JP2011242256A - Vibration gyro - Google Patents

Vibration gyro Download PDF

Info

Publication number
JP2011242256A
JP2011242256A JP2010114634A JP2010114634A JP2011242256A JP 2011242256 A JP2011242256 A JP 2011242256A JP 2010114634 A JP2010114634 A JP 2010114634A JP 2010114634 A JP2010114634 A JP 2010114634A JP 2011242256 A JP2011242256 A JP 2011242256A
Authority
JP
Japan
Prior art keywords
detection
vibrator
drive
driving
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010114634A
Other languages
Japanese (ja)
Inventor
Yoichi Mochida
洋一 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010114634A priority Critical patent/JP2011242256A/en
Publication of JP2011242256A publication Critical patent/JP2011242256A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration gyro which is capable of suppressing mixture of an unnecessary signal in a detection signal even when shear strain acts on a package.SOLUTION: A vibration gyro 50 includes a vibrator 1 and a lid plate 50A. The vibrator 1 includes drive mass parts 13A to 13C, a drive beam, detection mass parts 17A to 17D, and a support beam. The drive mass parts 13A to 13C vibrate by a drive. The drive beam supports the drive mass parts 13A to 13C and flexurally vibrates by force acting from the drive mass parts 13A to 13C. The detection mass parts 17A to 17D are supported by the drive mass parts 13A to 13C in a state of being freely displaced in response to the Coriolis force acting due to vibrations of the drive mass parts 13A to 13C. The support beam supports the drive beam in a position being a node of flexural vibration. The lid plate 50A is parallel with a vibration direction of the drive mass parts 13A to 13C and a displacement direction of the detection mass parts 17A to 17D, and the vibrator is fixed in an area opposite to a center line of the vibrator 1 parallel with the vibration direction.

Description

この発明は、振動子を駆動し、その振動方向と直交する方向に作用する力を検出する振動ジャイロに関する。   The present invention relates to a vibration gyro that drives a vibrator and detects a force acting in a direction orthogonal to the vibration direction.

ある種の振動ジャイロは、支持板の主面法線方向をZ軸とした直交座標系におけるX軸を駆動方向として振動子を振動させ、振動ジャイロがZ軸回りに回転することによって振動方向と直交するY軸方向に作用するコリオリの力を、検出用固定構造部と振動子との間の電極間隔および電極間容量の変化から検出する。(例えば、特許文献1,2参照)。   A certain type of vibrating gyroscope vibrates the vibrator with the X axis in the Cartesian coordinate system with the main surface normal direction of the support plate as the Z axis as the driving direction, and the vibrating gyroscope rotates around the Z axis. The Coriolis force acting in the orthogonal Y-axis direction is detected from changes in the electrode spacing and interelectrode capacitance between the detection fixing structure and the vibrator. (For example, refer to Patent Documents 1 and 2).

ここで、従来の振動ジャイロの構成例を説明する。
図1(A)は従来の振動ジャイロ101の平面図である。
Here, a configuration example of a conventional vibrating gyroscope will be described.
FIG. 1A is a plan view of a conventional vibrating gyroscope 101.

振動ジャイロ101は、蓋板(不図示)、支持板102A、外枠部102B、アンカー103、駆動梁104A、駆動質量部105A〜105C、検出梁104B、検出質量部106A〜106C、検出電極107A〜107D、支柱部108A〜108D、および駆動用固定構造部109を備える。
外枠部102Bは、支持板102Aと蓋板(不図示)とに接合される。アンカー103、駆動梁104A、駆動質量部105A〜105C、検出梁104B、および検出質量部106A〜106Cは低抵抗シリコン材料(導電性)による一体の振動子を構成し、グランドに接続される。検出電極107A〜107Dおよび支柱部108A〜108Dは低抵抗シリコン材料(導電性)による検出用固定構造部を構成する。
The vibration gyro 101 includes a cover plate (not shown), a support plate 102A, an outer frame portion 102B, an anchor 103, a drive beam 104A, drive mass units 105A to 105C, a detection beam 104B, detection mass units 106A to 106C, and detection electrodes 107A to 107A. 107D, support | pillar part 108A-108D, and the fixing structure part 109 for a drive are provided.
The outer frame portion 102B is joined to a support plate 102A and a lid plate (not shown). The anchor 103, the driving beam 104A, the driving mass units 105A to 105C, the detection beam 104B, and the detection mass units 106A to 106C constitute an integrated vibrator made of a low resistance silicon material (conductive) and are connected to the ground. The detection electrodes 107A to 107D and the support portions 108A to 108D constitute a detection fixed structure portion made of a low resistance silicon material (conductive).

上記振動子を構成する駆動梁104Aは、Y軸方向を長手方向としていて、X軸方向の側面に連結された2本のアンカー103で外枠部102Bに支持されている。駆動質量部105A,105Bは2本の駆動梁104Aの端部間に、駆動質量部105Cは2本の駆動梁104Aの中央部間に連結される。検出質量部106A〜106Cは、駆動質量部105A〜105Cそれぞれの備える開口内で、検出梁104Bを介して駆動質量部105A〜105Cに連結される。   The driving beam 104A constituting the vibrator is supported by the outer frame portion 102B with two anchors 103 that are connected to the side surface in the X-axis direction with the Y-axis direction as the longitudinal direction. The driving mass portions 105A and 105B are connected between the ends of the two driving beams 104A, and the driving mass portion 105C is connected between the central portions of the two driving beams 104A. The detection mass units 106A to 106C are connected to the drive mass units 105A to 105C via the detection beams 104B in the openings provided in the drive mass units 105A to 105C, respectively.

上記検出用固定構造部を構成する検出電極107A〜107Dおよび支柱部108A〜108Dは、検出質量部106A〜106Cの備える開口内に検出質量部106A〜106Cから離間して配置され、支柱部108A〜108Dによって支持板102Aと蓋板(不図示)とに接合される。検出電極107Aと検出電極107Cとは蓋板の上面で接続され、検出電極107Bと検出電極107Dとも蓋板の上面で接続される。   The detection electrodes 107A to 107D and the support column portions 108A to 108D constituting the detection fixing structure unit are arranged in the openings provided in the detection mass units 106A to 106C and spaced from the detection mass units 106A to 106C, and the support column units 108A to 108A. The support plate 102A and the lid plate (not shown) are joined by 108D. The detection electrode 107A and the detection electrode 107C are connected on the upper surface of the lid plate, and the detection electrode 107B and the detection electrode 107D are also connected on the upper surface of the lid plate.

駆動用固定構造部109は検出用固定構造部と同様に支柱部によって支持板102Aと蓋板(不図示)とに接合され、駆動電圧が印加される。これにより、振動子を構成する駆動質量部105A〜105BがX軸に沿った駆動方向で振動し、駆動梁104Aも同方向に変形(撓み振動)する。この状態で振動ジャイロ101がZ軸回りに回転すると、検出質量部106A〜106CにY軸に沿った方向のコリオリの力が作用し、検出質量部106A〜106Cがその方向に変位する。これにより、検出質量部106A〜106Cと検出電極107A〜107Dとの間の電極間隔および電極間容量が変化する。このとき、検出質量部106A,106Bと検出質量部106Cとでは、X軸方向の振動が逆相になり、コリオリの力が逆方向に作用する。そこで、検出電極107A,107Cから合成容量を検出するとともに、検出電極107B,107Dからも合成容量を検出すれば、両者の差動容量から振動ジャイロ101のZ軸回りの角速度が検出可能になる。   Similarly to the detection fixing structure portion, the driving fixing structure portion 109 is joined to the support plate 102A and a cover plate (not shown) by a support portion, and a driving voltage is applied thereto. As a result, the driving mass portions 105A to 105B constituting the vibrator vibrate in the driving direction along the X axis, and the driving beam 104A is also deformed (flexed vibration) in the same direction. When the vibrating gyroscope 101 rotates around the Z axis in this state, Coriolis force in the direction along the Y axis acts on the detection mass units 106A to 106C, and the detection mass units 106A to 106C are displaced in that direction. Thereby, the electrode interval between the detection mass units 106A to 106C and the detection electrodes 107A to 107D and the capacitance between the electrodes change. At this time, in the detection mass units 106A and 106B and the detection mass unit 106C, the vibrations in the X-axis direction are in opposite phases, and the Coriolis force acts in the opposite direction. Therefore, if the combined capacitance is detected from the detection electrodes 107A and 107C and the combined capacitance is also detected from the detection electrodes 107B and 107D, the angular velocity around the Z axis of the vibration gyro 101 can be detected from the differential capacitance of both.

なお、このような振動ジャイロ101にY軸に沿った加速度が作用した場合、検出質量部106A〜106Cそれぞれに作用する慣性力は、検出質量部106A〜106Cいずれも同方向である。このため、上記差動容量では各電極間容量の変化が打ち消し合い、Y軸方向の加速度の影響を受けずにZ軸回りの角速度を検出できる。   Note that when acceleration along the Y-axis is applied to such a vibrating gyroscope 101, the inertial force acting on each of the detection mass units 106A to 106C is in the same direction in all of the detection mass units 106A to 106C. For this reason, in the differential capacitor, changes in the capacitance between the electrodes cancel each other, and the angular velocity around the Z axis can be detected without being affected by the acceleration in the Y axis direction.

図1(B)は従来の振動ジャイロ201の平面図である。
この振動ジャイロ201は、振動ジャイロ101と主要部構成が同一であるが振動子の支持部分が相違する。具体的には、駆動梁204が2つのサブアンカー203に連結され、サブアンカー203がY軸方向を長手とする支持梁205の一方側面の両端に連結され、支持梁205の他方側面の中央部がアンカー206を介して外枠部202Bに連結される。
FIG. 1B is a plan view of a conventional vibrating gyroscope 201.
The vibration gyro 201 has the same main part configuration as that of the vibration gyro 101 but is different in the support portion of the vibrator. Specifically, the driving beam 204 is connected to two sub-anchors 203, the sub-anchors 203 are connected to both ends of one side surface of the support beam 205 having the longitudinal direction in the Y-axis direction, and the central portion of the other side surface of the support beam 205 Is connected to the outer frame portion 202 </ b> B via the anchor 206.

図1(C)は従来の振動ジャイロ301の平面図である。
この振動ジャイロ301は、4つの駆動質量部と、内側2つの駆動質量部の内部に配置された検出質量部とからなる振動子を備える。そして振動ジャイロ301は、駆動梁307の両端部および中央部が3つのサブアンカー306に連結され、サブアンカー306がY軸方向を長手とする支持梁305の一方側面に連結され、支持梁305の他方側面の中央部がアンカー304を介して外枠部302Bに連結される。
FIG. 1C is a plan view of a conventional vibrating gyroscope 301.
The vibrating gyro 301 includes a vibrator including four driving mass units and a detection mass unit arranged inside the two inner driving mass units. In the vibration gyro 301, both ends and the center of the drive beam 307 are connected to three sub-anchors 306, and the sub-anchor 306 is connected to one side surface of the support beam 305 having a longitudinal direction in the Y-axis direction. The central portion of the other side surface is connected to the outer frame portion 302B via the anchor 304.

特許第3589182号公報Japanese Patent No. 3589182 特許第3870895号公報Japanese Patent No. 3870895

図2は、従来の振動ジャイロ301に剪断歪みが生じた場合の変形例を説明する模式図である。なお、図中のA1,A2(A1’,A2’)は、アンカー304と外枠部302Bとの接続点、即ち振動子の固定点を示している。
振動ジャイロ301の筐体に剪断歪みが作用すると、矩形の一方の対角線方向の寸法が伸び、他方の対角線方向の寸法が縮み、図2(A)に示す矩形から図2(B)に示す平行四辺形に筐体が変形する。この変形により、固定点A1,A2から固定点A1’,A2’に振動子の固定点が回転変位する。この際、振動子はアンカー304を介して壁面に固定支持されているため、駆動梁307が壁面と略平行な状態を維持しようとし壁面の法線方向である振動子の支持方向が固定点の回転変位方向とは逆方向に回転する。このため、振動子には過大な剪断歪みが作用して大きく変形する。すると、駆動質量部が振動する駆動方向と、コリオリの力により検出質量部が振動する方向(検出方向)との直交性が崩れ、検出信号に駆動による不要信号が混入することになる。この問題は従来の振動ジャイロ101や振動ジャイロ201でも同様に生じる。
FIG. 2 is a schematic diagram for explaining a modification example in the case where shear strain is generated in the conventional vibrating gyroscope 301. In the figure, A1, A2 (A1 ′, A2 ′) indicate connection points between the anchor 304 and the outer frame portion 302B, that is, fixed points of the vibrator.
When shear strain is applied to the casing of the vibration gyro 301, the size of one of the rectangles in the diagonal direction is expanded, and the size of the other diagonal direction is reduced. From the rectangle shown in FIG. 2 (A) to the parallel shown in FIG. 2 (B). The housing is deformed into a quadrilateral. By this deformation, the fixed point of the vibrator is rotationally displaced from the fixed points A1 and A2 to the fixed points A1 ′ and A2 ′. At this time, since the vibrator is fixedly supported on the wall surface via the anchor 304, the driving beam 307 tries to maintain a state substantially parallel to the wall surface, and the support direction of the vibrator, which is the normal direction of the wall surface, is the fixed point. It rotates in the direction opposite to the rotational displacement direction. For this reason, an excessive shearing strain acts on the vibrator and deforms greatly. Then, the orthogonality between the driving direction in which the driving mass unit vibrates and the direction in which the detection mass unit vibrates (detection direction) due to the Coriolis force is lost, and an unnecessary signal due to driving is mixed into the detection signal. This problem similarly occurs in the conventional vibration gyro 101 and vibration gyro 201.

上述の不要信号は通常の検出信号と位相が90°異なるため、検出信号の同期検波を行うことでほとんど除去することができる。しかしながら、同期検波の初期位相ずれや温度による位相変化があると、検出信号から不要信号を完全に除去することが難しくなる。したがって、剪断歪みによって振動ジャイロの出力変動や温度特性が劣化することになる。   Since the above-mentioned unnecessary signal is 90 ° out of phase with the normal detection signal, it can be almost eliminated by performing synchronous detection of the detection signal. However, if there is an initial phase shift of synchronous detection or a phase change due to temperature, it becomes difficult to completely remove unnecessary signals from the detection signal. Therefore, the output fluctuation and temperature characteristics of the vibration gyro deteriorate due to the shear strain.

また筐体の初期歪により、Z軸回りの角速度が作用していないときにも検出信号に不要信号が混入するので、同期検波前の信号増幅率を大きくできず、センサ感度を設計値にするためには同期検波後の信号増幅率を大きくする必要が生じる。振動ジャイロのSN比は、同期検波前の信号増幅率が大きい方が良好であり、同期検波後の信号増幅率が大きければSN比が低下してしまう。   In addition, due to the initial distortion of the casing, unnecessary signals are mixed in the detection signal even when the angular velocity around the Z-axis is not acting. Therefore, the signal amplification factor before synchronous detection cannot be increased, and the sensor sensitivity is set to the design value. For this purpose, it is necessary to increase the signal amplification factor after synchronous detection. The SN ratio of the vibration gyro is better when the signal amplification factor before synchronous detection is larger. If the signal amplification factor after synchronous detection is larger, the SN ratio is lowered.

そこで本発明は、筐体に剪断歪みが作用しても、検出信号に不要信号が混入することを抑止できる振動ジャイロの提供を目的とする。   Therefore, an object of the present invention is to provide a vibrating gyroscope that can prevent an unnecessary signal from being mixed into a detection signal even if a shear strain acts on the casing.

この発明の振動ジャイロは、振動子と支持板とを備える。振動子は駆動質量部、駆動梁、検出質量部および支持梁を備える。駆動質量部は駆動により振動する。駆動梁は、駆動質量部を支持し、駆動質量部から作用する力により撓み振動する。検出質量部は、駆動質量部の振動により作用するコリオリの力に対して変位自在な状態で、駆動質量部に支持される。支持梁は、駆動梁を撓み振動の節となる位置で支持する。支持板は、駆動質量部の振動方向および検出質量部の変位方向に平行である。上記構成の振動ジャイロにおいて、振動子の中心を通り振動方向に平行な中心線に対向する領域で、支持板に対する振動子の固定を行った構成である。
この構成では、支持板に剪断歪みが作用した場合に、上記振動子の中心線の回転に追従して支持梁と支持板との固定点が回転変位する。その際、支持梁は支持板の法線方向を支持方向として固定支持されているので、従来構造のように支持方向が固定点の回転変位方向と逆方向に回転することがなく、振動子に作用する剪断歪みが極めて低減したものになる。したがって、この構成の振動ジャイロは、筐体に剪断歪みが作用した状態でも、駆動方向と検出方向との直交性が高く検出信号に不要信号が混入することを抑止できる。
The vibration gyro according to the present invention includes a vibrator and a support plate. The vibrator includes a drive mass unit, a drive beam, a detection mass unit, and a support beam. The driving mass unit vibrates by driving. The drive beam supports the drive mass unit and bends and vibrates due to the force acting from the drive mass unit. The detection mass unit is supported by the drive mass unit in a state in which the detection mass unit can be displaced with respect to the Coriolis force acting by the vibration of the drive mass unit. The support beam supports the drive beam at a position where it becomes a bending vibration node. The support plate is parallel to the vibration direction of the drive mass unit and the displacement direction of the detection mass unit. In the vibration gyro configured as described above, the vibrator is fixed to the support plate in a region passing through the center of the vibrator and facing a center line parallel to the vibration direction.
In this configuration, when a shear strain acts on the support plate, the fixing point between the support beam and the support plate is rotationally displaced following the rotation of the center line of the vibrator. At that time, since the support beam is fixedly supported with the normal direction of the support plate as the support direction, the support direction does not rotate in the direction opposite to the rotational displacement direction of the fixed point unlike the conventional structure, and The acting shear strain is extremely reduced. Therefore, the vibration gyro having this configuration has high orthogonality between the driving direction and the detection direction even in a state where shear strain is applied to the casing, and can prevent the detection signal from being mixed with an unnecessary signal.

この発明の支持梁は、前記中心線に対して直交する直線梁状であると好適である。
この構成は支持梁の剛性が高く、支持梁の撓みを抑制して駆動梁の変形および連結部分(サブアンカー)の変位を抑制でき、高性能な振動ジャイロを構成できる。
The support beam of the present invention is preferably in the form of a straight beam orthogonal to the center line.
In this configuration, the rigidity of the support beam is high, and the deformation of the drive beam and the displacement of the connecting portion (sub-anchor) can be suppressed by suppressing the deflection of the support beam, so that a high-performance vibration gyro can be configured.

この発明の振動ジャイロはミアンダライン状に屈曲する連結部(サブアンカー)で、前記支持梁と前記駆動梁とを連結すると好適である。
この構成では、駆動梁における振動の節となる位置を、拘束することなく弾性支持し、これにより支持梁に作用する剪断歪を連結部で開放することができる。したがって、駆動梁および各質量部に及ぶ剪断歪みを低減できる。
The vibrating gyroscope according to the present invention is preferably a connecting portion (sub-anchor) that bends in a meander line shape to connect the support beam and the driving beam.
In this configuration, the position serving as a vibration node in the drive beam is elastically supported without being restricted, and thereby shear strain acting on the support beam can be released by the connecting portion. Therefore, the shear strain extending to the drive beam and each mass part can be reduced.

この発明の振動ジャイロは振動子を開口内部に収める外枠部と、前記外枠部の開口を閉塞する蓋板および底板と、を備え、底板の外側主面が実装面となる構造であり、蓋板のみが振動子に接合されて支持板となる構成であると好適である。
この構成では、他部材に固定される底板に作用する剪断歪みが、振動子に対して直接ではなく外枠部および蓋板を介して作用するので、振動子に作用する剪断歪みを低減できる。
The vibration gyro of the present invention includes an outer frame portion that houses the vibrator inside the opening, a lid plate and a bottom plate that closes the opening of the outer frame portion, and has a structure in which an outer main surface of the bottom plate is a mounting surface. It is preferable that only the lid plate be joined to the vibrator to form a support plate.
In this configuration, since the shear strain acting on the bottom plate fixed to the other member acts on the vibrator via the outer frame portion and the cover plate, the shear strain acting on the vibrator can be reduced.

この発明によれば、支持板に対する振動子の固定を、振動子の中心を通り振動方向に平行な中心線に対向する領域で行うので、支持板に剪断歪みが作用した場合に、従来構造のように支持方向が固定点の回転変位方向と逆方向に回転することがなく、振動子に作用する剪断歪みが極めて低減したものになる。したがって、この構成の振動ジャイロは、筐体に剪断歪みが作用した状態でも、駆動方向と検出方向との直交性が高く検出信号に不要信号が混入することを抑止できる。   According to the present invention, the vibrator is fixed to the support plate in a region facing the center line passing through the center of the vibrator and parallel to the vibration direction. Therefore, when shear strain acts on the support plate, Thus, the supporting direction does not rotate in the direction opposite to the rotational displacement direction of the fixed point, and the shear strain acting on the vibrator is extremely reduced. Therefore, the vibration gyro having this configuration has high orthogonality between the driving direction and the detection direction even in a state where shear strain is applied to the casing, and can prevent the detection signal from being mixed with an unnecessary signal.

従来の振動ジャイロの構成を説明する図である。It is a figure explaining the structure of the conventional vibration gyroscope. 従来の振動ジャイロの剪断歪みによる変形例を説明する図である。It is a figure explaining the modification by the shear distortion of the conventional vibration gyroscope. 本発明の第1の実施形態に係る振動ジャイロの構成を説明する図である。It is a figure explaining the structure of the vibration gyroscope which concerns on the 1st Embodiment of this invention. 図3に示す振動ジャイロの動作を説明する図である。It is a figure explaining operation | movement of the vibration gyro shown in FIG. 図3に示す振動ジャイロの部分拡大図である。FIG. 4 is a partially enlarged view of the vibration gyro shown in FIG. 3. 図3に示す振動ジャイロに接続する駆動検出回路の回路構成を説明する図である。It is a figure explaining the circuit structure of the drive detection circuit connected to the vibration gyro shown in FIG. 図3に示す振動ジャイロの剪断歪みによる影響を説明する図である。It is a figure explaining the influence by the shear distortion of the vibration gyro shown in FIG. 本発明の第2の実施形態に係る振動ジャイロの構成を説明する図である。It is a figure explaining the structure of the vibration gyroscope which concerns on the 2nd Embodiment of this invention. 図8に示す振動ジャイロの動作を説明する図である。It is a figure explaining operation | movement of the vibration gyro shown in FIG. 図8に示す振動ジャイロの剪断歪みによる影響を説明する図である。It is a figure explaining the influence by the shear distortion of the vibration gyro shown in FIG. 実施例と従来例とを比較して説明する図である。It is a figure which compares and demonstrates an Example and a prior art example.

以下の振動ジャイロの説明では、剪断歪みの非作用時における振動ジャイロの回転検出軸を直交座標系のZ軸とし、駆動方向を直交座標系のX軸方向、コリオリの力の作用方向を直交座標系のY軸方向とする。   In the following description of the vibration gyro, the rotation detection axis of the vibration gyro when no shear strain is applied is the Z axis of the orthogonal coordinate system, the drive direction is the X axis direction of the orthogonal coordinate system, and the direction of action of the Coriolis force is the orthogonal coordinate. This is the Y-axis direction of the system.

まず、本発明の第1の実施形態に係る振動ジャイロ50について説明する。図3(A)は振動ジャイロ50の構成を示す平面図、図3(B)は振動ジャイロ50を実装基板150に実装した状態での振動子の中心を通るX軸に沿った断面図である。   First, the vibration gyro 50 according to the first embodiment of the present invention will be described. 3A is a plan view showing the configuration of the vibrating gyroscope 50, and FIG. 3B is a cross-sectional view along the X axis passing through the center of the vibrator in a state where the vibrating gyroscope 50 is mounted on the mounting substrate 150. .

振動ジャイロ50は、段面視して蓋板50A(支持板)、低抵抗シリコン板50B、底板50CをZ軸に沿って順に積層した構成である。低抵抗シリコン板50Bは、分割されてなる以下の構成、振動子1、検出用固定構造部2A,2B、駆動用固定構造部3A,3B、モニタ用固定構造部4A,4B、および外枠部5を備える。蓋板50Aと外枠部5と底板50Cとは、内部空間を備える筐体を構成する。この筐体は、底板50Cの外側主面で実装基板150に接合し、蓋板50Aの外側主面に形成した外部接続端子(不図示)を実装基板150の実装電極(不図示)にワイヤボンディングする。   The vibration gyro 50 has a configuration in which a lid plate 50A (support plate), a low-resistance silicon plate 50B, and a bottom plate 50C are sequentially stacked along the Z-axis in a step view. The low-resistance silicon plate 50B is divided into the following configuration, vibrator 1, detection fixing structure portions 2A and 2B, driving fixing structure portions 3A and 3B, monitor fixing structure portions 4A and 4B, and an outer frame portion. 5 is provided. The cover plate 50A, the outer frame portion 5, and the bottom plate 50C constitute a housing having an internal space. This casing is bonded to the mounting substrate 150 on the outer main surface of the bottom plate 50C, and external connection terminals (not shown) formed on the outer main surface of the lid plate 50A are wire-bonded to mounting electrodes (not shown) on the mounting substrate 150. To do.

振動ジャイロ50の概略構造について説明すると、振動子1はX−Y面で振動子1の中心を通るX軸上の位置(固定点A1,A2)で蓋板50Aに固定している。また、X軸方向に変位自在な領域として駆動質量部13A〜13Cを備え、Y軸方向に変位自在な領域として検出質量部17A〜17Dを備える。   The schematic structure of the vibrating gyroscope 50 will be described. The vibrator 1 is fixed to the cover plate 50A at positions (fixed points A1, A2) on the X axis passing through the center of the vibrator 1 on the XY plane. Further, the drive mass units 13A to 13C are provided as regions that are displaceable in the X-axis direction, and the detection mass units 17A to 17D are provided as regions that are displaceable in the Y-axis direction.

検出用固定構造部2A,2Bは、検出質量部17A〜17Dとの間の電極間容量を検出して振動子1に作用するコリオリの力を検知するために設けていて、振動子1の備える開口内部に配置し、全体が変形しないように蓋板50Aおよび底板50Cに固定している。
駆動用固定構造部3A,3Bは、振動子1を挟むY軸両外側に配置して全体が変形しないように蓋板50Aおよび底板50Cに固定している。この駆動用固定構造部3A,3Bに駆動電圧を印加することで、駆動用固定構造部3A,3Bと駆動質量部13A,13Bとの間の静電力が変動し、X軸方向の振動が生じる。
The detection fixing structures 2A and 2B are provided to detect the Coriolis force acting on the vibrator 1 by detecting the interelectrode capacitance between the detection mass parts 17A to 17D. It arrange | positions inside opening and is being fixed to the cover board 50A and the baseplate 50C so that the whole may not deform | transform.
The driving fixing structure portions 3A and 3B are arranged on both outer sides of the Y axis across the vibrator 1 and are fixed to the lid plate 50A and the bottom plate 50C so as not to be deformed as a whole. By applying a driving voltage to the driving fixing structure portions 3A and 3B, the electrostatic force between the driving fixing structure portions 3A and 3B and the driving mass portions 13A and 13B varies, and vibration in the X-axis direction occurs. .

モニタ用固定構造部4A,4Bは振動子1を挟むX軸両外側に配置して全体が変形しないように蓋板50Aおよび底板50Cに固定している。このモニタ用固定構造部4A,4Bは、駆動質量部13Cとの間の電極間容量を検出して駆動用固定構造部3A,3Bに印加する駆動電圧を調整し、振動子1の振動を適切なものにするために設けている。   The monitor fixing structures 4A and 4B are arranged on both outer sides of the X-axis sandwiching the vibrator 1, and are fixed to the cover plate 50A and the bottom plate 50C so as not to be deformed as a whole. The monitor fixing structure portions 4A and 4B detect the interelectrode capacitance between the driving mass portion 13C and adjust the driving voltage applied to the driving fixing structure portions 3A and 3B, thereby appropriately adjusting the vibration of the vibrator 1. It is provided to make things better.

図4(A)は、振動子1の駆動による変形を説明する図である。駆動質量部13A,13Bと、前述の駆動用固定構造部3A,3B(不図示)との間の静電力が変動することにより、駆動質量部13A〜13CはX軸方向に振動する。駆動質量部13A,13Bと駆動質量部13Cとでは駆動方向が逆になる。   FIG. 4A is a diagram for explaining deformation due to driving of the vibrator 1. The drive mass units 13A to 13C vibrate in the X-axis direction when the electrostatic force varies between the drive mass units 13A and 13B and the above-described drive fixing structure units 3A and 3B (not shown). The driving directions of the driving mass units 13A and 13B and the driving mass unit 13C are reversed.

図4(B)は振動子1のコリオリの力による変形を説明する図である。振動子1にZ軸回りの角速度が作用すると、検出質量部17A〜17Dにコリオリの力が作用する。駆動質量部13A,13Bと駆動質量部13Cとでは駆動方向が逆なので、コリオリの力も逆方向に作用し、検出質量部17A,17BがY軸負方向に変位する際には、検出質量部17C,17DはY軸正方向に変位する。   FIG. 4B is a diagram for explaining deformation of the vibrator 1 due to Coriolis force. When an angular velocity around the Z axis acts on the vibrator 1, a Coriolis force acts on the detection mass units 17A to 17D. Since the driving directions of the driving mass units 13A and 13B and the driving mass unit 13C are opposite to each other, the Coriolis force also acts in the opposite direction. , 17D are displaced in the positive direction of the Y-axis.

再び図3に戻り、振動ジャイロ50の詳細構造について説明していく。
振動子1は、一体に成形された以下の構成、支持アンカー(支持梁)10A〜10D、サブアンカー11A〜11D、駆動梁12A,12B、駆動質量部13A〜13C、駆動櫛歯部14A,14B(一部不図示)、検出梁15A〜15D,16A〜16D、検出質量部17A〜17D、検出櫛歯部18A〜18D(一部不図示)、およびモニタ櫛歯部19A,19B(一部不図示)を備える。
Returning to FIG. 3 again, the detailed structure of the vibrating gyroscope 50 will be described.
The vibrator 1 has the following structure integrally formed, support anchors (support beams) 10A to 10D, sub-anchors 11A to 11D, drive beams 12A and 12B, drive mass portions 13A to 13C, and drive comb teeth portions 14A and 14B. (Partially not shown), detection beams 15A to 15D, 16A to 16D, detection mass parts 17A to 17D, detection comb teeth 18A to 18D (partially not shown), and monitor comb teeth 19A and 19B (partially not shown) As shown).

駆動櫛歯部14A,14Bは、それぞれ駆動質量部13A,13Bに付設している。図5(A)は駆動櫛歯部14A近傍の拡大平面図である。なお駆動櫛歯部14Bは駆動櫛歯部14Aと同じ構成である。
駆動櫛歯部14Aは、駆動質量部13Aの側面からY軸に沿って突出する線状部位の一方側面からX軸に沿って櫛歯状に突出する櫛歯電極を備える。この駆動櫛歯部14Aの櫛歯電極は、駆動用固定構造部3Aが備える櫛歯電極33に微小間隔を隔てて対向する。なお、駆動用固定構造部3Aは、蓋板50Aおよび底板50Cに固定される円柱形の支柱部31と、支柱部31に連結された線状部位32と、線状部位32からX軸に沿って櫛歯状に突出する櫛歯電極33とを備える構成である。なお、駆動用固定構造部3Aは、蓋板50Aに設けるビア電極によって外部接続端子に電気的に接続される。このような構成で、駆動櫛歯部14Aと駆動用固定構造部3Aとの間に駆動電圧(バイアス電圧および交番電圧)が印加されると、駆動櫛歯部14Aと駆動用固定構造部3Aとの間の静電力の変動により駆動質量部13AがX軸に沿って振動することになる。
The driving comb portions 14A and 14B are attached to the driving mass portions 13A and 13B, respectively. FIG. 5A is an enlarged plan view in the vicinity of the driving comb portion 14A. The drive comb tooth portion 14B has the same configuration as the drive comb tooth portion 14A.
The driving comb portion 14A includes a comb electrode protruding in a comb shape along the X axis from one side surface of a linear portion protruding along the Y axis from the side surface of the driving mass portion 13A. The comb-tooth electrode of the drive comb-tooth portion 14A faces the comb-tooth electrode 33 included in the drive fixing structure portion 3A with a minute gap. The driving fixing structure 3A includes a columnar column 31 fixed to the cover plate 50A and the bottom plate 50C, a linear portion 32 connected to the column 31, and the linear portion 32 along the X axis. And a comb electrode 33 protruding in a comb shape. The driving fixing structure 3A is electrically connected to the external connection terminal by a via electrode provided on the cover plate 50A. With such a configuration, when a driving voltage (bias voltage and alternating voltage) is applied between the driving comb tooth portion 14A and the driving fixing structure portion 3A, the driving comb tooth portion 14A and the driving fixing structure portion 3A The driving mass unit 13A vibrates along the X axis due to the fluctuation of the electrostatic force during the period.

再び図3に戻り説明する。駆動質量部13A,13Bは駆動質量部13Cを挟むようにY軸に沿って配列している。駆動質量部13A,13Bは平面視してY軸内側が開口した概略コの字形であり、開口底面を構成するX軸に沿った線状部がX軸両外側に張り出し、Y軸内側の側面で駆動梁12A,12BのY軸端部に連結している。駆動質量部13Cは平面視してY軸両外側が開口した概略H字形であり、Y軸中央部のX軸に沿った線状部の両端で駆動梁12A,12BのY軸中央部に連結している。   Returning again to FIG. The drive mass units 13A and 13B are arranged along the Y axis so as to sandwich the drive mass unit 13C. The driving mass portions 13A and 13B are substantially U-shaped with the Y-axis inner side opened in a plan view, and the linear portions along the X-axis constituting the bottom surface of the opening project outward from both sides of the X-axis. Are connected to the Y-axis ends of the drive beams 12A and 12B. The driving mass portion 13C is substantially H-shaped with both outer sides of the Y-axis opened in plan view, and is connected to the Y-axis central portion of the driving beams 12A and 12B at both ends of the linear portion along the X-axis of the Y-axis central portion. is doing.

駆動梁12A,12Bは、駆動質量部13A〜13Cを挟むX軸両外側に配置している。駆動梁12A,12Bはそれぞれ平面視してY軸方向に長尺な概略線状形であり、これによりX軸方向に変形(撓み振動)可能な構成になっている。また駆動梁12A,12Bは、Y軸方向全長に対して略1/4の長さとなる位置、および、略3/4の長さとなる位置で、サブアンカー11A〜11Dに連結している。サブアンカー11A〜11Dは、X軸に対して蛇行する概略ミアンダ状であり、一端を駆動梁12A,12Bの側面に連結し、他端を、支持アンカー10A〜10Dの側面に連結している。支持アンカー10A〜10Dは、Y軸方向に長尺な概略線状形であり、Y軸内側の端部が固定点A1,A2で蓋板50Aに固定される。支持アンカー10A〜10Dは、Y軸方向に長尺な概略線状形であるので剛性が高く、サブアンカー11A〜11Dから伝わる振動によって変位することが抑制できる。   The driving beams 12A and 12B are arranged on both outer sides of the X axis with the driving mass portions 13A to 13C interposed therebetween. Each of the driving beams 12A and 12B has a substantially linear shape that is long in the Y-axis direction when seen in a plan view, and is thus configured to be deformable (flexible vibration) in the X-axis direction. The drive beams 12A and 12B are connected to the sub-anchors 11A to 11D at a position that is approximately ¼ length with respect to the entire length in the Y-axis direction and a position that is approximately ¾ length. The sub-anchors 11A to 11D have a substantially meander shape meandering with respect to the X axis, and one end is connected to the side surfaces of the drive beams 12A and 12B and the other end is connected to the side surfaces of the support anchors 10A to 10D. The support anchors 10A to 10D have a substantially linear shape that is long in the Y-axis direction, and end portions on the inner side of the Y-axis are fixed to the cover plate 50A at fixing points A1 and A2. Since the support anchors 10A to 10D have a substantially linear shape elongated in the Y-axis direction, the support anchors 10A to 10D have high rigidity and can be suppressed from being displaced by vibrations transmitted from the sub-anchors 11A to 11D.

上述の構成により、駆動梁12A,12Bにおけるサブアンカー11A〜11Dに連結される位置は、駆動梁12A,12BがX軸方向に変形(撓み振動)する際に撓み振動の節(ノード点)となる。そして、駆動質量部13A〜13Cを支持する位置は、撓み振動の腹(アンチノード点)またはその近傍となる。したがって、駆動質量部13A,13BはX軸方向に同相で振動し、駆動質量部13CはX軸方向に駆動質量部13A,13Bとは逆相で振動することになる。   With the above-described configuration, the positions connected to the sub-anchors 11A to 11D in the driving beams 12A and 12B are the bending vibration nodes (node points) when the driving beams 12A and 12B are deformed (flexing vibration) in the X-axis direction. Become. And the position which supports drive mass part 13A-13C becomes the antinode (antinode point) of a bending vibration, or its vicinity. Accordingly, the drive mass units 13A and 13B vibrate in the same phase in the X-axis direction, and the drive mass unit 13C vibrates in the opposite phase to the drive mass units 13A and 13B in the X-axis direction.

検出梁15A〜15Dは、平面視してX軸に沿って長尺な2本の線状部を平行させて中央部で連結した形状であり、一方の線状部の両端を駆動質量部13A〜13Cに接続し、他方の線状部の両端を検出質量部17A〜17Dに接続した構成である。検出梁15C,15Dは、駆動質量部13CのH字状の開口底面に連結している。検出梁16A〜16Dは、平面視してY軸に対して蛇行する概略ミアンダ状に構成している。検出梁15A,15Bは、駆動質量部13A,13Bのコの字状の開口底面に連結している。検出梁16A,16Bは、駆動質量部13A,13Bのコの字状の端部に連結している。検出梁16C,16Dは、駆動質量部13CのH字状の端部に連結している。   The detection beams 15A to 15D have a shape in which two linear portions that are long along the X axis in a plan view are parallel and connected at the central portion, and both ends of one linear portion are connected to the driving mass portion 13A. To 13C, and both ends of the other linear part are connected to the detection mass parts 17A to 17D. The detection beams 15C and 15D are connected to the bottom surface of the H-shaped opening of the drive mass unit 13C. The detection beams 16A to 16D are configured in a substantially meander shape meandering with respect to the Y axis in plan view. The detection beams 15A and 15B are connected to the U-shaped opening bottoms of the driving mass portions 13A and 13B. The detection beams 16A and 16B are connected to the U-shaped ends of the drive mass units 13A and 13B. The detection beams 16C and 16D are connected to the H-shaped end of the drive mass unit 13C.

検出質量部17A,17Cは、平面視して概略コの字状であり、それぞれのコの字状の開口部が向かい合うように、駆動質量部13A,13Cの開口内に配置し、検出梁15A,15C,16A,16Cに連結している。また、検出質量部17B,17Dも、平面視して概略コの字状であり、それぞれのコの字状の開口部が向かい合うように、駆動質量部13B,13Cの開口内に配置し、検出梁15B,15D,16B,16Dに連結している。上述のように検出梁15A〜15D,16A〜16DがいずれもY軸に対して蛇行するミアンダ形状であるので、検出質量部17A〜17DはY軸方向に変位自在となり、X軸方向の変位については駆動質量部13A〜13Cに連動することになる。   The detection mass portions 17A and 17C are substantially U-shaped in plan view, and are arranged in the openings of the drive mass portions 13A and 13C so that the respective U-shaped openings face each other, and the detection beams 15A , 15C, 16A, 16C. The detection mass portions 17B and 17D are also substantially U-shaped in plan view, and are arranged in the openings of the drive mass portions 13B and 13C so that the respective U-shaped openings face each other. It is connected to the beams 15B, 15D, 16B and 16D. As described above, since the detection beams 15A to 15D and 16A to 16D each have a meander shape meandering with respect to the Y axis, the detection mass portions 17A to 17D are freely displaceable in the Y axis direction. Is interlocked with the drive mass units 13A to 13C.

検出櫛歯部18A,18Cは検出質量部17A,17Cの向かい合う開口内に、検出櫛歯部18B,18Dは検出質量部17B,17Dの向かい合う開口内に付設している。図5(B)は検出櫛歯部18A近傍の拡大平面図である。なお検出櫛歯部18B〜18Dは検出櫛歯部18Aと同じ構成である。   The detection comb teeth portions 18A and 18C are attached in the openings facing the detection mass portions 17A and 17C, and the detection comb teeth portions 18B and 18D are attached in the openings facing the detection mass portions 17B and 17D. FIG. 5B is an enlarged plan view of the vicinity of the detection comb portion 18A. The detection comb teeth 18B to 18D have the same configuration as the detection comb teeth 18A.

検出櫛歯部18Aは、検出質量部17Aの開口内にX軸に沿って櫛歯状に突出する櫛歯電極を備える。この検出櫛歯部18Aの櫛歯電極は、検出用固定構造部2Aが備える櫛歯電極23に微小間隔を隔てて対向する。なお、検出用固定構造部2Aは、蓋板50Aおよび底板50Cに固定支持された支柱部21と、支柱部21に連結された線状部位22と、線状部位22からX軸に沿って櫛歯状に突出する櫛歯電極23(検出電極)とを備える構成である。このような構成で、検出質量部17AがY軸方向に変位すると、検出櫛歯部18Aと検出用固定構造部2Aとの間の電極間容量が変動することになる。   The detection comb portion 18A includes a comb electrode protruding in a comb shape along the X axis in the opening of the detection mass portion 17A. The comb-tooth electrode of the detection comb-tooth portion 18A faces the comb-tooth electrode 23 provided in the detection fixing structure portion 2A with a minute interval. The detection fixing structure 2A includes a support column 21 fixedly supported by the cover plate 50A and the bottom plate 50C, a linear portion 22 connected to the support column 21, and a comb from the linear portion 22 along the X axis. It is the structure provided with the comb-tooth electrode 23 (detection electrode) which protrudes in a tooth shape. In such a configuration, when the detection mass unit 17A is displaced in the Y-axis direction, the interelectrode capacitance between the detection comb portion 18A and the detection fixing structure portion 2A varies.

再び図3に戻り説明する。モニタ櫛歯部19A,19Bは、駆動梁12A,12Bおよび駆動質量部13Cを挟むX軸両外側に配置していて、それぞれ駆動梁12A,12BのY軸中心部に連結している。図5(C)はモニタ櫛歯部19A近傍の拡大平面図である。なおモニタ櫛歯部19Bはモニタ櫛歯部19Aと同じ構成である。   Returning again to FIG. The monitor comb teeth portions 19A and 19B are arranged on both outer sides of the X axis with the drive beams 12A and 12B and the drive mass portion 13C interposed therebetween, and are connected to the Y axis central portions of the drive beams 12A and 12B, respectively. FIG. 5C is an enlarged plan view of the vicinity of the monitor comb portion 19A. The monitor comb tooth portion 19B has the same configuration as the monitor comb tooth portion 19A.

モニタ櫛歯部19Aは、Y軸に沿って延設し途中で折り返した形状の線状部位の側面からX軸に沿って櫛歯状に突出する櫛歯電極を備える。このモニタ櫛歯部19Aの櫛歯電極は、モニタ用固定構造部4Aが備える櫛歯電極43に微小間隔を隔てて対向する。なお、モニタ用固定構造部4Aは、蓋板50Aおよび底板50Cに固定支持された支柱部41(図3参照)と、支柱部41に連結された線状部位42と、線状部位42からX軸に沿って櫛歯状に突出する櫛歯電極43とを備える構成である。このような構成で、駆動質量部13CがX軸方向に変位すると、モニタ櫛歯部19Aとモニタ用固定構造部4Aとの間の電極間容量が変動することになる。   The monitor comb-tooth portion 19A includes a comb-tooth electrode that protrudes along the X-axis from the side surface of a linear portion that extends along the Y-axis and is folded back. The comb-shaped electrode of the monitor comb-tooth portion 19A faces the comb-tooth electrode 43 provided in the monitor fixing structure portion 4A with a minute interval. The monitor fixing structure 4A includes a column 41 (see FIG. 3) fixed and supported by the cover plate 50A and the bottom plate 50C, a linear portion 42 connected to the column 41, and the linear portions 42 to X. It is the structure provided with the comb-tooth electrode 43 which protrudes in a comb-tooth shape along an axis | shaft. With such a configuration, when the drive mass unit 13C is displaced in the X-axis direction, the interelectrode capacitance between the monitor comb portion 19A and the monitor fixed structure portion 4A varies.

図6は振動ジャイロ50に接続する駆動検出回路の回路図である。なお、ここでは駆動検出回路をカスタムIC151として構成する例を示す。このカスタムIC151は、図3(B)に示す実装基板150に実装して振動ジャイロ50と一体にモールドし、一体のチップ素子として構成すると好適である。   FIG. 6 is a circuit diagram of a drive detection circuit connected to the vibration gyro 50. Here, an example in which the drive detection circuit is configured as a custom IC 151 is shown. The custom IC 151 is preferably mounted on the mounting substrate 150 shown in FIG. 3B, molded integrally with the vibration gyro 50, and configured as an integrated chip element.

カスタムIC151は、C−V変換回路152、差動アンプ153、同期検波回路154、DCアンプ・ローパスフィルタ回路155、デジタルトリミング回路156、アンプ158、オートゲインコントロール回路159、および位相シフタ・正弦波発生回路160を備える。
C−V変換回路152は振動ジャイロ50の検出用固定構造部2A,2Bそれぞれとモニタ用固定構造部4A,4B(またはモニタ用固定構造部4A,4Bの少なくとも一方)に接続され、それぞれの持つ電極間容量に応じた電圧信号を出力する。差動アンプ153はC−V変換回路152から入力される2つの電圧信号の差動信号を出力する。差動信号を用いることにより、振動ジャイロ50にY軸方向の加速度が作用した場合の容量変化を打ち消してZ軸回りの角速度のみを検出することが可能になる。同期検波回路154は、位相シフタ・正弦波発生回路160で発生させる正弦波と同期するタイミングで、差動信号から検波を行う。駆動によるX軸方向の振動とコリオリの力によるY軸方向の振動とでは位相が90°相違するので、同期検波を行うことでX軸方向の振動の影響を除いてY軸方向の振動を検出することが可能になる。DCアンプ/ローパスフィルタ回路155は、同期検波回路154の出力する検出信号を増幅するとともに、ノイズ成分をカットする。デジタルトリミング回路156は、検出信号における振動ジャイロ50個別の特性ばらつきを校正して検出信号を出力する。アンプ158はC−V変換回路152から入力される電圧信号(モニタ用固定構造部4A,4Bからの信号)を増幅する。オートゲインコントロール回路159および位相シフタ・正弦波発生回路160は、振動ジャイロ50の振動が適切に持続するように、駆動電圧の位相、振幅を調整して振動ジャイロ50の駆動用固定構造部3A,3Bに出力する。
このような駆動検出回路151により、振動ジャイロ50は駆動方向に振動し、振動状態で振動ジャイロ50にZ軸回りの角速度が作用することで、角速度に応じた検出信号が得られることになる。
The custom IC 151 includes a CV conversion circuit 152, a differential amplifier 153, a synchronous detection circuit 154, a DC amplifier / low-pass filter circuit 155, a digital trimming circuit 156, an amplifier 158, an auto gain control circuit 159, and a phase shifter / sine wave generation A circuit 160 is provided.
The CV conversion circuit 152 is connected to each of the detection fixing structure portions 2A and 2B of the vibration gyro 50 and the monitor fixing structure portions 4A and 4B (or at least one of the monitor fixing structure portions 4A and 4B). A voltage signal corresponding to the interelectrode capacitance is output. The differential amplifier 153 outputs a differential signal of two voltage signals input from the CV conversion circuit 152. By using the differential signal, it is possible to detect only the angular velocity around the Z-axis by canceling the capacitance change when the acceleration in the Y-axis direction acts on the vibration gyro 50. The synchronous detection circuit 154 detects from the differential signal at a timing synchronized with the sine wave generated by the phase shifter / sine wave generation circuit 160. The phase of the X-axis vibration caused by driving and the Y-axis vibration caused by Coriolis force is 90 ° different, so synchronous detection detects the vibration in the Y-axis direction without the influence of vibration in the X-axis direction. It becomes possible to do. The DC amplifier / low-pass filter circuit 155 amplifies the detection signal output from the synchronous detection circuit 154 and cuts a noise component. The digital trimming circuit 156 calibrates the characteristic variation of the vibration gyro 50 in the detection signal and outputs the detection signal. The amplifier 158 amplifies the voltage signal input from the CV conversion circuit 152 (signals from the monitor fixed structures 4A and 4B). The auto gain control circuit 159 and the phase shifter / sine wave generation circuit 160 adjust the phase and amplitude of the drive voltage so that the vibration of the vibration gyro 50 is appropriately maintained, and the fixed structure portion 3A for driving the vibration gyro 50, Output to 3B.
By such a drive detection circuit 151, the vibration gyro 50 vibrates in the driving direction, and an angular velocity around the Z-axis acts on the vibration gyro 50 in the vibration state, whereby a detection signal corresponding to the angular velocity is obtained.

次に、振動ジャイロ50における剪断歪みの影響について説明する。
図7(A)は蓋板50Aの断面を示す振動ジャイロ50の平面図である。蓋板50Aは内側主面を部分的にエッチング除去した構成であり、振動子側に突出する枠状部位50A1、円柱部位50A2、矩形部位50A3を備える。枠状部位50A1は前述の低抵抗シリコン板50Bの外枠部5および支柱部31,41を固定する部位である。円柱部位50A2は支柱部21を固定する部位である。矩形部位50A3は支持アンカー10A〜10Dの一端部を固定する部位である。本実施形態では、矩形部位50A3を振動子1の中心を通るX軸に対向する領域に配置し、その位置を固定点として振動子1を固定支持する。
Next, the influence of shear strain in the vibration gyro 50 will be described.
FIG. 7A is a plan view of the vibrating gyroscope 50 showing a cross section of the cover plate 50A. The cover plate 50A has a configuration in which the inner main surface is partially etched away, and includes a frame-shaped part 50A1, a cylindrical part 50A2, and a rectangular part 50A3 that protrude toward the vibrator side. The frame-shaped part 50A1 is a part for fixing the outer frame part 5 and the column parts 31, 41 of the low-resistance silicon plate 50B described above. The cylindrical part 50A2 is a part for fixing the column part 21. The rectangular part 50A3 is a part for fixing one end of the support anchors 10A to 10D. In the present embodiment, the rectangular portion 50A3 is disposed in a region facing the X axis passing through the center of the vibrator 1, and the vibrator 1 is fixedly supported with the position as a fixed point.

図7(B)は、振動ジャイロ50の剪断歪みによる変形例を説明する図である。振動ジャイロ50の筐体に剪断歪みが作用する場合、固定点A1,A2が振動子1の中心を回転中心にしてX−Y面で回転変位する。その際、振動子1は前述の矩形部位50A3で支持され、その支持方向が蓋板50Aの法線方向なので、振動子1に作用する剪断歪みが極めて低減したものになり、振動子1は形状を維持したまま固定点の回転変位方向と同方向に回転する。   FIG. 7B is a view for explaining a modification of the vibrating gyroscope 50 due to shear strain. When shear strain acts on the casing of the vibration gyro 50, the fixed points A1 and A2 are rotationally displaced in the XY plane with the center of the vibrator 1 as the rotation center. At that time, the vibrator 1 is supported by the above-described rectangular portion 50A3, and the supporting direction is the normal direction of the cover plate 50A. Therefore, the shear strain acting on the vibrator 1 is extremely reduced. Rotate in the same direction as the rotational displacement direction of the fixed point while maintaining.

なお、前述のサブアンカー11A〜11Dをミアンダ状に形成していることで、支持アンカー10A〜10Dの変位による応力がサブアンカー11A〜11Dの変形によって開放されることになり、これにより、駆動梁12A,12Bに剪断歪みが伝わることを、より確実に防ぐことができる。
したがって、本実施形態に係る振動ジャイロ50は、剪断歪みが作用しても振動子1の形状を維持でき、駆動方向と検出方向との直交性を維持して検出信号に不要信号が混入することを抑止できる。
Since the above-mentioned sub-anchors 11A to 11D are formed in a meander shape, the stress due to the displacement of the support anchors 10A to 10D is released by the deformation of the sub-anchors 11A to 11D. It can prevent more reliably that shear strain is transmitted to 12A, 12B.
Therefore, the vibrating gyroscope 50 according to the present embodiment can maintain the shape of the vibrator 1 even when shearing strain is applied, and can maintain the orthogonality between the driving direction and the detection direction and mix unnecessary signals into the detection signal. Can be suppressed.

なお、本実施形態では、モニタ用固定構造部4A,4Bをいずれも振動モニタ用途に利用する例を示したが、いずれか一方のみを振動モニタ用途に利用し、他方を振動子1と同電位にして、支柱部を介してグランド電極に接続するようにして用いてもよい。この場合、振動子と同電位にした固定構造部を介して振動子1をグランド電極に接続することでビア電極を別途設ける必要がなくなって支持板面積の低減を進展させられる。振動モニタ用途に利用する固定構造部が一つであっても、振動ジャイロ50の対称性を保持するために、振動モニタ用途に利用しない他方の固定構造部をあえて形成しておくと好適である。   In this embodiment, the example in which both the monitor fixing structures 4A and 4B are used for vibration monitoring is shown. However, only one of them is used for vibration monitoring, and the other has the same potential as the vibrator 1. Then, it may be used so as to be connected to the ground electrode via the support column. In this case, by connecting the vibrator 1 to the ground electrode via a fixed structure portion having the same potential as that of the vibrator, it is not necessary to separately provide a via electrode, and the reduction of the support plate area can be promoted. Even if there is only one fixed structure used for the vibration monitor, it is preferable to dare to form the other fixed structure that is not used for the vibration monitor in order to maintain the symmetry of the vibration gyro 50. .

次に、本発明の第2の実施形態に係る振動ジャイロ100について説明する。図8は振動ジャイロ100の構成を示す平面図である。   Next, a vibrating gyroscope 100 according to a second embodiment of the present invention will be described. FIG. 8 is a plan view showing the configuration of the vibrating gyroscope 100.

振動ジャイロ100は、第1の実施形態とは形状が相違する振動子51を備えるが、その他の概略構成は第1の実施形態と同様である。   The vibrating gyroscope 100 includes a vibrator 51 having a shape different from that of the first embodiment, but the other schematic configuration is the same as that of the first embodiment.

振動子51は、支持アンカー(支持梁)60A〜60F、サブアンカー61A〜61F、駆動梁62A,62B、駆動質量部63A〜63D、駆動櫛歯部64A,64B(一部不図示)、検出梁65、検出質量部67A,67B、検出櫛歯部68A,68B(一部不図示)、およびモニタ櫛歯部69A,69B(一部不図示)を備える。   The vibrator 51 includes support anchors (support beams) 60A to 60F, sub-anchors 61A to 61F, drive beams 62A and 62B, drive mass units 63A to 63D, drive comb teeth portions 64A and 64B (partially not shown), and detection beams. 65, detection mass portions 67A and 67B, detection comb teeth 68A and 68B (partially not shown), and monitor comb teeth 69A and 69B (partly not shown).

振動ジャイロ100の概略構造について説明すると、振動子51はX−Y面で振動子51の中心を通るX軸上の位置(固定点A1,A2,BA,B2)で支持板に固定している。また、X軸方向に変位自在な領域として駆動質量部63A〜63Dを備え、Y軸方向に変位自在な領域として検出質量部67A,67Bを備える。
検出用固定構造部72は、振動子51の備える中央の開口内部に配置し、全体が変形しないように支持板に固定する。駆動用固定構造部73は振動子51の備えるY軸両外側の開口内部に配置し、全体が変形しないように支持板に固定する。モニタ用固定構造部74は振動子51を挟むY軸両外側に配置し、全体が変形しないように支持板に固定する。
The schematic structure of the vibrating gyroscope 100 will be described. The vibrator 51 is fixed to the support plate at positions (fixed points A1, A2, BA, B2) on the X axis passing through the center of the vibrator 51 on the XY plane. . In addition, the drive mass units 63A to 63D are provided as regions that are displaceable in the X-axis direction, and the detection mass units 67A and 67B are provided as regions that are displaceable in the Y-axis direction.
The detection fixing structure 72 is disposed inside the central opening of the vibrator 51 and is fixed to the support plate so that the whole is not deformed. The driving fixing structure 73 is disposed inside the opening on both outer sides of the Y axis of the vibrator 51, and is fixed to the support plate so as not to be deformed as a whole. The monitor fixing structure 74 is disposed on both outer sides of the Y axis with the vibrator 51 interposed therebetween, and is fixed to the support plate so as not to be deformed as a whole.

駆動櫛歯部64A,64Bは、駆動質量部63C,63Dと駆動質量部63A,63Bとに挟まれる位置に配置していて、X軸に沿って櫛歯状に突出する櫛歯電極(不図示)を備え、駆動用固定構造部73の櫛歯電極(不図示)と微小間隔を隔てて対向する。   The driving comb-tooth portions 64A and 64B are arranged at positions sandwiched between the driving mass portions 63C and 63D and the driving mass portions 63A and 63B, and comb-tooth electrodes (not shown) projecting in a comb-tooth shape along the X axis. ) And opposes the comb-like electrode (not shown) of the driving fixing structure 73 with a minute gap.

駆動質量部63A〜63Dは中央付近に配置した駆動質量部63A,63Bを駆動質量部63C,63Dが挟むようにY軸に沿って配列している。駆動質量部63A,63Dと駆動質量部63B,63CはX軸方向に逆相で振動する。駆動質量部63A,63Bは平面視してY軸内側が開口した概略コの字形で、互いの開口が向かい合うように配置していて、開口側面を構成するY軸に沿った線状部の両端をT字形の連結部を介して駆動梁62A,62Bに連結している。駆動質量部63C,63Dは平面視してX軸方向が長尺な線状形であり、両端で駆動梁12A,12Bに連結している。   The driving mass units 63A to 63D are arranged along the Y axis so that the driving mass units 63A and 63B disposed near the center are sandwiched by the driving mass units 63C and 63D. The driving mass units 63A and 63D and the driving mass units 63B and 63C vibrate in the opposite phase in the X-axis direction. The driving mass parts 63A and 63B are substantially U-shaped with the Y-axis inner side opened in a plan view, and are arranged so that the respective openings face each other, and both ends of the linear part along the Y-axis constituting the opening side surface. Are connected to the driving beams 62A and 62B via a T-shaped connecting portion. The driving mass portions 63C and 63D have a linear shape with a long X axis direction when seen in a plan view, and are connected to the driving beams 12A and 12B at both ends.

駆動梁62A,62Bは、駆動質量部63A〜63Dを挟むX軸両外側に配置している。駆動梁62A,62Bはそれぞれ平面視してY軸方向に長尺な概略線状形であり、X軸方向に変形(撓み振動)可能な構成になっている。また駆動梁62A,62Bは、Y軸方向全長に対して略1/4、略2/4、略3/4の長さとなる位置それぞれで、サブアンカー61A〜61Fに連結している。サブアンカー61A〜61Fは、概略ウの字状であり、一端を駆動梁62A,62Bの側面に連結し、他の二端を、支持アンカー60A〜60Fに連結している。支持アンカー60A〜60Dは、Y軸方向に長尺な概略線状形であり、固定点A1,A2で支持板に固定している。支持アンカー60E,60Fは、振動子1の中央の開口部内に配置した矩形状のものであり、固定点B1,B2で支持板に固定している。   The drive beams 62A and 62B are disposed on both outer sides of the X axis with the drive mass parts 63A to 63D interposed therebetween. Each of the drive beams 62A and 62B has a substantially linear shape that is long in the Y-axis direction when seen in a plan view, and is configured to be deformable (flexible vibration) in the X-axis direction. The drive beams 62A and 62B are connected to the sub-anchors 61A to 61F at positions that are approximately 1/4, approximately 2/4, and approximately 3/4 of the total length in the Y-axis direction. The sub-anchors 61A to 61F are substantially U-shaped, and one end is connected to the side surfaces of the drive beams 62A and 62B, and the other two ends are connected to the support anchors 60A to 60F. The support anchors 60A to 60D have a substantially linear shape elongated in the Y-axis direction, and are fixed to the support plate at fixing points A1 and A2. The support anchors 60E and 60F have a rectangular shape arranged in the central opening of the vibrator 1, and are fixed to the support plate at fixing points B1 and B2.

検出質量部67A,67Bは、平面視して概略コの字状であり、それぞれのコの字状の開口部が向かい合うように、駆動質量部63A,63Bの開口内に配置し、検出梁65を介して駆動質量部63A,63Bに連結している。   The detection mass portions 67A and 67B are substantially U-shaped in plan view, and are arranged in the openings of the drive mass portions 63A and 63B so that the respective U-shaped openings face each other, and the detection beam 65 Are connected to the driving mass parts 63A and 63B.

検出櫛歯部68A,68Bは、検出質量部67A,67Bの向かい合う開口内に付設している。検出櫛歯部68A,68Bは、X軸に沿って櫛歯状に突出する櫛歯電極(不図示)を備え、検出用固定構造部72が備える櫛歯電極(不図示)に微小間隔を隔てて対向する。   The detection comb-tooth portions 68A and 68B are attached in openings facing the detection mass portions 67A and 67B. The detection comb-tooth portions 68A and 68B are provided with comb-tooth electrodes (not shown) protruding in a comb-tooth shape along the X axis, and are spaced apart from the comb-tooth electrodes (not shown) provided in the detection fixing structure 72. Facing each other.

モニタ櫛歯部69A,69Bは、駆動質量部63C,63Dを挟むY軸両外側に配置していて、X軸に沿って櫛歯状に突出する櫛歯電極(不図示)を備え、モニタ用固定構造部74が備える櫛歯電極(不図示)に微小間隔を隔てて対向する。   The monitor comb-tooth portions 69A and 69B are arranged on both outer sides of the Y-axis across the drive mass portions 63C and 63D, and are provided with comb-tooth electrodes (not shown) protruding in a comb-tooth shape along the X-axis. It opposes the comb-tooth electrode (not shown) with which the fixed structure part 74 is provided at a minute interval.

図9は、振動子51の駆動による変形を説明する図である。駆動質量部63A〜63Dと前述の駆動用固定構造部73との間の静電力が変動することにより、駆動質量部63A〜63DはX軸方向に変位する。この状態で、振動子51にZ軸回りの角速度が作用すると、検出質量部67A,67Bにコリオリの力が作用する。駆動質量部63Aと駆動質量部63Bとでは駆動方向が逆なので、検出質量部67A,67Bに作用するコリオリの力も逆方向となる。   FIG. 9 is a diagram for explaining deformation caused by driving the vibrator 51. When the electrostatic force between the driving mass portions 63A to 63D and the above-described driving fixing structure portion 73 varies, the driving mass portions 63A to 63D are displaced in the X-axis direction. In this state, when an angular velocity around the Z axis acts on the vibrator 51, Coriolis force acts on the detection mass units 67A and 67B. Since the driving mass unit 63A and the driving mass unit 63B have opposite driving directions, the Coriolis force acting on the detection mass units 67A and 67B is also in the opposite direction.

図10(A)は振動ジャイロ100の備える支持板100Aの断面を示す平面図である。支持板100Aは内側主面を部分的にエッチング除去した構成であり、振動子51側に突出する枠状部位100A1、円柱部位100A2、矩形部位100A3,100A4を備える。枠状部位100A1は低抵抗シリコン板の外枠部を固定する部位である。円柱部位100A2は各固定構造部の支柱部を固定する部位である。矩形部位100A3は支持アンカー60A〜60Dの一端部を固定する部位である。矩形部位100A4は支持アンカー60E,60Fを固定する部位である。本実施形態では、矩形部位100A3,100A4を振動子51の中心を通るX軸に対向する領域に配置し、この領域内で振動子51を固定している。   FIG. 10A is a plan view showing a cross section of a support plate 100A provided in the vibrating gyroscope 100. FIG. The support plate 100A has a configuration in which the inner main surface is partially etched away, and includes a frame-like portion 100A1, a cylindrical portion 100A2, and rectangular portions 100A3 and 100A4 that protrude toward the vibrator 51 side. The frame-shaped part 100A1 is a part for fixing the outer frame part of the low-resistance silicon plate. The columnar part 100A2 is a part for fixing the column part of each fixing structure part. The rectangular part 100A3 is a part for fixing one end of the support anchors 60A to 60D. The rectangular part 100A4 is a part for fixing the support anchors 60E and 60F. In the present embodiment, the rectangular portions 100A3 and 100A4 are arranged in a region facing the X axis passing through the center of the transducer 51, and the transducer 51 is fixed in this region.

図10(B)は、振動ジャイロ100における剪断歪みの影響を説明する図である。振動ジャイロ100の筐体に剪断歪みが作用する場合、固定点A1,A2および固定点B1,B2が振動子51の中心を回転中心にしてX−Y面で回転変位する。その際、振動子51は、前述の矩形部位100A3,100A4で支持され、その支持方向が支持板100Aの法線方向なので、振動子51に作用する剪断歪みが極めて低減したものになり、振動子51は形状を維持したまま固定点の回転変位方向と同方向に回転する。
したがって、本実施形態に係る振動ジャイロ100は、剪断歪みが作用しても振動子51の形状を維持でき、駆動方向と検出方向との直交性を維持して検出信号に不要信号が混入することを抑止できる。
FIG. 10B is a diagram for explaining the influence of shear strain in the vibrating gyroscope 100. When shear strain acts on the casing of the vibrating gyroscope 100, the fixed points A1 and A2 and the fixed points B1 and B2 are rotationally displaced in the XY plane with the center of the vibrator 51 as the center of rotation. At this time, the vibrator 51 is supported by the rectangular portions 100A3 and 100A4 described above, and the support direction is the normal direction of the support plate 100A. Therefore, the shear strain acting on the vibrator 51 is extremely reduced. 51 rotates in the same direction as the rotational displacement direction of the fixed point while maintaining the shape.
Therefore, the vibrating gyroscope 100 according to the present embodiment can maintain the shape of the vibrator 51 even when shearing strain is applied, and can maintain the orthogonality between the driving direction and the detection direction so that unnecessary signals are mixed in the detection signal. Can be suppressed.

次に、本発明の実施例と従来例とに対して行ったシミュレーションについて説明する。シミュレーションでは、剪断歪みの歪み量を0.001に設定し、剪断歪みによる固定部の変位を振動子モデルに印加して、静解析によって振動子モデルの変形状態を観察した。
図11は、本発明の実施例と従来例とのそれぞれでの、剪断歪みによる変形をシミュレーションした結果を説明する図である。図11(A)は従来の振動ジャイロ301を、図11(B)は第2の実施形態と同様な構成から支持アンカーを省いた従来例の振動ジャイロ401を、図11(C)は第2の実施形態の振動ジャイロ100を、図11(D)は第1の実施形態の振動ジャイロ50を示している。
従来例の振動ジャイロ301,401は、固定点が壁面に支持されているために、剪断歪みの作用により振動子の固定点が回転する回転変位方向とは逆方向に支持アンカーが傾いて、大きな変形が生じている。一方、実施例の振動ジャイロ50,100は、振動子の固定点が支持板に支持されているために、支持アンカーが固定点の回転変位方向と同方向に回転して、ほとんど変形が生じていない。
Next, simulations performed on the example of the present invention and the conventional example will be described. In the simulation, the strain amount of the shear strain was set to 0.001, the displacement of the fixed part due to the shear strain was applied to the vibrator model, and the deformation state of the vibrator model was observed by static analysis.
FIG. 11 is a diagram illustrating the results of simulating deformation due to shear strain in each of the example of the present invention and the conventional example. 11A shows a conventional vibration gyro 301, FIG. 11B shows a conventional vibration gyro 401 in which the support anchor is omitted from the same configuration as that of the second embodiment, and FIG. FIG. 11D shows the vibrating gyroscope 100 of the first embodiment, and FIG. 11D shows the vibrating gyroscope 50 of the first embodiment.
In the vibration gyros 301 and 401 of the conventional example, since the fixing point is supported on the wall surface, the support anchor is inclined in the direction opposite to the rotational displacement direction in which the fixing point of the vibrator rotates due to the action of shearing strain. Deformation has occurred. On the other hand, in the vibration gyros 50 and 100 of the embodiment, since the fixed point of the vibrator is supported by the support plate, the support anchor rotates in the same direction as the rotational displacement direction of the fixed point, and is almost deformed. Absent.

このシミュレーションの変形状態におけるモーダル解析を行い、駆動振動時の検出方向へのブレ量を計算した。すると、従来例の振動ジャイロ301では振幅3μmあたりの駆動振動時の検出方向へのブレ量が61.0nmとなり、従来例の振動ジャイロ401では振幅3μmあたりの駆動振動時の検出方向へのブレ量が147.6nmとなった。一方、本発明の実施例の振動ジャイロ50では振幅3μmあたりの駆動振動時の検出方向へのブレ量が6.1nmとなり、振動ジャイロ100では振幅3μmあたりの駆動振動時の検出方向へのブレ量が6.3nmとなった。   A modal analysis in the deformation state of this simulation was performed, and the amount of shake in the detection direction during drive vibration was calculated. Then, in the vibration gyro 301 of the conventional example, the amount of shake in the detection direction at the time of driving vibration per amplitude of 3 μm is 61.0 nm, and in the vibration gyro 401 of the conventional example, the amount of shake in the detection direction at the time of drive vibration per 3 μm of amplitude. Was 147.6 nm. On the other hand, in the vibration gyro 50 of the embodiment of the present invention, the amount of shake in the detection direction at the time of drive vibration per amplitude of 3 μm is 6.1 nm, and in the vibration gyro 100, the amount of shake in the detection direction at the time of drive vibration per amplitude of 3 μm. Was 6.3 nm.

このようにシミュレーションのモーダル解析からも、駆動振動時の検出方向へのブレ量が本発明の実施例では従来例の1/10となることが確認でき、本発明の振動ジャイロでは剪断歪みの影響による振動子の変形を抑制できることが確認できた。   Thus, from the modal analysis of the simulation, it can be confirmed that the amount of shake in the detection direction at the time of driving vibration is 1/10 of the conventional example in the embodiment of the present invention. It was confirmed that the deformation of the vibrator due to can be suppressed.

1,51…振動子
10A,60A〜60F…支持アンカー
11A,61A〜61F…サブアンカー
12A,12B,62A,62B…駆動梁
13A〜13C,63A〜63D…駆動質量部
14A,14B,64A,64B…駆動櫛歯部
15A〜15D,16A〜16D,65…検出梁
17A〜17D,67A,67B…検出質量部
18A〜18D,68A,68B…検出櫛歯部
19A,19B,69A,69B…モニタ櫛歯部
2A,2B,72…検出用固定構造部
3A,3B,73…駆動用固定構造部
4A,4B,74…モニタ用固定構造部
21,31,41…支柱部
22,32,42…線状部位
23,33,43…櫛歯電極
5…外枠部
50,100…振動ジャイロ
50A,100A…支持板(蓋板)
50A1,100A1…枠状部位
50A2,100A2…円柱部位
50A3,100A3,100A4…矩形部位
50B…低抵抗シリコン板
50C…底板
A1,A2,BA,B2…固定点
DESCRIPTION OF SYMBOLS 1,51 ... Vibrator 10A, 60A-60F ... Support anchor 11A, 61A-61F ... Sub-anchor 12A, 12B, 62A, 62B ... Drive beam 13A-13C, 63A-63D ... Drive mass part 14A, 14B, 64A, 64B ... Drive comb teeth 15A-15D, 16A-16D, 65 ... Detection beams 17A-17D, 67A, 67B ... Detection mass sections 18A-18D, 68A, 68B ... Detection comb teeth 19A, 19B, 69A, 69B ... Monitor comb Tooth part 2A, 2B, 72 ... Detection fixing structure part 3A, 3B, 73 ... Driving fixing structure part 4A, 4B, 74 ... Monitor fixing structure part 21, 31, 41 ... Strut part 22, 32, 42 ... Line 23, 33, 43 ... Comb electrode 5 ... Outer frame part 50, 100 ... Vibrating gyroscope 50A, 100A ... Support plate (lid plate)
50A1, 100A1 ... frame-like part 50A2, 100A2 ... cylindrical part 50A3, 100A3, 100A4 ... rectangular part 50B ... low resistance silicon plate 50C ... bottom plate A1, A2, BA, B2 ... fixed point

Claims (4)

駆動により振動する駆動質量部、
前記駆動質量部を支持し、前記駆動質量部から作用する力により撓み振動する駆動梁、
前記駆動質量部の振動により作用するコリオリの力に対して変位自在な状態で、前記駆動質量部に支持される検出質量部、および、
前記駆動梁を前記撓み振動の節となる位置で支持する支持梁、
を備える振動子と、
前記駆動質量部の振動方向および前記検出質量部の変位方向に平行な支持板と、を備え、
前記振動子の中心を通り前記振動方向に平行な中心線に対向する領域で、前記支持板に対する前記振動子の固定を行った構成である、
振動ジャイロ。
Driving mass that vibrates by driving,
A driving beam that supports the driving mass and bends and vibrates due to a force acting from the driving mass;
A detection mass unit supported by the drive mass unit in a freely displaceable state with respect to Coriolis force acting by vibration of the drive mass unit; and
A support beam that supports the drive beam at a position that becomes a node of the flexural vibration;
A vibrator comprising:
A support plate parallel to the vibration direction of the drive mass unit and the displacement direction of the detection mass unit,
In a region that passes through the center of the vibrator and faces a center line parallel to the vibration direction, the vibrator is fixed to the support plate.
Vibration gyro.
前記支持梁は、前記中心線に対して直交する直線梁状である、請求項1に記載の振動ジャイロ。   The vibrating gyroscope according to claim 1, wherein the support beam has a linear beam shape orthogonal to the center line. ミアンダライン状に屈曲する連結部で、前記支持梁と前記駆動梁とを連結する、請求項1または2に記載の振動ジャイロ。   The vibrating gyroscope according to claim 1, wherein the support beam and the driving beam are connected by a connecting portion that is bent in a meander line shape. 前記振動子を開口内部に収める外枠部と、前記外枠部の開口を閉塞する蓋板および底板と、を備え、
前記底板の外側主面が実装面となる構造であり、前記蓋板のみが前記振動子に接合されて前記支持板となる構成である請求項1〜3のいずれかに記載の振動ジャイロ。
An outer frame portion that houses the vibrator inside the opening, and a lid plate and a bottom plate that close the opening of the outer frame portion,
The vibration gyro according to claim 1, wherein the outer main surface of the bottom plate is a mounting surface, and only the lid plate is joined to the vibrator to form the support plate.
JP2010114634A 2010-05-18 2010-05-18 Vibration gyro Pending JP2011242256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114634A JP2011242256A (en) 2010-05-18 2010-05-18 Vibration gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114634A JP2011242256A (en) 2010-05-18 2010-05-18 Vibration gyro

Publications (1)

Publication Number Publication Date
JP2011242256A true JP2011242256A (en) 2011-12-01

Family

ID=45409067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114634A Pending JP2011242256A (en) 2010-05-18 2010-05-18 Vibration gyro

Country Status (1)

Country Link
JP (1) JP2011242256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178118A1 (en) * 2014-05-19 2015-11-26 日立オートモティブシステムズ株式会社 Angular velocity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178118A1 (en) * 2014-05-19 2015-11-26 日立オートモティブシステムズ株式会社 Angular velocity sensor
JP2015219130A (en) * 2014-05-19 2015-12-07 日立オートモティブシステムズ株式会社 Angular velocity sensor

Similar Documents

Publication Publication Date Title
US9835641B2 (en) Angular velocity detection device and angular velocity sensor including the same
KR101110462B1 (en) Rotation rate sensor
JP5205725B2 (en) Angular velocity sensor
US7546768B2 (en) Mounting structure of angular rate sensor
JP5105968B2 (en) Angular velocity detector
JPWO2008023566A1 (en) Angular velocity sensor
US20230314469A1 (en) Mems tri-axial accelerometer with one or more decoupling elements
JP6620243B2 (en) Angular velocity sensor, sensor element and multi-axis angular velocity sensor
JP6581728B2 (en) Angular velocity sensor, sensor element and multi-axis angular velocity sensor
JP4911690B2 (en) Vibrating gyro vibrator
JP4929489B2 (en) Angular velocity sensor
JP2012149961A (en) Vibration gyro
JP2001317946A (en) Vibrator
JP4654667B2 (en) Gyro sensor and angular velocity detection method
JP2011242256A (en) Vibration gyro
JP2012112819A (en) Vibration gyro
JP4710926B2 (en) Angular velocity sensor
JP4869001B2 (en) Vibrating gyro
JP2013181861A (en) Vibration gyro
JP2011242257A (en) Vibration gyro
WO2018235719A1 (en) Vibration type angular velocity sensor
WO2019044697A1 (en) Sensor element and angular velocity sensor
JP2011209270A (en) Angular velocity sensor element
JP2005308530A (en) Angular speed/acceleration composite sensor
JP5481545B2 (en) Angular velocity detector