JP2011242526A - Image reading device using image reading lens - Google Patents

Image reading device using image reading lens Download PDF

Info

Publication number
JP2011242526A
JP2011242526A JP2010113289A JP2010113289A JP2011242526A JP 2011242526 A JP2011242526 A JP 2011242526A JP 2010113289 A JP2010113289 A JP 2010113289A JP 2010113289 A JP2010113289 A JP 2010113289A JP 2011242526 A JP2011242526 A JP 2011242526A
Authority
JP
Japan
Prior art keywords
lens
image reading
anamorphic
image
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113289A
Other languages
Japanese (ja)
Other versions
JP5683130B2 (en
JP2011242526A5 (en
Inventor
Takayuki Sugiyama
孝幸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010113289A priority Critical patent/JP5683130B2/en
Publication of JP2011242526A publication Critical patent/JP2011242526A/en
Publication of JP2011242526A5 publication Critical patent/JP2011242526A5/ja
Application granted granted Critical
Publication of JP5683130B2 publication Critical patent/JP5683130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Systems Of Projection Type Copiers (AREA)
  • Facsimile Heads (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an image reading device capable of reducing an image surface curvature and a magnification deviation in a secondary scanning direction even when using a high-resolution line sensor.SOLUTION: The image reading device includes: an image reading lens for imaging image information of a document; and reading means disposed in the imaging position of the image information and having a plurality of line sensors in which pixels are arranged in a primary scanning direction. The image reader reads image information by moving the reading means in a secondary scanning direction. The reading means satisfies W/L≤0.015 (where W is the width of each line sensor on the shorter side, and L is the interval between the centers of adjoining line sensors). The image reading lens has an anamorphic lens including an anamorphic face in which at least one face is rotationally asymmetric with respect to an optical axis. Where the cross-sectional form of the anamorphic face within a main scanning cross-section including the optical axis and the main scanning direction is a generatrix, at least one face of the anamorphic lens is such that a sagittal curvature continuously changes in the direction of the generatrix from the optical axis and satisfies a conditional expression. Here, the sagittal curvature is defined within a plane that is perpendicular to the main scanning cross-section and includes a normal line at an arbitrary position in the generatrix direction.

Description

本発明は、画像読取レンズを用いた画像読取装置に関する。特にアナモフィックレンズを有する画像読取レンズの光学性能を十分に発揮して精度の高い画像読取が出来るようにした、イメージスキャナー、複写機、そしてファクシミリ等の画像読取装置に好適なものである。   The present invention relates to an image reading apparatus using an image reading lens. In particular, the image reading lens having an anamorphic lens is suitable for an image reading apparatus such as an image scanner, a copying machine, and a facsimile machine that can perform high-precision image reading by sufficiently exhibiting optical performance.

図14は従来の画像読取装置の構成を示す要部概略図である。
図14に示す画像読取装置において、原稿台ガラス102の面上に原稿101が置かれる。キャリッジ107は、後述する照明系103、複数の反射ミラー104a,104b,104c,104d、結像光学系(画像読取レンズ)106、そして読取手段105等を一体的に収納する。キャリッジ107は、モータなどの副走査機構108により図14中に矢印で示す副走査方向へ移動し、原稿101の画像情報を読取っている。読取られた画像情報は不図示のインターフェイスを通じて外部機器であるパーソナルコンピューターなどに送られる。
FIG. 14 is a schematic diagram of a main part showing the configuration of a conventional image reading apparatus.
In the image reading apparatus shown in FIG. 14, the document 101 is placed on the surface of the document table glass 102. The carriage 107 integrally houses an illumination system 103, which will be described later, a plurality of reflecting mirrors 104a, 104b, 104c, and 104d, an imaging optical system (image reading lens) 106, a reading unit 105, and the like. The carriage 107 is moved in the sub-scanning direction indicated by an arrow in FIG. 14 by a sub-scanning mechanism 108 such as a motor, and reads the image information of the document 101. The read image information is sent to an external device such as a personal computer through an interface (not shown).

照明系103は、キセノン管やハロゲンランプやLEDアレイ等より構成される。尚、照明系103にはアルミ蒸着板などの反射板を組み合わせて用いてもよい。反射ミラー104a,104b,104c,104dは、原稿101からの光束をキャリッジ107内部で折り曲げている。結像光学系106は、原稿101からの光を読取手段105面上に結像させている。読取手段105は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等のラインセンサで構成され、紙面に対し垂直方向である主走査方向に複数の受光素子を配列した構成より成っている。   The illumination system 103 includes a xenon tube, a halogen lamp, an LED array, and the like. The illumination system 103 may be used in combination with a reflector such as an aluminum vapor deposition plate. Reflecting mirrors 104 a, 104 b, 104 c, and 104 d bend the light beam from the document 101 inside the carriage 107. The imaging optical system 106 images light from the original 101 on the surface of the reading unit 105. The reading unit 105 includes a line sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and has a configuration in which a plurality of light receiving elements are arranged in a main scanning direction that is perpendicular to the paper surface. .

上記構成においてイメージスキャナーを小型化するにはキャリッジ107の小型化が必要である。キャリッジ107を小型化するには、例えば反射ミラーの枚数を増やしたり、あるいは一枚の反射ミラーで複数回反射させて光路長を確保したりする方法があるが、近年、結像光学系内に少なくとも一面が光軸に対して回転非対称な形状より成るアナモフィックレンズを導入することによって結像光学系(結像系)106を広画角化して物像間距離を縮め、光路長自体を短くする方法が提案されている。   In the above configuration, the carriage 107 needs to be downsized to reduce the size of the image scanner. In order to reduce the size of the carriage 107, for example, there are methods of increasing the number of reflecting mirrors or reflecting a plurality of times by one reflecting mirror to ensure the optical path length. By introducing an anamorphic lens having at least one surface that is rotationally asymmetric with respect to the optical axis, the imaging optical system (imaging system) 106 is widened to reduce the distance between object images, and the optical path length itself is shortened. A method has been proposed.

このようにアナモフィックレンズを用いれば、像面彎曲収差を効果的に低減でき、良好なるコントラストの画像を得ることができる。しかしながら、結像倍率、特に副走査方向の結像倍率(副走査倍率)が光軸上から周辺にかけて変化してしまうという問題がある。そうすると、例えば、赤緑青(RGB)3色に対応したラインカラーセンサでの読取の場合は、各色にて結像位置がずれてしまう為に、副走査方向への色ズレが発生してしまう場合があった。   If the anamorphic lens is used in this way, the field curvature can be effectively reduced, and an image with good contrast can be obtained. However, there is a problem that the imaging magnification, particularly the imaging magnification in the sub-scanning direction (sub-scanning magnification) changes from the optical axis to the periphery. Then, for example, in the case of reading with a line color sensor corresponding to three colors of red, green, and blue (RGB), the image forming position is shifted in each color, and thus color misalignment in the sub-scanning direction occurs. was there.

この問題の解決策として、ラインセンサの仕様(形状)とレンズの副走査方向についての歪曲収差成分を適切に設定して良好なカラー画像を得るカラー画像読取装置が提案されている。(特許文献1参照)
また、2つのアナモフィック面を有したレンズの形状を適切に設定することにより良好なカラー画像を得るカラー画像読取装置が提案されている。(特許文献2参照)
As a solution to this problem, there has been proposed a color image reading apparatus that appropriately sets the specification (shape) of the line sensor and the distortion component in the sub-scanning direction of the lens to obtain a good color image. (See Patent Document 1)
There has also been proposed a color image reading apparatus that obtains a good color image by appropriately setting the shape of a lens having two anamorphic surfaces. (See Patent Document 2)

特開2000―307800号公報JP 2000-307800 A 特開2008−065234号公報JP 2008-065234 A

しかしながら、特許文献1,2は下記に示す課題を有していた。
特許文献1のカラー画像読取装置は600dpi程度のセンサ解像度での画像読取が主流であり、ラインセンサの1画素の一辺の長さは7〜8μm程度で、RGBのライン間隔が63〜73μm程度であった。
また、特許文献2のカラー画像読取装置は2400dpi程度のセンサ解像度での画像読取が主流であり、特許文献1のラインセンサよりも1画素の一辺の長さは小さい2μm程度で、主走査方向の解像度を上げるために同一色のセンサを千鳥状に配列している。このため、副走査方向のRGBのライン間隔が63〜96μm程度であった。
However, Patent Documents 1 and 2 have the following problems.
The color image reading device of Patent Document 1 is mainly used for image reading at a sensor resolution of about 600 dpi, and the length of one side of a line sensor is about 7 to 8 μm, and the RGB line interval is about 63 to 73 μm. there were.
The color image reading apparatus disclosed in Patent Document 2 is mainly used for image reading at a sensor resolution of about 2400 dpi. The length of one side of each pixel is about 2 μm, which is smaller than that of the line sensor disclosed in Patent Document 1, and the image is read in the main scanning direction. In order to increase the resolution, sensors of the same color are arranged in a staggered pattern. For this reason, the RGB line interval in the sub-scanning direction is about 63 to 96 μm.

しかし、近年の画像読取装置は、更なる高解像度での読取を求められており、例えば、9600dpiの解像度で1画素の一辺の長さは2400dpiと同等の2μm程度であるが、更に主走査方向の解像力を上げる為には、同一色のラインセンサを更に千鳥状に配置する事になる。このため、異色のライン間隔は更に広がり、RGBのライン間隔は160μm程度必要となる。つまり、特許文献1、2と比べ副走査方向に約3〜5倍の大きさとなる為、副走査方向の結像精度も約3〜5倍を要求されるようになっている。   However, recent image reading apparatuses are required to read at a higher resolution. For example, the length of one side of one pixel is about 2 μm which is equivalent to 2400 dpi at a resolution of 9600 dpi. In order to increase the resolving power, line sensors of the same color are further arranged in a staggered manner. For this reason, the line spacing of different colors further increases, and the RGB line spacing is required to be about 160 μm. That is, since the size in the sub-scanning direction is about 3 to 5 times that of Patent Documents 1 and 2, the imaging accuracy in the sub-scanning direction is required to be about 3 to 5 times.

さらに、高解像度化とあわせて、装置全体の小型化と高画質化も求められており、画像読取レンズには像面彎曲収差を低減しつつ、広画角化することが要求されている。その結果として、よりアナモフィック特性の強いレンズを用いる必要があり、必要とされる副走査方向の結像精度は従来に比べて10倍以上となっている。
これらの状況を踏まえると、アナモフィック面の母線の各位置における垂直方向の倍率、すなわち副走査倍率の変化を完璧に補正することが必要となっている。
Further, in addition to higher resolution, there is a demand for downsizing and higher image quality of the entire apparatus, and an image reading lens is required to have a wide angle of view while reducing field curvature. As a result, it is necessary to use a lens with stronger anamorphic characteristics, and the required imaging accuracy in the sub-scanning direction is 10 times or more that of the conventional art.
In view of these situations, it is necessary to completely correct the change in the vertical magnification, that is, the sub-scanning magnification, at each position of the bus on the anamorphic surface.

しかしながら、特許文献1,2では、ライン間隔の増大に伴う副走査方向の倍率ズレを低減するまでは至らなかった。
本発明では、高解像度なラインセンサを使用した場合でも、像面彎曲収差と副走査方向の倍率ズレの双方を低減することが出来る画像読取レンズを用いた画像読取装置の提供を目的とする。
However, in Patent Documents 1 and 2, it has not been possible to reduce the magnification shift in the sub-scanning direction accompanying the increase in the line interval.
An object of the present invention is to provide an image reading apparatus using an image reading lens that can reduce both field curvature and magnification deviation in the sub-scanning direction even when a high-resolution line sensor is used.

上記目的を達成するために、本発明の
画像読取装置は、
原稿面上の画像情報を結像させるための画像読取レンズと、該画像読取レンズの該画像情報の結像位置に並列に配置された複数のラインセンサであって、各該ラインセンサの画素は主走査方向に配列されている複数のラインセンサを有する読取手段と、を有し、
該読取手段を副走査方向に移動させて原稿面上のの画像情報を読み取る画像読取装置であって、
該読取手段は、各該ラインセンサの受光面の短手方向の幅をW、隣り合うラインセンサの中心の間隔をLとするとき、
W/L≦0.015を満たし、
該画像読取レンズは、少なくとも1面が光軸に対して回転非対称な形状よりなるアナモフィック面からなるアナモフィックレンズを含み、該アナモフィックレンズの少なくとも1面は、光軸と主走査方向を含む主走査断面内におけるアナモフィック面の断面形状を母線とするとき、該アナモフィック面は主走査断面と垂直で且つ任意の母線方向の位置における該アナモフィック面の法線を含む面内にて定義される子線曲率が、光軸から母線方向に沿って離れるに従い連続的に変化し、Aを

Figure 2011242526
N:該アナモフィックレンズの材料の屈折率
1:該アナモフィックレンズの原稿側の面の主光線通過位置における子線曲率半径
2:該アナモフィックレンズの像面側の面の主光線通過位置における子線曲率半径
d:アナモフィックレンズの原稿側の面と像面側の面の間の主光線が通過する位置での距離
と定義し、軸上光束主光線に対するAの値をA0、主走査全画角における光束主光線に対するAの値の最大値をAmax、とするとき、-0.1≦1-(Amax/A0)≦0.1を満たすことを特徴とする。 In order to achieve the above object, an image reading apparatus according to the present invention provides:
An image reading lens for imaging image information on the document surface, and a plurality of line sensors arranged in parallel at the image information imaging position of the image reading lens, each pixel of the line sensor being Reading means having a plurality of line sensors arranged in the main scanning direction,
An image reading apparatus for reading image information on a document surface by moving the reading means in the sub-scanning direction,
When the width of the light receiving surface of each line sensor in the lateral direction is W and the distance between the centers of adjacent line sensors is L,
Satisfies W / L ≦ 0.015,
The image reading lens includes an anamorphic lens including at least one anamorphic surface having a rotationally asymmetric shape with respect to the optical axis, and at least one surface of the anamorphic lens includes a main scanning section including an optical axis and a main scanning direction. When the cross-sectional shape of the anamorphic surface is a generating line, the anamorphic surface is perpendicular to the main scanning section and has a sub-curvature curvature defined in a plane including the normal line of the anamorphic surface at a position in an arbitrary generating line direction. , Continuously changing from the optical axis along the generatrix direction,
Figure 2011242526
N: Refractive index of the material of the anamorphic lens r 1 : Radius of curvature of the principal ray at the principal ray passing position of the original side surface of the anamorphic lens r 2 : Child at the principal ray passing position of the image side surface of the anamorphic lens Radius of curvature d: Defined as the distance at which the principal ray passes between the document side surface and the image side surface of the anamorphic lens. The value of A with respect to the axial principal ray is A 0 , the main scanning all When the maximum value of A with respect to the principal ray of light flux at the angle of view is A max , −0.1 ≦ 1- (A max / A 0 ) ≦ 0.1 is satisfied.

本発明によれば、高解像度なラインセンサを使用した場合でも、像面彎曲と副走査方向の倍率ズレの双方を低減することが出来る画像読取レンズを用いた画像読取装置を達成することが出来る。   According to the present invention, even when a high-resolution line sensor is used, it is possible to achieve an image reading apparatus using an image reading lens that can reduce both image field curvature and magnification deviation in the sub-scanning direction. .

本発明の画像読取装置の光学系の基本構成を示す要部概略図FIG. 2 is a schematic diagram of a main part showing a basic configuration of an optical system of an image reading apparatus of the present invention. 本発明数値実施例1のレンズ断面Lens cross section of Numerical Example 1 of the present invention 本発明数値実施例1の諸収差図Various aberration diagrams of Numerical Example 1 of the present invention 本発明数値実施例1の副走査倍率による色ズレ量Amount of color misregistration by sub-scanning magnification according to Numerical Example 1 of the present invention 本発明数値実施例2のレンズ断面Lens cross section of Numerical Example 2 of the present invention 本発明数値実施例2の諸収差図Various aberration diagrams of Numerical Example 2 of the present invention 本発明数値実施例2の副走査倍率による色ズレ量Amount of color misregistration by sub-scanning magnification according to Numerical Example 2 of the present invention 本発明数値実施例3のレンズ断面Lens cross section of Numerical Example 3 of the present invention 本発明数値実施例3の諸収差図Various aberration diagrams of Numerical Example 3 of the present invention 本発明数値実施例3の副走査倍率による色ズレ量Amount of color misregistration by sub-scanning magnification according to Numerical Example 3 of the present invention 第4レンズと像面との関係を示した要部斜視図The principal part perspective view which showed the relationship between a 4th lens and an image surface 本発明の画像読取装置の要部概略図Schematic diagram of main parts of the image reading apparatus of the present invention. 本発明の画像読取装置の要部概略図Schematic diagram of main parts of the image reading apparatus of the present invention. 従来の画像読取装置の要部概略図Schematic diagram of main parts of a conventional image reading apparatus

以下、図面を用いて本発明の実施例を説明する。
図1は、本発明の画像読取装置の光学系の基本構成を示す要部概略図である。
図1において、カラー画像が形成されている原稿面上(1)の、後述するラインセンサ(CCDもしくはCMOSセンサ)2R,2G,2Bに各々共役な読み取り範囲1R、1G、1Bを示す。画像読取レンズ3は、少なくとも1面に光軸に対して回転非対称な形状よりなるアナモフィック面を含み、原稿1の画像情報に基づく光束を読取手段2面上に結像させている。すなわち、画像読取レンズによる原稿面上の画像情報の結像位置に、複数のラインセンサが並列に配置されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a main part schematic diagram showing a basic configuration of an optical system of an image reading apparatus of the present invention.
FIG. 1 shows reading ranges 1R, 1G, and 1B conjugate to line sensors (CCD or CMOS sensors) 2R, 2G, and 2B, which will be described later, on a document surface (1) on which a color image is formed. The image reading lens 3 includes an anamorphic surface having a rotationally asymmetric shape with respect to the optical axis on at least one surface, and forms a light beam based on image information of the document 1 on the surface of the reading unit 2. That is, a plurality of line sensors are arranged in parallel at the image information imaging position on the document surface by the image reading lens.

読取手段2は、3つのラインセンサ2R,2G,2Bを含み、互いに平行となるように同一基板面上に配置された、モノリシックな3ラインセンサより成り、3つのラインセンサ面上には各々の色光(例えば赤、緑、青)に基づく不指示の色フィルターが各々設けられている。各ラインセンサ2R,2G,2Bは、各々短手方向に幅Wを有し、ライン間隔を空けて各々配置されている。この3つのラインセンサで順次異なる色情報(例えば、R,G,B)を読み取っている。   The reading unit 2 includes three line sensors 2R, 2G, and 2B, and is composed of monolithic three line sensors arranged on the same substrate surface so as to be parallel to each other. Non-indicated color filters based on colored light (for example, red, green, blue) are provided. Each of the line sensors 2R, 2G, 2B has a width W in the lateral direction, and is arranged with a line interval therebetween. The three line sensors sequentially read different color information (for example, R, G, B).

読取手段2の高解像度化は、各ラインセンサの受光面の短手方向の幅Wを極力小さくし、隣り合う2つのラインセンサの中心の間隔Lを広げ、高密度に千鳥配置することで達成している。本発明では、以下の条件式の範囲であるものであれば適用範囲となる。
W/L ≦ 0.015・・・(1)
また、本実施例では各ラインセンサの受光面の短手方向の幅Wが2μm、隣り合う2つのラインセンサの中心の間隔Lが160μmの9600dpiのセンサを使用しており、W/Lは0.0125となり適用範囲である。
The resolution of the reading means 2 is increased by reducing the width W in the short direction of the light receiving surface of each line sensor as much as possible, widening the distance L between the centers of two adjacent line sensors, and staggering them at high density. is doing. In this invention, if it is the range of the following conditional expressions, it will become an application range.
W / L ≦ 0.015 (1)
In this embodiment, a 9600 dpi sensor is used in which the width W in the short direction of the light receiving surface of each line sensor is 2 μm, and the distance L between the centers of two adjacent line sensors is 160 μm, and the W / L is 0.0125. It is the scope of application.

図2、図5、図8は、各々本発明に係わる画像読取レンズ3の後述する数値実施例1,2,3のレンズの断面図である。図3、図6、図9は、各々本発明に係わる画像読取レンズ3の後述する数値実施例1,2,3の諸収差図(球面収差、非点収差、歪曲収差、倍率色収差)である。図4、図7、図10は、各々本発明に係わる画像読取レンズ3の後述する数値実施例1,2,3の副走査倍率ズレによって発生する色ズレ量を示す図である。図11は本発明に係わる画像読取用レンズの一要素を構成する第4レンズG4と像面Qとの関係を示した要部斜視図である。   2, 5, and 8 are sectional views of lenses of numerical embodiments 1, 2, and 3 to be described later of the image reading lens 3 according to the present invention. 3, 6, and 9 are various aberration diagrams (spherical aberration, astigmatism, distortion, and lateral chromatic aberration) of numerical examples 1, 2, and 3 to be described later of the image reading lens 3 according to the present invention. . 4, 7, and 10 are diagrams showing the amount of color misregistration caused by sub-scanning magnification misalignment in numerical embodiments 1, 2, and 3 to be described later of the image reading lens 3 according to the present invention. FIG. 11 is a perspective view of a main part showing the relationship between the fourth lens G4 and the image plane Q constituting one element of the image reading lens according to the present invention.

レンズの断面図において、原稿面P、第1レンズG1、第2レンズG2、第3レンズG3、第4レンズG4、絞りSP、像面Q、原稿台ガラスC1、カバーガラスC2、画像読取用レンズ(結像光学系)LGを示す。
収差図において、e、g、cは各々e線、g線、c線、ΔM、ΔSはメリディオナル像面、サジタル像面、倍率色収差はg線、c線によって表している。
In the sectional view of the lens, the document surface P, the first lens G1, the second lens G2, the third lens G3, the fourth lens G4, the stop SP, the image surface Q, the document table glass C1, the cover glass C2, and the image reading lens. (Image-forming optical system) LG is shown.
In the aberration diagrams, e, g, and c are e-line, g-line, c-line, ΔM, and ΔS are meridional image plane, sagittal image plane, and lateral chromatic aberration are represented by g-line and c-line, respectively.

図2、図5、図8における画像読取用レンズLGは、原稿面P側から像面Q側へ順に次の構成より成っている。
原稿面側に凸面を向けたメニスカス形状の正の屈折力の第1レンズG1、絞りSP、両レンズ面が凹形状の第2レンズG2、両レンズ面が凸形状の第3レンズG3を有する。さらに像面側に凸面を向けたメニスカス形状の第4レンズG4を有する。
The image reading lens LG in FIGS. 2, 5, and 8 has the following structure in order from the document surface P side to the image surface Q side.
A first lens G1 having a meniscus shape having a positive refractive power facing the original surface side, an aperture stop SP, a second lens G2 having a concave shape on both lens surfaces, and a third lens G3 having a convex shape on both lens surfaces. Furthermore, it has a meniscus fourth lens G4 with a convex surface facing the image surface side.

第4レンズG4は光入射面(第1面、原稿側の面)、光出射面(第2面、像面側の面)がアナモフィック面より成っている。
ここで、図11に示すように回転対称面から成る第1レンズG1から第3レンズG3までで定まる光軸La(x方向)と像面Qの画素の配列方向(主走査方向)を含んだ主走査断面内(xy断面内)における断面形状を母線とする。
In the fourth lens G4, the light incident surface (first surface, document side surface) and the light emitting surface (second surface, image surface side surface) are anamorphic surfaces.
Here, as shown in FIG. 11, the optical axis La (x direction) determined by the first lens G1 to the third lens G3 having a rotationally symmetric surface and the arrangement direction (main scanning direction) of the pixels on the image plane Q are included. A cross-sectional shape in the main scanning cross section (in the xy cross section) is defined as a bus.

アナモフィック面は光軸La上においては、主走査断面内の母線の曲率と、主走査断面と垂直方向(副走査方向、z方向、子線方向)である子線の曲率が等しい。
そしてアナモフィック面は、主走査断面と垂直方向の曲率が光軸Laから母線方向(y方向)に沿って離れるに従って連続的に変化している。
On the optical axis La, the anamorphic surface has the same curvature of the generatrix in the main scanning section and the curvature of the child lines in the direction perpendicular to the main scanning section (sub-scanning direction, z direction, and child line direction).
The anamorphic surface continuously changes as the curvature in the direction perpendicular to the main scanning section moves away from the optical axis La along the generatrix direction (y direction).

本実施例において、子線の曲率は、主走査断面に垂直で且つ任意の母線方向の位置におけるアナモフィック面の法線を含む面内にて定義される曲率である。
言い換えれば、子線の曲率は、主走査断面に垂直で且つ任意の母線方向の位置における母線形状の接線に垂直な線を含む面内にて定義される曲率である。
母線の曲率は、主走査断面内において、任意の母線方向の位置における曲率である。
In the present embodiment, the curvature of the child line is a curvature defined in a plane that is perpendicular to the main scanning section and includes the normal line of the anamorphic surface at a position in an arbitrary generatrix direction.
In other words, the curvature of the child line is a curvature defined in a plane including a line perpendicular to the main scanning section and perpendicular to the tangent of the bus bar shape at a position in an arbitrary bus bar direction.
The curvature of the bus bar is a curvature at a position in an arbitrary bus bar direction in the main scanning section.

また本実施例において、第4レンズG4は樹脂によって成形されている。これは、構成レンズの中でレンズ径が大きくなりやすい第4レンズG4を樹脂で成形することにより、低コスト化するためである。   In the present embodiment, the fourth lens G4 is formed of resin. This is to reduce the cost by molding the fourth lens G4, which is likely to have a large lens diameter among the constituent lenses, with resin.

次に本発明の数値実施例1〜3を示す。
表1、3、5に数値実施例1、2、3のレンズ形状を示す。
表1、3、5において、fは画像読取レンズLGの焦点距離、FnoはFナンバー、βは倍率、Yは最高像高、ωは半画角を示す。
また表1、3、5に示す画像読取レンズLGにおいて、面番号iは原稿面P側からの面の順番を示し、Riは各面の曲率半径、Diは第i面と第i+1面との間の部材肉厚又は空気間隔、Ndiとνdiはそれぞれd線を基準とした屈折率、アッベ数を示す。
アナモフィック面の形状は、数値実施例1、2、3の各々について表2,4,6で示す係数を用いて、次に説明する非球面形状になっている。
Next, Numerical Examples 1 to 3 of the present invention will be shown.
Tables 1, 3, and 5 show the lens shapes of Numerical Examples 1, 2, and 3.
In Tables 1, 3, and 5, f is the focal length of the image reading lens LG, Fno is the F number, β is the magnification, Y is the maximum image height, and ω is the half field angle.
In the image reading lens LG shown in Tables 1, 3, and 5, the surface number i indicates the order of the surfaces from the document surface P side, Ri is the radius of curvature of each surface, Di is the i-th surface and the i + 1-th surface. The member thickness or air interval between them, Ndi and νdi respectively indicate the refractive index and Abbe number with respect to the d-line.
The shape of the anamorphic surface is an aspherical shape described below using the coefficients shown in Tables 2, 4, and 6 for each of Numerical Examples 1, 2, and 3.

光軸に対して回転非対称な屈折力を有する非球面の形状はレンズ面と光軸との交点を原点とし、光軸方向をx軸、主走査断面内において光軸と直交する軸をy軸、副走査断面内において光軸と直交する軸をz軸としたとき、母線形状Xが、

Figure 2011242526
なる式で表わされる。但し、Rは曲率半径、ky、B4、B6、B8、B10は非球面係数である。
子線形状Sは母線上において母線と垂直な平面を断面とし、
Figure 2011242526
Figure 2011242526
なる式で表わされる。但し、r0は光軸上の子線の曲率半径で、R=r0、Di、Mj_k、E2、E4、E6、E8、E10は非球面係数である。 The aspherical shape having a refractive power that is rotationally asymmetric with respect to the optical axis has the intersection point between the lens surface and the optical axis as the origin, the optical axis direction is the x axis, and the axis orthogonal to the optical axis in the main scanning section is the y axis. When the axis perpendicular to the optical axis in the sub-scan section is the z-axis, the generatrix shape X is
Figure 2011242526
It is expressed by the following formula. Here, R is the radius of curvature, k y, B 4, B 6, B 8, B 10 are aspherical coefficients.
The child wire shape S has a cross section on a plane perpendicular to the bus bar on the bus bar,
Figure 2011242526
Figure 2011242526
It is expressed by the following formula. Here, r 0 is the radius of curvature of the child line on the optical axis, and R = r 0 , D i , M j_k , E 2 , E 4 , E 6 , E 8 , E 10 are aspherical coefficients.

[数値実施例1]

Figure 2011242526
[Numerical Example 1]
Figure 2011242526

Figure 2011242526
Figure 2011242526

[数値実施例2]

Figure 2011242526
[Numerical example 2]
Figure 2011242526

Figure 2011242526
Figure 2011242526

[数値実施例3]

Figure 2011242526
[Numeric Example 3]
Figure 2011242526

Figure 2011242526
Figure 2011242526

次に本実施例の画像読取レンズLGを有する画像読取装置について説明する。
画像読取レンズLGの第4レンズG4は、アナモフィックレンズより成る。
Next, an image reading apparatus having the image reading lens LG of this embodiment will be described.
The fourth lens G4 of the image reading lens LG is composed of an anamorphic lens.

ここで、Aを、

Figure 2011242526
N:アナモフィックレンズの材料の屈折率
1:アナモフィックレンズの第1面(原稿側の面)の主光線通過位置における子線曲率半径
2:アナモフィックレンズの第2面(像面側の面)の主光線通過位置における子線曲率半径
d :アナモフィックレンズの第1面と第2面間の主光線が通過する位置での距離
と定義し、
A0 :軸上光束主光線に対するAの値
Amax:主走査全画角における光束主光線に対するAの値の最大値
とするとき、第4レンズG4は、
-0.1≦1-(Amax/A0)≦0.1 (2)
なる条件を満足する。 Where A is
Figure 2011242526
N: Refractive index of the material of the anamorphic lens r 1 : Radius of curvature of the principal ray at the principal ray passing position of the first surface (original side surface) of the anamorphic lens r 2 : Second surface (image side surface) of the anamorphic lens The radius of curvature of the ray at the principal ray passage position of d: is defined as the distance at which the principal ray passes between the first and second surfaces of the anamorphic lens,
A 0 : A value for the axial principal ray
A max : When the maximum value of the value of A with respect to the principal ray of light flux at the main scanning full angle of view is set, the fourth lens G4
-0.1 ≦ 1- (A max / A 0 ) ≦ 0.1 (2)
Satisfy the following conditions.

条件式(2)は、全画角において像面彎曲を良好に補正し、且つ副走査方向の倍率ズレを良好に低減させるための条件式である。条件式(2)の下限または上限の制約が満足されないと像面彎曲補正が過剰になるだけでなく、副走査倍率ズレも悪化する。   Conditional expression (2) is a conditional expression for satisfactorily correcting the field curvature at all angles of view and favorably reducing the magnification shift in the sub-scanning direction. If the lower limit or upper limit constraint of the conditional expression (2) is not satisfied, not only the image surface curvature correction becomes excessive, but also the sub-scanning magnification deviation deteriorates.

また、
A50%:主走査方向の5割画角における光束主光線に対するAの値
A70%:主走査方向の7割画角における光束主光線に対するAの値
A90%:主走査方向の9割画角における光束主光線に対するAの値
とすると、
-0.05≦1-(A70%/A50%)≦0.05・・・(3)
-0.08≦1-(A90%/A50%)≦0.08・・・(4)
なる条件を満足している。
Also,
A 50% : Value of A with respect to the luminous flux principal ray at 50% field angle in the main scanning direction
A 70% : Value of A with respect to the principal ray of light at a 70% field angle in the main scanning direction
A 90% : Assuming that the value of A with respect to the principal ray of light at 90% field angle in the main scanning direction is
-0.05 ≦ 1- (A 70% / A 50% ) ≦ 0.05 (3)
-0.08 ≦ 1- (A 90% / A 50% ) ≦ 0.08 (4)
Is satisfied.

条件式(3)、(4)の両者を満足することで、5割画角から9割画角において像面彎曲を良好に補正し、且つ副走査方向の倍率ズレを良好に低減させることができる。
条件式(3)、(4)における下限または上限の制約が満足されないと、5割画角から9割画角において像面彎曲補正が過剰になるだけでなく、副走査倍率ズレも悪化する。
By satisfying both conditional expressions (3) and (4), it is possible to satisfactorily correct the field curvature from 50% to 90% and to reduce the magnification deviation in the sub-scanning direction. it can.
If the lower limit or upper limit constraint in the conditional expressions (3) and (4) is not satisfied, not only the image field curvature correction becomes excessive from 50% to 90%, but also the sub-scan magnification deviation is deteriorated.

[数値実施例1]
数値実施例1の画像読取レンズLGは、イメージスキャナー用としては必要十分なFナンバー6.5で、図3に示すように軸上から軸外にかけての諸収差が十分に低減されており、高い結像性能を得ている。
組合せて使用するラインセンサは、倍率が0.189倍であれば、いずれの場合でも使用可能である。
条件式(1)乃至(4)の各数値は後述する表7に示す。
前述の通り、このときR−G、G−Bの異なる色のセンサ列の中心の間隔が160μm、ラインセンサの短手方向の幅が2μmの9600dpi用ラインセンサを用いた場合でも、光線追跡検討の結果、副走査倍率ズレによる色ズレは図4で示すように、0.5画素程度で十分な性能となっている。
[Numerical Example 1]
The image reading lens LG of Numerical Example 1 has an F number of 6.5 that is necessary and sufficient for an image scanner, and various aberrations from on-axis to off-axis are sufficiently reduced as shown in FIG. Has gained performance.
The line sensor used in combination can be used in any case as long as the magnification is 0.189 times.
Each numerical value of conditional expressions (1) to (4) is shown in Table 7 to be described later.
As described above, even if a 9600 dpi line sensor with a center distance of 160 μm and a width of 2 μm in the short direction of the line sensor is used at this time, a ray tracing study is performed. As a result, as shown in FIG. 4, the color misalignment due to the sub-scanning magnification misalignment is about 0.5 pixel, which is sufficient.

[数値実施例2]
数値実施例2の画像読取レンズLGはイメージスキャナー用としては必要十分なFナンバー6.5で、図6に示すように軸上から軸外にかけての諸収差が十分に低減されており、高い結像性能を得ている。
組合せて使用するラインセンサは、倍率が0.189倍であれば、いずれの場合でも使用可能である。
条件式(1)乃至(4)の各数値は後述する表7に示す。
前述の通り、このときR−G、G−Bの異なる色のセンサ列の中心の間隔が160μm、ラインセンサの短手方向の幅が2μmの9600dpi用ラインセンサを用いた場合でも、光線追跡検討の結果、副走査倍率ズレによる色ズレは図7で示すように、0.4画素程度で十分な性能となっている。
[Numerical Example 2]
The image reading lens LG of Numerical Example 2 has an F number 6.5 that is necessary and sufficient for an image scanner, and various aberrations from on-axis to off-axis are sufficiently reduced as shown in FIG. Have gained.
The line sensor used in combination can be used in any case as long as the magnification is 0.189 times.
Each numerical value of conditional expressions (1) to (4) is shown in Table 7 to be described later.
As described above, even if a 9600 dpi line sensor with a center distance of 160 μm and a width of 2 μm in the short direction of the line sensor is used at this time, a ray tracing study is performed. As a result, as shown in FIG. 7, the color misalignment due to the sub-scanning magnification misalignment is about 0.4 pixels, which is sufficient performance.

[数値実施例3]
数値実施例2の画像読取レンズLGはイメージスキャナー用としては必要十分なFナンバー6.5で、図9に示すように軸上から軸外にかけての諸収差が十分に低減されており、高い結像性能を得ている。
組合せて使用するラインセンサは、倍率が0.189倍であれば、いずれの場合でも使用可能である。
条件式(1)乃至(4)の各数値は後述する表7に示す。
前述の通り、このときR−G、G−Bの異なる色のセンサ列の中心の間隔が160μm、ラインセンサの短手方向の幅が2μmの9600dpi用ラインセンサを用いた場合でも、光線追跡検討の結果、副走査倍率ズレによる色ズレは図10で示すように、0.4画素程度で十分な性能となっている。
[Numerical Example 3]
The image reading lens LG of Numerical Example 2 has an F number 6.5 that is necessary and sufficient for an image scanner, and various aberrations from on-axis to off-axis are sufficiently reduced as shown in FIG. Have gained.
The line sensor used in combination can be used in any case as long as the magnification is 0.189 times.
Each numerical value of conditional expressions (1) to (4) is shown in Table 7 to be described later.
As described above, even if a 9600 dpi line sensor with a center distance of 160 μm and a width of 2 μm in the short direction of the line sensor is used at this time, a ray tracing study is performed. As a result, as shown in FIG. 10, the color misalignment due to the sub-scanning magnification misalignment is about 0.4 pixels, which is sufficient performance.

次に前述の各条件式(1)乃至(4)と数値実施例1〜3における諸数値との関係を表7に示す。

Figure 2011242526
Next, Table 7 shows the relationship between the conditional expressions (1) to (4) described above and various numerical values in the numerical examples 1 to 3.
Figure 2011242526

いずれの数値実施例の画像読取レンズも上述のように超広画角でありながら、高い結像性能を有している。
原稿面からラインセンサまでの光路長としては約250mmであり、小型のキャリッジ及び画像読取装置として用いるのに適している。
このように本実施例は上述の如く第4ンズG4をアナモフィック面より構成し、上記条件式を満足することにより、高解像度なラインセンサを使用しても像面湾曲収差と副走査方向の倍率ズレの2つを良好に低減することができる。
また本実施例は、4枚という少ないレンズ構成でありながら、広画角で、かつ画質の高い画像読取用レンズを実現することができる。
The image reading lenses of any of the numerical examples have high imaging performance while having an ultra wide angle of view as described above.
The optical path length from the document surface to the line sensor is about 250 mm, which is suitable for use as a small carriage and an image reading device.
As described above, in this embodiment, the fourth Gs G4 is formed of an anamorphic surface as described above, and satisfies the above conditional expression, so that even when a high-resolution line sensor is used, field curvature aberration and magnification in the sub-scanning direction are used. Two of the deviations can be reduced satisfactorily.
In addition, this embodiment can realize an image reading lens having a wide angle of view and high image quality while having a lens configuration as small as four lenses.

[フラットベッド型画像読取装置]
図12は本発明の数値実施例1、2、3の何れかの画像読取レンズをデジタル複写機等のキャリッジ一体型(フラットベッド型)の画像読取装置に適用したときの要部概略図である。
[Flatbed image reader]
FIG. 12 is a schematic view of a main part when the image reading lens of any one of Numerical Examples 1, 2, and 3 of the present invention is applied to a carriage-integrated type (flatbed type) image reading apparatus such as a digital copying machine. .

照明系53から放射された光束は、直接あるいは反射笠を介して原稿を照明する。
照明された原稿51からの反射光は、第1,2,3,4の反射ミラー54a,54b,54c,54dを介してキャリッジ57内部でその光束の光路が折り曲げられる。折り曲げられた光束は、上述した数値実施例1、2、3の何れかの画像読取レンズ56により読取手段としてのラインセンサ55面上に結像する。
The light beam emitted from the illumination system 53 illuminates the document directly or via a reflective shade.
The light reflected from the illuminated original 51 has its light path bent inside the carriage 57 via the first, second, third, and fourth reflecting mirrors 54a, 54b, 54c, and 54d. The bent light beam forms an image on the surface of the line sensor 55 as reading means by the image reading lens 56 of any one of the numerical examples 1, 2, and 3 described above.

そしてキャリッジ57を副走査機構58により矢印H方向(副走査方向)に移動させることにより、原稿51の画像情報を読取る。
読取られた画像情報は不図示のインターフェイスを通じて外部機器であるパーソナルコンピューター等に送られる。
本発明の画像読取装置は上述した数値実施例1、2、3の何れかの画像読取レンズ56を用いることにより、超小型で、かつ画質の高い画像読取装置を実現している。
尚、一体型(フラットベッド型)の画像読取装置に限らず、例えば図13に示す1:2走査光学系を有する画像読取装置に適用しても本発明は上述の実施例と同様に適用することができる。
The image information of the original 51 is read by moving the carriage 57 in the arrow H direction (sub-scanning direction) by the sub-scanning mechanism 58.
The read image information is sent to an external device such as a personal computer through an interface (not shown).
The image reading apparatus of the present invention uses the image reading lens 56 of any one of the numerical examples 1, 2, and 3 described above, thereby realizing an ultra-compact and high-quality image reading apparatus.
Note that the present invention is not limited to an integrated (flatbed) image reading apparatus, and may be applied to an image reading apparatus having a 1: 2 scanning optical system shown in FIG. be able to.

図13に示すように、原稿台(原稿台ガラス)62面上に原稿61が載置される。
照明光源63は、例えばハロゲンランプ、蛍光灯、キセノンランプ、LEDアレイ等により構成される。
反射笠64は、照明光源63からの光束を反射し効率よく原稿を照明する。
第1、2、3の反射ミラー65,66,67は、原稿61からの光束の光路を本体内部で折り曲げる。
数値実施例1〜3の何れかの画像読取用レンズ68により、原稿61の画像情報に基づく光束をラインセンサ(CCDもしくはCMOSセンサ)69面上に結像させている。
70は本体、74は圧板、72は第1ミラー台、73は第2ミラー台である。
As shown in FIG. 13, a document 61 is placed on the surface of a document table (document glass) 62.
The illumination light source 63 is configured by, for example, a halogen lamp, a fluorescent lamp, a xenon lamp, an LED array, or the like.
The reflection shade 64 reflects the light beam from the illumination light source 63 and efficiently illuminates the document.
First, second, and third reflecting mirrors 65, 66, and 67 bend the optical path of the light beam from document 61 inside the main body.
The light beam based on the image information of the original 61 is imaged on the surface of the line sensor (CCD or CMOS sensor) 69 by any one of the image reading lenses 68 of the numerical examples 1 to 3.
70 is a main body, 74 is a pressure plate, 72 is a first mirror base, and 73 is a second mirror base.

同図において照明光源63から放射された光束は直接あるいは反射笠64を介して原稿61を照明している。
そして照明された原稿61からの反射光を第1,2,3の反射ミラー65,66,67を介して本体70内部でその光束の光路を折り曲げ、画像読取用レンズ68により、ラインセンサ69面上に結像させている。
このとき第1、2、3の反射ミラー65,66,67が副走査方向に移動しながら主走査方向を電気的に走査することで原稿61の画像情報を読み取っている。
このとき第2,3の反射ミラー66,67は、第1の反射ミラー65の移動量の半分移動することで原稿61とラインセンサ69との距離を一定としている。
In the figure, the light beam emitted from the illumination light source 63 illuminates the document 61 directly or via the reflective shade 64.
Then, the reflected light from the illuminated original 61 is bent through the first, second and third reflecting mirrors 65, 66, 67 inside the main body 70, and the surface of the line sensor 69 is bent by the image reading lens 68. The image is formed on the top.
At this time, the image information of the document 61 is read by electrically scanning the main scanning direction while the first, second, and third reflecting mirrors 65, 66, and 67 move in the sub-scanning direction.
At this time, the second and third reflection mirrors 66 and 67 move a half of the movement amount of the first reflection mirror 65 to keep the distance between the document 61 and the line sensor 69 constant.

尚、本実施例ではデジタルカラー複写機の画像読取装置に本発明の結像光学系を適用したが、これに限らず、例えばカラーイメージスキャナー等の種々のカラー画像読取装置にも適用することができる。   In this embodiment, the imaging optical system of the present invention is applied to an image reading apparatus of a digital color copying machine. However, the present invention is not limited to this, and can be applied to various color image reading apparatuses such as a color image scanner. it can.

1,51,61,101 原稿
2,55,69,105 読取手段(ラインセンサ)
3,56,68,106 画像読取レンズ
58,108 副走査機構
1, 51, 61, 101 Document 2, 55, 69, 105 Reading means (line sensor)
3, 56, 68, 106 Image reading lens 58, 108 Sub-scanning mechanism

Claims (6)

原稿面上の画像情報を結像させるための画像読取レンズと、該画像読取レンズによる該画像情報の結像位置に並列に配置された複数のラインセンサであって、各該ラインセンサの画素は主走査方向に配列されている複数のラインセンサを有する読取手段と、を有し、
該読取手段を副走査方向に移動させて原稿面上の画像情報を読み取る、画像読取装置であって、
該読取手段は、各該ラインセンサの受光面の短手方向の幅をW、隣り合うラインセンサの中心の間隔をLとするとき、
W/L≦0.015
を満たし、
該画像読取レンズは、少なくとも1面が光軸に対して回転非対称な形状よりなるアナモフィック面からなるアナモフィックレンズを含み、
該アナモフィックレンズの少なくとも1面は、光軸と主走査方向を含む主走査断面内におけるアナモフィック面の断面形状を母線とするとき、該アナモフィック面は主走査断面と垂直で且つ任意の母線方向の位置における該アナモフィック面の法線を含む面内にて定義される子線曲率が、光軸から母線方向に沿って離れるに従い連続的に変化し、
Aを
Figure 2011242526
N:該アナモフィックレンズの材料の屈折率
1:該アナモフィックレンズの原稿側の面の主光線通過位置における子線曲率半径
2:該アナモフィックレンズの像面側の面の主光線通過位置における子線曲率半径
d:該アナモフィックレンズの原稿側の面と像面側の面の間の主光線が通過する位置での距離
と定義し、軸上光束主光線に対するAの値をA0、主走査全画角における光束主光線に対するAの値の最大値をAmax、とするとき、
-0.1 ≦ 1-(Amax/A0) ≦ 0.1
を満たすことを特徴とする画像読取装置。
An image reading lens for imaging image information on the document surface, and a plurality of line sensors arranged in parallel at the image information imaging position by the image reading lens, each pixel of the line sensor being Reading means having a plurality of line sensors arranged in the main scanning direction,
An image reading apparatus for reading image information on a document surface by moving the reading means in the sub-scanning direction,
When the width of the light receiving surface of each line sensor in the lateral direction is W and the distance between the centers of adjacent line sensors is L,
W / L ≦ 0.015
The filling,
The image reading lens includes an anamorphic lens having an anamorphic surface having at least one surface having a rotationally asymmetric shape with respect to the optical axis,
When at least one surface of the anamorphic lens has a cross-sectional shape of the anamorphic surface in the main scanning cross section including the optical axis and the main scanning direction as a generatrix, the anamorphic surface is perpendicular to the main scanning cross section and positioned in any generatrix direction The sub-curvature curvature defined in the plane including the normal line of the anamorphic surface at, changes continuously as it moves away from the optical axis along the generatrix direction,
A
Figure 2011242526
N: Refractive index of the material of the anamorphic lens r 1 : Radius of curvature of the principal ray at the principal ray passing position of the original side surface of the anamorphic lens r 2 : Child at the principal ray passing position of the image side surface of the anamorphic lens Radius of curvature d: Defined as the distance at which the principal ray passes between the original side surface and the image side surface of the anamorphic lens, and the value of A with respect to the axial principal ray is A 0 , the main scanning When the maximum value of A with respect to the luminous flux principal ray at all angles of view is A max ,
-0.1 ≤ 1- (A max / A 0 ) ≤ 0.1
An image reading apparatus characterized by satisfying the above.
主走査方向の5割画角における光束主光線に対するAの値をA50%
主走査方向の7割画角における光束主光線に対するAの値をA70%
主走査方向の9割画角における光束主光線に対するAの値をA90%、とすると、
-0.05≦1-(A70%/A50%)≦0.05、
-0.08≦1-(A90%/A50%)≦0.08、
を満たすことを特徴とする請求項1に記載の画像読取装置。
The value of A with respect to the principal ray of light at a 50% field angle in the main scanning direction is A 50% .
70% of the value of A with respect to the principal ray of light at a 70% field angle in the main scanning direction,
If the value of A with respect to the luminous flux principal ray at 90% field angle in the main scanning direction is A 90% ,
-0.05 ≦ 1- (A 70% / A 50% ) ≦ 0.05,
-0.08 ≦ 1- (A 90% / A 50% ) ≦ 0.08,
The image reading apparatus according to claim 1, wherein:
前記アナモフィックレンズの入射面及び出射面は、光軸に対して回転非対称な形状よりなるアナモフィック面であることを特徴とする請求項1又は2に記載の画像読取装置。   The image reading apparatus according to claim 1, wherein an incident surface and an output surface of the anamorphic lens are anamorphic surfaces having a rotationally asymmetric shape with respect to an optical axis. 前記アナモフィックレンズの面は、光軸上において母線の曲率と子線の曲率が等しいことを特徴とする請求項1乃至3のいずれか1項に記載の画像読取装置。   4. The image reading apparatus according to claim 1, wherein the surface of the anamorphic lens has a curvature of a bus line and a curvature of a child line on the optical axis equal to each other. 5. 前記画像読取レンズは、原稿面側から順に、原稿面側が凸面でメニスカス形状の正の屈折力の第1レンズ、絞り、両レンズ面が凹形状の第2レンズ、両レンズ面が凸形状の第3レンズ、像面側に凸面を向けたメニスカス形状の第4レンズで構成され、
前記アナモフィックレンズは、該第4レンズである、
ことを特徴とする請求項1乃至4のいずれか1項に記載の画像読取装置。
The image reading lens includes, in order from the document surface side, a first lens having a meniscus positive refractive power with a convex surface on the document surface side, a second lens having a concave shape on both lens surfaces, and a first lens having convex surfaces on both lens surfaces. 3 lenses, a fourth meniscus lens with a convex surface facing the image side,
The anamorphic lens is the fourth lens.
The image reading apparatus according to claim 1, wherein the image reading apparatus is an image reading apparatus.
前記第4レンズは樹脂により成形されることを特徴とする請求項5に記載の画像読取装置。   The image reading apparatus according to claim 5, wherein the fourth lens is formed of a resin.
JP2010113289A 2010-05-17 2010-05-17 Image reading apparatus using image reading lens Expired - Fee Related JP5683130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113289A JP5683130B2 (en) 2010-05-17 2010-05-17 Image reading apparatus using image reading lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113289A JP5683130B2 (en) 2010-05-17 2010-05-17 Image reading apparatus using image reading lens

Publications (3)

Publication Number Publication Date
JP2011242526A true JP2011242526A (en) 2011-12-01
JP2011242526A5 JP2011242526A5 (en) 2013-06-27
JP5683130B2 JP5683130B2 (en) 2015-03-11

Family

ID=45409256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113289A Expired - Fee Related JP5683130B2 (en) 2010-05-17 2010-05-17 Image reading apparatus using image reading lens

Country Status (1)

Country Link
JP (1) JP5683130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896482A (en) * 2017-04-24 2017-06-27 浙江舜宇光学有限公司 Iris lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307800A (en) * 1999-04-16 2000-11-02 Canon Inc Color picture reader
JP2008065234A (en) * 2006-09-11 2008-03-21 Canon Inc Image reading apparatus using image reading lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307800A (en) * 1999-04-16 2000-11-02 Canon Inc Color picture reader
JP2008065234A (en) * 2006-09-11 2008-03-21 Canon Inc Image reading apparatus using image reading lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896482A (en) * 2017-04-24 2017-06-27 浙江舜宇光学有限公司 Iris lens
CN106896482B (en) * 2017-04-24 2022-03-29 浙江舜宇光学有限公司 Iris lens

Also Published As

Publication number Publication date
JP5683130B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
US7929187B2 (en) Image optical system and image reading apparatus equipped with same
JP3740370B2 (en) Image reading lens and image reading apparatus using the same
EP1239655A2 (en) Image reading imaging optical system and image reading apparatus using the same
JP5031303B2 (en) Image reading device
JP2005266771A (en) Image reading lens and image reader
US7414761B2 (en) Imaging optical system and image reading apparatus
JPH11249013A (en) Image forming lens and optical device using the same
JP2008040317A (en) Lens for reading image, and image reading apparatus using the same
JP5683130B2 (en) Image reading apparatus using image reading lens
JP2008158414A (en) Imaging optical system and image reading device using the same
JP5645472B2 (en) Imaging optical system and image reading apparatus having the same
JP2002314767A (en) Image-forming lens and image reader using the same
JP2005234068A (en) Image reading lens and image reader
JP2004138799A (en) Imaging optical system
JP2003035865A (en) Original reading lens and original reader using the same
JP2007057968A (en) Reading lens, reading lens unit, original reading apparatus and image forming apparatus
JP2000307800A (en) Color picture reader
JP2006106728A (en) Imaging optical system and image reading apparatus using the same
JP2002281236A (en) Image-reading apparatus
JP4759310B2 (en) Reading optical system and image reading apparatus using the same
JP2002244033A (en) Image reader having image reading lens
JP2017187663A (en) Imaging optical system
JP2008054201A (en) Image reading device
JP2006201571A (en) Lens for reading image and device for reading image using the same
JP2002214528A (en) Original reading lens and original reader using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120730

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120731

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R151 Written notification of patent or utility model registration

Ref document number: 5683130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees