JP2011241861A - Multi-way selector valve - Google Patents

Multi-way selector valve Download PDF

Info

Publication number
JP2011241861A
JP2011241861A JP2010112337A JP2010112337A JP2011241861A JP 2011241861 A JP2011241861 A JP 2011241861A JP 2010112337 A JP2010112337 A JP 2010112337A JP 2010112337 A JP2010112337 A JP 2010112337A JP 2011241861 A JP2011241861 A JP 2011241861A
Authority
JP
Japan
Prior art keywords
valve
valve body
flow path
chamber
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010112337A
Other languages
Japanese (ja)
Other versions
JP5611662B2 (en
Inventor
Takeshi Kamio
猛 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2010112337A priority Critical patent/JP5611662B2/en
Publication of JP2011241861A publication Critical patent/JP2011241861A/en
Application granted granted Critical
Publication of JP5611662B2 publication Critical patent/JP5611662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-way selector valve capable of lowering differential pressure between the inside and outside of a valve body during switching of a flow path, even when high pressure fluid is introduced into the valve body, and allowing the valve body to smoothly and reliably perform flow path switching operation.SOLUTION: A valve chamber 21 is divided by a partitioning member 20c into an upper chamber part 21A to which a high pressure refrigerant introduction port 11 is opened and a lower chamber 21B on a valve seat part 25 side. A relief port 23 for connecting the upper chamber 21A and the lower chamber 21B is formed in the partitioning member 20C, and an auxiliary valve 40 for opening the relief port 23 just before the start of flow path switching operation by the valve body 30 and closing it almost simultaneously with the completion of the flow path switching operation.

Description

本発明は、冷凍サイクル(ヒートポンプ)等に用いられる三方切換弁や四方切換弁等の多方切換弁に係り、特に、流路の切り換えをモーター等のアクチュエータで弁体を回動させることにより行うロータリ式の多方向切換弁に関する。   The present invention relates to a multi-way switching valve such as a three-way switching valve or a four-way switching valve used in a refrigeration cycle (heat pump) or the like, and in particular, a rotary that performs switching of a flow path by rotating a valve body with an actuator such as a motor. The present invention relates to a multidirectional switching valve of the type.

この種の多方切換弁として、本願の出願人は、先に、特許文献1、2、3等に見られるように、複数個の流体入出ポートが形成された弁シート部を有する弁ハウジングと、前記弁シート部に接触しながら回動せしめられる弁体と、該弁体を回転駆動するアクチュエータとを備え、前記弁ハウジングに流体導入ポート及び/又は流体導出ポートが形成されるとともに、前記弁体内に、前記流体導入ポート又は流体導出ポートと前記複数個の流体入出ポートとを選択的に連通させるための通路が形成され、前記アクチュエータにより前記弁体を回動させて、前記流体導入ポート又は流体導出ポートと前記複数個の入出ポートのいずれかとを前記弁体内通路を介して選択的に連通させることにより流路の切り換えを行なうようにされたものを多数提案している。   As a multi-way switching valve of this type, the applicant of the present application previously has a valve housing having a valve seat portion in which a plurality of fluid inlet / outlet ports are formed, as seen in Patent Documents 1, 2, 3, etc., A valve body that is rotated while being in contact with the valve seat portion; and an actuator that rotationally drives the valve body. A fluid introduction port and / or a fluid outlet port is formed in the valve housing, and the valve body A passage for selectively communicating the fluid introduction port or fluid outlet port and the plurality of fluid input / output ports, and the valve body is rotated by the actuator so that the fluid introduction port or fluid A large number of switches that selectively switch the outlet port and any of the plurality of inlet / outlet ports through the valve body passage to switch the flow path. It is.

特開2002-13843号公報JP 2002-13843 A 特開2002-340446号公報JP 2002-340446 A 特願2009-203926号Japanese Patent Application No. 2009-203926

前記した如くの多方切換弁にあっては、通常、弁体の内外、つまり弁体内(通路)の圧力と弁体の外側(弁室)の圧力との間には大きな差圧が生じる。より具体的には、前記特許文献1、2に所載の四方切換弁では、弁体内通路は流体導出ポートを介して圧縮機の吸入側に接続されるので低圧となり、弁室は流体導入ポートを介して圧縮機の吐出側に接続されるので高圧となる。これとは逆に、前記特許文献3に所載の四方切換弁では、弁体内通路は流体導入ポートを介して圧縮機の吐出側に接続されるので高圧となり、弁室は流体導出ポートを介して圧縮機の吸入側に接続されるので低圧となる。   In the multi-way switching valve as described above, a large differential pressure is usually generated between the inside and outside of the valve body, that is, the pressure inside the valve body (passage) and the pressure outside the valve body (valve chamber). More specifically, in the four-way switching valve described in Patent Documents 1 and 2, since the valve body passage is connected to the suction side of the compressor via the fluid outlet port, the valve chamber becomes a fluid introduction port. Since it is connected to the discharge side of the compressor via the pressure, the pressure becomes high. On the other hand, in the four-way switching valve described in Patent Document 3, the valve body passage is connected to the discharge side of the compressor via the fluid introduction port, so that the valve chamber is connected to the discharge side of the compressor. Because it is connected to the suction side of the compressor, the pressure is low.

このように弁体の内外に大きな差圧が生じていると、弁体による流路切換動作が重くなる傾向があり、甚だしくは、流路切換動作が正常には行なわれなくなる場合もある。特に、前記特許文献3に所載の四方切換弁では、弁体及び弁体内通路が逆L形ないしクランク状となっていて、弁体内通路の出口が弁体の回転軸線に対して偏心した位置に配在され、さらに弁体内通路には高圧冷媒が導入されるので、弁体内通路に導入された高圧冷媒の圧力により、弁体を出口側に傾けさせようとする力がかかり、弁体による流路切換動作が重くなる傾向が強い。   When a large differential pressure is generated inside and outside the valve body in this way, the flow path switching operation by the valve body tends to be heavy, and the flow path switching operation may not be performed normally. In particular, in the four-way switching valve described in Patent Document 3, the valve body and the valve body passage are reverse L-shaped or crank-shaped, and the outlet of the valve body passage is eccentric with respect to the rotation axis of the valve body. Since the high-pressure refrigerant is introduced into the valve body passage, the pressure of the high-pressure refrigerant introduced into the valve body passage causes a force to tilt the valve body toward the outlet side. There is a strong tendency that the flow path switching operation becomes heavy.

そこで、前記差圧対策として、前記特許文献1、2には、前記弁体(主弁体)の壁部にその内外を連通させる均圧孔を形成するとともに、該均圧孔を開閉する副弁体を前記主弁体の外周に配在し、流路切換時には、この副弁体を前記主弁体の回動に同期ないし連動させて回動させることにより、前記均圧孔を開いて弁室の高圧を弁体内通路へ逃がし、前記差圧を小さくすることが提案されている。   Therefore, as a countermeasure against the differential pressure, in Patent Documents 1 and 2, a pressure equalizing hole is formed in the wall portion of the valve body (main valve body) so as to communicate the inside and the outside, and a sub-opening that opens and closes the pressure equalizing hole. The valve body is arranged on the outer periphery of the main valve body, and when the flow path is switched, the subvalve body is rotated in synchronization with or interlocked with the rotation of the main valve body to open the pressure equalizing hole. It has been proposed to release the high pressure in the valve chamber to the valve body passage to reduce the differential pressure.

ところが、かかる対策は、前記特許文献3に所載のものには適用することが難しい。すなわち、前記特許文献3に所載のものでは、弁体内が高圧となり弁室が低圧となるため、主弁体の外周上に配在される副弁体が弁体内の高圧で外側に押され(浮き上がり)、前記均圧孔が不所望に開いて弁体内通路の高圧冷媒が弁室に漏出する等の問題が生じるおそれがある。   However, it is difficult to apply this measure to the one described in Patent Document 3. That is, in the one described in Patent Document 3, since the valve body has a high pressure and the valve chamber has a low pressure, the sub-valve element disposed on the outer periphery of the main valve body is pushed outward by the high pressure in the valve body. (Floating), the pressure equalizing hole may open undesirably, and high-pressure refrigerant in the valve body passage may leak into the valve chamber.

本発明は、前記した如くの事情に鑑みてなされたもので、その目的とするところは、弁体内に高圧流体を導入するようにされたもとでも、流路切換時において弁体の内外の差圧を小さくすることができ、もって、弁体による流路切換動作を円滑かつ確実に行なうことのできる多方切換弁を提供することにある。   The present invention has been made in view of the circumstances as described above. The purpose of the present invention is to provide a pressure difference between the inside and outside of the valve body at the time of switching the flow path even when high pressure fluid is introduced into the valve body. Accordingly, it is an object of the present invention to provide a multi-way switching valve capable of smoothly and reliably performing a flow path switching operation by a valve body.

前記目的を達成すべく、本発明に係る多方切換弁は、基本的には、複数個の流体入出ポートが形成された弁シート部を有する弁ハウジングと、前記弁シート部に接触しながら回動せしめられる弁体と、該弁体を回転駆動するアクチュエータとを備え、前記弁ハウジングに高圧流体導入ポートが形成されるとともに、前記弁体内に、前記高圧流体導入ポートと前記複数個の流体入出ポートとを選択的に連通させるための通路が形成され、前記アクチュエータにより前記弁体を回動させて、前記高圧流体導入ポートと前記複数個の入出ポートのいずれかとを前記弁体内通路を介して選択的に連通させることにより流路の切り換えを行なうようにされていて、前記弁ハウジング内に前記弁シート部をその底部とする弁室が形成され、該弁室が仕切部材により前記高圧流体導入ポートが開口する上部室と前記弁シート部側の下部室とに分割され、前記仕切部材に前記上部室と下部室とを連通する逃がしポートが形成されるとともに、該逃がしポートを、前記弁体の回動に応じて開閉する副弁が設けられていることを特徴としている。   In order to achieve the above object, a multi-way switching valve according to the present invention basically rotates while contacting a valve housing having a valve seat portion in which a plurality of fluid inlet / outlet ports are formed, and the valve seat portion. A high pressure fluid introduction port formed in the valve housing, and the high pressure fluid introduction port and the plurality of fluid input / output ports in the valve body. And the valve body is rotated by the actuator to select either the high-pressure fluid introduction port or the plurality of inlet / outlet ports via the valve body passage. The flow path is switched by communicating with each other, and a valve chamber having the valve seat portion as a bottom portion is formed in the valve housing. The valve chamber is a partition portion. Is divided into an upper chamber in which the high-pressure fluid introduction port is opened and a lower chamber on the valve seat side, and a relief port is formed in the partition member to communicate the upper chamber and the lower chamber, and the relief port Is provided with a sub-valve that opens and closes according to the rotation of the valve body.

前記副弁は、好ましくは、前記弁体による流路切換動作開始直前に前記逃がしポートを開き、流路切換動作終了と略同時にそれを閉じるようにされる。   The sub-valve preferably opens the relief port immediately before the flow path switching operation by the valve body is started and closes it almost simultaneously with the end of the flow path switching operation.

前記副弁は、好ましくは、前記アクチュエータの回転駆動力を利用して前記逃がしポートを開閉するようにされる。   The sub-valve is preferably configured to open and close the relief port using the rotational driving force of the actuator.

前記副弁は、好ましくは、前記仕切部材における前記上部室側の面に押し付けられるようにされる。   The sub valve is preferably pressed against the surface of the partition member on the upper chamber side.

他の好ましい態様では、前記アクチュエータの回転駆動力は、駆動側歯車を介して前記弁体に伝達されるとともに、前記駆動側歯車に噛合する従動側歯車を介して前記副弁に伝達されるように構成される。   In another preferred aspect, the rotational driving force of the actuator is transmitted to the valve body via a drive side gear, and is also transmitted to the subvalve via a driven side gear meshing with the drive side gear. Configured.

この場合、より具体的な好ましい態様では、前記弁体と前記駆動側歯車とは共通の回転軸線を持ち、前記アクチュエータの回転駆動力を前記副弁より遅れて前記弁体に伝達すべく、前記弁体に駆動ピンが突設されるとともに、前記駆動側歯車に前記駆動ピンが緩挿される円弧状の長穴が形成される。   In this case, in a more specific preferable aspect, the valve body and the drive side gear have a common rotation axis, and the rotational driving force of the actuator is transmitted to the valve body later than the auxiliary valve. A drive pin protrudes from the valve body, and an arc-shaped elongated hole into which the drive pin is loosely inserted is formed in the drive side gear.

本発明に係る多方切換弁は、弁室が仕切部材により上室部と下部室とに分割され、前記仕切部材に上部室と下部室とを連通する逃がしポートが形成されるとともに、該逃がしポートを、弁体の回動に応じて開閉する副弁が設けられているので、弁体内に高圧流体を導入するようにされたもとでも、流路切換時において弁体の内外の差圧を小さくすることができ、これにより、弁体による流路切換動作を円滑かつ確実に行なうことができる。   In the multi-way selector valve according to the present invention, the valve chamber is divided into an upper chamber portion and a lower chamber by a partition member, and a relief port for communicating the upper chamber and the lower chamber is formed in the partition member, and the relief port Since a sub-valve that opens and closes according to the rotation of the valve body is provided, even when high pressure fluid is introduced into the valve body, the pressure difference between the inside and outside of the valve body is reduced when the flow path is switched. Thus, the flow path switching operation by the valve body can be performed smoothly and reliably.

本発明に係る多方切換弁の一実施形態を示す縦断面図。The longitudinal cross-sectional view which shows one Embodiment of the multiway switching valve which concerns on this invention. 図2は、図1に示される多方切換弁の弁体の別の断面を示す図。FIG. 2 is a view showing another cross section of the valve body of the multi-way switching valve shown in FIG. 1. (A)は、図1のX−X矢視線に従う断面図、(B)は、図1のYーY矢視線に従う断面図。(A) is sectional drawing which follows the XX arrow line of FIG. 1, (B) is sectional drawing which follows the YY arrow line of FIG. 図1に示される実施形態の動作説明に供される図。The figure which is provided for operation | movement description of embodiment shown by FIG. 本発明に係る多方切換弁の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the multiway switching valve which concerns on this invention. 図5に示される他の実施形態の動作説明に供される図。The figure which is provided for operation | movement description of other embodiment shown by FIG.

以下、本発明の多方切換弁の実施形態を図面を参照しながら説明する。
図1は、本発明に係る多方切換弁の一実施形態を示す縦断面図、図2は、図1に示される多方切換弁の弁体の別の断面を示す図、図3(A)は、図1のX−X矢視線に従う断面図、図3(B)は、図1のYーY矢視線に従う断面図である。
Hereinafter, embodiments of the multi-way selector valve of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an embodiment of a multi-way switching valve according to the present invention, FIG. 2 is a view showing another cross section of the valve body of the multi-way switching valve shown in FIG. 1, and FIG. 1 is a cross-sectional view taken along the line XX in FIG. 1, and FIG. 3B is a cross-sectional view taken along the line YY in FIG.

本実施形態の多方切換弁10は、高圧冷媒導入ポート11、第1冷媒入出ポート12、第2冷媒入出ポート13、及び低圧冷媒導出ポート14を有する、ヒートポンプ装置に用いられるロータリー式の四方切換弁であり、キャン18の内周側に配在されたロータ16とキャン18の外周に外嵌固定されたステータ17とからなる流路切換用アクチュエータとしてのステッピングモータ15と、該ステッピングモータ15により回動せしめられる弁体(主弁体)30と、この弁体30を回動可能に保持する弁ハウジング20と、を備えている。   The multi-way selector valve 10 of the present embodiment includes a high-pressure refrigerant inlet port 11, a first refrigerant inlet / outlet port 12, a second refrigerant inlet / outlet port 13, and a low-pressure refrigerant outlet port 14 used in a heat pump device. A stepping motor 15 as a flow path switching actuator comprising a rotor 16 disposed on the inner peripheral side of the can 18 and a stator 17 externally fixed to the outer periphery of the can 18, and the stepping motor 15 rotates the stepping motor 15. A valve body (main valve body) 30 that can be moved and a valve housing 20 that rotatably holds the valve body 30 are provided.

弁ハウジング20は、上部体20Aと、底蓋状体20Bと、仕切部材20Cと、これらを連結すべくその端部が溶接接合された上下の円筒状体20D、20Eとからなり、これらで弁室21が画成されている。弁室21は、仕切部材20Cにより、高圧冷媒導入ポート11が開口する上部室21Aと下部室21Bとに分割されている。   The valve housing 20 includes an upper body 20A, a bottom lid-like body 20B, a partition member 20C, and upper and lower cylindrical bodies 20D and 20E whose ends are welded together to connect them. A chamber 21 is defined. The valve chamber 21 is divided into an upper chamber 21A and a lower chamber 21B in which the high-pressure refrigerant introduction port 11 is opened by a partition member 20C.

前記モータ15内には、遊星歯車式減速機構19が付設され、モータ15の回転駆動力は、遊星歯車式減速機構19の出力軸19eから駆動側平歯車41を介して前記弁体30に伝達されるとともに、前記駆動側平歯車41に噛合する従動側平歯車42(駆動側平歯車41と同径、同歯数)を介して前記上部室21Aに配在された副弁40に伝達されるようになっている(後で詳述)。   A planetary gear speed reduction mechanism 19 is provided in the motor 15, and the rotational driving force of the motor 15 is transmitted from the output shaft 19 e of the planetary gear speed reduction mechanism 19 to the valve body 30 via the drive side spur gear 41. At the same time, it is transmitted to the auxiliary valve 40 disposed in the upper chamber 21A via a driven spur gear 42 (the same diameter and the same number of teeth as the drive spur gear 41) that meshes with the drive spur gear 41. (It will be described in detail later).

上部体20Aの一側(左側)には、縦孔26が設けられ、この縦孔26に装着されたスリーブ状の軸受部材27により、前記出力軸19eに一体回転可能に連結された駆動側平歯車41の軸部41aが回転自在に支持されている。   A vertical hole 26 is provided on one side (left side) of the upper body 20A, and a drive-side flat connected to the output shaft 19e by a sleeve-like bearing member 27 mounted in the vertical hole 26 so as to be integrally rotatable. A shaft portion 41a of the gear 41 is rotatably supported.

また、弁ハウジング20の底蓋状体20Bの一側上面は弁シート部25となっており、ここには、第1冷媒入出ポート12、第2冷媒入出ポート13、及び低圧冷媒導出ポート14が約90度間隔で設けられている。前記した各ポート11、12、13、14には、導管(継手)81、82、83、84が連結されている。   In addition, one upper surface on the side of the bottom lid-like body 20B of the valve housing 20 is a valve seat portion 25, which includes a first refrigerant inlet / outlet port 12, a second refrigerant inlet / outlet port 13, and a low pressure refrigerant outlet port 14. They are provided at intervals of about 90 degrees. To each of the ports 11, 12, 13, and 14 described above, conduits (joints) 81, 82, 83, and 84 are connected.

一方、前記弁体30は、天井部31aと底部31bとを有する円筒軸部31と、該円筒軸部31の下半分(下部室21B内に位置する部分)に外嵌固定された例えば合成樹脂製の軸外部材34とからなっていて、側面視外形がL形ないしクランク状を呈し、内部にその外形と概略相似する弁体内通路35が設けられている。この弁体内通路35は、上部室21Aに開口する入口35a、円筒軸部31の内部35b、円筒軸部31の下部と軸外部材34に形成された連通路35c、軸外部材34の内部35d、及び弁シート部25に対面する出口35eからなっている。   On the other hand, the valve body 30 is, for example, a synthetic resin that is externally fitted and fixed to a cylindrical shaft portion 31 having a ceiling portion 31a and a bottom portion 31b and a lower half (portion located in the lower chamber 21B) of the cylindrical shaft portion 31. The outer shaft member 34 is made of an off-axis member 34 and has an L shape or a crank shape in a side view, and a valve body passage 35 that is substantially similar to the outer shape is provided inside. The valve body passage 35 includes an inlet 35a that opens into the upper chamber 21A, an inner portion 35b of the cylindrical shaft portion 31, a communication passage 35c formed in the lower portion of the cylindrical shaft portion 31 and the off-axis member 34, and an inner portion 35d of the off-axis member 34. , And an outlet 35e facing the valve seat portion 25.

また、この弁体30と駆動側平歯車41とが共通の回転軸線Oを持つように、円筒軸部31の天井部31aにおける中心部(回転軸線O上)には円柱状軸部36が上向きに突設され、円筒軸部31の底部31bにおける回転軸線O上には円柱状軸部37が下向きに突設され、上側の軸部36は駆動側平歯車41の中心部(回転軸線O上)に形成された円筒状の支持穴41fに相対回転自在に緩挿され、下側の軸部37は底蓋状体20Bに形成された円筒状の支持穴20fに相対回転自在に緩挿されている。   Further, the cylindrical shaft portion 36 faces upward at the center portion (on the rotation axis O) of the ceiling portion 31a of the cylindrical shaft portion 31 so that the valve body 30 and the drive side spur gear 41 have a common rotation axis O. A cylindrical shaft portion 37 protrudes downward on the rotation axis O at the bottom 31b of the cylindrical shaft portion 31, and the upper shaft portion 36 is a central portion (on the rotation axis O) of the drive side spur gear 41. The lower shaft portion 37 is loosely inserted into the cylindrical support hole 20f formed in the bottom lid 20B so as to be relatively rotatable. ing.

前記弁体30における弁体内通路35の出口35e側端部には、弁体内通路35から弁室21(下部室21B)への流体漏れを防ぐべく、弁シート部25に気密的に圧接するように、シール材としてのOリング38と角形リング39とが装着されている(図2参照)。Oリング38は、弁体内通路35を流れる高圧冷媒により半径方向外方に押圧されて断面が円形から楕円状に変化するが、このOリング38の形状変化を利用して角形リング39の一端面を弁シート部25に押し付けてシール効果を得る構成となっている。   In order to prevent fluid leakage from the valve body passage 35 to the valve chamber 21 (lower chamber 21B), an end of the valve body 30 on the outlet 35e side of the valve body passage 35 is hermetically pressed against the valve seat portion 25. Further, an O-ring 38 and a square ring 39 as sealing materials are mounted (see FIG. 2). The O-ring 38 is pressed radially outward by the high-pressure refrigerant flowing through the valve body passage 35 and the cross section changes from a circular shape to an elliptical shape. One end surface of the rectangular ring 39 is utilized by utilizing the shape change of the O-ring 38. Is pressed against the valve seat portion 25 to obtain a sealing effect.

また、仕切部材20Cにおける一側(右側)には、上部室21Aと下部室21Bとを連通する逃がしポート23が形成され、他側(左側)には、弁体30の円筒軸部31を通す段付き挿通穴24が形成され、この挿通穴24における上部室21A側には、円筒軸部31を回転自在に支持するスリーブ状の軸受部材28が装着され、下部室21B側には、テフロン(登録商標)製のリップシール29が装着されている。   In addition, an escape port 23 for communicating the upper chamber 21A and the lower chamber 21B is formed on one side (right side) of the partition member 20C, and the cylindrical shaft portion 31 of the valve body 30 is passed on the other side (left side). A stepped insertion hole 24 is formed, and a sleeve-like bearing member 28 that rotatably supports the cylindrical shaft portion 31 is mounted on the upper chamber 21A side in the insertion hole 24, and a Teflon ( A lip seal 29 made of (registered trademark) is attached.

上記に加え、モータ15の回転駆動力を前記副弁40より遅れて弁体30に伝達すべく、弁体30の天井部31aにおける回転軸線Oから所定距離だけ偏心した位置に駆動ピン33が垂直に突設されるとともに、駆動側歯車41に前記駆動ピン33が緩挿される、回転軸線Oを中心とする円弧状の長穴43(中心角θは90度前後)が形成されている(図3参照)。   In addition to the above, in order to transmit the rotational driving force of the motor 15 to the valve body 30 later than the auxiliary valve 40, the drive pin 33 is perpendicular to a position deviated by a predetermined distance from the rotational axis O in the ceiling portion 31a of the valve body 30. And an arc-shaped long hole 43 (center angle θ is around 90 degrees) about the rotation axis O is formed in which the drive pin 33 is gently inserted into the drive side gear 41 (see FIG. 3).

一方、前記モータ15の回転駆動力が駆動側平歯車41及び従動側平歯車42を介して伝達される副弁40は、前記逃がしポート23を、前記弁体30による流路切換動作開始直前に開き、流路切換動作終了と略同時に閉じるようにされている。具体的には、副弁40は、前記回転軸線Oと平行に仕切部材20Cに植立されて前記従動側平歯車42を回転自在に支持するガイドピン44と、従動側平歯車42の下側に延設された円筒状の軸部42aの下端部に設けられた肉厚の鍔状ホルダ45と、該鍔状ホルダ45に180度の角度間隔をあけて設けられた二つの下面側が開口した円形保持穴46A、46Bにそれぞれ摺動可能に嵌挿された円柱状の第1副弁体47A及び第2副弁体47Bと、円形保持穴46A、46Bの天井部と副弁体47A、47B(のばね受け凹部)との間に介装されて副弁体47A、47Bを常時仕切部材20Cの上面に押し付ける方向(下方)に付勢する圧縮コイルばね48、48と、を備えている。   On the other hand, the auxiliary valve 40 to which the rotational driving force of the motor 15 is transmitted via the drive side spur gear 41 and the driven side spur gear 42 is connected to the relief port 23 immediately before the flow path switching operation by the valve body 30 is started. It opens and closes almost simultaneously with the end of the flow path switching operation. Specifically, the auxiliary valve 40 is installed in the partition member 20 </ b> C in parallel with the rotational axis O, and guide pins 44 that rotatably support the driven side spur gear 42, and a lower side of the driven side spur gear 42. A thick bowl-shaped holder 45 provided at the lower end of the cylindrical shaft portion 42a extended to the bottom and two lower surfaces provided at an angular interval of 180 degrees in the bowl-shaped holder 45 are opened. Cylindrical first sub-valve body 47A and second sub-valve body 47B that are slidably fitted in the circular holding holes 46A and 46B, the ceiling portions of the circular holding holes 46A and 46B, and the sub-valve bodies 47A and 47B. Compression springs 48 and 48 that are interposed between the spring receiving recesses and urge the sub-valve bodies 47A and 47B against the upper surface of the partition member 20C (downward) at all times.

かかる構成の四方切換弁10は、弁体30を回動させることによって、弁体内通路35及び弁室21(下部室21A)を介して第1冷媒入出ポート12及び第2冷媒入出ポート13のいずれかと高圧冷媒導入ポート11及び低圧冷媒導出ポート14のいずれかとを選択的に連通させることにより、流路の切り換えを行うようになっている。   The four-way switching valve 10 having such a configuration rotates any of the first coolant inlet / outlet port 12 and the second coolant inlet / outlet port 13 through the valve body passage 35 and the valve chamber 21 (lower chamber 21A) by rotating the valve body 30. The flow path is switched by selectively communicating with either the high-pressure refrigerant introduction port 11 or the low-pressure refrigerant outlet port 14.

ここで、本実施形態の四方切換弁10では、図4(1)に示される如くの、弁体内通路35の出口側端部(角形リング39)が弁シート部25の第1流体入出ポート12の真上に位置し(弁体30がストッパ61に当接)、高圧流体導入ポート11と第1流体入出ポート12とが弁体内通路35を介して連通した状態(第1流通状態と称す)では、駆動ピン33が長穴43の一端側(駆動側平歯車41の回転方向(ここでは時計回り)で見て先端側)に近接ないし当接し、また、第1副弁体47Aが逃がしポート23を閉じている。   Here, in the four-way switching valve 10 of the present embodiment, the outlet side end portion (square ring 39) of the valve body passage 35 is the first fluid inlet / outlet port 12 of the valve seat portion 25 as shown in FIG. The high pressure fluid introduction port 11 and the first fluid inlet / outlet port 12 communicate with each other via the valve body passage 35 (referred to as a first flow state). Then, the drive pin 33 comes close to or abuts on one end side of the elongated hole 43 (the tip side when viewed in the rotational direction of the drive side spur gear 41 (clockwise in this case)), and the first sub valve body 47A is a relief port. 23 is closed.

かかる第1流通状態から駆動側平歯車41を時計回りに前記長穴43の中心角θ分程度回転させると、図4(2)に示される如くに、駆動ピン33が長穴43の他端側に近接ないし当接するものの、駆動側平歯車41の回転駆動力は弁体30へは伝達されず、弁体30は第1流通状態のままであるが、駆動側平歯車41により従動側平歯車42が反時計回りに回転せしめられるので、第1副弁体47Aが逃がしポート23を開く。これにより、上部室21A内の高圧冷媒が逃がしポート23を介して下部室21Bに逃がされ、弁体30の内外の差圧が小さくされる。   When the drive-side spur gear 41 is rotated clockwise by the center angle θ of the long hole 43 from the first flow state, the drive pin 33 is connected to the other end of the long hole 43 as shown in FIG. However, the rotational driving force of the drive side spur gear 41 is not transmitted to the valve body 30 and the valve body 30 remains in the first flow state, but is driven by the driven side spur gear 41. Since the gear 42 is rotated counterclockwise, the first auxiliary valve body 47A opens the relief port 23. As a result, the high-pressure refrigerant in the upper chamber 21 </ b> A is released to the lower chamber 21 </ b> B through the escape port 23, and the pressure difference inside and outside the valve body 30 is reduced.

かかる状態から駆動側平歯車41を時計回りにさらに45度程度回転させると、図4(3)に示される如くに、駆動側平歯車41の回転駆動力が長穴43の他端部から駆動ピン33に伝達され、弁体30が時計回りに回転し、弁体内通路35の出口側端部(角形リング39)が弁シート部25の第1流体入出ポート12と第2冷媒入出ポート13との中間に位置し、第1副弁体47Aが逃がしポート23から一層離れるとともに、第2副弁体47Bが逃がしポート23に近づくが、逃がしポート23は開いたままであるので、前記差圧はさらに小さくなる。   When the drive side spur gear 41 is further rotated about 45 degrees clockwise from such a state, the rotational driving force of the drive side spur gear 41 is driven from the other end of the elongated hole 43 as shown in FIG. The valve body 30 is rotated clockwise by being transmitted to the pin 33, and the outlet side end portion (square ring 39) of the valve body passage 35 is connected to the first fluid inlet / outlet port 12 and the second refrigerant inlet / outlet port 13 of the valve seat portion 25. The first sub-valve body 47A is further away from the escape port 23, and the second sub-valve body 47B approaches the escape port 23, but the relief port 23 remains open. Get smaller.

かかる状態から駆動側平歯車41を時計回りにさらに45度程度回転させると、図4(4)に示される如くに、弁体30が時計回りにさらに回転し、弁体内通路35の出口側端部(角形リング39)が第2流体入出ポート13の真上に位置し(弁体30がストッパ62に当接)、高圧流体導入ポート11と第2流体入出ポート13とが弁体内通路35を介して連通した状態(第2流通状態と称す)となり、これにより、第1流通状態から第2流通状態への流路切換動作が終了する。これと略同時に、第2副弁体47Bにより逃がしポート23が閉じられ、上部室21A内の高圧冷媒は下部室21Bに逃がされなくなる。   When the drive side spur gear 41 is further rotated about 45 degrees clockwise from this state, the valve body 30 is further rotated clockwise as shown in FIG. 4 (4), and the outlet side end of the valve body passage 35 is rotated. Portion (rectangular ring 39) is located directly above the second fluid inlet / outlet port 13 (the valve body 30 contacts the stopper 62), and the high pressure fluid introduction port 11 and the second fluid inlet / outlet port 13 pass through the valve body passage 35. In this way, the flow switching operation from the first flow state to the second flow state is completed. At substantially the same time, the escape port 23 is closed by the second sub valve body 47B, and the high-pressure refrigerant in the upper chamber 21A is not released to the lower chamber 21B.

また、第2流通状態から第1流通状態への切り換えは、駆動側平歯車41を上記とは逆方向(反時計回り)に回転させることにより行なわれる。   The switching from the second flow state to the first flow state is performed by rotating the drive side spur gear 41 in the opposite direction (counterclockwise) to the above.

このように本実施形態の四方切換弁10は、弁室21が仕切部材20Cにより高圧冷媒導入ポート11が開口する上室部21Aと弁シート部25側の下部室21Bとに分割され、前記仕切部材20Cに上部室21Aと下部室21Bとを連通する逃がしポート23が形成されるとともに、該逃がしポート23を、弁体30による流路切換動作開始直前に開き、流路切換動作終了と略同時に閉じる副弁40が設けられているので、弁体30内に高圧冷媒を導入するようにされたもとでも、流路切換時において弁体30の内外の差圧を小さくすることができ、これにより、弁体30による流路切換動作を円滑かつ確実に行なうことができる。   As described above, in the four-way switching valve 10 of the present embodiment, the valve chamber 21 is divided into the upper chamber portion 21A where the high-pressure refrigerant introduction port 11 is opened by the partition member 20C and the lower chamber 21B on the valve seat portion 25 side. The member 20C is formed with a relief port 23 that allows the upper chamber 21A and the lower chamber 21B to communicate with each other. The relief port 23 is opened immediately before the flow path switching operation by the valve body 30 is started, and substantially simultaneously with the end of the flow path switching operation. Since the closing sub valve 40 is provided, the pressure difference between the inside and outside of the valve body 30 can be reduced at the time of switching the flow path even when high pressure refrigerant is introduced into the valve body 30, The flow path switching operation by the valve body 30 can be performed smoothly and reliably.

なお、上記実施形態では、駆動側平歯車41と従動側平歯車42とは、その外径及び歯数が同じに設定され、二つの副弁体47A、47Bで逃がしポート23を開閉するようにしているが、それに代えて、例えば図5、図6に示される他の実施形態の多方切換弁10’の如くに、従動側平歯車42’の歯数を駆動側平歯車41’の半分にするとともに、一つの副弁体47Aのみで逃がしポート23を開閉するようにしてもよい。この場合は、駆動側平歯車41’が180度回転する間に従動側平歯車42’が1回転し、一つの副弁体47Aで、逃がしポート23を、弁体30による流路切換動作開始直前に開き、流路切換動作終了と略同時に閉じることができる。   In the above embodiment, the drive-side spur gear 41 and the driven-side spur gear 42 are set to have the same outer diameter and the same number of teeth, and the relief port 23 is opened and closed by the two auxiliary valve bodies 47A and 47B. However, instead of this, the number of teeth of the driven side spur gear 42 'is half that of the driving side spur gear 41', for example, as in the multi-way switching valve 10 'of the other embodiment shown in FIGS. In addition, the relief port 23 may be opened and closed with only one sub valve body 47A. In this case, the driven spur gear 42 ′ rotates once while the drive spur gear 41 ′ rotates 180 degrees, and the relief port 23 is started by one sub-valve body 47 </ b> A, and the flow path switching operation by the valve body 30 is started. It can be opened just before and closed almost simultaneously with the end of the flow path switching operation.

また、上記実施形態では、平歯車41、42を用いて副弁40を回動させることにより逃がしポート23を開閉するようにしているが、逃がしポート23の開閉方式は、これに限られる訳ではなく、例えば、カムやねじ送り機構等を用いて副弁体を昇降させることにより逃がしポートを開閉するようにしてもよい。   In the above embodiment, the relief port 23 is opened and closed by rotating the auxiliary valve 40 using the spur gears 41 and 42. However, the opening and closing method of the relief port 23 is not limited to this. Instead, for example, the relief port may be opened and closed by raising and lowering the sub-valve using a cam, a screw feed mechanism, or the like.

また、上記実施形態では、冷媒入出ポートは、2つ(符号12及び13)設けられるものとしたが、冷媒入出ポートが3つ以上設けられ、弁体30でそのうちの1つの入出ポートを連通する様な多方切換弁に本発明を適用することも可能である。   In the above embodiment, two refrigerant inlet / outlet ports (reference numerals 12 and 13) are provided. However, three or more refrigerant inlet / outlet ports are provided, and the valve body 30 communicates one of the inlet / outlet ports. It is also possible to apply the present invention to such a multi-way switching valve.

更にまた、低圧冷媒導出ポート14を省略し、高圧冷媒導入ポート11を、2つ以上の冷媒入出ポートのいずれか1つを連通する三方切換弁を含む多方切換弁に本発明を適用することも可能である。   Furthermore, the present invention may be applied to a multi-way switching valve including a three-way switching valve in which the low-pressure refrigerant outlet port 14 is omitted and the high-pressure refrigerant inlet port 11 communicates with any one of two or more refrigerant inlet / outlet ports. Is possible.

更にまた、本発明の多方切換弁が切換える流路を流れる流体は、冷媒以外のいかなる流体であっても良いことは当然である。   Furthermore, the fluid flowing through the flow path switched by the multi-way switching valve of the present invention may be any fluid other than the refrigerant.

10 多方切換弁(四方切換弁)
11 高圧冷媒導入ポート
12 第1冷媒入出ポート
13 第2冷媒入出ポート
14 低圧冷媒導出ポート
15 モータ(アクチュエータ)
20 弁ハウジング
20A 上部体
20B 底蓋状体
20C 仕切部材
23 逃がしポート
30 弁体
33 駆動ピン
35 弁体内通路
40 副弁
41 駆動側平歯車
42 従動側平歯車
43 長穴
47A、47B 副弁体
10 Multi-way switching valve (4-way switching valve)
11 High-pressure refrigerant introduction port 12 First refrigerant inlet / outlet port 13 Second refrigerant inlet / outlet port 14 Low-pressure refrigerant outlet port 15 Motor (actuator)
20 Valve housing 20A Upper body 20B Bottom lid-like body 20C Partition member 23 Relief port 30 Valve body 33 Drive pin 35 Valve body passage 40 Sub valve 41 Drive side spur gear 42 Drive side spur gear 43 Slotted holes 47A, 47B Sub valve body

Claims (6)

複数個の流体入出ポートが形成された弁シート部を有する弁ハウジングと、前記弁シート部に接触しながら回動せしめられる弁体と、該弁体を回転駆動するアクチュエータとを備え、前記弁ハウジングに高圧流体導入ポートが形成されるとともに、前記弁体内に、前記高圧流体導入ポートと前記複数個の流体入出ポートとを選択的に連通させるための通路が形成され、前記アクチュエータにより前記弁体を回動させて、前記高圧流体導入ポートと前記複数個の入出ポートのいずれかとを前記弁体内通路を介して選択的に連通させることにより流路の切り換えを行なうようにされた多方切換弁であって、
前記弁ハウジング内に前記弁シート部をその底部とする弁室が形成され、該弁室が仕切部材により前記高圧流体導入ポートが開口する上部室と前記弁シート部側の下部室とに分割され、前記仕切部材に前記上部室と下部室とを連通する逃がしポートが形成されるとともに、該逃がしポートを、前記の回動に応じて開閉する副弁が設けられていることを特徴とする多方切換弁。
A valve housing having a valve seat portion in which a plurality of fluid inlet / outlet ports are formed; a valve body that is rotated while being in contact with the valve seat portion; and an actuator that rotationally drives the valve body. A high-pressure fluid introduction port is formed in the valve body, and a passage for selectively communicating the high-pressure fluid introduction port and the plurality of fluid input / output ports is formed in the valve body. A multi-way switching valve that is configured to switch the flow path by rotating and selectively communicating any one of the plurality of inlet / outlet ports with the passage in the valve body. And
A valve chamber having the valve seat portion as a bottom portion is formed in the valve housing, and the valve chamber is divided by a partition member into an upper chamber in which the high-pressure fluid introduction port is opened and a lower chamber on the valve seat portion side. The partition member is provided with a relief port that allows the upper chamber and the lower chamber to communicate with each other, and a sub-valve that opens and closes the relief port according to the rotation is provided. Switching valve.
前記副弁は、前記弁体による流路切換動作開始直前に前記逃がしポートを開き、流路切換動作終了と略同時にそれを閉じるようにされていることを特徴とする請求項1に記載の多方切換弁。   2. The multi-way valve according to claim 1, wherein the sub-valve is configured to open the relief port immediately before the flow path switching operation by the valve body is started and to close the relief port substantially simultaneously with the end of the flow path switching operation. Switching valve. 前記副弁は、前記アクチュエータの回転駆動力を利用して前記逃がしポートを開閉するようにされていることを特徴とする請求項1又は2に記載の多方切換弁。   3. The multi-way selector valve according to claim 1, wherein the auxiliary valve is configured to open and close the relief port using a rotational driving force of the actuator. 前記副弁は、前記仕切部材における前記上部室側の面に押し付けられていることを特徴とする請求項1から3のいずれか一項に記載の多方切換弁。   The multi-way selector valve according to any one of claims 1 to 3, wherein the sub valve is pressed against a surface of the partition member on the upper chamber side. 前記アクチュエータの回転駆動力は、駆動側歯車を介して前記弁体に伝達されるとともに、前記駆動側歯車に噛合する従動側歯車を介して前記副弁に伝達されるように構成されていることを特徴とする請求項3又は4に記載の多方切換弁。   The rotational driving force of the actuator is configured to be transmitted to the valve body via a driving gear, and to the auxiliary valve via a driven gear that meshes with the driving gear. The multi-way switching valve according to claim 3 or 4, wherein 前記弁体と前記駆動側歯車とは共通の回転軸線を持ち、前記アクチュエータの回転駆動力を前記副弁より遅れて前記弁体に伝達すべく、前記弁体に駆動ピンが突設されるとともに、前記駆動側歯車に前記駆動ピンが緩挿される円弧状の長穴が形成されていることを特徴とする請求項5に記載の多方切換弁。   The valve body and the drive-side gear have a common axis of rotation, and a drive pin projects from the valve body to transmit the rotational driving force of the actuator to the valve body with a delay from the sub-valve. 6. The multi-way selector valve according to claim 5, wherein an arc-shaped elongated hole into which the drive pin is loosely inserted is formed in the drive side gear.
JP2010112337A 2010-05-14 2010-05-14 Multi-way selector valve Active JP5611662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112337A JP5611662B2 (en) 2010-05-14 2010-05-14 Multi-way selector valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112337A JP5611662B2 (en) 2010-05-14 2010-05-14 Multi-way selector valve

Publications (2)

Publication Number Publication Date
JP2011241861A true JP2011241861A (en) 2011-12-01
JP5611662B2 JP5611662B2 (en) 2014-10-22

Family

ID=45408741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112337A Active JP5611662B2 (en) 2010-05-14 2010-05-14 Multi-way selector valve

Country Status (1)

Country Link
JP (1) JP5611662B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178905A (en) * 2015-04-14 2015-10-08 日立アプライアンス株式会社 refrigerator
CN105042116A (en) * 2015-08-25 2015-11-11 江苏德林环保技术有限公司 Electric program injection valve
JP2020153480A (en) * 2019-03-22 2020-09-24 株式会社山田製作所 Flow control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153252A (en) * 1997-11-21 1999-06-08 Pacific Ind Co Ltd Solenoid pilot four-way valve
JP2002013843A (en) * 2000-04-26 2002-01-18 Fuji Koki Corp Four-way change-over valve
JP2002340446A (en) * 2001-05-17 2002-11-27 Fuji Koki Corp Four-way change-over valve
JP2010084939A (en) * 2008-09-08 2010-04-15 Fuji Koki Corp Four-way switch valve
JP2010266062A (en) * 2008-11-04 2010-11-25 Fuji Koki Corp Multi-way selector valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153252A (en) * 1997-11-21 1999-06-08 Pacific Ind Co Ltd Solenoid pilot four-way valve
JP2002013843A (en) * 2000-04-26 2002-01-18 Fuji Koki Corp Four-way change-over valve
JP2002340446A (en) * 2001-05-17 2002-11-27 Fuji Koki Corp Four-way change-over valve
JP2010084939A (en) * 2008-09-08 2010-04-15 Fuji Koki Corp Four-way switch valve
JP2010266062A (en) * 2008-11-04 2010-11-25 Fuji Koki Corp Multi-way selector valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178905A (en) * 2015-04-14 2015-10-08 日立アプライアンス株式会社 refrigerator
CN105042116A (en) * 2015-08-25 2015-11-11 江苏德林环保技术有限公司 Electric program injection valve
JP2020153480A (en) * 2019-03-22 2020-09-24 株式会社山田製作所 Flow control device

Also Published As

Publication number Publication date
JP5611662B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5611558B2 (en) Multi-way selector valve
KR101814206B1 (en) Channel switching valve and heat pump system using the same
KR20110112190A (en) Multi direction changeover valve
CN105570498B (en) Flow path switching valve
WO2011039918A1 (en) Rotary valve
KR101116215B1 (en) rotary compressor
JP2011047426A5 (en)
EP3379117B1 (en) Valve device and air conditioning device
EP2439470A1 (en) Electric valve for refrigerant control
JP5611662B2 (en) Multi-way selector valve
JP2012067833A (en) Multi-way selector valve
JP2003232455A (en) Valve drive
JP4054346B2 (en) Variable capacity rotary compressor
JP5611695B2 (en) Multi-way selector valve
JP6783061B2 (en) Flow switching valve
JP2013036509A (en) Three-way valve
JP6661433B2 (en) Flow path switching valve
JP2009270639A (en) Flow path selector valve
JP2013036483A (en) Multi-way valve
JP2013044354A (en) Ball valve
JP2009216164A (en) Rotary control valve
CN111059315B (en) All-welded forged steel ball valve
JP6491861B2 (en) Flow path switching valve
JP2022103053A (en) Rotary switching valve
KR101772699B1 (en) Multi-direction change-over valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5611662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250