間での、燃料およびプロトンの輸送効率を向上させることは、電池出力の向上につながる。しかし、これまでの燃料電池の研究において、イオン伝導性を有する膜と、アノード側電極およびカソード側電極との接触の仕方がどうあるべきかについては、十分な研究がなされているとはいえない。   In a fuel cell using hydrogen as a fuel and a noble metal such as platinum as a catalyst, or in a fuel cell using a monosaccharide such as alcohols or glucose or a polysaccharide such as starch as a fuel and an enzyme as a catalyst, Improving the fuel and proton transport efficiency between the ion-conductive membrane and the anode and cathode electrodes leads to an improvement in battery output. However, in the research on fuel cells so far, it cannot be said that sufficient research has been done on how the membrane having ion conductivity should be in contact with the anode side electrode and the cathode side electrode. .

特に、イオン伝導性を有する膜の湿潤時における寸法不安定性や、膜と電極との間に生じる気泡などにより、電極と膜との接触が必ずしも十分でなく、アノード極反応により発生したイオンを効率よくカソード極に輸送できないことで、電池の出力低下が起こっているが、これに対する対策が十分にはなされていない。   In particular, the contact between the electrode and the membrane is not always sufficient due to dimensional instability when the membrane having ionic conductivity is wet or bubbles generated between the membrane and the electrode. Although the battery cannot be transported well to the cathode electrode, the output of the battery is reduced. However, sufficient countermeasures have not been taken.

本発明は、上記の事情に鑑みてなされたものであり、燃料電池において、イオン伝導性を有する膜と、アノード側電極およびカソード側電極との間の接触状態を新規な態様とすることで、従来の燃料電池よりも発電効率が向上した、より改良された燃料電池を開示することを課題とする。   The present invention has been made in view of the above circumstances, and in a fuel cell, a contact state between a membrane having ion conductivity and an anode side electrode and a cathode side electrode is a novel aspect. It is an object of the present invention to disclose a more improved fuel cell in which power generation efficiency is improved as compared with a conventional fuel cell.

上記の課題を解決すべく、本発明者らは、従来のバイオ燃料電池において、電極への酵素の固定にゲル状物質を用いるようにした技術に着目し、さらに研究を行うことで、予め成膜された親水性ゲル膜を、イオン伝導性を有する膜と、アノード側電極およびまたはカソード側電極との間の介在させることで、発電効率が大きく改善されるという驚くべき事実を知見した。本発明は、本発明者らが得た上記知見に基づいている。   In order to solve the above-mentioned problems, the inventors of the present invention focused on a technique that uses a gel-like substance for immobilizing an enzyme to an electrode in a conventional biofuel cell, and conducted further research in advance. It was found that the power generation efficiency is greatly improved by interposing the formed hydrophilic gel membrane between the membrane having ion conductivity and the anode side electrode and / or the cathode side electrode. The present invention is based on the above findings obtained by the present inventors.

すなわち、本発明による燃料電池は、アノード側電極とカソード側電極がイオン伝導性を有する膜を介して対向した構造を少なくとも備える燃料電池であって、アノード側電極と前記膜の間およびまたはカソード側電極と前記膜との間には、予め成膜された親水性ゲル膜が挟持されていることを特徴とする。   That is, a fuel cell according to the present invention is a fuel cell having at least a structure in which an anode side electrode and a cathode side electrode are opposed to each other via a membrane having ion conductivity, between the anode side electrode and the membrane and / or the cathode side. A hydrophilic gel film formed in advance is sandwiched between the electrode and the film.

また、本発明による燃料電池の製造方法は、アノード側電極とカソード側電極がイオン伝導性を有する膜を介して対向した構造を少なくとも備える燃料電池の製造方法であって、親水性ゲルを薄膜状に成膜する工程、および、成膜された親水性ゲル膜をアノード側電極と前記イオン伝導性を有する膜の間およびまたはカソード側電極と前記イオン伝導性を有する膜との間に配置した後、常温環境で全体を圧着する工程、とを少なくとも含むことを特徴とする。   A method for producing a fuel cell according to the present invention is a method for producing a fuel cell comprising at least a structure in which an anode side electrode and a cathode side electrode are opposed to each other via a membrane having ion conductivity, wherein a hydrophilic gel is formed into a thin film. And after forming the hydrophilic gel film formed between the anode side electrode and the ion conductive film and / or between the cathode side electrode and the ion conductive film. And a step of crimping the whole in a room temperature environment.

後の実施例に示すように、本発明による燃料電池および本発明による燃料電池の製造方法により製造された燃料電池(以下、単に「本発明による燃料電池」という)は、従来の燃料電池と比較して、電池出力が向上する。ここで、従来の燃料電池とは、電極とイオン伝導性を有する膜との間に予め成膜された親水性ゲル膜が挟持される構成を備えない燃料電池、および、前記特許文献2に記載されるような、電極とイオン伝導性を有する膜との間にゲル状物質は存在するが、酵素が電極表面上にゲル状物質で直接固定されている構造のものが含まれる。   As shown in the following examples, the fuel cell according to the present invention and the fuel cell manufactured by the method for manufacturing the fuel cell according to the present invention (hereinafter simply referred to as “the fuel cell according to the present invention”) are compared with the conventional fuel cell. Thus, the battery output is improved. Here, the conventional fuel cell is a fuel cell that does not have a structure in which a hydrophilic gel film formed in advance is sandwiched between an electrode and a film having ion conductivity, and described in Patent Document 2. As described above, a gel-like substance exists between the electrode and the membrane having ion conductivity, but a structure in which an enzyme is directly immobilized on the electrode surface with the gel-like substance is included.

本発明による燃料電池において、貴金属あるいは酵素を含む触媒が電極表面上にゲル状物質で直接固定されている構造のものと比較して、電池出力が向上する理由は、十分に解明されていないが、以下のような理由が考えられる。一般にイオン伝導性を有する膜およびゲル状物質は、複雑な網目構造を有している。貴金属あるいは酵素を含む触媒をゲル状物質により直接固定させるためには、該触媒が脱落しないよう、より細かい網目構造をとることが必要である。その結果、反応場への燃料輸送抵抗が生じることで出力低下が生じると考えられる。本発明による燃料電池では、触媒を含む電極とイオン伝導性を有する膜との間に、予め成膜された親水性ゲル膜を介在させたことで、網目構造をコントロール可能となり、燃料とプロトンとがともに移動しやすくなったものと考えられる。   In the fuel cell according to the present invention, the reason why the battery output is improved as compared with a structure in which a catalyst containing a noble metal or an enzyme is directly fixed on the electrode surface with a gel substance has not been fully elucidated. The following reasons are conceivable. In general, a film and a gel substance having ion conductivity have a complicated network structure. In order to directly fix a catalyst containing a noble metal or an enzyme with a gel substance, it is necessary to take a finer network structure so that the catalyst does not fall off. As a result, it is considered that a decrease in output occurs due to the resistance of the fuel transport to the reaction field. In the fuel cell according to the present invention, a network structure can be controlled by interposing a previously formed hydrophilic gel film between an electrode including a catalyst and a film having ion conductivity. Are considered to be easier to move together.

すなわち、本発明による燃料電池では、各電極とイオン伝導性を有する膜との接触面積を、燃料輸送抵抗を大きくすることなく、向上させることができ、それにより、アノード極反応により発生したイオンを効率よくカソード極に輸送できるようになり、電池出力が向上したものと考えられる。   That is, in the fuel cell according to the present invention, the contact area between each electrode and the membrane having ion conductivity can be improved without increasing the fuel transport resistance. It is considered that the battery output can be improved because it can be efficiently transported to the cathode electrode.

また、本発明による燃料電池では、触媒を含む電極とイオン伝導性を有する膜との間にゲル状物質を形成するのに、加熱溶融したゲル状物質を電極の上に塗布するのではなく、別工程でもって予め成膜した親水性ゲル膜を用いるようにしており、電極とイオン伝導性を有する膜との間に親水性ゲル膜を介在させる作業をきわめて容易化している。   Further, in the fuel cell according to the present invention, in order to form a gel-like substance between the electrode containing the catalyst and the ion-conductive film, the heated and melted gel-like substance is not applied on the electrode, A hydrophilic gel film formed in advance in a separate process is used, and the work of interposing the hydrophilic gel film between the electrode and the film having ion conductivity is greatly facilitated.

本発明による燃料電池において、親水性ゲル膜を構成するゲル状物質は、イオン伝導性を備えることを条件に任意のものを用いることができる。例として、陽イオンを含むナフィオン樹脂(商品名、Du Pont社製)、光架橋性のスチルバゾリウム化ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルアルコール、アガロースゲル、アルギン酸ゲルおよびアクリルアミドゲル等が挙げられる。   In the fuel cell according to the present invention, any gel-like substance constituting the hydrophilic gel membrane can be used as long as it has ion conductivity. Examples include Nafion resin containing a cation (trade name, manufactured by Du Pont), photocrosslinkable stilbazolated polyvinyl alcohol, polyethylene oxide, polyvinyl alcohol, agarose gel, alginic acid gel, and acrylamide gel.

本発明による燃料電池の好ましい態様において、予め成膜された親水性ゲル膜は、担体膜に親水性ゲルが含浸した構成を備える。ここで、担体膜とは、予め成膜された親水性ゲル膜に高い保形性を与えることで、親水性ゲル膜の取り扱いを容易にするためのものであり、濾紙、多孔性メンブレンフィルターのような材料を例示することができる。また、担体膜を用いることで、親水性ゲル膜の厚さも調整することが容易となる。担体膜を用いる場合、その厚さは、特に限定されないが、1μm〜1mm程度が好ましく、1μm〜10μm程度がより好ましい。溶融した親水性ゲル中に担体膜を浸漬して含浸させ、その後に引き上げることで、担体膜の厚さにほぼ等しい厚さの親水性ゲル膜を成膜することができる。   In a preferred embodiment of the fuel cell according to the present invention, the previously formed hydrophilic gel film has a structure in which the carrier film is impregnated with the hydrophilic gel. Here, the carrier film is intended to facilitate the handling of the hydrophilic gel film by imparting high shape retention to the previously formed hydrophilic gel film. Such materials can be exemplified. Moreover, it becomes easy to adjust the thickness of the hydrophilic gel film by using the carrier film. When the carrier film is used, the thickness is not particularly limited, but is preferably about 1 μm to 1 mm, and more preferably about 1 μm to 10 μm. By immersing and impregnating the carrier film in the molten hydrophilic gel and then pulling it up, a hydrophilic gel film having a thickness substantially equal to the thickness of the carrier film can be formed.

担体膜を用いない場合には、所要の厚さの型にゲルを流し込み固化させるなどして、所要厚みの親水性ゲル膜を作ることができる。   When a carrier film is not used, a hydrophilic gel film having a required thickness can be formed by pouring the gel into a mold having a required thickness and solidifying the gel.

本発明による燃料電池において、前記したように、触媒として酵素を含んでいてもよく、この場合には、前記特許文献1あるいは特許文献2に記載されるような、いわゆるバイオ燃料電池の形態をとる。この形態において、天然界に存在する酵素の多くは熱に非常に弱く、高温に晒されると酵素の失活を招く。本発明による燃料電池では、高温で溶融した状態のゲル状物質を電極上に塗布するのではなく、予め成膜された親水性ゲル膜を用い、さらに、その製造に際して、触媒として酵素を含む電極とイオン伝導性を有する膜との間に配置した後、常温環境で全体を圧着する工程を行うようにしているので、触媒として機能する酵素を失活させるような不都合は生じない。   In the fuel cell according to the present invention, as described above, an enzyme may be included as a catalyst. In this case, a so-called biofuel cell is used as described in Patent Document 1 or Patent Document 2. . In this form, many of the enzymes that exist in nature are very sensitive to heat, and when exposed to high temperatures, the enzymes are deactivated. In the fuel cell according to the present invention, a gel material in a molten state at a high temperature is not applied on the electrode, but a hydrophilic gel film formed in advance is used, and an electrode containing an enzyme as a catalyst is used in the production. Since the step of crimping the whole in a room temperature environment is performed after being disposed between the electrode and the film having ion conductivity, there is no inconvenience that the enzyme functioning as a catalyst is deactivated.

用いる場合の酵素としては、グルコースデヒドロゲナーゼ、アルコールデヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、ラッカーゼ、ビリルビンオキシダーゼなどの酸化還元酵素などを例示できる。   Examples of the enzyme to be used include oxidoreductases such as glucose dehydrogenase, alcohol dehydrogenase, formate dehydrogenase, laccase, and bilirubin oxidase.

本発明によれば、燃料電池において、イオン伝導性を有する膜と、アノード側電極およびカソード側電極との間の接触状態を、電極と膜との間に予め成膜された親水性ゲル膜を挟持させる態様とすることで、従来の燃料電池よりも発電効率が向上した、より改良された燃料電池を得ることができる。   According to the present invention, in a fuel cell, a contact state between a membrane having ion conductivity and an anode side electrode and a cathode side electrode is determined, and a hydrophilic gel membrane previously formed between the electrode and the membrane is provided. By adopting the sandwiching mode, it is possible to obtain a more improved fuel cell in which the power generation efficiency is improved as compared with the conventional fuel cell.

実施例と比較例で用いた評価用燃料電池を説明する図。The figure explaining the fuel cell for evaluation used by the Example and the comparative example. 実施例1,2,3と比較例1,2、すなわちアノード用燃料溶液として、2Mのアスコルビン酸ナトリウム水溶液を用いた場合の電流密度−出力密度特性を示す図。The figure which shows the current density-output density characteristic at the time of using Examples 1 and 2 and Comparative Examples 1 and 2, ie, the 2M sodium ascorbate aqueous solution as a fuel solution for anodes. 実施例1,2,3と比較例1,2、すなわちアノード用燃料溶液として、2Mのアスコルビン酸ナトリウム水溶液を用いた場合の電流密度−電圧特性を示す図。The figure which shows the current density-voltage characteristic at the time of using Examples 1 and 2 and Comparative Examples 1 and 2, ie, the 2M sodium ascorbate aqueous solution as an anode fuel solution. 実施例4と比較例3、すなわちアノード用燃料溶液として、1M NADHおよび100mM mPMSを用いた場合の電流密度−出力密度特性を示す図。The figure which shows the current density-power density characteristic at the time of using Example 4 and Comparative Example 3, ie, 1M NADH and 100 mM mPMS, as a fuel solution for anodes. 実施例4と比較例3、すなわちアノード用燃料溶液として、1M NADHおよび100mM mPMSを用いた場合の電流密度−電圧特性を示す図。The figure which shows the current density-voltage characteristic at the time of using Example 4 and the comparative example 3, ie, 1M NADH and 100 mM mPMS, as a fuel solution for anodes.

以下、本発明のいくつかの実施例を比較例とともに説明するが、本発明がこの実施例に限らないことは当然である。   Hereinafter, some examples of the present invention will be described together with comparative examples, but the present invention is naturally not limited to these examples.

[実施例1〜4]
1.隔膜−親水性ゲル−電極複合体の作製
以下において、「隔膜」は本発明でいう「イオン伝導性を有する膜」を、「電極」は本発明でいう「アノード側電極」およびまたは「カソード側電極」をいう。
[Examples 1 to 4]
1. Production of Diaphragm-Hydrophilic Gel-Electrode Composite In the following, “diaphragm” means “membrane having ion conductivity” in the present invention, and “electrode” means “anode side electrode” and / or “cathode side” in the present invention. “Electrode”.

1−1.電極の作製
面積1.0cmの円状に切り抜いたトレカマット50(東レ株式会社製)に下記組成のカーボンスラリー(ケッチェンブラック(ライオン社製)スラリー)を適量塗布し、60℃の乾燥機にて溶媒を除去乾燥させた。ここで、10%(w/v)PVP溶液は、Poly(4−vinylpyridine)分子量160000(Sigma−ALDRICH社製)をN−メチル−ピロリドン(和光純薬社製)に溶解させたものを使用した。
1-1. An appropriate amount of carbon slurry (Ketjen Black (Lion Corporation) slurry) having the following composition was applied to a trading card mat 50 (manufactured by Toray Industries, Inc.) cut into a circular shape with an electrode production area of 1.0 cm 2 , and a dryer at 60 ° C. The solvent was removed by drying. Here, as the 10% (w / v) PVP solution, a poly (4-vinylpyridine) molecular weight 160000 (manufactured by Sigma-ALDRICH) dissolved in N-methyl-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) was used. .

カーボンスラリー組成
ケッチェンブラック 50mg
10%(w/v)PVP溶液 222ul
N−メチル−ピロリドン 3ml
なお、ケチェンブラックはめのう乳鉢で適当な粒子径になるまですりつぶしたものを使用した。
上記組成のものを超音波破砕機にて各成分を十分分散させたものをスラリーとして使用した。
Carbon slurry composition ketjen black 50mg
10% (w / v) PVP solution 222ul
N-methyl-pyrrolidone 3ml
In addition, Ketjen black used what was ground until it became an appropriate particle diameter with the agate mortar.
A slurry having the above composition and having each component sufficiently dispersed by an ultrasonic crusher was used as a slurry.

1−2.隔膜−親水性ゲル(フィルター含浸型)−電極複合体の作製
面積1.0cmの円状に切り抜いた下記に記す3種のフィルター(担持膜に相当)に下記に記す組成の親水性ゲルを含浸させて、予め成膜された親水性ゲル膜を作成した。その予め成膜された親水性ゲル膜を、隔膜となるナフィオン115(Sigma−ALDRICH社製)(イオン伝導性を有する膜に相当)、および1−1にて作製した電極との間に常温圧着させることで、隔膜−親水性ゲル(フィルター含浸型)−電極複合体とした。
1-2. Preparation of diaphragm-hydrophilic gel (filter impregnation type) -electrode composite A hydrophilic gel having the composition described below was applied to the following three types of filters (corresponding to the supporting membrane) cut out in a circular shape having an area of 1.0 cm 2. A hydrophilic gel film formed in advance was formed by impregnation. The preliminarily formed hydrophilic gel film is pressed at room temperature between Nafion 115 (manufactured by Sigma-ALDRICH) (corresponding to a film having ion conductivity) and an electrode prepared in 1-1. As a result, a diaphragm-hydrophilic gel (filter-impregnated type) -electrode composite was obtained.

フィルター(担持膜)
実施例1:GLASS MICROFIBRE FILTERS GF/C(Whatman)
実施例2:Nitrocellulose Filter 45μM HA(MILLIPORE)
実施例3:FILTER PAPER(ADVANTEC)
なお、電極−ゲル(フィルター含浸型)−膜複合体の構成はアノード側電極のみとし、カソード側電極は隔膜に直接常温圧着させた。
Filter (supporting membrane)
Example 1: GLASS MICROFIBER FILTERS GF / C (Whatman)
Example 2: Nitrocellulose Filter 45 μM HA (MILLIPORE)
Example 3: FILTER PAPER (ADVANTEC)
The electrode-gel (filter impregnated type) -membrane composite was composed only of the anode side electrode, and the cathode side electrode was directly pressed at room temperature onto the diaphragm.

親水性ゲル
Ca−Alginate
0.5%(W/V) Na−Alginate水溶液
100mM CaCl水溶液
※前記フィルターをNa−Alginate水溶液に浸漬した後、CaCl水溶液に浸漬した。そうすることで、アルギン酸イオンとカルシウムイオンから水に溶けにくい半透膜であるフィルター付の成膜された親水性ゲル膜が得られた。
Hydrophilic gel Ca-Alginate
0.5% (W / V) Na-Alginate aqueous solution
100 mM CaCl 2 aqueous solution
* The filter was immersed in an aqueous Na-Alginate solution and then immersed in an aqueous CaCl 2 solution. By doing so, a hydrophilic gel membrane with a filter, which is a semipermeable membrane that is hardly soluble in water from alginate ions and calcium ions, was obtained.

2.燃料電池の作製および電池評価
2−1.評価用燃料電池の作製
1.にて作製した電極−親水性ゲル(フィルター含浸型)−隔膜複合体を用いて、図1に記載の構成をもつ評価用燃料電池を作製した。ここで、アノードおよびカソードに用いた燃料の組成は以下の通りである。また、下記のとおり、アノード用燃料溶液として2種類実施した。
2. Fabrication and evaluation of fuel cells
2-1. Production of evaluation fuel cell A fuel cell for evaluation having the configuration shown in FIG. 1 was prepared using the electrode-hydrophilic gel (filter-impregnated type) -diaphragm composite prepared in 1. Here, the composition of the fuel used for the anode and the cathode is as follows. In addition, two kinds of anode fuel solutions were implemented as described below.

なお、図1において、1は帯電防止機能を備えたフッ素樹脂板、2は集電板(チタンメッシュ)、3はアノード側電極、4はイオン伝導性を有する膜、5はカソード側電極、6はシリコーンプレート、7は親水性ゲル膜(フィルター含浸型)、8は燃料タンクである。   In FIG. 1, 1 is a fluororesin plate having an antistatic function, 2 is a current collector plate (titanium mesh), 3 is an anode side electrode, 4 is a membrane having ion conductivity, 5 is a cathode side electrode, 6 Is a silicone plate, 7 is a hydrophilic gel membrane (filter impregnation type), and 8 is a fuel tank.

アノード用燃料液
(実施例1〜3)
2M アスコルビン酸ナトリウム水溶液
※アスコルビン酸ナトリウム(和光純薬社製)を水に溶解したものを使用した。
(実施例4)
1M NADH溶液
100mM mPMS溶液
1M リン酸ナトリウム緩衝液(pH7.0)
※NADH溶液はNADH(ナカライテスク社製)を1M リン酸ナトリウム緩衝液(pH7.0) にて溶解したものを使用した。
※mPMS溶液は1−Methoxy−5−methylphenazinium methyl sulfate(同仁化学社製)を1M リン酸ナトリウム緩衝液(pH7.0)に溶解したものを使用した。
Fuel liquid for anode (Examples 1 to 3)
2M aqueous solution of sodium ascorbate * Sodium ascorbate (manufactured by Wako Pure Chemical Industries) dissolved in water was used.
Example 4
1M NADH solution 100 mM mPMS solution 1M sodium phosphate buffer (pH 7.0)
* NADH solution was prepared by dissolving NADH (manufactured by Nacalai Tesque) in 1M sodium phosphate buffer (pH 7.0).
* The mPMS solution used was a solution of 1-methoxy-5-methylphenazinium methyl sulfate (manufactured by Dojindo) in 1M sodium phosphate buffer (pH 7.0).

カソード用溶液
1M ヘキサシアノ鉄(III)酸カリウム水溶液
※ヘキサシアノ鉄(III)酸カリウム(和光純薬社製)を水に溶解したものを使用した。
Solution for cathode 1M potassium hexacyanoferrate (III) aqueous solution * A solution of potassium hexacyanoferrate (III) (made by Wako Pure Chemical Industries, Ltd.) in water was used.

2−2.評価用電池の評価
2−1にて作製した評価用電池に直列に接続した外部負荷装置としてELECTRONIC LOAD PLZ164WA(KIKUSUI社製)およびWavy for PLZ−4Wソフトウェア(KIKUSUI社製)を用いて、評価用電池にかかる外部抵抗値を4kΩから1Ωまで適当な間隔で変化させて、各時点での電流・電圧の値を34970A Date Acquisition/Switch Unit(Agilent社製)を用いて計測した。測定は室温条件下(約25℃)にて実施した。
2-2. Evaluation battery evaluation For evaluation using ELECTRONIC LOAD PLZ164WA (made by KIKUSUI) and Wavy for PLZ-4W software (made by KIKUSUI) as an external load device connected in series to the evaluation battery produced in Evaluation 2-1. The external resistance value applied to the battery was changed from 4 kΩ to 1 Ω at appropriate intervals, and the current / voltage values at each time point were measured using 34970A Date Acquisition / Switch Unit (manufactured by Agilent). The measurement was performed under room temperature conditions (about 25 ° C.).

[比較例1]
1.隔膜−電極複合体の作製
1−1.電極の作製
実施例1〜4と同様にして電極を作成した。
[Comparative Example 1]
1. Fabrication of diaphragm-electrode composite
1-1. Electrode preparation An electrode was prepared in the same manner as in Examples 1 to 4.

2.燃料電池の作製および電池評価
2−1.評価用燃料電池の作製
1.にて作製した電極を用いて、図1に示した評価用燃料電池から親水性ゲル膜(フィルター含浸型)7を除いた構成の評価用燃料電池を作製した。また、アノードおよびカソードに用いた燃料の組成は以下の通りとした。
2. Fabrication and evaluation of fuel cells
2-1. Production of evaluation fuel cell An evaluation fuel cell having a configuration in which the hydrophilic gel membrane (filter-impregnated type) 7 was removed from the evaluation fuel cell shown in FIG. The composition of the fuel used for the anode and cathode was as follows.

アノード用燃料溶液
2M アスコルビン酸ナトリウム水溶液
※アスコルビン酸ナトリウム(和光純薬社製)を水に溶解したものを使用した。
Fuel solution for anode 2M sodium ascorbate aqueous solution * Sodium ascorbate (manufactured by Wako Pure Chemical Industries) dissolved in water was used.

カソード用溶液
1M ヘキサシアノ鉄(III)酸カリウム水溶液
※ヘキサシアノ鉄(III)酸カリウム(和光純薬社製)を水に溶解したものを使用した。
Solution for cathode 1M potassium hexacyanoferrate (III) aqueous solution * A solution of potassium hexacyanoferrate (III) (made by Wako Pure Chemical Industries, Ltd.) in water was used.

2−2.評価用電池の評価
2−1にて作製した評価用電池の評価を実施例1〜4と同様にして行った。
2-2. Evaluation of Evaluation Battery The evaluation battery prepared in Evaluation 2-1 was evaluated in the same manner as in Examples 1 to 4.

[比較例2,3]
1.隔膜−親水性ゲル−電極複合体の作製
1−1.電極の作製
実施例1〜4と同様にして電極を作成した。
[Comparative Examples 2 and 3]
1. Preparation of diaphragm-hydrophilic gel-electrode composite
1-1. Electrode preparation An electrode was prepared in the same manner as in Examples 1 to 4.

1−2.隔膜−親水性ゲル−電極複合体の作製
1−1にて作製した電極の上に、実施例1〜4と同じ組成の親水性ゲルであって加熱溶融したものの適量を、直接塗布し、その後常温まで放置し、隔膜となるナフィオン115(Sigma−ALDRICH社製)と常温圧着させたものを隔膜−親水性ゲル−電極複合体とした。なお、電極−親水性ゲル−膜複合体の構成はアノード側電極のみとし、カソード側電極は隔膜に直接常温圧着させた。
1-2. Preparation of diaphragm-hydrophilic gel-electrode composite On the electrode prepared in 1-1, an appropriate amount of a hydrophilic gel having the same composition as in Examples 1 to 4 and melted by heating was directly applied, and then A membrane-hydrophilic gel-electrode composite was obtained by allowing it to stand at room temperature and subjecting Nafion 115 (manufactured by Sigma-ALDRICH) to a membrane at room temperature to be bonded at room temperature. The structure of the electrode-hydrophilic gel-membrane composite was only the anode side electrode, and the cathode side electrode was directly pressed at room temperature onto the diaphragm.

2.燃料電池の作製および電池評価
2−1.評価用燃料電池の作製
1.にて作製した電極−親水性ゲル−隔膜複合体を用い、図1に示した評価用燃料電池と同様の構成の評価用燃料電池を作製した。ここで、アノードおよびカソードに用いた燃料の組成は以下の通りである。ここで、下記のとおり、アノード用燃料溶液として2種類実施した。
2. Fabrication and evaluation of fuel cells
2-1. Production of evaluation fuel cell An evaluation fuel cell having the same configuration as the evaluation fuel cell shown in FIG. 1 was prepared using the electrode-hydrophilic gel-diaphragm composite prepared in 1. Here, the composition of the fuel used for the anode and the cathode is as follows. Here, two types of anode fuel solutions were implemented as described below.

アノード用燃料溶液
(比較例2)
2M アスコルビン酸ナトリウム水溶液
※アスコルビン酸ナトリウム(和光純薬社製)を水に溶解したものを使用した。
(比較例3)
1M NADH溶液
100mM mPMS溶液
1M リン酸ナトリウム緩衝液(pH7.0)
※NADH溶液はNADH(ナカライテスク社製)を1M リン酸ナトリウム緩衝液(pH7.0)にて溶解したものを使用した。
※mPMS溶液は1−Methoxy−5−methylphenazinium methyl sulfate(同仁化学社製)を1M リン酸ナトリウム緩衝液(pH7.0)に溶解したものを使用した。
Anode fuel solution (Comparative Example 2)
2M aqueous solution of sodium ascorbate * Sodium ascorbate (manufactured by Wako Pure Chemical Industries) dissolved in water was used.
(Comparative Example 3)
1M NADH solution 100 mM mPMS solution 1M sodium phosphate buffer (pH 7.0)
* The NADH solution was prepared by dissolving NADH (manufactured by Nacalai Tesque) in 1M sodium phosphate buffer (pH 7.0).
* The mPMS solution used was a solution of 1-methoxy-5-methylphenazinium methyl sulfate (manufactured by Dojindo) in 1M sodium phosphate buffer (pH 7.0).

カソード用溶液
1M ヘキサシアノ鉄(III)酸カリウム水溶液
※ヘキサシアノ鉄(III)酸カリウム(和光純薬社製)を水に溶解したものを使用した。
Solution for cathode 1M potassium hexacyanoferrate (III) aqueous solution * A solution of potassium hexacyanoferrate (III) (made by Wako Pure Chemical Industries, Ltd.) in water was used.

2−2.評価用電池の評価
2−1にて作製した評価用電池の評価を実施例1〜4と同様にして行った。
[評価結果]
[評価結果1]
図2に、実施例1,2,3と比較例1,2、すなわちアノード用燃料溶液として、2Mのアスコルビン酸ナトリウム水溶液を用いた場合の電流密度−出力密度特性を示した。
2-2. Evaluation of Evaluation Battery The evaluation battery prepared in Evaluation 2-1 was evaluated in the same manner as in Examples 1 to 4.
[Evaluation results]
[Evaluation result 1]
FIG. 2 shows current density-power density characteristics when Examples 1, 2, and 3 and Comparative Examples 1 and 2, that is, a 2M sodium ascorbate aqueous solution was used as the anode fuel solution.

図2からわかるように、この試験により、本発明による電極−親水性ゲル(フィルター含浸型)−隔膜複合体を構成要素として持つ試作燃料電池(実施例1〜3)において、比較例1,2に比して、出力密度の向上効果を確認することができた。   As can be seen from FIG. 2, in this test, a prototype fuel cell (Examples 1 to 3) having the electrode-hydrophilic gel (filter-impregnated type) -diaphragm composite according to the present invention as a component was compared with Comparative Examples 1 and 2. Compared to the above, the effect of improving the power density could be confirmed.

[評価結果2]
図3に、実施例1,2,3と比較例1,2、すなわちアノード用燃料溶液として、2Mのアスコルビン酸ナトリウム水溶液を用いた場合の電流密度−電圧特性を示した。
[Evaluation result 2]
FIG. 3 shows current density-voltage characteristics when Examples 1, 2, and 3 and Comparative Examples 1 and 2, that is, a 2M sodium ascorbate aqueous solution was used as the anode fuel solution.

図3からわかるように、この試験により、本発明による電極−親水性ゲル(フィルター含浸型)−隔膜複合体を構成要素として持つ試作燃料電池(実施例1〜3)において、比較例に比べ電流−電圧特性直線の傾きが小さいことが確認できた。オームの法則より該傾きは内部抵抗を表していることから、ゲル/フィルター複合体を有する燃料電池における出力向上は、内部抵抗の減少に起因するものと推測される。   As can be seen from FIG. 3, in this test, a prototype fuel cell (Examples 1 to 3) having an electrode-hydrophilic gel (filter-impregnated type) -diaphragm composite according to the present invention as a component was compared with the comparative example. -It was confirmed that the slope of the voltage characteristic line was small. According to Ohm's law, the slope represents the internal resistance, so it is assumed that the output improvement in the fuel cell having the gel / filter composite is caused by a decrease in the internal resistance.

[評価結果3]
図4に、実施例4と比較例3、すなわちアノード用燃料溶液として、1M NADHおよび100mM mPMSを用いた場合の電流密度−出力密度特性を示した。
[Evaluation result 3]
FIG. 4 shows the current density-power density characteristics when Example 4 and Comparative Example 3, that is, 1M NADH and 100 mM mPMS were used as the anode fuel solution.

図4からわかるように、この試験により、本発明品である親水性ゲル/フィルター複合体を用いた試作燃料電池(実施例4)は、電極に同じ組成の親水性ゲルを適量塗布した試作燃料電池(比較例3)と比較して、出力密度の向上効果があることが確認された。   As can be seen from FIG. 4, according to this test, a prototype fuel cell using the hydrophilic gel / filter composite according to the present invention (Example 4) is a prototype fuel in which an appropriate amount of hydrophilic gel of the same composition is applied to the electrode. Compared with the battery (Comparative Example 3), it was confirmed that there was an effect of improving the output density.

[評価結果4]
図5に、実施例4と比較例3、すなわちアノード用燃料溶液として、1M NADHおよび100mM mPMSを用いた場合の電流密度−電圧特性を示した。
[Evaluation result 4]
FIG. 5 shows the current density-voltage characteristics when Example 4 and Comparative Example 3, that is, 1M NADH and 100 mM mPMS were used as the anode fuel solution.

図5からわかるように、この試験により、本発明品である電極−親水性ゲル(フィルター含浸型)−隔膜複合体を構成要素として持つ試作燃料電池(実施例4)において、電極に同じ組成の親水性ゲルを適量塗布した試作燃料電池(比較例3)と比較して、電流−電圧特性直線の傾きが小さいことが確認できた。オームの法則より該傾きは内部抵抗を表していることから、ゲル/フィルター複合体を有する燃料電池における出力向上は、内部抵抗の減少に起因するものと推測される。   As can be seen from FIG. 5, in this test, a prototype fuel cell (Example 4) having the electrode-hydrophilic gel (filter-impregnated type) -diaphragm composite, which is the product of the present invention, has the same composition as the electrode. It was confirmed that the slope of the current-voltage characteristic line was smaller than that of the prototype fuel cell (Comparative Example 3) in which an appropriate amount of hydrophilic gel was applied. According to Ohm's law, the slope represents the internal resistance, so it is assumed that the output improvement in the fuel cell having the gel / filter composite is caused by a decrease in the internal resistance.

1…帯電防止機能を備えたフッ素樹脂板、
2…集電板(チタンメッシュ)、
3…アノード側電極、
4…イオン伝導性を有する膜(隔膜)、
5…カソード側電極、
6…シリコーンプレート、
7…親水性ゲル膜(フィルター含浸型)、
8…燃料タンク。
1 ... Fluororesin plate with antistatic function,
2 ... current collector plate (titanium mesh),
3 ... anode side electrode,
4 ... Membrane having ion conductivity (diaphragm),
5 ... Cathode side electrode,
6 ... silicone plate,
7 ... hydrophilic gel membrane (filter impregnation type),
8 ... Fuel tank.

Claims (8)

アノード側電極とカソード側電極がイオン伝導性を有する膜を介して対向した構造を少なくとも備える燃料電池であって、アノード側電極と前記膜の間およびまたはカソード側電極と前記膜との間には、予め成膜された親水性ゲル膜が挟持されていることを特徴とする燃料電池。   A fuel cell having at least a structure in which an anode side electrode and a cathode side electrode are opposed to each other via a membrane having ion conductivity, between the anode side electrode and the membrane and / or between the cathode side electrode and the membrane A fuel cell characterized in that a previously formed hydrophilic gel film is sandwiched. 予め成膜された親水性ゲル膜は、担体膜に親水性ゲルが含浸した構成を備えることを特徴とする請求項1に記載の燃料電池。   The fuel cell according to claim 1, wherein the hydrophilic gel film formed in advance has a structure in which the carrier film is impregnated with the hydrophilic gel. 担体膜は、イオン透過性の多孔性の膜であることを特徴とする請求項2に記載の燃料電池。   The fuel cell according to claim 2, wherein the carrier membrane is an ion-permeable porous membrane. アノード側電極とカソード側電極は、酵素を触媒として含んでいることを特徴とする請求項1または2に記載の燃料電池。   The fuel cell according to claim 1 or 2, wherein the anode side electrode and the cathode side electrode contain an enzyme as a catalyst. アノード側電極とカソード側電極がイオン伝導性を有する膜を介して対向した構造を少なくとも備える燃料電池の製造方法であって、
親水性ゲルを薄膜状に成膜する工程、および、
成膜された親水性ゲル膜をアノード側電極と前記イオン伝導性を有する膜の間およびまたはカソード側電極と前記イオン伝導性を有する膜との間に配置した後、常温環境で全体を圧着する工程、
とを少なくとも含むことを特徴とする燃料電池の製造方法。
A method for producing a fuel cell comprising at least a structure in which an anode side electrode and a cathode side electrode are opposed to each other via a membrane having ion conductivity,
Forming a hydrophilic gel into a thin film, and
After the formed hydrophilic gel film is disposed between the anode side electrode and the ion conductive film and / or between the cathode side electrode and the ion conductive film, the whole is pressure-bonded in a room temperature environment. Process,
A method for producing a fuel cell, comprising:
親水性ゲルを薄膜状に成膜する工程は、担体膜に親水性ゲルを含浸させる工程を含むことを特徴とする請求項5に記載の燃料電池の製造方法。   6. The method for producing a fuel cell according to claim 5, wherein the step of forming the hydrophilic gel into a thin film includes the step of impregnating the carrier membrane with the hydrophilic gel. 担体膜として、イオン透過性の多孔性の膜を用いることを特徴とする請求項6に記載の燃料電池の製造方法。   7. The fuel cell manufacturing method according to claim 6, wherein an ion-permeable porous membrane is used as the carrier membrane. アノード側電極およびカソード側電極として、酵素を触媒として含む電極を用いることを特徴とする請求項5または6に記載の燃料電池の製造方法。   The method for producing a fuel cell according to claim 5 or 6, wherein an electrode containing an enzyme as a catalyst is used as the anode side electrode and the cathode side electrode.
JP2010111593A 2010-05-14 2010-05-14 Fuel cell and manufacturing method thereof Pending JP2011243289A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010111593A JP2011243289A (en) 2010-05-14 2010-05-14 Fuel cell and manufacturing method thereof
PCT/IB2011/001241 WO2011141818A1 (en) 2010-05-14 2011-05-05 Fuel cell and method of producing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111593A JP2011243289A (en) 2010-05-14 2010-05-14 Fuel cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2011243289A true JP2011243289A (en) 2011-12-01

Family

ID=44343974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111593A Pending JP2011243289A (en) 2010-05-14 2010-05-14 Fuel cell and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2011243289A (en)
WO (1) WO2011141818A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120460A (en) * 2012-12-19 2014-06-30 Toyota Motor Corp Biofuel cell
KR20140113978A (en) * 2012-01-23 2014-09-25 마이크로소프트 코포레이션 Heat transfer device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114973A (en) * 2011-11-30 2013-06-10 Toyota Motor Corp Fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211266C2 (en) * 1992-04-03 1996-12-19 Fraunhofer Ges Forschung Non-porous, flat or fibrous polymer structures with a hydrophilic surface and their use as membranes for dialysis or electrodialysis
IT1319649B1 (en) * 2000-11-14 2003-10-23 Nuvera Fuel Cells Europ Srl MEMBRANE-ELECTRODE ASSEMBLY FOR MEMBRANE-POLYMER FUEL CELL.
KR100730197B1 (en) * 2006-01-21 2007-06-19 삼성에스디아이 주식회사 Structure of cathode electrode for fuel cell
JP4588649B2 (en) 2006-02-23 2010-12-01 株式会社デンソー Enzyme functional electrode and biosensor and fuel cell
JP5181576B2 (en) 2007-08-17 2013-04-10 ソニー株式会社 FUEL CELL MANUFACTURING METHOD, FUEL CELL, AND ELECTRONIC DEVICE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140113978A (en) * 2012-01-23 2014-09-25 마이크로소프트 코포레이션 Heat transfer device
KR102015157B1 (en) 2012-01-23 2019-10-23 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 Heat transfer device
JP2014120460A (en) * 2012-12-19 2014-06-30 Toyota Motor Corp Biofuel cell

Also Published As

Publication number Publication date
WO2011141818A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
Pang et al. Flexible and stretchable biobatteries: monolithic integration of membrane‐free microbial fuel cells in a single textile layer
US9912000B2 (en) Fuel cell, manufacturing method thereof, electronic apparatus, enzyme-immobilized electrode, manufacturing method thereof, water-repellent agent, and enzyme immobilizing material
JP5181526B2 (en) FUEL CELL, FUEL CELL MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP5233176B2 (en) Fuel cells and electronics
JP5751032B2 (en) Enzyme fuel cell
EP2131437A1 (en) Enzyme immobilized electrode, fuel cell, electronic equipment, enzyme reaction utilization apparatus, and enzyme immobilized base
WO2010041511A1 (en) Fuel cell and enzyme electrode
WO2009113340A1 (en) Fuel cell and electronic device
JP2009049012A (en) Biofuel cell and manufacturing method thereof, electronic equipment, and enzyme-fixed electrode and manufacturing method thereof
JP2007103307A (en) Method of manufacturing fuel cell, fuel cell, method of manufacturing negative electrode for fuel cell, negative electrode for fuel cell, electronic equipment, vehicle, power generating system, co-generation system, method of manufacturing enzyme reaction utilizing device, enzyme reaction utilizing device, method of manufacturing electrode for enzyme reaction utilizing device, electrode for enzyme utilizing device, and immobilization method
JP5298479B2 (en) Fuel cells and electronics
WO2012125138A1 (en) Unitized electrode assembly with high equivalent weight ionomer
JP5205818B2 (en) Fuel cells and electronics
Das et al. Crosslinked poly (vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells
US20150280266A1 (en) Biofuel cell, method for production of biofuel cell, electronic device, enzyme immobilization electrode, method for production of enzyme immobilization electrode, electrode for production of enzyme immobilization electrode, method for 5 production of electrode for production of enzyme immobilization electrode and enzyme reaction using device
WO2010041685A1 (en) Fuel cell, electronic device and buffer solution for fuel cell
JP2011243289A (en) Fuel cell and manufacturing method thereof
US20140342248A1 (en) Fuel cell
JP5888438B2 (en) Fuel cell
JP2007257983A (en) Fuel cell and its manufacturing method, negative electrode for fuel cell and its manufacturing method, electronic equipment, electrode reaction utilization device and its manufacturing method, electrode for electrode reaction utilization device and its manufacturing method, high output agent, and mediator diffusion accelerator
JP5983392B2 (en) Biofuel cell
WO2010007833A1 (en) Fuel cell, method for production of the fuel cell, electronic device, enzyme-immobilized electrode, method for production of the electrode, water-repellent agent, and enzyme-immobilized material
JP2009140781A (en) Fuel cell, its manufacturing method, enzyme-immobilized electrode, and its manufacturing method, as well as electronic equipment
JP5481822B2 (en) Enzyme electrode and fuel cell using the enzyme electrode
Yazici et al. Effects of cathode gas diffusion layer type and membrane electrode assembly preparation on the performance of immobilized glucose oxidase‐based enzyme fuel cell