JP2011242195A - Phase discrimination method and phase discrimination apparatus - Google Patents

Phase discrimination method and phase discrimination apparatus Download PDF

Info

Publication number
JP2011242195A
JP2011242195A JP2010112928A JP2010112928A JP2011242195A JP 2011242195 A JP2011242195 A JP 2011242195A JP 2010112928 A JP2010112928 A JP 2010112928A JP 2010112928 A JP2010112928 A JP 2010112928A JP 2011242195 A JP2011242195 A JP 2011242195A
Authority
JP
Japan
Prior art keywords
phase
voltage
zero
ground
ground voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010112928A
Other languages
Japanese (ja)
Other versions
JP5119291B2 (en
Inventor
Shigeyuki Fuji
重之 冨士
Masahiro Fukuchi
政弘 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP2010112928A priority Critical patent/JP5119291B2/en
Publication of JP2011242195A publication Critical patent/JP2011242195A/en
Application granted granted Critical
Publication of JP5119291B2 publication Critical patent/JP5119291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To simply discriminate a phase of a distribution line of each phase constituting a high-voltage distribution line using an inexpensive apparatus in a phase discrimination portion.SOLUTION: A phase discrimination apparatus includes: firstly measuring a ground voltage and a zero-phase voltage of one distribution line, respectively; then acquiring a phase difference between the ground voltage and the zero-phase voltage; comparing the phase difference at this phase discrimination portion with a determined phase difference measured at a phase determination portion; and thereby discriminating a phase of the distribution line.

Description

この発明は、高圧配電線路を構成する各相の配電線の相判別方法と、相判別に用いられる相判別装置に関するものである。   The present invention relates to a phase discrimination method for distribution lines of each phase constituting a high-voltage distribution line, and a phase discrimination device used for phase discrimination.

近年、オール電化住宅の採用率が高まりつつあり、それにより低圧(200Vあるいは100V)供給用の単相変圧器の大容量化が進んでいる。この単相変圧器の大容量化に伴い、モーター巻線の焼損等を保護するモーターの欠相保護リレーが、電圧不平衡によって、作動するなどの三相不平衡の問題が顕在化している状況にある。また、今後加速することが予想される、家庭用分散型電源の拡大等により、この三相不平衡の問題が顕著になることが予測される。   In recent years, the adoption rate of all-electric houses has been increasing, and as a result, the capacity of single-phase transformers for supplying low voltage (200 V or 100 V) has been increasing. With the increase in capacity of this single-phase transformer, the problem of three-phase unbalance has emerged, such as the motor phase loss protection relay that protects the motor windings from burning out, etc., due to voltage imbalance It is in. In addition, it is predicted that this three-phase unbalance problem will become prominent due to the expansion of home-use distributed power sources that are expected to accelerate in the future.

この三相不平衡の抑制及び改善は、新設する単相変圧器を負荷の少ない相に接続していくことにより可能になる。このために、単相変圧器を新設する工事箇所などでは、相判別を行う必要がある。   This three-phase imbalance can be suppressed and improved by connecting a newly installed single-phase transformer to a phase with less load. For this reason, it is necessary to perform phase discrimination at a construction site where a single-phase transformer is newly installed.

相判別を行う方法には、目視による方法と、同期検定による方法とがある。   As a method for performing phase discrimination, there are a visual method and a synchronous test method.

目視による相判別は、変電所など相を確定できる箇所(相確定箇所)から、工事箇所などの、相判別を行う箇所(相判別箇所)まで、配電線を目視しながら追っていくことで行われる。   Visual phase discrimination is performed by following the distribution line while visually observing from the location where the phase can be determined (phase determination location) such as a substation to the location where the phase is determined (phase discrimination location) such as the construction location. .

一方、同期検定による相判別は、相確定箇所及び相判別箇所において、各相の対地電圧の、振幅及び位相を測定し、両箇所での測定結果を同期させて行われる。この同期検定には、GPS(Global Positioning System)を用いて行われるもの(例えば、特許文献1又は2参照)と、携帯無線を用いて行われるもの(例えば、特許文献3参照)が知られている。   On the other hand, the phase discrimination by the synchronization test is performed by measuring the amplitude and phase of the ground voltage of each phase at the phase determination location and the phase discrimination location and synchronizing the measurement results at both locations. This synchronization test is known to be performed using GPS (Global Positioning System) (see, for example, Patent Document 1 or 2) and performed using portable radio (for example, refer to Patent Document 3). Yes.

特開2001−215248号公報JP 2001-215248 A 特開2003−57286号公報JP 2003-57286 A 特開2000−162258号公報JP 2000-162258 A

ここで、目視による相判別は、相確定箇所から相判別箇所まで、配電線路を目視しながら追っていかなければならないので、多大な労力が必要となる。   Here, the visual phase discrimination must be followed while visually checking the distribution line from the phase determination location to the phase discrimination location, which requires a great deal of labor.

また、GPSを用いて行われる同期検定による相判別は、使用される装置が高価である。一方、携帯無線を用いて行われる同期検定による相判別は、同時に2台の高所作業車が必要となるほか、無線デジタル化により、現在用いている装置が今後使用できなくなる。   In addition, the device used for the phase discrimination by the synchronization test performed using the GPS is expensive. On the other hand, phase discrimination by synchronization verification performed using a portable radio requires two aerial work vehicles at the same time, and due to the digitization of radio, the currently used device can no longer be used.

そこで、この出願に係る発明者らが鋭意研究を行ったところ、各相の対地電圧と、配電線の各相対地静電容量や対地電圧の不平衡により常時残留している零相電圧との位相差は、時間による変動がほとんどなく、各相の対地電圧と、零相電圧との位相差により、相判別が可能になることを見出した。   Therefore, the inventors of the present application conducted extensive research and found that the ground voltage of each phase and the zero-phase voltage that remained at all times due to the unbalanced relative ground capacitance and ground voltage of the distribution line. It was found that the phase difference hardly fluctuates with time, and the phase difference can be determined by the phase difference between the ground voltage of each phase and the zero-phase voltage.

この発明は、上述の従来の相判別方法がそれぞれ有する課題に鑑みてなされたものであり、この発明の目的は、相判別箇所において、三相の高圧配電線路を構成する各相の配電線の相判別を、安価な装置を用いて簡易に行う相判別方法と、相判別に用いられる相判別装置を提供することにある。   The present invention has been made in view of the problems of the above-described conventional phase determination methods, and the object of the present invention is to provide a distribution line for each phase that constitutes a three-phase high-voltage distribution line at the phase determination point. An object of the present invention is to provide a phase discrimination method for easily performing phase discrimination using an inexpensive device and a phase discrimination device used for phase discrimination.

上述した目的を達成するために、この発明の、三相の配電線路を構成する各相の配電線の相を判別する方法は、相判別箇所において行われる以下の過程を備えている。   In order to achieve the above-described object, the method for discriminating the phases of the distribution lines of the respective phases constituting the three-phase distribution line of the present invention includes the following processes performed at the phase discrimination points.

先ず、少なくとも1つの配電線の対地電圧と、零相電圧をそれぞれ測定する。次に、対地電圧と、零相電圧との位相差を取得する。次に、相判別箇所での位相差と、予め測定された相確定箇所での確定位相差とを比較することにより、相を判別する。   First, the ground voltage and the zero-phase voltage of at least one distribution line are measured. Next, the phase difference between the ground voltage and the zero-phase voltage is acquired. Next, the phase is discriminated by comparing the phase difference at the phase discriminating portion with the final phase difference measured at the phase finalizing portion.

また、この発明の相判別装置は、3つの主高圧コンデンサと、3つの対地電圧測定用コンデンサと、零相電圧測定用コンデンサとを備えて構成される。3つの主高圧コンデンサは、三相の配電線に、それぞれ一端が接続される。3つの対地電圧測定用コンデンサは、3つの主高圧コンデンサの他端に、それぞれ直列に設けられている。また、零相電圧測定用コンデンサは、一端が3つの対地電圧測定用コンデンサに接続され、他端が接地される。   The phase discrimination device of the present invention includes three main high-voltage capacitors, three ground voltage measuring capacitors, and a zero-phase voltage measuring capacitor. One end of each of the three main high-voltage capacitors is connected to a three-phase distribution line. The three ground voltage measuring capacitors are respectively provided in series at the other ends of the three main high-voltage capacitors. The zero-phase voltage measuring capacitor has one end connected to three ground voltage measuring capacitors and the other end grounded.

この発明の相判別方法及び相判別装置によれば、時間による変動がほとんどない、各相の対地電圧と、零相電圧との位相差を利用して、相判別を行うので、安価な装置を用いて、簡易に相判別を行うことができる。   According to the phase discrimination method and the phase discrimination device of the present invention, the phase discrimination is performed using the phase difference between the ground voltage of each phase and the zero-phase voltage, which hardly varies with time, so that an inexpensive device can be obtained. And phase discrimination can be easily performed.

a相、b相、c相及び零相の関係を説明するための図である。It is a figure for demonstrating the relationship of a phase, b phase, c phase, and a zero phase. 複数の変電所における、任意の日での零相電圧の測定結果を示す図である。It is a figure which shows the measurement result of the zero phase voltage in the arbitrary days in a some substation. 零相電圧の測定系を示す、等価回路図である。It is an equivalent circuit diagram which shows the measurement system of a zero phase voltage. 零相電圧の比較的小さいバンクでの、零相電圧の位相差と、電圧を示す図である。It is a figure which shows the phase difference and voltage of a zero phase voltage in a bank with a comparatively small zero phase voltage. 零相電圧の比較的大きいバンクでの、零相電圧の位相差と、電圧を示す図である。It is a figure which shows the phase difference and voltage of a zero phase voltage in a bank with a comparatively large zero phase voltage. 相判別用ZPDを用いた相判別方法を説明するための模式図である。It is a schematic diagram for demonstrating the phase discrimination method using ZPD for phase discrimination. 相判別用ZPDを用いて行った、相判別試験の実験線路を説明するための模式図である。It is a schematic diagram for demonstrating the experimental track | line of the phase discrimination test performed using ZPD for phase discrimination. 相判別用ZPDを用いて行った、相判別試験の結果を示す図である。It is a figure which shows the result of the phase discrimination test performed using ZPD for phase discrimination. 相判別方法の第2の例を説明するための模式図である。It is a schematic diagram for demonstrating the 2nd example of the phase discrimination method. 地絡方向表示器用センサーとメモリーハイコーダで測定された電圧波形と、これら各相の電圧波形を合成した零相電圧の波形を示す図である。It is a figure which shows the waveform of the zero phase voltage which synthesize | combined the voltage waveform measured with the sensor for ground fault direction indicators and a memory high coder, and the voltage waveform of each of these phases. フーリエ解析後の抽出された電圧波形を示す図である。It is a figure which shows the extracted voltage waveform after a Fourier analysis.

以下、図を参照して、この発明の実施の形態について説明するが、各構成要素の配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例につき説明するが、各構成要素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の実施の形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the arrangement relationship of each component is merely schematically shown to the extent that the present invention can be understood. In the following, a preferred configuration example of the present invention will be described. However, the material and numerical conditions of each component are merely preferred examples. Therefore, the present invention is not limited to the following embodiments, and many changes or modifications that can achieve the effects of the present invention can be made without departing from the scope of the configuration of the present invention.

図1を参照して、三相対地電圧と、零相電圧について説明する。以下、便宜的に、三相をa相、b相及びc相として説明する。図1(A)及び(B)は、a相、b相、c相及び零相の関係を説明するための図である。図1(A)は、a相、b相、c相及び零相の関係を示す模式図である。また、図1(B)は、a相、b相、c相及び零相の電圧波形を示す図である。図1(B)では、横軸に時間(任意単位)を取って示し、縦軸に各相の対地電圧(単位:V)を取って示している。図1(B)中、曲線I、II、III及びIVは、それぞれ、a相、b相、c相及び零相の電圧波形を示している。なお、図1(B)に示される、各相対地電圧の電圧値は測定値であって、配電線の電圧を分圧するなどして得られている。   With reference to FIG. 1, the three relative ground voltage and the zero phase voltage will be described. Hereinafter, for convenience, the three phases will be described as a phase, b phase and c phase. FIGS. 1A and 1B are diagrams for explaining the relationship among the a phase, the b phase, the c phase, and the zero phase. FIG. 1A is a schematic diagram showing the relationship between the a phase, the b phase, the c phase, and the zero phase. FIG. 1B is a diagram illustrating voltage waveforms of the a phase, the b phase, the c phase, and the zero phase. In FIG. 1B, the horizontal axis represents time (arbitrary unit) and the vertical axis represents ground voltage (unit: V) of each phase. In FIG. 1B, curves I, II, III, and IV show voltage waveforms of a phase, b phase, c phase, and zero phase, respectively. In addition, the voltage value of each relative ground voltage shown by FIG. 1 (B) is a measured value, and is obtained by dividing the voltage of a distribution line.

三相対地電圧は、互いに位相が120°ずれている。すなわち、a相、b相及びc相のそれぞれの間の位相差は、120°となっている。三相のそれぞれの間の位相差には、場所や時間による変動は、ほとんどない。従って、零相電圧の位相に、場所や時間による変動が無ければ、零相電圧と三相対地電圧との位相差θにより、相判別を行うことができる。   The three relative ground voltages are 120 ° out of phase with each other. That is, the phase difference between the a phase, the b phase, and the c phase is 120 °. The phase difference between each of the three phases has little variation due to location or time. Therefore, if the phase of the zero-phase voltage does not vary with place or time, the phase can be determined based on the phase difference θ between the zero-phase voltage and the three relative ground voltages.

零相電圧(V)は、式(1)で与えられる。ここで、Ca、Cb、Ccは、各相の対地静電容量であり、Ea、Eb、Ecは、各相の対地電圧であり、Rgは地絡抵抗であり、及び、Rnは変電所内に設けられる接地用変圧器(EVT:Earthing Voltage Transformer)の制限抵抗である。 The zero phase voltage (V 0 ) is given by equation (1). Here, Ca, Cb, and Cc are ground capacitances of each phase, Ea, Eb, and Ec are ground voltages of each phase, Rg is a ground fault resistance, and Rn is in the substation. This is a limiting resistance of an earthing voltage transformer (EVT) provided.

Figure 2011242195
Figure 2011242195

式(1)の地絡抵抗Rgを無限大にすると、式(2)が得られる。式(2)から、残留零相電圧(V0Z)は、各相の対地静電容量Ca、Cb及びCcの不平衡や、各相の対地電圧Ea、Eb及びEcの不平衡により発生することがわかる。 When the ground fault resistance Rg in Expression (1) is infinite, Expression (2) is obtained. From equation (2), the residual zero-phase voltage (V 0Z ) is generated by the unbalance of the ground capacitances Ca, Cb and Cc of each phase and the unbalance of the ground voltages Ea, Eb and Ec of each phase. I understand.

Figure 2011242195
Figure 2011242195

なお、一般に、零相電圧は、地絡事故時に発生するものを指し、残留零相電圧は、地絡事故が発生していないときでも常時発生しているものを指すことがあるが、以下の説明では、三相の中性点の対地電圧を、零相電圧と称するものとする。   In general, the zero-phase voltage refers to the one that occurs at the time of the ground fault, and the residual zero-phase voltage may refer to the one that is always occurring even when the ground fault has not occurred. In the description, the ground voltage at the neutral point of the three phases is referred to as zero phase voltage.

図1は、1つの相の配電線としてa相に着目し、零相電圧Vとa相対地電圧との位相差をθとした例を示している。 FIG. 1 shows an example in which the a phase is focused on as a single-phase distribution line, and the phase difference between the zero-phase voltage V 0 and the a relative ground voltage is θ.

図2は、複数の変電所における、零相電圧の測定結果の例を示す図である。多くの変電所では、14V以上の零相電圧が測定可能である。各変電所で測定された零相電圧は、最小14V、最大160V、及び、平均51Vであり、ほとんど全ての変電所の配電用変圧器(バンク)において、零相電圧が測定可能な値となっている。このため、各変電所において、零相電圧と、三相対地電圧の位相差を求めることができる。そこで、これら変電所を相確定箇所として、相確定箇所における三相対地電圧と零相電圧の位相差を利用して、相判別を行うことができる。   FIG. 2 is a diagram illustrating an example of measurement results of zero-phase voltage at a plurality of substations. Many substations can measure zero-phase voltages above 14V. The zero-phase voltage measured at each substation is a minimum of 14 V, a maximum of 160 V, and an average of 51 V, and the zero-phase voltage is a value that can be measured in distribution transformers (banks) of almost all substations. ing. For this reason, the phase difference between the zero-phase voltage and the three relative ground voltages can be obtained at each substation. Therefore, the phase determination can be performed by using the phase difference between the three relative ground voltages and the zero-phase voltage at the phase determined location with these substations as the phase determined location.

先ず、零相電圧の、測定場所による変動について検討する。図3は、零相電圧の測定系を示す、等価回路図である。零相電圧Vの測定は、EVTの制限抵抗Rnの両端の電圧の測定に対応する。従って、配電線路(図3中、Iで示す。)のどの部分で測定しても、その振幅及び位相は一定となる。すなわち、図3に示す例では、配電線路の異なる箇所で測定した零相電圧V1、V2及びV3は、V1=V2=V3=Vの関係を満たす。このように、零相電圧の振幅及び位相は、場所により変動しない。 First, the variation of the zero-phase voltage depending on the measurement location is examined. FIG. 3 is an equivalent circuit diagram showing a zero-phase voltage measurement system. The measurement of the zero phase voltage V 0 corresponds to the measurement of the voltage across the limiting resistor Rn of the EVT. Therefore, the amplitude and phase are constant regardless of the portion of the distribution line (indicated by I in FIG. 3). That is, in the example shown in FIG. 3, the zero-phase voltages V 0 1, V 0 2 and V 0 3 measured at different locations on the distribution line have a relationship of V 0 1 = V 0 2 = V 0 3 = V 0 . Fulfill. Thus, the amplitude and phase of the zero-phase voltage do not vary depending on the location.

次に、零相電圧の時間による変動について検討する。零相電圧の比較的小さいバンクと、零相電圧の比較的大きいバンクの、それぞれについて、零相電圧とa相対地電圧との位相差と、零相電圧の電圧を約2週間測定した。図4及び図5に測定結果が示されている。   Next, the variation with time of the zero-phase voltage is examined. The phase difference between the zero-phase voltage and the a relative ground voltage and the zero-phase voltage were measured for about two weeks for each of the bank having a relatively small zero-phase voltage and the bank having a relatively large zero-phase voltage. The measurement results are shown in FIGS.

図4は、一例として、零相電圧の比較的小さいバンクでの、零相電圧とa相対地電圧との位相差と、零相電圧の電圧値を示している。図4では、横軸に時間を取って示し、縦軸に零相電圧とa相対地電圧の位相差(°)及び零相電圧の電圧値(V)を取って示している。図4中、曲線Iは、零相電圧とa相対地電圧の位相差を示しており、曲線IIは、零相電圧の電圧値を示している。   FIG. 4 shows, as an example, the phase difference between the zero-phase voltage and the a relative ground voltage and the voltage value of the zero-phase voltage in a bank having a relatively small zero-phase voltage. In FIG. 4, the horizontal axis represents time, and the vertical axis represents the phase difference (°) between the zero-phase voltage and the a relative ground voltage and the voltage value (V) of the zero-phase voltage. In FIG. 4, a curve I indicates the phase difference between the zero-phase voltage and the a relative ground voltage, and a curve II indicates the voltage value of the zero-phase voltage.

図4に示されるように、通常系統時は、位相差(I)は45°程度で時間的変動はなく、また、電圧値(II)についても55V程度で変動は無かった。また、系統切替を実施した場合(図4中、IIIで示す部分)は、位相差が70°程度に変動し、電圧値は20V程度に変動した。   As shown in FIG. 4, in the normal system, the phase difference (I) was about 45 ° and there was no temporal variation, and the voltage value (II) was about 55 V and there was no variation. Further, when system switching was performed (portion indicated by III in FIG. 4), the phase difference fluctuated to about 70 °, and the voltage value fluctuated to about 20V.

図5は、他の例として、零相電圧の比較的大きいバンクでの、零相電圧とa相対地電圧の位相差と、零相電圧の電圧値を示している。図5では、横軸に時間を取って示し、縦軸に零相電圧とa相対地電圧の位相差(°)及び零相電圧の電圧値(V)を取って示している。図5中、曲線Iは、零相電圧とa相対地電圧の位相差を示しており、曲線IIは、零相電圧の電圧値を示している。   FIG. 5 shows, as another example, the phase difference between the zero-phase voltage and the a relative ground voltage and the voltage value of the zero-phase voltage in a bank having a relatively large zero-phase voltage. In FIG. 5, the horizontal axis indicates time, and the vertical axis indicates the phase difference (°) between the zero-phase voltage and the a-relative ground voltage and the voltage value (V) of the zero-phase voltage. In FIG. 5, a curve I indicates the phase difference between the zero-phase voltage and the a relative ground voltage, and a curve II indicates the voltage value of the zero-phase voltage.

図5に示されるように、通常系統時は、位相差(I)は35°程度で時間的変動はなく、また、電圧値(II)についても80V程度で変動は無かった。また、系統切替を実施した場合(図5中、IIIで示す部分)は、位相差が18°程度に変動し、電圧値は50V程度に変動した。また、図5中、バンクを停止した場合をIVで示している。   As shown in FIG. 5, in the normal system, the phase difference (I) was about 35 ° and there was no temporal variation, and the voltage value (II) was about 80 V and there was no variation. Further, when system switching was performed (portion indicated by III in FIG. 5), the phase difference fluctuated to about 18 °, and the voltage value fluctuated to about 50V. In FIG. 5, the case where the bank is stopped is indicated by IV.

このように、通常系統時は、零相電圧の三相電圧に対する位相差は、ほぼ一定であり、零相電圧の位相は、時間的に変動しないことが確認された。   Thus, in the normal system, it was confirmed that the phase difference of the zero-phase voltage with respect to the three-phase voltage is substantially constant, and the phase of the zero-phase voltage does not vary with time.

(相判別方法の第1の例)
図1〜図5を参照して説明したように、各相の対地電圧と、零相電圧との位相差には、時間や場所による変動がほとんどない。このため、相判別箇所において相判別を行うに当たっては、同期検定は必要なく、例えば、相確定箇所で位相差を取得した後、相確定箇所で用いた測定装置を用いて、相判別箇所で位相差を取得し、両者を比較することにより、相を判別することができる。
(First example of phase discrimination method)
As described with reference to FIGS. 1 to 5, the phase difference between the ground voltage of each phase and the zero-phase voltage hardly varies depending on time and place. Therefore, when performing phase discrimination at the phase discrimination location, synchronization verification is not necessary.For example, after obtaining the phase difference at the phase determination location, the measurement device used at the phase determination location is used to determine the phase at the phase discrimination location. The phase can be determined by acquiring the phase difference and comparing the two.

この実施形態の相判別方法では、先ず、相確定箇所において、確定位相差として、各相の対地電圧と零相電圧との位相差を取得する。その後、相判別箇所において、各相の対地電圧と零相電圧との位相差を取得する。   In the phase determination method of this embodiment, first, the phase difference between the ground voltage and the zero-phase voltage of each phase is acquired as the determined phase difference at the phase determined location. Thereafter, the phase difference between the ground voltage and the zero-phase voltage of each phase is acquired at the phase discrimination point.

各相の対地電圧と零相電圧との位相差の取得には、例えば、相判別用コンデンサ型零相電圧検出器(相判別用ZPD:Zero phase potential device)を用いることができる。   In order to obtain the phase difference between the ground voltage and the zero-phase voltage of each phase, for example, a capacitor type zero-phase voltage detector for phase discrimination (ZPD for phase discrimination: zero phase potential device) can be used.

図6は、相判別方法の第1の例として、相判別装置として相判別用ZPDを用いた相判別方法を説明するための模式図である。相判別用ZPD10は、3つの主高圧コンデンサ12a、12b及び12cと、3つの対地電圧測定用コンデンサ14a、14b及び14cと、零相電圧測定用コンデンサ16とを備えて構成される。   FIG. 6 is a schematic diagram for explaining a phase discrimination method using a phase discrimination ZPD as a phase discrimination device as a first example of the phase discrimination method. The phase discrimination ZPD 10 includes three main high-voltage capacitors 12a, 12b and 12c, three ground voltage measuring capacitors 14a, 14b and 14c, and a zero-phase voltage measuring capacitor 16.

主高圧コンデンサ12及び対地電圧測定用コンデンサ14は、相ごとに設けられている。a相用の主高圧コンデンサ12aは、a相の配電線20aに一端が接続され、他端がa相用の対地電圧測定用コンデンサ14aの一端に接続されている。b相用の主高圧コンデンサ12bは、b相の配電線20bに一端が接続され、他端がb相用の対地電圧測定用コンデンサ14bの一端に接続されている。また、c相用の主高圧コンデンサ12cは、c相の配電線20cに一端が接続され、他端がc相用の対地電圧測定用コンデンサ14cの一端に接続されている。   The main high-voltage capacitor 12 and the ground voltage measuring capacitor 14 are provided for each phase. One end of the a-phase main high-voltage capacitor 12a is connected to the a-phase distribution line 20a, and the other end is connected to one end of the a-phase ground voltage measuring capacitor 14a. The b-phase main high-voltage capacitor 12b has one end connected to the b-phase distribution line 20b and the other end connected to one end of the b-phase ground voltage measuring capacitor 14b. The c-phase main high-voltage capacitor 12c has one end connected to the c-phase distribution line 20c and the other end connected to one end of the c-phase ground voltage measuring capacitor 14c.

対地電圧測定用コンデンサ14a、14b及び14cの、主高圧コンデンサ12a、12b及び12cに接続される一端とは反対側の他端は、零相電圧測定用コンデンサ16の一端に接続されている。零相電圧測定用コンデンサ16の他端は接地されている。   The other ends of the ground voltage measuring capacitors 14a, 14b and 14c opposite to the one connected to the main high voltage capacitors 12a, 12b and 12c are connected to one end of the zero phase voltage measuring capacitor 16. The other end of the zero-phase voltage measuring capacitor 16 is grounded.

相判別用ZPDは、さらに、電圧信号取得部と、位相差取得部とを備えている。この電圧信号取得部は、複数の電圧信号を取得し、適宜RAM(Random Access Memory)などに格納する。また、位相差取得部は、電圧信号取得部が取得した複数の電圧信号のうち、所定の2つの電圧信号を、RAMから読み出すなどした後、両者の位相差を取得する。これら、電圧信号取得部及び位相差取得部は、従来周知の任意好適な構成にすることができる。   The phase determination ZPD further includes a voltage signal acquisition unit and a phase difference acquisition unit. The voltage signal acquisition unit acquires a plurality of voltage signals and stores them in a RAM (Random Access Memory) or the like as appropriate. The phase difference acquisition unit acquires a phase difference between the two voltage signals read out from the RAM, among the plurality of voltage signals acquired by the voltage signal acquisition unit. These voltage signal acquisition unit and phase difference acquisition unit can have any conventionally known and suitable configuration.

ここでは、電圧信号取得部は、対地電圧として、対地電圧測定用コンデンサ14の両端の電位差を取得するとともに、零相電圧として、零相電圧測定用コンデンサ16の両端の電位差を取得する。また、位相差取得部は、3相の対地電圧の少なくとも1つと、零相電圧との位相差を取得する。   Here, the voltage signal acquisition unit acquires the potential difference between both ends of the ground voltage measuring capacitor 14 as the ground voltage, and acquires the potential difference between both ends of the zero phase voltage measuring capacitor 16 as the zero phase voltage. The phase difference acquisition unit acquires a phase difference between at least one of the three-phase ground voltages and the zero-phase voltage.

対地電圧測定用コンデンサ14a、14b及び14cと、主高圧コンデンサ12a、12b及び12cで、配電線の対地電圧は分圧される。例えば、主高圧コンデンサ12a、12b及び12cの容量を5〜6pFとし、対地電圧用コンデンサ14a、14b及び14cの容量を1μFとし、零相電圧用コンデンサ16の容量を0.5μFとする。   The ground voltage of the distribution line is divided by the ground voltage measuring capacitors 14a, 14b and 14c and the main high voltage capacitors 12a, 12b and 12c. For example, the main high voltage capacitors 12a, 12b and 12c have a capacitance of 5 to 6 pF, the ground voltage capacitors 14a, 14b and 14c have a capacitance of 1 μF, and the zero phase voltage capacitor 16 has a capacitance of 0.5 μF.

ここで、主高圧コンデンサ12a、12b及び12cは、主高圧コンデンサ12a、12b及び12cと対地電圧測定用コンデンサ14a、14b及び14cの電圧が同位相となり、3個の主高圧コンデンサ12a、12b及び12cの静電容量が同程度の値を持っていることが条件となる。   Here, the main high-voltage capacitors 12a, 12b and 12c have three main high-voltage capacitors 12a, 12b and 12c in which the voltages of the main high-voltage capacitors 12a, 12b and 12c and the ground voltage measuring capacitors 14a, 14b and 14c are in phase. It is a condition that the electrostatic capacity of each has the same value.

次に、図6を参照して説明した相判別用ZPDを用いて行った、検証実験について説明する。図7は、相判別用ZPDを用いて行った、相判別試験の実験線路を説明するための模式図である。   Next, a verification experiment performed using the phase determination ZPD described with reference to FIG. 6 will be described. FIG. 7 is a schematic diagram for explaining an experimental line for a phase discrimination test performed using a phase discrimination ZPD.

実験線路では、接地用コンデンサ110として、0.5μFを4台と、0.2μFを1台用いて、対地静電容量を不平衡とすることにより、200Vの零相電圧を発生させて測定を行った。また、自動電圧調整器(SVR:Step Voltage Regulator)120のタップを切換えて、昇圧による変化を測定した。   In the experimental line, measurement was performed by generating a zero-phase voltage of 200 V by using four 0.5 μF capacitors and one 0.2 μF capacitor as the grounding capacitor 110, and making the ground capacitance unbalanced. went. Moreover, the tap of the automatic voltage regulator (SVR: Step Voltage Regulator) 120 was switched, and the change by pressure | voltage rise was measured.

図8は、相判別用ZPDを用いて行った、相判別試験の結果を示す図であり、a相、b相、c相及び零相の電圧波形を示している。図8では、横軸に時間(単位:ms)を取って示し、縦軸に各相対地電圧の電圧値(単位:V)及び零相電圧の電圧値(単位:V)を取って示している。図8中、曲線I、II、III及びIVは、それぞれ、a相、b相、c相及び零相の電圧波形を示している。   FIG. 8 is a diagram showing the results of the phase discrimination test performed using the phase discrimination ZPD, and shows the voltage waveforms of the a phase, b phase, c phase, and zero phase. In FIG. 8, the horizontal axis shows time (unit: ms), and the vertical axis shows voltage values (unit: V) of each relative ground voltage and zero-phase voltage (unit: V). Yes. In FIG. 8, curves I, II, III and IV show the voltage waveforms of the a phase, b phase, c phase and zero phase, respectively.

表1に示されるように、第1のフィーダ(給電線)101と、第2のフィーダ102におけるSVR120の電源側では、a相と零相の位相差は305°〜307°となり、非常に高い精度で位相差が一致している。   As shown in Table 1, on the power supply side of the SVR 120 in the first feeder (feed line) 101 and the second feeder 102, the phase difference between the a phase and the zero phase is 305 ° to 307 °, which is very high. The phase difference matches with accuracy.

第2のフィーダ(F−2)102の負荷側では、SVR120のタップを3とした場合は、位相差が305°となり、第1のフィーダ(F−1)101などと位相差が一致している。しかし、SVR120のタップを6として、昇圧した場合は、位相差が352°となり、位相がずれている。   On the load side of the second feeder (F-2) 102, when the tap of the SVR 120 is set to 3, the phase difference is 305 °, and the phase difference matches that of the first feeder (F-1) 101 and the like. Yes. However, when the tap of the SVR 120 is set to 6 and the pressure is increased, the phase difference is 352 ° and the phase is shifted.

Figure 2011242195
Figure 2011242195

以上説明したように、SVR120の電源側では、相判別用ZPDを用いて、高い精度で相判別が可能となることが確かめられた。なお、SVR120の電源側と負荷側とでは、位相差が一致しない場合があるので、SVR120の負荷側では高い精度での相判別は困難である。また、系統切替時には、零相電圧の位相がずれるため、相判別を行うことはできない。   As described above, it has been confirmed that on the power source side of the SVR 120, phase discrimination can be performed with high accuracy using the phase discrimination ZPD. It should be noted that there is a case where the phase difference does not match between the power source side and the load side of the SVR 120, so that it is difficult to determine the phase with high accuracy on the load side of the SVR 120. Further, when the system is switched, the phase of the zero-phase voltage is shifted, so that the phase cannot be determined.

(相判別方法の第2の例)
三相電圧の、零相電圧に対する位相差を測定する方法として、配電線において地絡箇所の方向を表示する装置(例えば、電研社製の高圧地絡方向表示器)用のセンサー(以下、地絡方向表示器用センサーと称する。)と、メモリーハイコーダ(例えば、HIOKI社製)等の瞬時値の測定及び記憶が可能な瞬時値測定器を用いる方法がある。
(Second example of phase discrimination method)
As a method of measuring the phase difference of the three-phase voltage with respect to the zero-phase voltage, a sensor for a device (for example, a high-voltage ground fault direction indicator manufactured by Denken Co., Ltd.) that displays the direction of the ground fault location on the distribution line (hereinafter, And a method using an instantaneous value measuring device capable of measuring and storing an instantaneous value, such as a memory high coder (for example, manufactured by HIoki Corporation).

図9を参照して、相判別方法の第2の例について説明する。図9は、相判別方法の第2の例を説明するための模式図である。   A second example of the phase discrimination method will be described with reference to FIG. FIG. 9 is a schematic diagram for explaining a second example of the phase discrimination method.

この方法では、三相の配電線20a、20b及び20cに、それぞれ一端が接続される、3つの主高圧コンデンサ32a、32b及び32cと、3つの主高圧コンデンサ32の他端に、それぞれ直列に設けられた3つの終端抵抗34a、34b及び34cを備えた回路について、終端抵抗34の両端の電圧を、三相対地電圧として取得する。なお、終端抵抗34の他端は接地される。   In this method, three main high-voltage capacitors 32a, 32b and 32c, which are connected to the three-phase distribution lines 20a, 20b and 20c, respectively, and the other ends of the three main high-voltage capacitors 32 are provided in series. For the circuit including the three termination resistors 34a, 34b, and 34c, the voltage across the termination resistor 34 is acquired as the three relative ground voltages. The other end of the termination resistor 34 is grounded.

例えば、主高圧コンデンサ32の容量を10pFとし、終端抵抗34を100kΩとすると、配電線20の電位が3810Vのとき、測定される電圧としては、0.324V程度となる。   For example, if the capacity of the main high voltage capacitor 32 is 10 pF and the termination resistance 34 is 100 kΩ, the measured voltage is about 0.324 V when the potential of the distribution line 20 is 3810 V.

零相電圧波形は、各相の電圧波形を合成して得られる。   The zero-phase voltage waveform is obtained by synthesizing the voltage waveforms of the respective phases.

図10は、地絡方向表示器用センサーと瞬時値測定器で測定された電圧波形と、これら各相の電圧波形を合成した零相電圧の波形の例を示す図である。この測定例では、高調波分が増幅され歪んだ波形となっている。   FIG. 10 is a diagram illustrating an example of a voltage waveform measured by a ground fault direction indicator sensor and an instantaneous value measuring instrument, and a waveform of a zero-phase voltage obtained by synthesizing the voltage waveforms of these phases. In this measurement example, a harmonic waveform is amplified and distorted.

このままでは、位相の判定が難しいので、フーリエ解析により、三相対地電圧の電圧波形と、零相電圧の電圧波形から、50Hz成分を抽出して、位相比較を行った。図11は、フーリエ解析後の抽出された電圧波形を示す図である。   Since it is difficult to determine the phase as it is, a 50 Hz component is extracted from the voltage waveform of the three relative ground voltages and the voltage waveform of the zero-phase voltage by Fourier analysis, and the phase comparison is performed. FIG. 11 is a diagram illustrating an extracted voltage waveform after Fourier analysis.

図10及び図11では、横軸に時間(単位:ms)を取って示し、縦軸に各相対地電圧の電圧値(単位:V)及び零相電圧の電圧値(単位:V)を取って示している。図10及び図11中、曲線I、II、III及びIVは、それぞれ、a相、b相、c相及び零相の電圧波形を示している。   10 and 11, the horizontal axis indicates time (unit: ms), and the vertical axis indicates the voltage value (unit: V) of each relative ground voltage and the voltage value (unit: V) of the zero-phase voltage. It shows. In FIGS. 10 and 11, curves I, II, III, and IV indicate voltage waveforms of a phase, b phase, c phase, and zero phase, respectively.

この手法で取得した、三相対地電圧と、零相電圧の位相差を表2に示す。   Table 2 shows the phase difference between the three relative ground voltages and the zero-phase voltage obtained by this method.

Figure 2011242195
Figure 2011242195

表2では、3つのバンクについて、各々フィーダを変えて測定を行った結果が示されている。なお、ここでは、予め目視にて確認したa相(青相)と、零相との位相差を調べている。   Table 2 shows the results of measurement performed by changing the feeder for each of the three banks. Here, the phase difference between the a phase (blue phase) visually confirmed in advance and the zero phase is examined.

各バンクとも、3箇所中2箇所については、ほぼ同位相となっているが、1箇所は、同相と判断できない。これは、零相電圧の電圧波形を求める際に、3相の波形を合成するので、ばらつきが増幅され、その結果、零相電圧の位相がずれて、位相差に誤差が生じたものと考えられる。   In each bank, two out of three places have almost the same phase, but one place cannot be determined to be in phase. This is because the three-phase waveform is synthesized when the voltage waveform of the zero-phase voltage is obtained, so that the dispersion is amplified, and as a result, the phase of the zero-phase voltage is shifted and an error occurs in the phase difference. It is done.

従って、この相判別方法の第2の例の実施にあたっては、各相の振幅の誤差の影響を考慮する必要がある。   Therefore, in implementing the second example of this phase discrimination method, it is necessary to consider the influence of the amplitude error of each phase.

(相判別方法の第3の例)
三相電圧の、零相電圧に対する位相差を測定する方法として、地絡方向表示器用センサーと瞬時値測定器等を用いて、三相電圧の電圧波形を取得し、零相電圧の電圧波形をZPDが内蔵する高圧開閉器と瞬時値測定器等から取得する方法もある。
(Third example of phase discrimination method)
As a method of measuring the phase difference of the three-phase voltage with respect to the zero-phase voltage, obtain the voltage waveform of the three-phase voltage using the sensor for the ground fault direction indicator and the instantaneous value measuring device, etc. There is also a method of obtaining from a high voltage switch built in the ZPD and an instantaneous value measuring device.

ZPDを内蔵する高圧開閉器から取得される零相電圧は、機器の仕様上、位相がずれ、また、地絡方向表示器用センサーの対地電圧は、RC直列回路のR側で測定することから、位相がずれる。これらのずれを考慮して、算出された位相差を表3に示す。   The zero-phase voltage acquired from the high-voltage switch with built-in ZPD is out of phase due to the specifications of the equipment, and the ground voltage of the ground fault direction indicator sensor is measured on the R side of the RC series circuit. Out of phase. Table 3 shows the calculated phase differences in consideration of these deviations.

Figure 2011242195
Figure 2011242195

3つの開閉器で得られた位相差は、15°〜31°の値となっている。このように、3箇所での位相差は、±8°程度の範囲で一致しており、相判別には十分な精度が得られている。   The phase difference obtained by the three switches has a value of 15 ° to 31 °. Thus, the phase differences at the three locations coincide within a range of about ± 8 °, and sufficient accuracy is obtained for phase discrimination.

10 相判別用ZPD
12 主高圧コンデンサ
14 対地電圧測定用コンデンサ
16 零相電圧測定用コンデンサ
20 配電線
101、102 フィーダ
110 接地用コンデンサ
120 SVR
10 Phase detection ZPD
12 Main high voltage capacitor
14 Capacitor for measuring ground voltage 16 Capacitor for measuring zero-phase voltage 20 Distribution line 101, 102 Feeder 110 Capacitor for grounding 120 SVR

Claims (9)

三相の配電線路を構成する各配電線の相を判別する方法であって、
相判別箇所において、
少なくとも1つの前記配電線の対地電圧と、零相電圧をそれぞれ測定する過程と、
前記対地電圧と、前記零相電圧との位相差を取得する過程と、
相確定箇所において、予め測定されている対地電圧及び零相電圧の確定位相差と、前記位相差とを比較して相を判別する過程と
を備えることを特徴とする相判別方法。
A method for determining the phase of each distribution line constituting a three-phase distribution line,
At the phase discrimination point,
Measuring a ground voltage and a zero-phase voltage of at least one of the distribution lines, and
Obtaining a phase difference between the ground voltage and the zero-phase voltage;
A phase discriminating method comprising: a step of discriminating a phase by comparing a phase difference between a ground voltage and a zero-phase voltage measured in advance at a phase-determined portion and the phase difference.
請求項1に記載の相判別方法であって、
前記相判別箇所において、少なくとも1つの前記配電線の対地電圧と、零相電圧をそれぞれ同時に測定する
ことを特徴とする相判別方法。
The phase discrimination method according to claim 1,
A phase discrimination method characterized by simultaneously measuring a ground voltage and a zero-phase voltage of at least one of the distribution lines at the phase discrimination location.
請求項1に記載の相判別方法であって、
前記相判別箇所において、3つの前記配電線の対地電圧を測定し、
3つの前記配電線の対地電圧を合成して零相電圧を取得する
ことを特徴とする相判別方法。
The phase discrimination method according to claim 1,
In the phase discrimination point, measure the ground voltage of the three distribution lines,
A phase discrimination method comprising: synthesizing ground voltages of three distribution lines to obtain a zero-phase voltage.
請求項2に記載の相判別方法であって、
さらに、
予め前記相確定箇所において行われる、
3つの前記配電線の対地電圧と、零相電圧をそれぞれ同時に測定する過程と、
各相の前記対地電圧と、前記零相電圧との確定位相差を取得する過程と
を備える
ことを特徴とする相判別方法。
The phase discrimination method according to claim 2,
further,
Performed in advance at the phase determination point,
A process of simultaneously measuring a ground voltage and a zero-phase voltage of each of the three distribution lines;
A phase discrimination method comprising: obtaining a definite phase difference between the ground voltage of each phase and the zero-phase voltage.
請求項3に記載の相判別方法であって、
さらに、
予め前記相確定箇所において行われる、
3つの前記配電線の対地電圧を測定し、3つの前記配電線の対地電圧を合成して零相電圧を取得する過程と、
各相の前記対地電圧と、前記零相電圧との確定位相差を取得する過程と
を備える
ことを特徴とする相判別方法。
The phase discrimination method according to claim 3,
further,
Performed in advance at the phase determination point,
Measuring the ground voltage of the three distribution lines, and synthesizing the ground voltages of the three distribution lines to obtain a zero-phase voltage;
A phase discrimination method comprising: obtaining a definite phase difference between the ground voltage of each phase and the zero-phase voltage.
請求項2又は4に記載の相判別方法であって、
三相の前記配電線に、それぞれ一端が接続される、3つの主高圧コンデンサと、
前記3つの主高圧コンデンサの他端に、それぞれ直列に設けられた3つの対地電圧測定用コンデンサと、
一端が3つの前記対地電圧測定用コンデンサに接続され、他端が接地される零相電圧測定用コンデンサと
を備える相判別装置を用いて行う
ことを特徴とする相判別方法。
The phase discrimination method according to claim 2 or 4,
Three main high-voltage capacitors each connected at one end to the three-phase distribution line;
Three ground voltage measuring capacitors respectively provided in series at the other end of the three main high-voltage capacitors;
A phase discrimination method comprising: a phase discrimination device having one end connected to the three ground voltage measurement capacitors and the zero phase voltage measurement capacitor having the other end grounded.
請求項6に記載の相判別方法であって、
対地電圧として、前記対地電圧測定用コンデンサの両端の電位差を取得するとともに、零相電圧として、前記零相電圧測定用コンデンサの両端の電位差を取得する電圧信号取得部と、
前記対地電圧と前記零相電圧の位相差を取得する位相差取得部と
を備える相判別装置を用いて行う
ことを特徴とする相判別方法。
The phase discrimination method according to claim 6,
A voltage signal acquisition unit that acquires a potential difference between both ends of the capacitor for ground voltage measurement as a ground voltage, and acquires a potential difference between both ends of the capacitor for zero phase voltage measurement as a zero phase voltage;
A phase discrimination method comprising: a phase discrimination device including a phase difference acquisition unit that acquires a phase difference between the ground voltage and the zero phase voltage.
三相の配電線に、それぞれ一端が接続される、3つの主高圧コンデンサと、
前記3つの主高圧コンデンサの他端に、それぞれ直列に設けられた3つの対地電圧測定用コンデンサと、
一端が3つの前記対地電圧測定用コンデンサに接続され、他端が接地される零相電圧測定用コンデンサと
を備えることを特徴とする相判別装置。
Three main high-voltage capacitors each connected to a three-phase distribution line,
Three ground voltage measuring capacitors respectively provided in series at the other end of the three main high-voltage capacitors;
A phase discrimination apparatus comprising: a zero-phase voltage measurement capacitor having one end connected to the three ground voltage measurement capacitors and the other end grounded.
対地電圧として、前記対地電圧測定用コンデンサの両端の電位差を取得するとともに、零相電圧として、前記零相電圧測定用コンデンサの両端の電位差を取得する電圧信号取得部と、
前記対地電圧と前記零相電圧の位相差を取得する位相差取得部と
を備えることを特徴とする請求項8に記載の相判別装置。
A voltage signal acquisition unit that acquires a potential difference between both ends of the capacitor for ground voltage measurement as a ground voltage, and acquires a potential difference between both ends of the capacitor for zero phase voltage measurement as a zero phase voltage;
The phase determination device according to claim 8, further comprising a phase difference acquisition unit that acquires a phase difference between the ground voltage and the zero-phase voltage.
JP2010112928A 2010-05-17 2010-05-17 Phase discrimination method Active JP5119291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112928A JP5119291B2 (en) 2010-05-17 2010-05-17 Phase discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112928A JP5119291B2 (en) 2010-05-17 2010-05-17 Phase discrimination method

Publications (2)

Publication Number Publication Date
JP2011242195A true JP2011242195A (en) 2011-12-01
JP5119291B2 JP5119291B2 (en) 2013-01-16

Family

ID=45409017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112928A Active JP5119291B2 (en) 2010-05-17 2010-05-17 Phase discrimination method

Country Status (1)

Country Link
JP (1) JP5119291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125935A (en) * 2015-01-06 2016-07-11 東京電力ホールディングス株式会社 Phase discrimination support device of ac three phase electric path, and phase discrimination device, and method
JP2020046389A (en) * 2018-09-21 2020-03-26 愛知電機株式会社 Method for determining three-phase connection order of power distribution line

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734718A (en) * 1980-08-08 1982-02-25 Aichi Electric Mfg Phase detecting device for power distribution wire
JPS6320068U (en) * 1986-07-24 1988-02-09
JPS6372562U (en) * 1986-10-29 1988-05-14
JP2000162258A (en) * 1998-11-30 2000-06-16 Tohoku Electric Power Co Inc Phase-detecting device
JP2001215248A (en) * 2000-01-31 2001-08-10 Kansai Electric Power Co Inc:The Phase detecting system, for power transmission/ distribution line
JP2003057286A (en) * 2001-06-08 2003-02-26 Chubu Electric Power Co Inc Phase discrimination appliance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734718A (en) * 1980-08-08 1982-02-25 Aichi Electric Mfg Phase detecting device for power distribution wire
JPS6320068U (en) * 1986-07-24 1988-02-09
JPS6372562U (en) * 1986-10-29 1988-05-14
JP2000162258A (en) * 1998-11-30 2000-06-16 Tohoku Electric Power Co Inc Phase-detecting device
JP2001215248A (en) * 2000-01-31 2001-08-10 Kansai Electric Power Co Inc:The Phase detecting system, for power transmission/ distribution line
JP2003057286A (en) * 2001-06-08 2003-02-26 Chubu Electric Power Co Inc Phase discrimination appliance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125935A (en) * 2015-01-06 2016-07-11 東京電力ホールディングス株式会社 Phase discrimination support device of ac three phase electric path, and phase discrimination device, and method
JP2020046389A (en) * 2018-09-21 2020-03-26 愛知電機株式会社 Method for determining three-phase connection order of power distribution line
JP7211746B2 (en) 2018-09-21 2023-01-24 愛知電機株式会社 How to determine the three-phase connection order of distribution lines

Also Published As

Publication number Publication date
JP5119291B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US9945896B2 (en) Active monitoring systems for high voltage bushings and methods related thereto
JPS62250378A (en) Method and device for recognizing trouble of electric facility and making sure position thereof
JP4267713B2 (en) Degradation diagnosis method for power cables
CN106030738B (en) For monitoring the method and apparatus of the condenser-type terminal for three-phase AC grid
JPWO2018221619A1 (en) Leakage detection method
CN103472425B (en) A kind of application process of line selection device for low current performance testing platform
CN108646125B (en) Method, device and system for testing capacitance current
JP6328591B2 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
JP5119291B2 (en) Phase discrimination method
CN104251978A (en) Tester for affection of alternating-current crosstalk and voltage fluctuation of direct-current system on relay
CN201402305Y (en) Wiring structure for partial discharge tests of dry-type transformer
KR100937363B1 (en) Power distributing board having function of real-time insulation sensing and error point detecting for power equipment
CN108548982B (en) Method, device and system for testing capacitance current
CN108548983B (en) Method, device and system for testing capacitance current
Balcerek et al. Centralized substation level protection for determination of faulty feeder in distribution network
Shuin et al. Comparison of electrical variables of transient process for earth-to ground fault location in medium voltage cable networks
CN108535528B (en) Capacitance current testing method, device and system based on frequency sweep method
CN108333438B (en) Method, device and system for testing capacitance current
CN108303595B (en) Capacitive current testing method, device and system based on pilot frequency phase current
CN111257616A (en) Capacitance current testing device and method of built-in ceramic voltage divider
CN110488136A (en) The rotor one point to ground fault fault detection method of phase modifier excitation system
JP6736454B2 (en) Ground voltage detector
CN111596246B (en) Same-frequency and same-phase verification device and verification method thereof
Bogdashova et al. Parametric on-line fault location methods for distribution MV networks
Jacob et al. Experience with partial discharge measurements on instrument transformers in high voltage laboratory acceptance tests

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250